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1 Technical and Regularity Assumptions

We first discuss the relevant regularity conditions, including smoothness, rank, and identification. These

assumptions are also stated in the appendix of Chen, Dou, and Kogan (2021).

Assumption 1 (GMM Regularity Conditions). We assume that the moment function m(·, θ), defined on a

compact set Θ, satisfies the following regularity conditions:

(i) there exists θ0 ∈ int(Θ) such that Q(θ0) is non-empty;

(ii) the moment restrictions are over-identified: dθ < dm;

(iii) EQ0 [m
(1)
t (θ(1))] = 0 and EQ0 [mt(θ)] = 0 only when θ(1) = θ

(1)
0 and θ = θ0;

(iv) mt(θ) is continuously differentiable in θ, and D has full column rank.

The compactness of Θ and the assumption θ0 ∈ int(Θ) are the standard regularity conditions to ensure

the uniform law of large numbers (ULLN) and the first-order-condition characterization of GMM estimators,

respectively. Condition (i) means that the moment restrictions are satisfied under θ0 and Q0, though Q0 may

not be the true DGP. Condition (ii) is the standard over-identification condition in GMM (see Hansen, 1982).

Condition (iii) is also a standard identification assumption to ensure that the sequence of GMM estimators

has a unique limit (see Hansen, 1982). Condition (iv) is the rank condition for moment restrictions, and is

the sufficient condition for local identification enabling us to consistently estimate θ0.

Assumption 2 (Markov Processes). {yt : t = 0, 1, · · · } is a time-homogeneous Harris ergodic and stationary

Markov process satisfying the Doeblin condition.

A Markov process is Harris ergodic if it is aperiodic, irreducible, and positive Harris recurrent (e.g. Jones,

2004; Meyn and Tweedie, 2009). Harris ergodicity guarantees the existence of a unique invariant probability

measure (e.g., Meyn and Tweedie, 2009). Given Harris ergodicity, stationarity only requires that the initial

distribution of y0 is the unique invariant probability measure. The Doeblin condition implies that the φ-mixing

coefficients φ(n) decay to zero exponentially fast (e.g. Bradley, 2005, Section 3.2 and Theorem 3.4), which

is useful for establishing the uniform law of large numbers (ULLN) (White and Domowitz, 1984) and the

central limit theorem (CLT) (e.g., Jones, 2004, Theorem 9).

In Assumption 3, we impose additional assumptions about the heteroskedasticity of the locally unstable

DGP under consideration, thereby extending the statistical setting of Andrews (1993), Sowell (1996) and Li

and Müller (2009) to the semiparametric setting.
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Assumption 3 (Tail Properties of Local Instability). As n→∞, it holds that under Q0

(i) n−1 max1≤t≤n |g(yt−1,yt)|2 = op(1);

(ii) EQ0
[
|g(yt−1,yt)|2+ν

]
<∞, for some ν > 0.

Condition (i) of Assumption 3 is needed for establishing the results on the law of large numbers (LLN)

of Lemma 4 of Li and Müller (2009), which we use throughout our proofs. Condition (ii) of Assumption

3 implies n−1
∑n

t=1 EQ0
t−1

[
|g(yt−1,yt)|2+ν

]
= Op(1) and n−1

∑n
t=1 |g(yt−1,yt)|2+ν = Op(1). Condition (ii) is

needed for establishing the local asymptotic normality (LAN) for time-inhomogeneous Markov processes

(see Proposition 3 in Appendix 2.1) and thus ensuring that the locally unstable DGP is contiguous to the

stable DGP (see Corollary 1 in Online Appendix 2.1). Condition (ii) is also a commonly adopted assumption

(e.g., Li and Müller, 2009, Lemma 1). A direct implication of Assumption 3 is the LLN and CLT of partial

summations of score functions.

Assumption 4 (Global Identification Condition). There exists ε > 0 such that ϑ(Qs,f ) is unique if it exists,

for all Qs,f ∈ N(Q0) with the Hellinger distance H2(Qs,f ,Q0) < ε.

The following are regularity conditions on moments.

Assumption 5 (Tail Properties of Moments). We assume that the moment function m(·, θ), defined on a

compact set Θ, satisfies the following conditions:

(i) EQ0
[
|mt(θ0)|2+ν

]
<∞ for some ν > 0, and EQ0

[
supθ∈Θ ||∇θmt(θ)||2S

]
<∞,

(ii) n−1/2 max1≤t≤n |mt(θ0)| = op(1),

(iii)
∞∑
t=1

√
EQ0 [|γt|2] <∞, with γt ≡ EQ0 [mt(θ0)|F1]− EQ0 [mt(θ0)|F0],

where || · ||S is the spectral norm of matrices, and the information set Ft is the sigma-field generated by

{yt−j}∞j=0.

Conditions (i) and (ii) of Assumption 5 are needed to establish the functional central limit theorem

(invariance principle) of McLeish (1975b) and Phillips and Durlauf (1986). Condition (i) imposes restrictions

on the amount of heteroskedasticity allowed in the observed moment series and their gradients, which also

ensures the uniform square integrability of the moment function. This condition is commonly adopted in

the literature (e.g., Newey, 1985; Andrews, 1993; Sowell, 1996; Li and Müller, 2009, for similar regularity

conditions). Condition (iii) states that the incremental information about the current moments between two

consecutive information sets eventually becomes negligible as the information sets recede in history from

the current observation. This condition ensures the martingale difference approximation for the temporal-

dependent moment function as in Hansen (1985), which plays a key role in analyzing the semiparametric

efficiency bound based on unconditional moment restrictions (see Proposition 5 in Online Appendix 2.2 and

Theorem 1 in Online Appendix 3).

Assumption 6 (Correct Baseline Structural Model). We assume that the true local DGP with a joint

distribution P1/
√
n,g∗,b∗ is such that g∗ ∈ GB(Q0), where

GB(Q0) ≡
{
g ∈ G(Q0) : λ(1)(g1) = 0 and λ(1)(g2) ∈ lin(D11)

}
. (1)
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Linear operator λ(1)(·) is defined in (79).

Assumption 6 ensures that the baseline structural model is correctly specified because λ(1)(fn,t) =

λ(1)(g2)b(t/n) ∈ lin(D11) for every t ∈ {1, · · · , n}. We can replace (1) with a seemingly weaker assumption

λ(1)(g∗1), λ(1)(g∗2) ∈ lin(D11). However, this does not add generality because we can always replace θ0 with a

sequence of new reference points (reparametrization) to ensure that (1) is satisfied.

2 Auxiliary Results

2.1 Auxiliary Results on Data-Generating Processes

In this section, we introduce auxiliary propositions that characterize the useful properties of the data-

generating processes under the regularity conditions. Proposition 1 derives the corresponding scores (or local

perturbations) of the univariate marginal distribution µs,f and the Markov transition kernel Ks,f when we

perturb the bivariate distribution from Q0 to Qs,f . Proposition 2 considers local data-generating processes

characterized by scores fn,t and shows that the scores fn,t satisfy the law of large numbers and the central

limit theorem. Proposition 2, together with Hellinger-differentiability, is needed to ensure the local asymptotic

normality of the local data-generating processes, as established in Proposition 3. The LAN property is

needed to establish the contiguity property of the locally unstable data-generating process P1/
√
n,g,b as a

local perturbation with respect to the reference process P0 for asymptotic equivalence arguments. We denote∑bπnc
t=1 by

∑
t≤πn and

∑n
t=bπnc+1 by

∑
t>πn for notational simplicity.

Proposition 1 (Implied Scores of Marginal and Transition Distributions). Suppose Qs,f ∈ N(Q0) for some

Q0 ∈ H. Let µ and K be the univariate marginal distribution and the Markov transition kernel of Q0,

respectively. Then, the marginal distribution µs,f and Markov transition kernel Ks,f of Qs,f satisfy the

Hellinger differentiability conditions:

dµs,f
dµ0

= 1 + sf̄ + s∆µ(s) and
dKs,f (·|y)

dK0(·|y)
= 1 + sf̃(y, ·) + s∆K(y, s) ∀ y ∈ Y, (2)

where ∆µ(s) and ∆K(y, s) converge to 0 in L2(Q0) for all y ∈ Y as s→ 0, and the marginal score and the

conditional score are

f̄(y) ≡ EQ0
[
f(y,y′)|y

]
= EQ0

[
f(y′,y)|y

]
and f̃(y,y′) ≡ f(y,y′)− f̄(y). (3)

Proposition 2. Suppose Assumption 3 holds. Let f̃n,t ≡ fn,t − EQ0
t−1 [fn,t] and g̃(yt−1,yt) ≡ g(yt−1,yt) −

EQ0
t−1 [g(yt−1,yt)]. Then it holds that under Q0,

n−1
∑
t≤πn

f̃2
n,t

p−→ Υ(π) and n−1
∑
t≤πn

EQ
t−1

[
f̃2
n,t

]
p−→ Υ(π), where (4)

Υ(π) ≡ EQ
[
g̃TBπ g̃

]
with Bπ ≡

[
π

∫ π
0 b(u)du∫ π

0 b(u)du
∫ π

0 b(u)2du

]
. (5)
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Further, the asymptotic normality result follows:

wlim
n→∞

n−1/2
∑
t≤πn

f̃n,t = N (0,Υ(π)) . (6)

Proposition 3 (LAN of Unstable Parametric Submodels). Suppose Assumption 3 holds. For any g ∈ G(Q0)

and b ∈ B, the corresponding locally unstable data-generating process with distribution P1/
√
n,g,b for yn =

{y0, · · · ,yn} satisfies

ln
dP1/

√
n,g,b

dP0
=

1√
n

∑
t≤n

g̃(yt−1,yt)
T

[
1

b(t/n)

]
− 1

2
Υ(1) + op(1),

where g̃ and Υ(·) are defined in Proposition 2, and op(1) denotes a sequence of random variables that converge

to zero in probability P0.

Corollary 1 (Contiguity). Suppose Assumption 3 holds. The locally unstable data-generating process with

distribution P1/
√
n,g,b is contiguous to the stable data-generating process with distribution P0. More precisely,

Xn
p−→ 0 under P0 implies Xn

p−→ 0 under P1/
√
n,g,b for all Fn-measurable random variables Xn : Yn → R.

2.2 Auxiliary Results on Moment Functions

In this section, we introduce the basic results (Proposition 4) extending the standard moment function

approximations (Hansen, 1982). Similar results on the (functional) central limit theorem with local instability

are developed and used in Andrews (1993), Sowell (1996), and Li and Müller (2009).

Define λ(gT ) ≡ [λ(g1), λ(g2)] for all g = [g1, g2]T with g ∈ G(Q0). We denote

νe(g, b, π) ≡ λ(gT )√
π

 π∫ π

0
b(u)du

 and νo(g, b, π) ≡ λ(gT )√
1− π

 1− π∫ 1

π
b(u)du

 . (7)

Proposition 4. Suppose Assumptions 1 – 5 hold. Then, under P1/
√
n,g,b,

(i) wlim
n→∞

 1√
πn

∑
t≤πn

mt(θ0)

1√
(1− π)n

∑
t>πn

mt(θ0)

 =

 1√
π
W (π)

1√
1− π

(W (1)−W (π))

+

[
νe(g, b, π)

νo(g, b, π)

]
on D([0, 1]) for all

split point π ∈ [0, 1], where W (π) is a dm-dimensional Wiener process and D([0, 1]) is the space of right

continuous functions on [0, 1] endowed with the Skorohod J1 topology;

(ii)

 1√
πn

∑
t≤πn

mt(θn,t)

1√
(1− π)n

∑
t>πn

mt(θn,t)

 =

 1√
πn

∑
t≤πn

mt(θ0)

1√
(1− π)n

∑
t>πn

mt(θ0)

 − [ νe(g, b, π)

νo(g, b, π)

]
+ op(1), for all random

variables g1, g2 ∈ T(Q0);

(iii)

 1√
πn

∑
t≤πn

mt(θ̂e,n)

1√
(1− π)n

∑
t>πn

mt(θ̂e,n)

 =


[
I −D(DTD)−1DT

] 1√
πn

∑
t≤πn

mt(θ0)

1√
(1− π)n

∑
t>πn

mt(θ0)−D(DTD)−1DT 1√
πn

∑
t≤πn

mt(θ0)

+ op(1),

where θ̂e,n is the efficient GMM estimator based on estimation sample yne and D is the Jacobian matrix
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evaluated at θ0;

(iv)

 1√
πn

∑
t≤πn

mt(θ̃e,n)

1√
(1− π)n

∑
t>πn

mt(θ̃e,n)

 =


[
I −D(ATD)−1AT

] 1√
πn

∑
t≤πn

mt(θ0)

1√
(1− π)n

∑
t>πn

mt(θ0)−D(ATD)−1AT 1√
πn

∑
t≤πn

mt(θ0)

+ op(1),

where θ̃e,n is the recursive GMM estimator based on estimation sample yne , D is the Jacobian matrix

evaluated at θ0, and A is defined by A ≡

[
D11 0

0 A22

]
and A22 =

[
D21(DT

11D11)−1DT
21 + I

]−1
D22.

We construct the martingale difference array h(y,y′, θ0) inspired by the martingale difference approximation

for the temporal-dependent moment function in Hansen (1985). The martingale difference approximation

plays a key role in analyzing the semiparametric efficiency bound of estimation based on moment restrictions.

To guarantee that h(y,y′, θ0) is well defined in (8), we postulate the condition of asymptotic negligibility of

innovations (Assumption 5 (iii)), which has been used to establish Gordin’s CLT (Gordin, 1969).

Proposition 5. Suppose Assumptions 1 – 5 hold. Then h(·, θ0) is defined as follows:

h(y,y′, θ0) = m(y,y′, θ0)− EQ0 [m1(θ0)|y0 = y] (8)

+

∞∑
t=1

{
EQ0

[
mt+1(θ0)|y1 = y′

]
− EQ0 [mt+1(θ0)|y0 = y]

}
.

Moreover, h(·, θ0) satisfies EQ0 [h(y,y′, θ0)|y] = 0 and EQ0
[
h(y,y′, θ0)h(y,y′, θ0)T

]
= I and

EQ0 [m(·, θ0)f ] = EQ0 [h(·, θ0)f ] for all f ∈ L2
0(Q0). (9)

Therefore, the tangent set of Q at the distribution Q0 can be represented by

T(Q0) =
{
f ∈ L2

0(Q0) : λ(f) ∈ lin(D)
}
, (10)

where the operator λ(f) ≡ EQ0 [h(·, θ0)f ] is a linear operator on L2
0(Q0), and the linear space lin(D) is spanned

by columns of D, the Jacobian matrix evaluated at θ0.

2.3 Auxiliary Results on GMM Estimators Based on the Estimation Sample

We now introduce the basic results that extend the standard GMM approximations (Hansen, 1982) in

Proposition 6. Then, we introduce a new set of GMM approximations in Proposition 7, which are novel

contributions of this paper.

Proposition 6. Suppose Assumptions 1 – 5 hold. Let θ̃e,n and θ̂e,n be the recursive GMM and the efficient

GMM estimators based on the estimation sample yne = {y1, · · · ,ybπnc}, respectively. Then, under P1/
√
n,g,b,

(i)
√
πn
(
θ̃e,n − θ0

)
= −(ATD)−1AT

[
1√
πn

∑
t≤πn

mt(θ0)

]
+ op(1),

with A =

[
D11 0

0 A22

]
and A22 =

[
D21(DT

11D11)−1DT
21 + I

]−1
D22;
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(ii)
√
πn
(
θ̂e,n − θ0

)
= −(DTD)−1DT

[
1√
πn

∑
t≤πn

mt(θ0)

]
+ op(1).

Proposition 7. Suppose Assumptions 1 – 6 hold and g ∈ GB(Q0). Let θ̃e,n and θ̂e,n be the recursive GMM

estimator and efficient GMM estimator based on the estimation sample yne = {y1, · · · ,ybπnc}, respectively.

Then, under P1/
√
n,g,b,

(i)
√
πn

[
θ̃(1)
e,n − θ(1)

e,n

ψs(θ̃
(1)
e,n )− ψs(θ

(1)
e,n )

]
= −I−1

Q ΓTθ,1IFI
−1
B DT

11

[
1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
n,t)

]
+ op(1);

(ii)
√
πn

[
θ̂(1)
e,n − θ(1)

e,n

ψs(θ̂
(1)
e,n )− ψs(θ

(1)
e,n )

]
= −I−1

Q ΓTθ,1IF

{
LF

[
1√
πn

∑
t≤πn

mt(θ0)

]
− LBνe(g, b, π)

}
+ op(1).

Here the matrices LB and LF are

LB ≡ I−1
B DT

11Γm,1 and LF ≡ Γθ,1I
−1
Q DT , (11)

and D11 and D are the respective Jacobian matrices for the baseline and full model, IB and IQ are the respective

information matrices for the baseline and full model, and the selection matrices Γm,1 and Γθ,1 are defined by

Γm,1 ≡
[
I, 0dm,1×(dm−dm,1)

]
and Γθ,1 ≡

[
I, 0dθ,1×(dθ−dθ,1)

]
.

Proposition 8. Suppose Assumptions 1 – 6 hold and g ∈ GB(Q0). Let L(θ(1), ·) be the loss function for

assessing the goodness of fit of the baseline parameter θ(1) to the data as defined in Chen, Dou, and Kogan

(2021). Let θ̃e,n and θ̂e,n be the recursive GMM estimator and efficient GMM estimator based on the estimation

sample yne = {y1, · · · ,ybπnc}, respectively. Let yno = {ybπnc+1, · · · ,yn} be the holdout sample. Then, under

P1/
√
n,g,b,

(i)

[
L(θ̃(1)

e,n ; yne )

L(θ̃(1)
e,n ; yno )

]
=

[
((LB − 2LF)ζe,n − 2L∆νe)

T IF (LBζe,n)

(LBζe,n − 2LFζo,n − 2L∆νo)
T IF (LBζe,n)

]
+ op(1), and

(ii)

[
L(θ̂(1)

e,n ; yne )

L(θ̂(1)
e,n ; yno )

]
=

[
− (LFζe,n + L∆νe)

T IF (LFζe,n + L∆νe)

(LF(ζe,n − 2ζo,n) + L∆(νe − 2νo))
T IF (LFζe,n + L∆νe)

]
+ op(1),

where νe(g, b, π) and νo(g, b, π) are defined in (7), and the random vectors ζe,n and ζo,n are

ζe,n ≡
1√
πn

∑
t≤πn

mt(θ0)− νe(g, b, π) and ζo,n ≡
1√
πn

∑
t>πn

mt(θ0)− νo(g, b, π), (12)

and the matrices LF, LB are defined in (11) and L∆ ≡ LF − LB. Further, using Proposition 4,

wlim
n→∞

[
ζe,n

ζo,n

]
=

 1√
π
W (π)

1√
1− π

(W (1)−W (π))

 . (13)
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3 Semiparametric Minimax Efficiency Bounds

Given the LAN for the Markov processes with potential local instability, the local asymptotic minimax (LAM)

justification for the efficiency bounds can be established using the asymptotic equivalence argument.1 For

the local data-generating process that is described by a locally unstable distribution P1/
√
n,g,b, the goal is to

estimate the average model parameter value:

ϑ(P1/
√
n,g,b) ≡

1

n

n∑
t=1

ϑ(Q1/
√
n,fn,t), with fn,t = g1(yt−1,yt) + g2(yt−1,yt)b(t/n). (14)

We formalize the precise meaning of semiparametric efficiency bounds based on local asymptotic minimax

risk, which is stated in the following theorem.

Theorem 1 (LAM Lower Bounds). Suppose assumptions 1 – 5 hold and ϑ(P1/
√
n,g,b) exists . Thus, for any

v ∈ Rdθ , any arbitrary estimator sequence θ̌n satisfies

lim
l→∞

lim inf
n→∞

sup
g∈G(Q0),b∈B

∫
l ∧
[√

nvT
(
θ̌n − ϑ(P1/

√
n,g,b)

)]2
dP1/

√
n,g,b ≥ vT (DTD)−1v.

The method of first calculating the truncated mean squared error (MSE), then letting the ceiling l increase

to infinity, is widely adopted in the literature (e.g., Bickel, 1981; Le Cam and Yang, 2000; Kitamura, Otsu,

and Evdokimov, 2013).

Theorem 2 (LAM Upper Bounds). Suppose assumptions 1 – 5 hold and ϑ(P1/
√
n,g,b) exists. Then, for any

v ∈ Rdθ , there exists an estimator sequence θ̂n such that

lim
l→∞

lim inf
n→∞

sup
g∈G(Q0),b∈B

∫
l ∧
[√

nvT
(
θ̂n − ϑ(P1/

√
n,g,b)

)]2
dP1/

√
n,g,b ≤ vT (DTD)−1v.

In our proof, we show that the efficient GMM estimator (Hansen, 1982) can achieve the semiparametric

efficiency bound. Importantly, the proof is similar to that of Theorem 1 in Li and Müller (2009) through using

Le Cam’s theory of asymptotic equivalence. Therefore, Theorems 1 and 2 of the Online Appendix extend the

results on the minimax efficiency bounds for unconditional moment restrictions developed in Levit (1976),

Nevelson (1977), and Chamberlain (1987, Theorem 2) to general Markov processes with local instability.

Proof of Theorem 1 of the Online Appendix. The local asymptotic normality (LAN) (see Proposition

3), as well as the implied contiguity, and Le Cam’s first and third lemmas play crucial roles in the proof as in

the standard proof of semiparametric minimax lower bounds (e.g. van der Vaart, 1998, Theorem 8.11 and The-

orem 25.21). Our results are new in the sense that they apply to Markov processes with local instability,

which is more general than the i.i.d. case.

Following the literature (e.g. Bickel, Klaassen, Ritov, and Wellner, 1993; van der Vaart, 1998), we define

the functional ϑ(Q) to be pathwise differentiable at Q0 relative to the parametric submodels s 7→ Qs,f , if

1Dou, Pollard, and Zhou (2010) also appeal to the asymptotic equivalence argument to establish the global minimax upper
bound for a non-parametric estimation problem.

8



there exists a measurable function ϑ̇: Y× Y→ Rdθ with ϑ̇ ∈ L2
0(Q0) such that

lim
s→0

1

s
[ϑ(Qs,f )− ϑ(Q0)] = EQ0

[
ϑ̇f
]
, (15)

where ϑ̇(yt−1,yt) ≡ (DTD)−1DTh(yt−1,yt, θ0) with h(yt−1,yt, θ0) defined in Proposition 5 (e.g., Greenwood

and Wefelmeyer, 1995). According to Proposition 5, h(·, θ0) satisfies the conditions: EQ0 [h(y,y′, θ0)|y] = 0

and EQ0
[
h(y,y′, θ0)h(y,y′, θ0)T

]
= I.

First, we only need to consider the case g1(y,y′) = vT ϑ̇(y,y′), g2(yt−1,yt) ≡ 0, and b(u) ≡ 0 for

establishing the lower bound. In such case, f(yt−1,yt) ≡ g1(yt−1,yt) for all 1 ≤ t ≤ n. Second, we further

focus on the estimators θ̌n such that
√
n
(
θ̌n − θ0

)
is uniformly tight under the distribution P0, similar to

van der Vaart (1998). The tightness assumption can be dropped by a compactification argument (e.g. van der

Vaart, 1988; van der Vaart and Wellner, 1996, Chapter 3.11). Moreover, without loss of generality, due to

Prohorov’s theorem, we can assume that

wlim
n→∞

(
√
n
(
vT θ̌n − vT θ0

)
,

1√
n

n∑
t=1

g1(yt−1,yt)

)
= (Ξ0, U0), (16)

where U0 ∼ N(0, vT (DTD)−1v) (see Proposition 2). Using the contiguity between P1/
√
n,g,0 and P0, Le Cam’s

third lemma (e.g. van der Vaart, 1998, Theorem 6.6), and differentiability of ϑ(Qs,f ) with respect to s, we

know that under the sequence of distributions P1/
√
n,g,0,

wlim
n→∞

√
n
(
vT θ̌n − vTϑ(P1/

√
n,g,0)

)
= Ξg, (17)

where, appealing to Theorem 8.3 of van der Vaart (1998), the limiting random variable Ξg has the following

representation with a certain measurable function τ : Rdθ → R:

Ξg = τ(Xg)− vT ξ (18)

= τ(Xg)− EQ0

[
vT ϑ̇f

]
= τ(Xg)−

[
vT (DTD)−1v

]
.

Here, the local estimation bias is ξ ≡ (DTD)−1DTλ(g1) = (DTD)−1v (similar to Corollary 1 or the proof of

Proposition 4 (ii)) and Xg ∼ N(ξ, (DTD)−1). Based on Theorem 8.6 of van der Vaart (1998) for estimating

normal means, it holds that for all measurable function τ ,

EQ1/
√
n,f
[
Ξ2
g

]
≥ EQ0

[(
vTX0

)2]
= vT (DTD)−1v. (19)

The key idea of (16) – (18) is a change-of-measure argument, inspired by Le Cam’s theory of asymptotic

equivalence, whose stronger form has also been developed and used in the minimax inference of Dou, Pollard,

and Zhou (2010).

Consequently, it suffices to show that the left-hand side of (19) is a lower bound for the minimax risk R:

R ≡ lim
l→∞

lim inf
n→∞

∫
l ∧
[√

nvT
(
θ̌n − ϑ(P1/

√
n,g,0)

)]2
dP1/

√
n,g,0. (20)

9



In fact, it holds that

lim inf
n→∞

∫
l ∧
[√

nvT
(
θ̌n − ϑ(P1/

√
n,g,0)

)]2
dP1/

√
n,g,0

≥ lim inf
n→∞

∫
l ∧
[√

nvT
(
θ̌n − ϑ(P1/

√
n,g,0)

)]2
dP1/

√
n,g,0

= EQ1/
√
n,g,0

[
l ∧ Ξ2

g

]
.

Thus, the minimax risk can be bounded from below by

R ≥ lim
l→∞

EQ1/
√
n,f
[
l ∧ Ξ2

g

]
≥ lim

l→∞
EQ1/

√
n,f
[
l ∧ Ξ2

g

]
. (21)

According to the monotone convergence theorem, it follow that

R ≥ EQ1/
√
n,f
[
Ξ2
g

]
. (22)

Combining (19) and (22), the local asymptotic minimax lower bound result holds: R ≥ vT (DTD)−1v.

Proof of Theorem 2 of the Online Appendix. We start with

√
n
[
θ̂n − ϑ(P1/

√
n,g,b)

]
=
√
n
(
θ̂n − θ0

)
−
√
n
[
ϑ(P1/

√
n,g,b)− θ0

]
. (23)

According to Proposition 6 (ii), it follows that

√
n
(
θ̂n − θ0

)
= −(DTD)−1DT

[
1√
n

n∑
t=1

mt(θ0)

]
+ op(1). (24)

Consequently, similar to Corollary 1 or the proof of Proposition 4 (ii),

√
n
[
ϑ(P1/

√
n,g,b)− θ0

]
= −(DTD)−1DTλ(g1) + o(1). (25)

Thus, appealing to Proposition 4 (i), we can show that

wlim
n→∞

√
n
[
θ̂n − ϑ(P1/

√
n,g,b)

]
= −(DTD)−1DTW (1), (26)

where W (·) is a dm-dimensional Wiener process. Therefore, for any v ∈ Rdθ ,

lim inf
n→∞

∫
l ∧
[√

nvT
(
θ̂n − ϑ(P1/

√
n,g,b)

)]2
dP1/

√
n,g,b = E

[
l ∧X2

]
, with X ∼ N(0, vT (DTD)−1v). (27)

Let l increase monotonically to infinity, and using the monotonic convergence theorem, we obtain

lim
l→∞

lim inf
n→∞

∫
l ∧
[√

nvT
(
θ̂n − ϑ(P1/

√
n,g,b)

)]2
dP1/

√
n,g,b = E

[
X2
]

= vT (DTD)−1v. (28)

10



4 Proofs of the Main Theorems, Propositions, and Corollaries

4.1 Proofs of the Main Theorems

Proof of Theorem 1 of Chen, Dou, and Kogan (2021). The test statistic based on the C statistic is

ϕ̂n ≡ 1{Cn>c1−α}, where c1−α is the (1− α) quantile of a chi-square distribution with dm,2 − dθ,2 degrees of

freedom. From Proposition 4, we know that Assumption 3.1 of Chen and Santos (2018) is satisfied. Thus,

by Lemma 3.2 of Chen and Santos (2018) and the results of Newey (1985), it follows that for any GMM

specification test ϕ̌n with an asymptotic level α and an asymptotic local power function (∀ ϕ̌n ∈ Φα(Q0)),

inf
g∈Aκ(Q0)

lim
n→∞

∫
ϕ̌ndP1/

√
n,g,0 ≤ inf

g∈Aκ(Q0)
lim
n→∞

∫
ϕ̂ndP1/

√
n,g,0 (i.e., C test is asymptotically optimal)

(29)

= inf
g∈Aκ(Q0)

lim
n→∞

P1/
√
n,g,0

{∣∣∣Ĝn

∣∣∣2 > c1−α

}
, (30)

where Aκ(Q0) ≡
{
g ∈ GB(Q0) : |λ(2)(g1)| ≥ κ and λ(2)(g1) ⊥ lin(D22)

}
, and

Ĝn =
(
Λ2 − Λ2D21I

−1
F DT

21Λ2

)−1/2

[
1√
n

n∑
t=1

m
(2)
t (θ̂n)

]
; (31)

see page 243 of Newey (1985) and Online Appendix 5.4. Here Λ2 = I −D22(DT
22D22)−1DT

22.

Now, we obtain (e.g., Newey, 1985; Chen and Santos, 2018, or Proposition 4 of this onine appendix)

wlim
n→∞

|Ĝn|2 = χ2
dm,2−dθ,2(µg), (32)

where χ2
dm,2−dθ,2(µg) is a noncentral chi-squared random variable with degrees of freedom dm,2 − dθ,2 and the

noncentrality parameter µg = λ(2)(g1)T
(
Λ2 − Λ2D21I

−1
F DT

21Λ2

)
λ(2)(g1).

Using (29) and (30), we conclude that

inf
g∈Aκ(Q0)

q(g, ϕ̌) ≤ inf
g∈Aκ(Q0)

lim
n→∞

P1/
√
n,g

{∣∣∣Ĝn

∣∣∣2 > c1−α

}
= inf

g∈Aκ(Q0)
P
{
χ2
dm−dθ(µg) > c1−α

}
. (33)

Note that µg > 0 for all g ∈ Aκ(Q0), since Λ2D21I
−1
F DT

21Λ2 does not have unit eigenvalues. The local

asymptotic maximin power is then bounded from above by

inf
g∈Aκ(Q0)

q(g, ϕ̌) ≤ inf
g∈Aκ(Q0)

M dm,2−dθ,2
2

(√
µg,
√
c1−α

)
= M dm,2−dθ,2

2

(
inf

g∈Aκ(Q0)

√
µg,
√
c1−α

)
, (34)

where the equality above is due to the continuity and monotonicity of the Marcum Q-function Mγ(x1, x2).

Following the definition of µg and the fact that Λ2
2 = Λ2 as a projection matrix onto the linear space

11



spanned by the column vectors of D22, it holds that

inf
g∈Aκ(Q0)

µg = inf
g∈Aκ(Q0)

λ(2)(g1)TΛ2

(
I − Λ2D21I

−1
F DT

21Λ2

)
Λ2λ

(2)(g1)

= inf
g∈Aκ(Q0)

|λ(2)(g1)TΛ2λ
(2)(g1)| × the smallest eigenvalue of I − Λ2D21I

−1
F DT

21Λ2

= κ2 × the smallest eigenvalue of I − Λ2D21I
−1
F DT

21Λ2,

where the last equality is due to the definition of the set Aκ(Q0), in which |λ(2)(g1)| ≥ κ and λ(2)(g1) ⊥ lin(D22).

We shall now show that 1/(1 + %(θ0)) is an eigenvalue of I −Λ2D21I
−1
F DT

21Λ2, and thus infg∈Aκ(Q0)
√
µg ≤√

κ2/(1 + %(θ0)). In fact, 1− 1/(1 + %(θ0)) is an eigenvalue of I
−1/2
F (IF − IB) I

−1/2
F = I

−1/2
F (DT

21Λ2D21)I
−1/2
F ,

and thus an eigenvalue of Λ2D21I
−1
F DT

21Λ2. Therefore, 1/(1 + %(θ0)) is an eigenvalue of I − Λ2D21I
−1
F DT

21Λ2.

Due to the monotonicity of the generalized Marcum Q-function, the local asymptotic maximin power is

upper bounded by

inf
g∈Aκ(Q0)

q(g, ϕ̌) ≤M dm,2−dθ,2
2

(√
κ2

1 + %(θ0)
,
√
c1−α

)
. (35)

Proof of Theorem 2 of Chen, Dou, and Kogan (2021). According to Proposition 8 (ii), it follows

that

E

[
wlim
n→∞

1

2

(
L(θ̂e,n; yno )− L(θ̂e,n; yne )

)]
= π−1E

[
W (π)TLTF IFLFW (π)

]
(36)

+ [νe(g, b, π)− νo(g, b, π)]T LT∆IFL∆νe(g, b, π),

where wlimn→∞ is the weak convergence limit and W (·) is a dm-dimensional Wiener process, and LB ≡
I−1

B DT
11Γm,1, LF ≡ Γθ,1I

−1
Q DT , and L∆ ≡ LF − LB. The first term above is

π−1E
[
W (π)TLTF IFLFW (π)

]
= π−1E

[
tr
(
I

1/2
F LFW (π)W (π)TLTF I

1/2
F

)]
(37)

= tr
(
I

1/2
F LFL

T
F I

1/2
F

)
. (38)

According to the definition of LF in (11),

LFL
T
F = Γθ,1I

−1
Q ΓTθ,1 = I−1

F . (39)

Combining (38) and (39) yields

π−1E
[
W (π)TLTF IFLFW (π)

]
= dθ,1. (40)

Because λ(g1) ∈ lin(D), it holds that L∆λ(g1) = 0, and thus

[νe − νo]T LT∆IFL∆νe =
1√
π

(
1√
π

+
1√

1− π

)(∫ π

0
b(u)du

)2

λ(g2)TLT∆IFL∆λ(g2). (41)
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The left-hand side of (41) is bounded from above by

1√
π

(
1√
π

+
1√

1− π

)(∫ π

0
b(u)du

)2

λ(g2)TLT∆IFL∆λ(g2) (42)

≤ π
(

1 +

√
π

1− π

)
|λ(g2)|2 × the largest eigenvalue of LT∆IFL∆. (43)

The largest eigenvalue of LT∆IFL∆ is that of Π = I
1/2
F L∆L

T
∆I

1/2
F , which is the dark matter measure %(θ0).

Proof of Theorem 3 of Chen, Dou, and Kogan (2021). According to Proposition 8 (i), it follows that

E

[
wlim
n→∞

1

2

(
L(θ̃e,n; yno )− L(θ̃e,n; yne )

)]
= π−1E

[
W (π)TLTF IFLBW (π)

]
, (44)

where wlimn→∞ is the weak convergence limit and W (·) is a dm-dimensional Wiener process. Further,

π−1E
[
W (π)TLTF IFLBW (π)

]
= tr(I

1/2
F LBL

T
F I

1/2
F ). (45)

Because LBL
T
F = I−1

B DT
11

[
D11, 0dm,1×(dθ−dθ,1)

]
I−1
Q ΓTθ,1 = Γθ,1I

−1
Q ΓTθ,1 = I−1

F , the equality (45) can further be

rewritten as

π−1E
[
W (π)TLTF IFLBW (π)

]
= dθ,1. (46)

4.2 Proofs of Propositions

Proof of Proposition 1 of Chen, Dou, and Kogan (2021). Following the standard argument such as

in the proof of Theorem 7.2 of van der Vaart (1998), we can show that EQ0 [f ] = 0. Thus,

EQ0 [∆(s)] = EQ0

[
dQs,f
dQ0

− 1

]
=

∫
dQs,f −

∫
dQ0 = 0. (47)

According to Proposition 1, the conditional expectations denoted by f̄(yt−1) = EQ0 [f(yt−1,yt)|yt−1] and

f̄(yt) = EQ0 [f(yt−1,yt)|yt] are the scores for the marginal distributions of yt−1 and yt, respectively. Because

the marginal distributions are constant over time,

EQ0
[
f(y,y′)|y

]
= EQ0

[
f(y′,y)|y

]
. (48)

Proof of Proposition 2 of Chen, Dou, and Kogan (2021). According to Definition 4, it follows that

E
Q1/
√
n,fn,t [mt(θ0)] =

∫
mt(θ0)

[
1 + fn,t/

√
n+ ∆n

]
dQ0. (49)

Because EQ0 [mt(θ0)] = 0, the equality (49) above leads to

E
Q1/
√
n,fn,t [mt(θ0)] =

λ(g1) + λ(g2)b(t/n)√
n

+

∫
mt(θ0)∆ndQ0. (50)
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Based on Assumption 5 and Definition 4, the Cauchy-Schwarz inequality leads to

|
∫
mt(θ0)∆ndQ0| ≤ EQ0

[
|mt(θ0)|2

]1/2
EQ0

[
|∆n|2

]1/2
= o

(
1√
n

)
. (51)

Proof of Proposition 1 of the Online Appendix. By the definition of a marginal distribution,

dµs,f (y) =

∫
y′∈Y

dQs,f (y,y′) =

∫
y′∈Y

[
1 + sf(y,y′) + s∆Q(s)

]
dQ(y,y′)

=

[
1 + s

∫
y′∈Y

f(y,y′)dKs,f (y′|y) + s

∫
y′∈Y

∆Q(s)dKs,f (y′|y)

]
dµ(y).

By the definition of f̄(y), we know that

dµs,f (y) =
[
1 + sf̄(y) + s∆µ(s)

]
dµ(y), (52)

where ∆µ(s) ≡ EQ [∆Q(s)|y] and it converges to zero in quadratic mean under µ as s → 0. Further, by

definition, it holds that

dKs,f (y′|y) =
dQs,f (y,y′)

dµs,f (y)
=

1 + sf(y,y′) + s∆Q(s)

1 + sf̄(y) + s∆µ(s)

dQ(y,y′)

dµ(y)

=
1 + sf(y,y′) + s∆Q(s)

1 + sf̄(y) + s∆µ(s)
dK(y′|y).

Rearranging and combining terms leads to

dKs,f (y′|y) =
{

1 + s
[
f(y,y′)− f̄(y)

]
+ s∆K(y, s)

}
dK(y′|y), (53)

where ∆K(y, s) converges to zero in quadratic mean under K(y′|y) as s→ 0 for all y ∈ Y. By definition of

f̃(y,y′), it follows that EQ
[
f̃(y,y′)|y

]
= 0. Thus, similar to the proof of Proposition 1, we can show that

EQ [∆K(y, s)|y] = 0.

Proof of Proposition 2 of the Online Appendix. According to Assumption 3 (i),

n−1 max
1≤t≤n

|g(yt−1,yt)|2
p−→ 0. (54)

According to simple algebra, we can show that

n−1
∑
t≤πn

f̃2
n,t = n−1

∑
t≤πn

[
g̃1(yt−1,yt)

2 + 2g̃1(yt−1,yt)g̃2(yt−1,yt)b(t/n) + g̃2(yt−1,yt)
2b(t/n)2

]
. (55)

Therefore, by Lemma 4 of Li and Müller (2009), it follows that

n−1
∑
t≤πn

f̃2
n,t

p−→ EQ0
[
g̃2

1

]
π + 2EQ0 [g̃1g̃2]

∫ π

0
b(u)du+ EQ0

[
g̃2

1

] ∫ π

0
b(u)2du,
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and hence

n−1
∑
t≤πn

f̃2
n,t → Υ(π) ≡ EQ0

[
g̃TBπ g̃

]
. (56)

Using the same argument, we can show that

n−1
∑
t≤πn

EQ
t−1

[
f̃2
n,t

]
p−→ Υ(π) ≡ EQ0

[
g̃TBπ g̃

]
. (57)

The results above and Assumption 3 (i) together lead to a Lindeberg-type condition. Thus, according to the

mixing condition implied by the Doeblin condition for the Markov process, we can obtain the following CLT

result for martingale difference sequences:

wlim
n→∞

1√
n

∑
t≤πn

f̃n,t = N(0,Υ(π)). (58)

Proof of Proposition 3 of the Online Appendix. The proof is similar to that of Theorem 7.2 in van der

Vaart (1998), except that we allow for non-IID time series and local instability. For brevity, we denote

Kn,t ≡ K1/
√
n,gn,t . The random variable Wn,t ≡

dKn,t

dK0
− 1 is well defined with probability one. According to

(53), it follows that ∑
t≤n

Wn,t =
1√
n

∑
t≤n

f̃n,t +
1√
n

∑
t≤n

∆̃n,t. (59)

where f̃n,t ≡ fn,t − EQ0
t−1 [fn,t]. Because EQ0

t−1

[
∆̃n,t

]
= 0 and EQ0

[
∆̃2
n,t

]
→ 0 as n→∞ for all t = 1, · · · , n, it

follows that

EQ0

 1√
n

∑
t≤n

∆̃n,t

 = 0 and varQ0

 1√
n

∑
t≤n

∆̃n,t

 ≤ 1

n

∑
t≤n

EQ0

[
∆̃2
n,t

]
→ 0. (60)

Thus, 1√
n

∑
t≤n ∆̃n,t = op(1) under Q0. And hence, the following approximation holds:

∑
t≤n

Wn,t =
1√
n

∑
t≤n

f̃n,t + op(1). (61)

By Taylor expansion, we have

ln(1 + x) = x− 1

2
x2 + x2R(x), (62)

where R(x) is a continuous function such that R(x)→ 0 as x→ 0. Therefore, it follows that

ln
∏
t≤n

dKn,t

dK0
=
∑
t≤n

ln(1 +Wn,t) =
∑
t≤n

[
Wn,t −

1

2
W 2
n,t +W 2

n,tR(Wn,t)

]
(63)

=
∑
t≤n

Wn,t −
1

2

∑
t≤n

W 2
n,t +

∑
t≤n

W 2
n,tR(Wn,t). (64)

15



Combining (61) and (64) yields

ln
∏
t≤n

dKn,t

dK0
=

1√
n

∑
t≤n

f̃n,t −
1

2

∑
t≤n

W 2
n,t +

∑
t≤n

W 2
n,tR(Wn,t) + op(1). (65)

We shall first show that ∑
t≤n

W 2
n,t =

1

n

∑
t≤n

f̃2
n,t + op(1). (66)

In fact, by the triangular inequality and the Cauchy-Schwarz inequality, it follows that∣∣∣∣∣∣
∑
t≤n

W 2
n,t −

1

n

∑
t≤n

f̃2
n,t

∣∣∣∣∣∣ ≤
∑
t≤n

∣∣∣∣ 1√
n

∆̃n,t

(
2√
n
f̃n,t +

1√
n

∆̃n,t

)∣∣∣∣ (67)

≤

 1

n

∑
t≤n

∆̃2
n,t

1/2  1

n

∑
t≤n

(
2f̃n,t + ∆̃n,t

)2

1/2

. (68)

Based on (53), it is straightforward to show that 1
n
∑

t≤n ∆̃2
n,t = op(1). Further, according to Assumption

3 (ii), it follows that 1
n
∑

t≤n

(
2f̃n,t + ∆̃n,t

)2
≤ 1
n
∑

t≤n 4f̃2
n,t + 2∆̃2

n,t = Op(1). Substituting them into (68)

leads to
∑

t≤nW
2
n,t − 1

n
∑

t≤n f̃
2
n,t = op(1). Therefore, the equality (65) can be rewritten as

ln
∏
t≤n

dKn,t

dK0
=

1√
n

∑
t≤n

f̃n,t −
1

2n

∑
t≤n

f̃2
n,t +

∑
t≤n

W 2
n,tR(Wn,t) + op(1) (69)

=
1√
n

∑
t≤n

f̃n,t −
1

2

∫ 1

0
Υ(u)du+

∑
t≤n

W 2
n,tR(Wn,t) + op(1). (70)

Finally, we show that
∑

t≤nW
2
n,tR(Wn,t) = op(1). Because we have shown that

∑
t≤nW

2
n,t = Op(1), and∑

t≤n
W 2
n,t|R(Wn,t)| ≤ max

1≤t≤n
|R(Wn,t)|

∑
t≤n

W 2
n,t, (71)

it suffices to show that max1≤t≤n |R(Wn,t)| = op(1).

For any ε > 0, there exists εR > 0 such that

P0

(
max

1≤t≤n
|R(Wn,t)| > ε

)
≤
∑
t≤n

P0 (|R(Wn,t)| > ε) ≤
∑
t≤n

P0

(
W 2
n,t > εR

)
(72)

≤
∑
t≤n

P0

(
f̃2
n,t > nεR/4

)
+
∑
t≤n

P0

(
∆̃2
n,t > nεR/4

)
. (73)

By Markov’s inequality, we can further show that

P0

(
max

1≤t≤n
|R(Wn,t)| > ε

)
≤ 4

nεR

∑
t≤n

EQ0

[
f̃2
n,t1{f̃2

n,t > nεR/4}
]

+
4

nεR

∑
t≤n

EQ0

[
∆̃2
n,t

]
. (74)
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According to Assumption 3 (ii), the squared conditional scores f̃2
n,t are uniformly integrable, and thus

1

n

∑
t≤n

EQ0

[
f̃2
n,t1{f̃2

n,t > nεR/4}
]
→ 0 as n→∞. (75)

Further, according to (53), it holds that

1

n

∑
t≤n

EQ0

[
∆̃2
n,t

]
→ 0 as n→∞. (76)

Therefore, P0 (max1≤t≤n |R(Wn,t)| > ε)→ 0 as n→∞.

Proof of Proposition 4 of the Online Appendix. We first prove part (i). According to Proposition 2,

if defining m̃t(θ0) ≡ mt(θ0)− 1√
n
λ(gT )

[
1

b(t/n)

]
for t = 1, · · · , n, we have

E
Q1/
√
n,fn,t [m̃t(θ0)] = o

(
1√
n

)
, with fn,t = g(yt−1,yt)

T

[
1

b(t/n)

]
. (77)

Further, for mt(θ0) which satisfies Assumption 5, we know that the corresponding m̃t(θ0) also satisfies

Assumption 5. Therefore, according to the functional central limit theorem (invariance principle) of McLeish

(1975a) and Phillips and Durlauf (1986), we know that

wlim
n→∞

1√
n

∑
t≤πn

m̃(θ0) = W (π), for all π ∈ [0, 1]. (78)

Thus,

1√
πn

∑
t≤πn

mt(θ0) =
1√
πn

∑
t≤πn

m̃t(θ0) +
1

n

∑
t≤πn

λ(gT )√
π

[
1

b(t/n)

]
, (79)

and hence,

1√
πn

∑
t≤πn

mt(θ0) =
W (π)√

π
+
λ(gT )√

π

[
π∫ π

0 b(u)du

]
. (80)

Similarly, we can show that

wlim
n→∞

1√
(1− π)n

∑
t>πn

mt(θ0) =
W (1)−W (π)√

1− π
+

λ(gT )√
1− π

[
1− π∫ 1
π b(u)du

]
. (81)

Now, we prove part (ii). Because g1, g2 ∈ T(Q0), by the definition of θn,t, we know that

0 =

∫
mt(θn,t)dQ1/

√
n,fn,t , for all t, n. (82)

Using the Taylor expansion, we obtain

0 =

∫ [
mt(θ0) +∇θmt(θ̇n,t)(θn,t − θ0)

] [
1 + fn,t/

√
n+ ∆n,t/

√
n
]

dQ0, for all t, n, (83)
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where θ̇n,t lies between θ0 and θn,t for all t and n. Suppose θn,t converges θ0 at the rate of
√
n (as we verify

later). According to Assumption 5, it follows that

0 =
1√
n
λ(gT )

[
1

b(t/n)

]
+D(θn,t − θ0) + o

(
1√
n

)
, for all t, n. (84)

Therefore, the parameter sequence θn,t can be specified as

θn,t − θ0 = −(DTD)−1DT 1√
n
λ(gT )

[
1

b(t/n)

]
+ o

(
1√
n

)
, for all t, n. (85)

Hence, using the Taylor expansion again leads to

1√
πn

∑
t≤πn

mt(θn,t) =
1√
πn

∑
t≤πn

mt(θ0)− 1

n

∑
t≤πn
∇θmt(θ̇n,t)(D

TD)−1DT λ(gT )√
π

[
1

b(t/n)

]
+ o (1) . (86)

Due to Assumption 5, according to Lemma 4 of Li and Müller (2009), it follows that

1√
πn

∑
t≤πn

mt(θn,t) =
1√
πn

∑
t≤πn

mt(θ0)−D(DTD)−1DT λ(gT )√
π

[
π∫ π

0 b(u)du

]
+ o (1) . (87)

Because g1, g2 ∈ T(Q0), it holds that λ(g1), λ(g2) ∈ lin(D), and thus

1√
πn

∑
t≤πn

mt(θn,t) =
1√
πn

∑
t≤πn

mt(θ0)− λ(gT )√
π

[
π∫ π

0 b(u)du

]
+ o (1) . (88)

Similarly, we can show that

1√
(1− π)n

∑
t>πn

mt(θn,t) =
1√

(1− π)n

∑
t>πn

mt(θ0)− λ(gT )√
1− π

[
1− π∫ 1
π b(u)du

]
+ o (1) . (89)

Finally, we prove parts (iii) and (iv). Using the Taylor expansion, we obtain the following approximation:

1√
πn

∑
t≤πn

mt(θ̂e,n) =
1√
πn

∑
t≤πn

mt(θ0) +
1

πn

∑
t≤πn
∇θmt(θ̇e,n)

[√
πn(θ̂e,n − θ0)

]
+ o (1) , (90)

where θ̇e,n lies between θ̂e,n and θ0. According to Proposition 6 (ii),

1√
πn

∑
t≤πn

mt(θ̂e,n) =
1√
πn

∑
t≤πn

mt(θ0)−D(DTD)−1DT

 1√
πn

∑
t≤πn

mt(θ0)

+ op (1) (91)

Further rearranging the terms on the right-hand side of (91) leads to

1√
πn

∑
t≤πn

mt(θ̂e,n) =
[
I −D(DTD)−1DT

]  1√
πn

∑
t≤πn

mt(θ0)

+ op (1) . (92)
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Similarly,

1√
(1− π)n

∑
t>πn

mt(θ̂e,n) =
1√

(1− π)n

∑
t>πn

mt(θ0)−D(DTD)−1DT

 1√
πn

∑
t≤πn

mt(θ0)

+ op (1) . (93)

Part (iv) can be proved using analogous steps, which we do not repeat.

Proof of Proposition 5 of the Online Appendix. Similar to the results in Severini and Tripathi (2013)

and Chen and Santos (2018), the tangent set T(Q0) can be characterized as follows:

T(Q0) =
{
f ∈ L2

0(Q0) : EQ0 [m(·, θ0)f ] ∈ lin(D)
}
, (94)

where lin(D) is the linear space spanned by the column vectors of D. Therefore, it suffices to show that

EQ0 [m(·, θ0)f ] = EQ0 [h(·, θ0)f ] for all f ∈ L2
0(Q0). (95)

Under the assumption, the following identity holds:

EQ0
[
h(y,y′, θ0)f(y,y′)

]
= EQ0

[
m(y,y′, θ0)f(y,y′)

]
−
∞∑
k=1

Ak, (96)

where

Ak = EQ0
{

EQ0 [m(yk−1,yk, θ0)|y0 = y] f(y,y′)
}
− EQ0

{
EQ0

[
m(yk,yk+1, θ0)|y1 = y′

]
f(y,y′)

}
. (97)

Further, for each k ≥ 1, the Markov property implies that

EQ0
[
m(yk,yk+1, θ0)|y1 = y′

]
f(y,y′) = EQ0

[
m(yk−1,yk, θ0)|y0 = y′

]
f(y,y′). (98)

Thus, the equation (97) can be rewritten as

Ak = EQ0
{

EQ0 [m(yk−1,yk, θ0)|y0 = y] f(y,y′)
}
− EQ0

{
EQ0

[
m(yk−1,yk, θ0)|y0 = y′

]
f(y,y′)

}
. (99)

It suffices to show that Ak = 0 for all k. In fact, the following equalities hold:

EQ0
{

EQ0
[
m(yk−1,yk, θ0)|y0 = y′

]
f(y,y′)

}
= EQ0

{
EQ0

[
m(yk−1,yk, θ0)|y0 = y′

]
EQ0

[
f(y,y′)|y′

]}
(Law of Iterated Projections)

= EQ0
{

EQ0
[
m(yk−1,yk, θ0)|y0 = y′

]
EQ0

[
f(y′,y)|y′

]}
(Proposition 1)

= EQ0
{

EQ0
[
m(yk−1,yk, θ0)|y0 = y′

]
f(y′,y)

}
(Law of Iterated Projections)

Therefore, Ak = 0 for all k ≥ 1, and hence from (96), it follows that

EQ0
[
h(y,y′, θ0)f(y,y′)

]
= EQ0

[
m(y,y′, θ0)f(y,y′)

]
. (100)

19



According to Greenwood and Wefelmeyer (1995), we know that

EQ0
[
h(y0,y1, θ0)h(y0,y1, θ0)T

]
=

∞∑
τ=−∞

EQ0
[
m(y0,y1, θ0)m(yτ ,yτ+1θ0)T

]
= I. (101)

By Markov’s property and the law of iterated projections, for all k ≥ 0,

EQ0
{

EQ0 [m(yk,yk+1, θ0)|y1] |y0

}
= EQ0 [m(yk,yk+1, θ0)|y0] . (102)

Therefore, EQ0 [h(y,y′, θ0)|y] = 0.

Proof of Proposition 6 of the Online Appendix. The proof follows the standard GMM approximations

in Hansen (1982), Hansen (2007), and Hansen (2012).

Proof of Proposition 7 of the Online Appendix. The cases of ψs with s ∈ {e, o} follow the same

derivations, and so we only show the case s = e. We first prove part (i). Given the parameter value θ(1)
e,n , the

constrained efficient GMM estimator (θ(1)
e,n , ψe(θ

(1)
e,n ))T for the full model satisfies the first-order condition

∇J(θ(1)
e,n , ψe(θ

(1)
e,n ); yne ) = ΓTθ,1Λe,n, with Γθ,1 = [I, 0dθ,1×dθ,2 ], (103)

and Λe,n is a dθ,1×1 vector of Lagrangian multipliers for the constraints Γθ,1θ = θ
(1)
n in search of the constrained

GMM estimator (θ(1)
e,n , ψe(θ

(1)
e,n ))T . The Taylor expansion of ∇J(θ(1)

e,n , ψe(θ
(1)
e,n ); yne ) around θ0 leads to

1√
πn

ΓTθ,1Λe,n = 2DT

 1√
πn

∑
t≤πn

mt(θ0)

+ 2IQ

√
πn

[
θ(1)

e,n − θ
(1)
0

ψe(θ
(1)
e,n )− θ(2)

0

]
+ op(1). (104)

We first multiply both sides of (104) by Γθ,1I
−1
Q , and then by

(
Γθ,1I

−1
Q ΓTθ,1

)−1
. The optimal Lagrangian

multipliers can be represented as

1√
πn

Λe,n = 2
(
Γθ,1I

−1
Q ΓTθ,1

)−1
Γθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

 (105)

+ 2
(
Γθ,1I

−1
Q ΓTθ,1

)−1√
πn(θ(1)

e,n − θ
(1)
0 ) + op(1).

Substituting (104) and (105) into (103) yields

1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n ); yne ) = 2ΓTθ,1

(
Γθ,1I

−1
Q ΓTθ,1

)−1
Γθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

 (106)

+ 2ΓTθ,1(Γθ,1I
−1
Q ΓTθ,1)−1√πn(θ(1)

e,n − θ
(1)
0 ) + op(1).
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According to Proposition 1, we substitute (84) into (106) and obtain

1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n ); yne ) = 2ΓTθ,1IFΓθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

 (107)

− 2ΓTθ,1IFI−1
B DT

11

[√
πλ(1)(g1) + λ(1)(g2)

∫ π

0
b(u)du/

√
π

]
+ op(1).

Based on (7), we have

1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n ); yne ) = 2ΓTθ,1IF

Γθ,1I
−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

− I−1
B DT

11Γm,1ν(g, b, π)

+ op(1).

(108)

Given the baseline efficient GMM estimator θ̃(1)
e,n based on the estimation sample, the constrained GMM

estimator (θ̃(1)
e,n , ψe(θ̃

(1)
e,n ))T for the full model satisfies the first-order condition

∇J(θ̃(1)
e,n , ψe(θ̃

(1)
e,n ); yne ) = ΓTθ,1Λ(1)

e,n , with Γθ,1 = [I, 0dθ,1×dθ,2 ], (109)

and Λ(1)
e,n is a dθ,1×1 vector of Lagrangian multipliers for the constraints Γθ,1θ = θ̃(1)

e,n in search of the constrained

GMM estimator (θ̃(1)
e,n , ψe(θ̃

(1)
e,n ))T . The Taylor expansion of ∇J(θ̃(1)

e,n , ψe(θ̃
(1)
e,n ); yne ) around (θ(1)

e,n , ψe(θ
(1)
e,n ))T ,

together with (109), leads to

1√
πn

ΓTθ,1Λ(1)
e,n =

1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n ); yne ) + 2IQ

√
πn

[
θ̃(1)

e,n − θ(1)
e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

]
+ op(1). (110)

We first multiply both sides of (110) by Γθ,1I
−1
Q , and then by

(
Γθ,1IQΓTθ,1

)−1
. The optimal Lagrangian

multipliers can be represented as

1√
πn

Λ(1)
e,n = IFΓθ,1I

−1
Q

1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n ); yne ) + 2IF

√
πn(θ̃(1)

e,n − θ(1)
e,n ) + op(1). (111)

Further substituting (106) into equation (111) above yields

1√
πn

Λ(1)
e,n = 2IFΓθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

+ 2IF

√
πn(θ̃(1)

e,n − θ
(1)
0 ) + op(1). (112)

Based on Proposition 6 of the Online Appendix, we obtain

√
πn(θ̃(1)

e,n − θ
(1)
0 ) = −I−1

B DT
11

 1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
0 )

+ op(1). (113)
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Substituting (113) into (112) gives the following asymptotic representation of 1√
πn

Λ(1)
e,n :

1√
πn

Λ(1)
e,n = 2IFΓθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

− 2IFI−1
B DT

11

 1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
0 )

+ op(1). (114)

We substitute (106) and (114) into (110) and multiply the both sides by I−1
Q /2. The estimator can be

represented by

√
πn

[
θ̃(1)

e,n − θ(1)
e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

]
= −I−1

Q ΓTθ,1IFI−1
B DT

11

 1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
0 )− ν(1)

e (g, b, π)

+ op(1) (115)

= −I−1
Q ΓTθ,1IFI−1

B DT
11

 1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
n,t)

+ op(1).

Now we prove part (ii). The estimators ψe(θ
(1)
e,n ) and θ̂(2)

e,n = ψe(θ̂
(1)
e,n ) are the constrained efficient GMM

estimators for the nuisance parameter θ(2) when controlling for Γθ,1θ = θ(1)
e,n and Γθ,1θ = θ̂(1)

e,n , respectively. Due

to the first order condition ∇J(θ̂
(1)
n , ψe(θ̂

(1)
n ); yne ) = 0, the Taylor expansion of ∇J(θ̂

(1)
n , ψe(θ̂

(1)
n ); yne ) around

(θ(1)
e,n , ψe(θ

(1)
e,n ))T leads to

0 = ∇J(θ(1)
e,n , ψe(θ

(1)
e,n ); yne ) + 2IQ

√
πn

[
θ̂(1)

e,n − θ(1)
e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

]
+ op(1). (116)

Substituting (106) into (116) and multiplying the both sides by I−1
Q /2, we have

√
πn

[
θ̂(1)

e,n − θ(1)
e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

]
= −I−1

Q ΓTθ,1IF

Γθ,1I
−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

− I−1
B DT

11Γm,1νe

+ op(1).

(117)

Proof of Proposition 8 of the Online Appendix. We first provide an approximation for L(θ̃(1)
e,n ; yne ).

According to the second-order Taylor expansion around (θ(1)
e,n , ψe(θ

(1)
e,n )), it follows that

L(θ̃(1)
e,n ; yne ) =

[
1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n ); yne )

]T √
πn

[
θ̃(1)

e,n − θ(1)
e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

]
(118)

+
√
πn

[
θ̃(1)

e,n − θ(1)
e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

]T
IQ

√
πn

[
θ̃(1)

e,n − θ(1)
e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

]
+ op(1).

Thus, following (108) and (115),

L(θ̃(1)
e,n ; yne ) = −2 [LFζe,n + L∆νe]

T IFLBζe,n + ζTe,nL
T
B IFLBζe,n + op(1). (119)

We now provide an approximation for L(θ̃(1)
e,n ; yno ). According to the second-order Taylor expansion around
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(θ(1)
o,n , ψo(θ

(1)
o,n )), it follows that

L(θ̃(1)
e,n ; yno ) =

[
1√
πn
∇J(θ(1)

o,n , ψo(θ
(1)
o,n ); yno )

]T √
πn

[
θ̃(1)

e,n − θ(1)
o,n

ψo(θ̃
(1)
e,n )− ψo(θ

(1)
o,n )

]
(120)

+
√
πn

[
θ̃(1)

e,n − θ(1)
o,n

ψo(θ̃
(1)
e,n )− ψo(θ

(1)
o,n )

]T
IQ

√
πn

[
θ̃(1)

e,n − θ(1)
o,n

ψo(θ̃
(1)
e,n )− ψo(θ

(1)
o,n )

]
+ op(1).

Thus, similar to the derivation of (119), we can show that

L(θ̃(1)
e,n ; yno ) = −2 [LFζo,n + L∆νo]

T IFLBζe,n + ζTe,nL
T
B IFLBζe,n + op(1). (121)

We now provide an approximation for L(θ̂(1)
e,n ; yne ). According to the second-order Taylor expansion around

(θ(1)
e,n , ψo(θ

(1)
e,n )), it follows that

L(θ̂(1)
e,n ; yne ) =

[
1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n ); yne )

]T √
πn

[
θ̂(1)

e,n − θ(1)
e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

]
(122)

+
√
πn

[
θ̂(1)

e,n − θ(1)
e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

]T
IQ

√
πn

[
θ̂(1)

e,n − θ(1)
e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

]
+ op(1).

Thus, similar to the derivation of (119), we can show that

L(θ̂(1)
e,n ; yne ) = − [LFζe,n + L∆νe]

T IF [LFζe,n + L∆νe] + op(1). (123)

We now provide an approximation for L(θ̂(1)
e,n ; yno ). According to the second-order Taylor expansion around

(θ(1)
o,n , ψo(θ

(1)
o,n )), it follows that

L(θ̂(1)
e,n ; yno ) =

[
1√
πn
∇J(θ(1)

o,n , ψo(θ
(1)
o,n ); yno )

]T √
πn

[
θ̂(1)

e,n − θ(1)
o,n

ψo(θ̂
(1)
e,n )− ψo(θ

(1)
o,n )

]
(124)

+
√
πn

[
θ̂(1)

e,n − θ(1)
o,n

ψo(θ̂
(1)
e,n )− ψo(θ

(1)
o,n )

]T
IQ

√
πn

[
θ̂(1)

e,n − θ(1)
o,n

ψo(θ̂
(1)
e,n )− ψo(θ

(1)
o,n )

]
+ op(1).

Thus, similar to the derivation of (119), we can show that

L(θ̃(1)
e,n ; yno ) = −2 [LFζo,n + L∆νo]

T IF [LFζe,n + L∆νe] + [LFζe,n + L∆νe]
T IF [LFζe,n + L∆νe] + op(1). (125)

4.3 Proofs of Corollaries

Proof of Corollary 1 of Chen, Dou, and Kogan (2021). We can derive the result following the same

derivations for (85) under the baseline GMM model Q(1).

Proof of Corollary 1 of the Online Appendix. The proof is similar to that of Lemma 1 of Li and

Müller (2009), which is based on Le Cam’s first lemma (e.g., van der Vaart, 1998, Page 88).
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5 Miscellaneous Proofs and Derivations

5.1 Asymptotic Covariance of Moments

The derivations here are for the simulated studies in the example of time-varying disaster risk models. Let

gt = xt [xt+2 − ρxt+1 − (1− ρ)p]. Then, it is obvious that Et [gt] = 0 and E [gt+kgt] = 0 when |k| ≥ 2.

Expectation E [gt+1gt] can be computed as follows:

E [gt+1gt] = −ρE [pt−1ptpt+1(1− pt+1)]

=
[
ρ(1− ρ)2p2 − ρ(1− ρ)p

]
E [pt−1pt]

+
[
2ρ2(1− ρ)p− ρ2 + ρσ2

p

]
E
[
pt−1p

2
t

]
+ ρ3E

[
pt−1p

3
t

]
.

Expectations E [pt−1pt], E
[
pt−1p

2
t

]
, and E

[
pt−1p

3
t

]
are computed as follows:

E [pt−1pt] = E [(ρpt−1 + (1− ρ)p)pt−1]

= ρE
[
p2
t−1

]
+ (1− ρ)pE [pt−1]

E
[
pt−1p

2
t

]
= E

[
(ρpt−1 + (1− ρ)p)2pt−1

]
+ σ2

pE
[
p2
t−1

]
= ρ2E

[
p3
t−1

]
+ 2ρ(1− ρ)pE

[
p2
t−1

]
+ (1− ρ)2pE [pt−1]

E
[
pt−1p

3
t

]
= E

[
(ρpt−1 + (1− ρ)p)3pt−1

]
+ 3σ2

pE
[
p2
t−1(ρpt−1 + (1− ρ)p)

]
= ρ3E

[
p4
t−1

]
+ 3

[
ρ2(1− ρ)p+ ρσ2

p

]
E
[
p3
t−1

]
+ 3

[
ρ(1− ρ)2p2 + (1− ρ)pσ2

p

]
E
[
p2
t−1

]
+ (1− ρ)3p3E [pt−1] .

Expectations E [pt−1], E
[
p2
t−1

]
, E
[
p3
t−1

]
, and E

[
p4
t−1

]
are computed as follows:

E [pt−1] = p

E
[
p2
t−1

]
= p2 +

σ2
pp

1− ρ2

E
[
p3
t−1

]
= p3 + 3p

σ2
pp

1− ρ2

E
[
p4
t−1

]
= p4 + 6p2

σ2
pp

1− ρ2
+ 3

σ4
pp

2

(1− ρ2)2
.

Moreover, expectation E [gtgt] can be computed as follows:

E [gtgt] = E
[
xt (ut+2 − ρut+1)2

]
= E [xtpt+1(1− pt+1)] + ρ2E [xtpt(1− pt)]

= (1− ρ)p [1− (1− ρ)p] E [pt−1]− 2ρ2E
[
xtp

2
t

]
+ [ρ+ ρ2 − 2ρ(1− ρ)p− σ2

p]E [xtpt] .
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Expectations E [xtpt] and E
[
xtp

2
t

]
are

E [xtpt] = (1− ρ)pE [pt−1] + ρE
[
p2
t−1

]
(126)

E
[
xtp

2
t

]
= (1− ρ)2p2E [pt−1] + 2ρ(1− ρ)pE

[
p2
t−1

]
+ ρ2E

[
p3
t−1

]
+ σ2

pE
[
p2
t−1

]
. (127)

Therefore, the asymptotic covariance is

lim
n→+∞

var

(
1√
n

n∑
t=1

gt

)
= E [gtgt] + 2E [gt−1gt] . (128)

5.2 Moment Rotations

Construct a lower block triangular matrix L =

[
L11 0

L21 L22

]
such that

Ω−1 = LTL. (129)

It is most straightforward to analyze a rotated system of moment restrictions. Let

m̃t(θ) = Lmt(θ) =

[
L11m

(1)
t (θ(1))

L21m
(1)
t (θ(1)) + L22m

(2)
t (θ)

]
=

[
m̃

(1)
t (θ(1))

m̃
(2)
t (θ)

]
. (130)

Further, we let

D̃ = LD =

[
L11D11 0

L21D11 + L22D21 L22D22

]
=

[
D̃11 0

D̃21 D̃22

]
. (131)

For notational simplicity, we drop the ˜ but use the transformed system.

5.3 Hellinger-Differentiability Condition

The condition (72) is equivalent to the condition(
dQs,g

dQ

)1/2

= 1 +
1

2
sg + sε(s), (132)

where ε(s) converges to zero in L2(Q) as s→ 0. Equation (132) is equivalent to

lim
s→0

∫ [
1

s

((
dQs,g

dQ

)1/2

− 1

)
− 1

2
g

]2

dQ = lim
s→0

∫
ε(s)2dQ = 0. (133)

5.4 The Expression of Λ

Let D = [D1, D2] where DT
1 = [DT

11, D
T
21] and DT

2 = [0, DT
22]. Thus, we have

P2 = I −D2

(
DT

2 D2

)−1
DT

2 =

[
I 0

0 Λ2

]
, (134)

25



where the matrix inversion is the generalized inversion.

Using the rules for the inversion of partitioned matrices, the matrix
(
DTD

)−1
has the following expression:[ (

DT
1 P2D1

)−1 −
(
DT

1 P2D1

)−1
DT

1 D2

(
DT

2 D2

)−1

−
(
DT

2 D2

)−1
DT

2 D1

(
DT

1 P2D1

)−1 (
DT

2 D2

)−1
+
(
DT

2 D2

)−1
DT

2 D1

(
DT

1 P2D1

)−1
DT

1 D2

(
DT

2 D2

)−1

]
.

We can then show that

D
(
DTD

)−1
DT = D1

(
DT

1 P2D1

)−1
DT

1 −D1

(
DT

1 P2D1

)−1
DT

1 (I − P2)

− (I − P2)D1

(
DT

1 P2D1

)−1
DT

1

+ (I − P2) + (I −M2)D1

(
DT

1 P2D1

)−1
DT

1 (I − P2)

= I − P2 + P2D1

(
DT

1 P2D1

)−1
DT

1 P2. (135)

We conclude that

Λ = I −D
(
DTD

)−1
DT = P2 − P2D1

(
DT

1 P2D1

)−1
DT

1 P2. (136)

Recall that IF = DT
1 P2D1 (from Equation (27)). The matrix Λ can be rewritten as

Λ =

[
I −D11I

−1
F DT

11 D11I
−1
F DT

11Λ2

Λ2D11I
−1
F DT

11 Λ2 − Λ2D21I
−1
F DT

21Λ2

]
. (137)

6 Disaster Risk Model: Solutions and Moments

6.1 Model Solution

We first show how to derive the Euler equation, and then how to obtain the dark matter measure %(p, ξ).

The total return of market equity from t to t + 1 is erM,t+1 , which is unknown at t, and the total return

of the risk-free bond from t to t + 1 is erf,t , which is known at t. Thus, the excess log return of equity

is rt+1 = rM,t+1 − rf,t. The inter-temporal marginal rate of substitution is Mt,t+1 = δe−γgt+1 . The Euler

equations for the market equity return and the risk-free rate are

1 = Et [Mt,t+1e
rM,t+1 ] and e−rf,t = Et [Mt,t+1] , respectively. (138)

Thus, we obtain the following Euler equation for the excess log return:

Et [Mt,t+1] = Et [Mt,t+1e
rt+1 ] . (139)

The left-hand side of (139) is equal to

Et [Mt,t+1] = Et
[
e−γgt+1

]
= (1− p)e−γµ+ 1

2
γ2σ2

+ pξ
eγv

ξ − γ
,
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and the right-hand side of (139) is equal to

Et [Mt,t+1e
rt+1 ] = Et

[
e−γgt+1+rt+1

]
= (1− p)e−γµ+η+ 1

2
(γ2ξ2+τ2−2γρστ) + pξ

e
ς2

2
+(γ−b)v

ξ + b− γ
.

Thus, the Euler equation (139) can be rewritten as

(1− p)e−γµ+ 1
2
γ2σ2

[
eη+ τ2

2
−γρστ − 1

]
= p∆(ξ), where ∆(ξ) = ξ

 eγv

ξ − γ
− e

ς2

2
+(γ−b)v

ξ + b− γ

 . (140)

Using the Taylor expansion, we obtain the approximation

eη+ τ2

2
−γρστ − 1 ≈ η +

τ2

2
− γρστ, (141)

which, combined with (140), gives the following approximated Euler equation:

r(p, ξ) = (1− p)η − p` (v + 1/ξ) , where (142)

η = γρστ − τ2

2
+ eγµ−

γ2σ2

2 ∆(ξ)
p

1− p
, with ∆(ξ) = ξ

 eγv

ξ − γ
− e

ς2

2
+(γ−`)v

ξ + `− γ

 . (143)

The term η in (142) is the log equity premium in the normal regime. The first two terms of η in (143) describe

the market risk premia due to Gaussian consumption shocks; the third term is the disaster risk premium,

which explodes as ξ approaches γ from above. In other words, there is an upper bound on the average

disaster size for the equity premium to remain finite, which also limits how heavy the tail of the disaster size

distribution can be.

6.2 Dark Matter Measure

Now, we show how to derive the dark matter measure. The Jacobian matrix of the moment restrictions and

the asymptotic variance-covariance matrix are

D11 =

 −1 0

0 − p
ξ2

 and Ω11 =

 p(1− p) 0

0 (1− p)σ2 +
p
ξ2

 ≈
 p(1− p) 0

0
p
ξ2

 , respectively. (144)

The approximation above is simply due to the tiny magnitude of σ2 ≈ 0. The information matrix for the

baseline model is

Σ1 = DT
11Ω−1

11 D11 ≈

 1
p(1− p) 0

0
p
ξ2

 . (145)

Next, the Jacobian matrix of moments restrictions and the asymptotic variance-covariance matrix for the
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full model are

D =


−1 0

0 − p
ξ2

−(1− p)∂η(p, ξ)
∂p

−(1− p)∂η(p, ξ)
∂ξ

− pb
ξ2

 , (146)

and

Ω =


p(1− p) 0 0

0 (1− p)σ2 +
p
ξ2 (1− p)ρστ + bp/ξ2

0 (1− p)ρστ + bp/ξ2 (1− p)τ2 + pb2/ξ2

 , (147)

where

η(p, ξ) ≡ γρστ − τ2

2
+ ln

[
1 + eγµ−

γ2σ2

2 ξ

(
eγv

ξ − γ
− e

1
2
ς2 e(γ−b)v

ξ + b− γ

)
p

1− p

]
. (148)

We can also derive the closed-form solution for the dark matter measure if we use the approximate Euler

equation in (143). In this case, using the notation introduced in (143), we can express the information matrix

for (p, ξ) under the full GMM model as

Σ ≈


1

p(1− p) +
∆(ξ)2

(1− ρ2)τ2
e2γDµ−γ2

Dσ
2

(1− p)3
p

(1− ρ2)τ2
e2γDµ−γ2

Dσ
2

(1− p)2 ∆(ξ)∆̇(ξ)

p
(1− ρ2)τ2

e2γDµ−γ2
Dσ

2

(1− p)2 ∆(ξ)∆̇(ξ)
p
ξ2 +

∆̇ (ξ)2(
1− ρ2

)
τ2 e

2γDµ−γ2
Dσ

2 p2

1− p

 , (149)

where ∆̇(ξ) is the first derivative of ∆(ξ), and

∆̇(ξ) = − eγvγ

(ξ − γ)2 +
e(γ−`)v(γ − `)
(ξ − γ + `)2

eς
2/2. (150)

The largest eigenvalue of the matrix Σ1/2Σ−1
1 Σ1/2 is also the largest eigenvalue of Σ

−1/2
1 ΣΣ

−1/2
1 . In this

case, the eigenvalues and eigenvectors are available in closed form. This gives us the formula for %(θ) as

follows:

%(θ) = 1 +
p∆ (ξ)2 + p (1− p) ξ2∆̇ (ξ)2

(1− ρ2) τ2 (1− p)2 e2γµ−γ2σ2
. (151)

7 Time-Varying Disaster Risk Model: Solutions and Moments

7.1 Model Solution

The model can be viewed as a discrete-time version of Wachter (2013). The representative agent has recursive

preferences with unit elasticity of intertemporal substitution (EIS), and maximizes her lifetime utility Vt as

follows:

lnVt = (1− δ) lnCt + δ(1− γ)−1 lnEt
[
V 1−γ
t+1

]
, (152)
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where Ct is consumption at time t, δ is the rate of time preference, and γ is the coefficient of risk aversion for

timeless gambles. The log growth rate of consumption per capita, ∆ct+1 ≡ ln(Ct+1/Ct), evolves as follows:

∆ct+1 = µ+ σcεc,t+1 − ζt+1, (153)

where the consumption shock εc,t+1 follows a standard normal distribution, and ζt+1 is a disaster variable

characterized by

ζt+1 = zt+1vt+1, (154)

where the variable ut+1 is a disaster shock following a truncated exponential distribution with lower bound v:

vt+1 ∼ 1{vt+1 > v}ξe−ξ(vt+1−v), (155)

and the Bernoulli variable zt+1 captures the occurrence of disasters with diaster probability pt = max(p, p̃t)

and p̃t evolving according to an AR(1) process:

p̃t+1 = (1− ρ)p+ ρp̃t + σp
√
ptεp,t+1. (156)

We impose a small positive lower bound p (= 1 bps) on disaster probability pt in solutions and simulations.

Negative values of disaster probability can also be avoided by changing the specification. For example, the

process of ln(pt) can be specified as an AR(1) process as in Gourio (2012), and the disaster probability can be

specified as max(pt, 0) with boom jump to be max(−pt, 0) as in Cheng, Dou, and Liao (2021).

We model dividends Dt as levered consumption with log dividend growth ∆dt+1 ≡ ln(Dt+1/Dt):

∆dt+1 = µ− 1

2
ϕ2σ2

c + φσcεc,t+1 − φζt+1 + ϕσcεd,t+1, (157)

similar in spirit to Abel (1999).

The shocks (εc,t+1, εd,t+1, εp,t+1, Jt+1) are mutually independent and i.i.d. over t. The Bernoulli variables

zt+1 are independent of the contemporaneous jump probability shock εp,t+1 and its leads in the time series,

but zt+1 and the lags of εp,t+1 are dependent through the jump probability pt. The two processes zt+1 and

(εc,t+1, εd,t+1, Jt+1) are mutually independent.

Because the EIS coefficient is one, the first-order condition of optimal consumption results in Ct = (1−δ)Wt.

Due to the homotheticity of the preference, it is natural to conjecture that

Vt = I(pt)Ct, (158)

where I(pt) is a deterministic function of pt, capturing the marginal value of net worth. The specification of

the dynamics is consistent with the exponential-affine models, and thus, we further conjecture that

I(pt) = eI0+I1pt (159)

with constants I0 and I1 to be determined by equilibrium conditions.
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The constants I0 and I1 can be solved by plugging (158) and (159) into (152). Specifically, it holds that

I0 + I1pt + lnCt = (1− δ) lnCt + (1− γ)−1δ lnEt
[
e(1−γ)(I0+I1pt+1)C1−γ

t+1

]
. (160)

By matching the constant term and pt term, we obtain that

I1 ≈ δI1ρ+
1

2
(1− γ)δI2

1σ
2
p + (1− γ)−1δΞ(γ − 1) (161)

I0 ≈ δI0 + δI1(1− ρ)p+ δµ+
1

2
(1− γ)δσ2

c , (162)

with Ξ(x) ≡ exv ξ
ξ − x − 1. Equation (161) has two roots:

I1 =
1− δρ±

√
(1− δρ)2 − 2δ2σ2

pΞ(γ − 1)

(1− γ)δσ2
p

. (163)

Economic intuition can help select the reasonable root. When v → 0 and ξ → +∞, the disaster risk becomes

negligible. In the limit, the value function should become independent of pt, which rules out the root

1− δρ+
√

(1− δρ)2 − 2δ2σ2
pΞ(γ − 1)

(1− γ)δσ2
p

since it approaches to
2(1− δρ)

(1− γ)δσ2
p

< 0. Therefore, the relevant solution

to (161) and (162) is

I1 =
1− δρ−

√
(1− δρ)2 − 2δ2σ2

pΞ(γ − 1)

(1− γ)δσ2
p

(164)

I0 =
δ

1− δ

[
I1(1− ρ)p+ µ+

1

2
(1− γ)σ2

c

]
. (165)

To ensure the existence of the equilibrium, the following restrictions on model parameters need to be satisfied:

(1− δρ)2 − 2δ2σ2
pΞ(γ − 1) > 0. (166)

The equilibrium stochastic discount factor (SDF) is

Mt+1 = δ

(
Ct+1

Ct

)−1 V 1−γ
t+1

Et
[
V 1−γ
t+1

] . (167)

After plugging in the equilibrium value function and rearranging the terms, we get the log SDF, denoted by

mt+1 ≡ lnMt+1 as follows:

mt+1 ≈ Γ0 + Γ1pt − λcσcεc,t+1 − λpσp
√
ptεp,t+1 + λζζt+1, (168)
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where the predictive coefficients are

Γ0 = ln δ − µ− 1

2
(1− γ)2σ2

c (169)

Γ1 = −1

2
(1− γ)2I2

1σ
2
p − Ξ(γ − 1), (170)

and the loading coefficients are

λc = γ, λp = (γ − 1)I1, and λζ = γ. (171)

The log risk-free rate, denoted by rf,t = − lnEt [Mt+1], is

rf,t = − lnEt [emt+1 ]

= −Γ0 −
1

2
λ2
cσ

2
c −

[
Γ1 +

1

2
λ2
pσ

2
p + Ξ(λζ)

]
pt (172)

= − ln δ + µ+
1

2
(1− γ)2σ2

c −
1

2
γ2σ2

c − [Ξ(γ)− Ξ(γ − 1)] pt (173)

Using the Campbell-Shiller decomposition and linearization, we can represent the return in terms of log

price-dividend ratio and log dividend growth:

rm,t+1 = κm,0 + κm,1zm,t+1 + ∆dt+1 − zm,t, (174)

where

κm,0 = log(1 + ezm)− κm,1zm, (175)

and

κm,1 =
ezm

1 + ezm
(176)

and zm is long-run mean of market log price-dividend ratio.

Using the log-linearization approximation, we search the equilibrium characterized by

zm,t = Am,0 +Am,1pt, (177)

where the constants Am,0 and Am,1 can be computed recursively as follows.

Define the period-t price of the dividend strip paid at the period t+ n as H(Dt, pt, n) = Et [Mt,t+nDt+n]

where Mt,t+n ≡ e
∑n
i=1 mt+i . The price function H(Dt, pt, n) satisfies the following recursive relations:

H(Dt, pt, n) = Et [emt+1H(Dt+1, pt+1, n− 1)] (178)

H(Dt, pt, 0) = Dt, (179)

for arbitrary t and n ≥ 1.

We conjecture that H(Dt, pt, n) = Dte
An+Bnpt . Then, the recursive relations in (178) and (179) can be
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rewritten as follows:

eAn+Bnpt = Et
[
e∆dt+1+mt+1+An−1+Bn−1pt+1

]
= Et

[
e(µ− 1

2
ϕ2σ2

c+φσcεc,t+1−φζt+1+ϕσcεd,t+1)+(Γ0+Γ1pt−λcσcεc,t+1−λpσp
√
ptεp,t+1+λζζt+1)+(An−1+Bn−1pt+1)

]
= eÃn+B̃npt− 1

2
ϕ2σ2

cEt
[
e(φ−λc)σcεc,t+1+(Bn−1−λp)σp

√
ptεp,t+1+(λζ−φ)ζt+1+ϕσcεd,t+1

]
,

where Ãn = µ+ Γ0 +An−1 +Bn−1(1− ρ)p, and B̃n = Γ1 +Bn−1ρ.

The moment generating function of ζt+1 is

lnEt
[
e(λζ−φ)ζt+1

]
≈ ptΞ(γ − φ). (180)

Thus, it holds that

An = Ãn +
1

2
(φ− γ)2σ2

c

= µ+ Γ0 +An−1 +Bn−1(1− ρ)p+
1

2
(φ− γ)2σ2

c

= ln δ − 1

2
(1− γ)2σ2

c +An−1 +Bn−1(1− ρ)p+
1

2
(φ− γ)2σ2

c ,

and

Bn = B̃n +
1

2
[Bn−1 − (γ − 1)I1]2 σ2

p + Ξ(γ − φ)

= ρBn−1 +
1

2
B2
n−1σ

2
p − (γ − 1)I1σ

2
pBn−1 + Ξ(γ − φ)− Ξ(γ − 1),

with the initial values A0 = B0 = 0.

Therefore, the log price-dividend ratio is

zm,t = ln

[
+∞∑
n=1

eAn+Bnpt

]
. (181)

According to Taylor expansion in terms of pt around p, it follows that

Am,0 = ln

[
+∞∑
n=1

eAn+Bnp

]
−Am,1p and Am,1 =

∑+∞
n=1Bne

An+Bnp∑+∞
n=1 e

An+Bnp
. (182)

According to (174), the equilibrium log market return can be rewritten as

rm,t+1 = Et [rm,t+1] + βcσcεc,t+1 + βpσp
√
ptεp,t+1 − βζ [ζt+1 − pt(v + 1/ξ)] + ϕσcεd,t+1, (183)

where βc = φ, βp = κm,1Am,1, and βζ = φ.

The Euler equation for the log market return is

1 = Et
[
erm,t+1+mt+1

]
, (184)
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which leads to the following equilibrium characterization of conditional equity premium:

Et [rm,t+1]− rf,t

= βcλcσ
2
c + βpλpσ

2
ppt + [Ξ(γ)− Ξ(γ − φ)− φ(v + 1/ξ)] pt −

1

2

[
(β2
c + ϕ2)σ2

c + β2
pσ

2
ppt
]
. (185)

The conditional variance of the log market return is

vart(rm,t+1) = β2
cσ

2
c + ϕ2σ2

c + β2
pσ

2
ppt + β2

ζ

[
(v + 1/ξ)2(1− pt) + 1/ξ2

]
pt. (186)

Now, we derive the yield of the defaultable government bond, denoted by yb,t, and the expected return of

the defaultable government bond, denoted by µb,t ≡ Et [rb,t+1], where

rb,t+1 =

{
yb,t, if not default

yb,t − vt+1, if default.
(187)

A default on the government bond occurs with probability q conditional on the occurrence of a disaster. Thus,

by definition, it holds that

µb,t = yb,t − ptq(v + 1/ξ). (188)

According to the Euler equation of the defaultable government bond and the risk-free bond, it holds that

Et
[
emt+1+rb,t+1−rf,t

]
= Et [emt+1 ] . (189)

Some calculations show that the following relation approximately holds:

lnEt
[
emt+1+rb,t+1−rf,t

]
= Γ0 + Γ1pt + yb,t − rf,t +

1

2
λ2
cσ

2
c +

1

2
λ2
pσ

2
ppt + [(1− q)Ξ(γ)− qΞ(γ − 1)] pt. (190)

Combining (172), (189), and (190), it follows that

yb,t − rf,t = q [Ξ(γ)− Ξ(γ − 1)] pt. (191)

Further, by putting together equations (188) and (191), we can obtain the following relation:

µb,t − rf,t = q [Ξ(γ)− Ξ(γ − 1)− (v + 1/ξ)] pt. (192)

Therefore, the conditional mean and variance of excess log returns of the market portfolio relative to the

defaultable government bill are

Et [rm,t+1 − rb,t+1] =βcλcσ
2
c + βpλpσ

2
ppt + [Ξ(γ)− Ξ(γ − φ)− φ(v + 1/ξ)] pt

− 1

2

[
(β2
c + ϕ2)σ2

c + β2
pσ

2
ppt
]
− q [Ξ(γ)− Ξ(γ − 1)− (v + 1/ξ)] pt, (193)
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and

vart [rm,t+1 − rb,t+1] = β2
cσ

2
c + β2

pσ
2
ppt + ϕ2σ2

c +
[
(1− q)φ2 + q(φ− 1)2

] [
(v + 1/ξ)2 + 1/ξ2

]
pt

− (φ− q)2(v + 1/ξ)2p2
t (194)

Some More Derivations. From equation (164), it follows that

I1 ≈
δ−1 − ρ

(1− γ)σ2
p

, (195)

because (δ−1 − ρ)2 ≈ 2σ2
pΞ(γ − 1).

The affine coefficient Bn has the following (approximate) recursive relation:

Bn =

[
ρ+

2Ξ(γ − 1)

δ−1 − ρ
σ2
p

]
Bn−1 + Ξ(γ − φ)− Ξ(γ − 1). (196)

Let ρ̂ ≡ ρ+
2Ξ(γ − 1)

δ−1 − ρ
σ2
p. When ρ̂ < 1, it holds that

Bn =
1− ρ̂n

1− ρ̂
[Ξ(γ − φ)− Ξ(γ − 1)] . (197)

The coefficient An can be expressed as

An −An−1 = ln δ − 1

2
(1− γ)2σ2

c +
1− ρ̂n

1− ρ̂
[Ξ(γ − φ)− Ξ(γ − 1)] (1− ρ)p+

1

2
(φ− γ)2σ2

c (198)

≈ ln δ +
1

2
(φ− 1)(φ+ 1− 2γ)σ2

c + (1− ρ̂n) [Ξ(γ − φ)− Ξ(γ − 1)] p. (199)

Thus, it holds that

An = n

{
ln δ +

1

2
(φ− 1)(φ+ 1− 2γ)σ2

c + [Ξ(γ − φ)− Ξ(γ − 1)] p

}
−ρ̂1− ρ̂n

1− ρ̂
[Ξ(γ − φ)− Ξ(γ − 1)] p. (200)

and hence, it holds that

An +Bnp ≈ −nδ̂, where δ̂ ≡ −
{

ln δ +
1

2
(φ− 1)(φ+ 1− 2γ)σ2

c + [Ξ(γ − φ)− Ξ(γ − 1)] p

}
. (201)

Therefore, the coefficients in (177) satisfies the following relations in equilibrium:

Am,1 = [Ξ(γ − φ)− Ξ(γ − 1)]

+∞∑
n=1

1− ρ̂n

1− ρ̂
e−nδ̂

+∞∑
n=1

e−nδ̂

(202)

≈ Ξ(γ − φ)− Ξ(γ − 1). (203)
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and

Am,0 = ln

[
+∞∑
n=1

e−nδ̂

]
−Am,1p (204)

= ln

[
e−δ̂

1− eδ̂

]
−Am,1p. (205)

And thus, the steady-state log price dividend ratio is

zm = Am,0 +Am,1p = ln

[
e−δ̂

1− eδ̂

]
. (206)

The log-linearization coefficient is

κm,1 = e−δ̂ = δe
1
2

(φ−1)(φ+1−2γ)σ2
c+[Ξ(γ−φ)−Ξ(γ−1)]p. (207)

The beta to the time-varying disaster risk is

βp = κm,1Am,1 = δ [Ξ(γ − φ)− Ξ(γ − 1)] . (208)

The market price of risk is

λp = (γ − 1)I1 = −δ
−1 − ρ
σ2
p

. (209)

The equilibrium conditional mean and variance of excess log returns of the market portfolio relative to the

government bill are

Et [rm,t+1 − rb,t+1] =φγσ2
c + [Ξ(γ − 1)− Ξ(γ − φ)] (1− δρ)pt + [Ξ(γ)− Ξ(γ − φ)− φ(v + 1/ξ)] pt

− 1

2
φ2σ2

c − q [Ξ(γ)− Ξ(γ − 1)− (v + 1/ξ)] pt, (210)

and

vart [rm,t+1 − rb,t+1] = β2
cσ

2
c + β2

pσ
2
ppt + ϕ2σ2

c +
[
(1− q)φ2 + q(φ− 1)2

] [
(v + 1/ξ)2 + 1/ξ2

]
pt

− (φ− q)2(v + 1/ξ)2p2
t . (211)

7.2 Generalized Methods of Moments

Denote the set of moment functions for the baseline model to be m(1)(yt−1,yt; θ
(1)) with the data yt =

(∆ct,∆dt, xt, xt−1, xb,t, vt, zm,t, re,t) and the baseline parameters θ(1) = (µ, σ2
c , p, ρ, σ

2
p, ξ, φ, ϕ, q)

T . More pre-

cisely, there are eight moment conditions specified as follows:

E
[
m(1)(yt−1,yt; θ

(1))
]

= 0, (212)
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with

m(1)(yt−1,yt; θ
(1)) =



xt − p
xt−2 [xt − ρxt−1 − (1− ρ)p]

xt−1(xt − p)− ρσ2
pp/(1− ρ2)

xb,t−1 − qp
∆ct+1 − µ+ p(v + 1/ξ)

(∆ct+1 − µ)2 − σ2
c − p[(v + 1/ξ)2 + 1/ξ2]

∆ct+1 − zt+1vt+1 − µ
∆dt+1 − φ∆ct+1 − (1− φ)µ+ 1

2ϕ
2σ2
c

[∆dt+1 − φ∆ct+1 − (1− φ)µ+ 1
2ϕ

2σ2
c ]

2 − ϕ2σ2
c


. (213)

The first row of Jacobian matrix D11(θ) for the baseline moment restrictions is

[0, 0,−1, 0, 0, 0, 0, 0, 0]. (214)

The second row of Jacobian matrix D11(θ) for the baseline moment restrictions is

[0, 0,−p(1− ρ),−ρσ2
pp/(1− ρ2), 0, 0, 0, 0, 0]. (215)

The third row of Jacobian matrix D11(θ) for the baseline moment restrictions is

[0, 0,−p− ρσ2
p/(1− ρ2),−σ2

pp(1 + ρ2)/(1− ρ2)2,−ρp/(1− ρ2), 0, 0, 0, 0]. (216)

The fourth row of Jacobian matrix D11(θ) for the baseline moment restrictions is

[0, 0,−q, 0, 0, 0, 0, 0,−p]. (217)

The fifth row of Jacobian matrix D11(θ) for the baseline moment restrictions is

[−1, 0, v + 1/ξ, 0, 0,−p/ξ2, 0, 0, 0]. (218)

The sixth row of Jacobian matrix D11(θ) for the baseline moment restrictions is

[2p(v + 1/ξ),−1,−(v + 1/ξ)2 − 1/ξ2, 0, 0, 2p(v/ξ2 + 2/ξ3), 0, 0, 0]. (219)

The seventh row of Jacobian matrix D11(θ) for the baseline moment restrictions is

[−1, 0, 0, 0, 0, 0, 0, 0, 0]. (220)

The eighth row of Jacobian matrix D11(θ) for the baseline moment restrictions is

[−(1− φ),
1

2
ϕ2, 0, 0, 0, 0, p(v + 1/ξ), ϕσ2

c , 0]. (221)
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The ninth row of Jacobian matrix D11(θ) for the baseline moment restrictions is

[0,−ϕ2, 0, 0, 0, 0, 0,−2ϕσ2
c , 0]. (222)

In time-varying disaster risk models, the major focus is to understand the equity premium, the average

volatility, the predictability of excess returns based on price-dividend ratios, and the comovement between

excess returns and price-dividend ratios explained by the consumption process and dividend process specified

in (153) – (157). These asset pricing cross-equation restrictions can be specified as follows:

E
[
m(2)(yt,yt−1; θ)

]
= 0, (223)

with

m(2)(yt,yt−1; θ) =

 rm,t − rb,t − χ1(θ)

(rm,t − rb,t)2 − χ2(θ)

ret − χ3(θ)zm,t − χ4(θ)zm,t−1 − χ5(θ)

 ,
where ret ≡ rm,t − rb,t + (φ− xb,t)ζt, and

χ1(θ) = φγσ2
c + βpλpσ

2
pp+ [Ξ(γ)− Ξ(γ − φ)− φ(v + 1/ξ)] p− 1

2

(
φ2σ2

c + β2
pσ

2
pp+ ϕ2σ2

c

)
,

−q [Ξ(γ)− Ξ(γ − 1)− (v + 1/ξ)] p,

χ2(θ) = E [rm,t − rb,t]2 + var [rm,t − rb,t] = χ1(θ)2 + E [vart−1(rm,t − rb,t)] + var [Et−1(rm,t − rb,t)] ,

χ3(θ) = A−1
m,1βp,

χ4(θ) = A−1
m,1

{[
βpλpσ

2
p + Ξ(γ)− Ξ(γ − φ)− 1

2
β2
pσ

2
p

]
−q [Ξ(γ)− Ξ(γ − 1)]− βpρ

}
,

χ5(θ) = φγσ2
c−Am,0[χ3(θ) + χ4(θ)]− βp(1− ρ)p− 1

2

(
β2
cσ

2
c + ϕ2σ2

c

)
.

In the definition of χ2(θ) above, the expectation of conditional variance is

E [vart−1(rm,t − rb,t)] = φ2σ2
c + ϕ2σ2

c + β2
pσ

2
pp+

[
(1− q)φ2 + q(φ− 1)2

] [
(v + 1/ξ)2 + 1/ξ2

]
p

− (φ− q)2(v + 1/ξ)2

(
p2 +

σ2
p

1− ρ2
p

)
, (224)

and, the variance of conditional expectation is

var [Et−1(rm,t − rb,t)] = A2
m,1 [χ4(θ) + ρχ3(θ)]2 σ2

pp/(1− ρ2). (225)

The parameter vector θ =

[
θ(1)

θ(2)

]
includes the baseline parameter θ(1) = (µ, σ2

c , p, ρ, σ
2
p, ξ, φ, ϕ, q)

T and

the nusance parameter θ(2) = γ. The auxiliary parameters are v and δ, treated as part of the functional-form

specification of the model.

The analytical formulas for the Jacobian matrix of the over-identification moment conditions are quite

complicated. We ignore the formulas here and, in fact, we calculate them numerically in obtaining the fragility
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measures. Moreover, we compute the Fisher Information matrices for the moments in m(1)(·, θ(1)) and m(·, θ)
based on simulated stationary time series using the Monte Carlo method.

8 Long-Run Risk Model: Solutions and Moments

8.1 Model Solution

We consider a long-run risk model similar to Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012).

The log growth rate of aggregate consumption ∆ct, the long-run risk component in consumption growth xt,

and stochastic volatility σt follow the joint processes

∆ct+1 = µc + xt + σtεc,t+1 (226a)

xt+1 = ρxt + ϕxσtεx,t+1 (226b)

σ̃2
t+1 = σ2 + ν(σ̃2

t − σ2) + σwεσ,t+1 (226c)

σ2
t+1 = max(σ2, σ̃2

t+1), (226d)

where the shocks εc,t, εx,t, and εσ,t are i.i.d. standard normal variables and they are mutually independent.

Similar to Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012), we adopt the local approximation

method to linearize the model and thus the solution. In the log-linearized approximation system, it is fair to

assume that σ2
t = σ̃2

t .

The representative agent has Epstein-Zin-Weil preferences:

Vt =

[
(1− δ)C

1−γ
ϑ

t + δ
(
Et
[
V 1−γ
t+1

]) 1
ϑ

] ϑ
1−γ

(227)

where ϑ = (1− γ)/(1− ψ−1). Define the wealth process and the gross return on consumption claims:

Wt+1 = (Wt − Ct)Rc,t+1. (228)

Therefore, the stochastic discount factor (SDF) can be expressed as follows:

Mt+1 = δϑ
(
Ct+1

Ct

)−ϑ/ψ
Rϑ−1
c,t+1. (229)

The log SDF can be written as

mt+1 = ϑ log δ − ϑ

ψ
∆ct+1 + (ϑ− 1)rc,t+1. (230)

The state variables in long-run risk models are xt and σ2
t . The dependence of rc,t+1 on the state variables

are endogenous. To turn the model into an affine system, we first exploit the Campbell-Shiller log-linearization

approximation:

rc,t+1 = κ0 + κ1zt+1 + ∆ct+1 − zt, (231)

where zt = log(Wt/Ct) is log wealth-consumption ratio and wealth is the price of consumption claims. The
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log-linearization constants are determined by the long-run steady state:

κ0 = log(1 + ez)− κ1z (232)

κ1 =
ez

1 + ez
, (233)

where z is the long-run mean of the log price-consumption ratio.

Given the log-linearization approximation (231) – (233), we can search the equilibrium log consumption-

wealth ratio characterized by

zt = A0 +A1xt +A2σ
2
t , (234)

where the constants A0, A1 and A2 are to be determined by the equilibrium conditions.

Thus, the log return on the consumption claim can be written as

rc,t+1 = κ0 + κ1

(
A0 +A1xt+1 +A2σ

2
t+1

)
+ ∆ct+1 −

(
A0 +A1xt +A2σ

2
t

)
. (235)

Therefore, the log SDF can be re-written in terms of state variables and exogenous shocks

mt+1 = Γ0 + Γ1xt + Γ2σ
2
t − λcσtεc,t+1 − λxσtϕxεx,t+1 − λσσwεσ,t+1, (236)

where predictive coefficients are

Γ0 = log δ − ψ−1µc −
1

2
ϑ(ϑ− 1) (κ1A2σw)2 , (237)

Γ1 = −ψ−1, (238)

Γ2 = (ϑ− 1)(κ1ν − 1)A2 =
1

2
(γ − 1)(ψ−1 − γ)

[
1 +

(
κ1ϕx

1− κ1ρ

)2
]
, (239)

and the market price of risk coefficients are

λc = γ, (240)

λx =
(
γ − ψ−1

) κ1ϕx
1− κ1ρ

, (241)

λσ = −(γ − 1)
(
γ − ψ−1

) κ1

2(1− κ1ν)

[
1 +

(
κ1ϕx

1− κ1ρ

)2
]
. (242)

The coefficients Aj ’s are determined by the equilibrium condition (i.e., the Euler equation for price of

consumption claim) as follows:

1 = Et [Mt+1Rc,t+1] = Et
[
emt+1+rc,t+1

]
. (243)
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It leads to the equilibrium conditions:

A0 =
1

1− κ1

[
log δ + κ0 +

(
1− ψ−1

)
µc + κ1A2(1− ν)σ2 +

ϑ

2
(κ1A2σw)2

]
, (244)

A1 =
1− ψ−1

1− κ1ρ
, (245)

A2 = −(γ − 1)(1− ψ−1)

2(1− κ1ν)

[
1 +

(
κ1ϕx

1− κ1ρ

)2
]
. (246)

The long-run mean z is also determined endogenously in the equilibrium. More precisely, given all

parameters fixed, we have Aj = Aj(z) in Equations (244) – (246) because κ0 and κ1 are functions of z. In the

long-run steady state, we have

z = A0(z) +A2(z)σ2. (247)

Thus, in the equilibrium, the long-run mean z is a function of all parameters in the model, according to (247)

and the Implicit Function Theorem,

z = z
(
µc, ρ, ϕx, σ

2, ν, σw, · · ·
)
. (248)

And hence, based on equation (248), we can also solve out κ0 = κ0(µc, ρ, ϕx, σ
2, ν, σw, · · · ) and κ1 =

κ1(µc, ρ, ϕx, σ
2, ν, σw, · · · ), whose explicit forms are usually not available. The gradients κ0 and κ1 with

respect to the parameters, such as ρ and ν, can be calculated using the Implicit Function Theorem in (247).

We specify the joint distribution of the exogenous state variables and the log dividend growth ∆dt, these

joint distributional assumptions are part of the structural component of the model. More precisely, we assume

that the log dividend growth process is

∆dt+1 = µd + φdxt + ϕd,cσtεc,t+1 + ϕd,dσtεd,t+1. (249)

Market Equity Return. Using the Campbell-Shiller decomposition and linearization, we can represent

the return in terms of log price-dividend ratio and log dividend growth:

rm,t+1 = κm,0 + κm,1zm,t+1 + ∆dt+1 − zm,t, (250)

where

κm,0 = log(1 + ezm)− κm,1zm, (251)

and

κm,1 =
ezm

1 + ezm
, (252)

and zm is long-run mean of market log price-dividend ratio. We search for the equilibrium where the log

market price-dividend ratio is a linear function of the states in the following form:

zm,t = Am,0 +Am,1xt +Am,2σ
2
t , (253)

40



where the constants Am,0, Am,1 and Am,2 are to be determined by equilibrium condition (i.e., Euler equation

for market equity returns). Thus, we have

rm,t+1 − Et [rm,t+1] = ϕd,cσtεc,t+1 + κm,1Am,1ϕxσtεx,t+1

+ κm,1Am,2σwεσ,t+1 + ϕd,dσtεd,t+1, (254)

where

Et [rm,t+1] = µd + κm,0 + (κm,1 − 1)Am,0 + κm,1Am,2(1− ν)σ2 (255)

+ [φd + (κm,1ρ− 1)Am,1]xt + (κm,1ν − 1)Am,2σ
2
t . (256)

Plugging the equation above into the following Euler equation:

1 = Et
[
emt+1+rm,t+1

]
, (257)

we can derive the coefficients,

Am,0 =
1

1− κm,1

[
Γ0 + κm,0 + µd +

1

2
σ2
d,u + κm,1Am,2(1− ν)σ2 +

1

2
(κm,1Am,2 − λw)2σ2

w

]
,

Am,1 =
φd − ψ−1

L

1− κm,1ρ
, (258)

and

Am,2 =
1

1− κm,1ν

[
Γ2 +

1

2

(
ϕ2
d,d + (ϕd,c − λc)2 + (κm,1Am,1ϕx − λx)2

)]
. (259)

Taken together, according to (254), the log return of the market portfolio can be re-written as the following

beta representation for the priced aggregate shocks:

rm,t+1 − Et [rm,t+1] = βcσtεc,t+1 + βxσtεx,t+1 + βσσwεε,t+1 + ϕd,dσtεd,t+1, (260)

where the equilibrium betas are

βc = ϕd,c, βx = κm,1Am,1ϕx, and βσ = κm,1Am,2. (261)

Excess Market Return and Equity Premium. The Euler equations for the market equity return and

risk-free rate can be written in one equation

Et [emt+1 ] = Et
[
emt+1+rem,t+1

]
. (262)

The risk premium is given by the beta pricing rule:

Et
[
rem,t+1

]
= λcσ

2
t βc + λxσ

2
t βx + λσσ

2
wβσ −

1

2
σ2
rm,t, (263)

where σ2
rm,t = β2

cσ
2
t + β2

xσ
2
t + β2

σσ
2
w + ϕ2

d,dσ
2
t . (264)
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Similarly, the long-run mean of log market price-dividend ratio is

zm = Am,0(zm) +Am,2(zm)σ2. (265)

Based on equation (260), the excess log return of the market portfolio, defined by rem,t+1 = rm,t+1 − rf,t, has

the following expression:

rem,t+1 − Et
[
rem,t+1

]
= βcσtεc,t+1 + βxσtεx,t+1 + βσσwεε,t+1 + ϕd,dσtεd,t+1. (266)

Therefore, the equilibrium excess log return of the market portfolio follows the dynamics below:

rem,t+1 = µer,t + βcσtεc,t+1 + βxσtεx,t+1 + βσσwεσ,t+1 + ϕd,dσtεd,t+1, (267)

where µer,t = λcβcσ
2
t + λxβxσ

2
t + λσβσσ

2
w − 1

2

(
β2
cσ

2
t + β2

xσ
2
t + β2

σσ
2
w + ϕ2

d,dσ
2
t

)
. To avoid the stochastic

singularity, we assume that the underlying marginal distribution of (∆ct+1, xt, σ
2
t ,∆dt+1) has some features

not captured by the structural model Q. More precisely, we assume that the excess log return’s true distribution

is characterized by

rem,t+1 = µer,t + βcσtεc,t+1 + βxσtεx,t+1 + βσσwεσ,t+1 + ϕd,dσtεd,t+1 + ϕrσtεr,t+1, (268)

which augments the characterization in (267) by adding a normal shock ϕrσtεr,t+1.

8.2 Generalized Methods of Moments

The likelihood function of the baseline statistical model can be seen clearly below when re-arranging the

terms:

∆ct+1 − µc − xt
σt

= εc,t+1, (269a)

xt+1 − ρxt
ϕxσt

= εx,t+1, (269b)

and
(σ2
t+1 − σ2)− ν(σ2

t − σ2)

σw
= εσ,t+1, (269c)

where εc,t, εx,t and εσ,t are i.i.d. standard normal variables and they are mutually independent. The dividend

growth process is

∆dt+1 = µd + φdxt + ϕd,c (∆ct+1 − µc − xt) + ϕd,dσtεd,t+1. (270)

We consider the GMM setup where the baseline moments functions are identical to the score functions of the

likelihood function. We denote the set of baseline moment functions bym(1)(∆ct+1, xt+1, xt, σ
2
t+1, σ

2
t ,∆dt+1; θ(1)),

which includes ten moment conditions. The moment conditions that only involve ∆ct+1, xt, and σ2
t are the
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following six baseline moment conditions:

E
[

∆ct+1 − µc − xt
σ2
t

]
= 0

E
[

(xt+1 − ρxt)xt
ϕ2
xσ

2
t

]
= 0

E
[

(xt+1 − ρxt)2

ϕ2
xσ

2
t

− 1

]
= 0

E

[[
(σ2
t+1 − σ2)− ν(σ2

t − σ2)
]

(σ2
t − σ2)

σ2
w

]
= 0

E

[[
(σ2
t+1 − σ2)− ν(σ2

t − σ2)
]2

σ2
w

− 1

]
= 0

E
[

(σ2
t+1 − σ2)− ν(σ2

t − σ2)

σ2
w

]
= 0.

The six baseline moment conditions above captures the distribution characterized by (269a) – (269c). The

joint distribution of fundamental variables (∆ct+1, xt, σ
2
t ) and dividend growth ∆dt+1 is captured by the

following four additional baseline moment conditions:

E

[
∆dt+1 − µd − φdxt − ϕd,c(∆ct+1 − µc − xt)

ϕ2
d,dσ

2
t

]
= 0

E

[
xt [∆dt+1 − µd − φdxt − ϕd,c(∆ct+1 − µc − xt)]

ϕ2
d,dσ

2
t

]
= 0

E

[
(∆ct+1 − µc − xt) [∆dt+1 − µd − φdxt − ϕd,c(∆ct+1 − µc − xt)]

ϕ2
d,dσ

2
t

]
= 0

E

[
[∆dt+1 − µd − φdxt − ϕd,c(∆ct+1 − µc − xt)]2

ϕ2
d,dσ

2
t

− 1

]
= 0.

In the long-run risk model, the primary goal is to understand how the excess log return of the market

portfolio is affected by the consumption process and dividend process specified in (269a) – (269c) and (270).

The joint distribution of the excess log return rem,t+1, the consumption variables, and the dividend variables

can be seen clearly from the following formula:

ϕrσtεr,t+1 = rem,t+1 − µer,t − (βc − ϕd,c)(∆ct+1 − µc − xt)− βx
xt+1 − ρxt

ϕx

− βσ
[
σ̂2
t+1 − νσ̂2

t

]
− (∆dt+1 − µd − φdxt) , (271)

where σ̂2
t ≡ σ2

t − σ2 and

µer,t = ληβησ
2
t + λeβeσ

2
t + λwβwσ

2
w −

1

2

(
β2
ησ

2
t + β2

eσ
2
t + β2

wσ
2
w + ϕ2

d,dσ
2
t

)
. (272)
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Because βc = ϕd,c, equation (271) can be rewritten as

ϕrσtεr,t+1 = rem,t+1 − µer,t − βx
xt+1 − ρxt

ϕx
− βσ

[
σ̂2
t+1 − νσ̂2

t

]
− (∆dt+1 − µd − φdxt) . (273)

We choose the asset pricing cross-equation moments, denoted bym(2)(∆ct+1, xt+1, xt, σ
2
t+1, σ

2
t ,∆dt+1, r

e
m,t+1; θ),

to include the score functions of the conditional likelihood of rem,t+1 above. Thus, the moment conditions for

the optimal GMM setup to assess the fragility of the benchmark version of long-run risk model are

m(∆ct+1, xt+1, xt, σ
2
t+1, σ

2
t , r

e
t+1,∆dt+1, θ) ≡

[
m(1)(∆ct+1, xt+1, xt, σ

2
t+1, σ

2
t ,∆dt+1, θ

(1))

m(2)(∆ct+1, xt+1, xt, σ
2
t+1, σ

2
t ,∆dt+1, r

e
m,t+1, θ)

]
.

Intuitively, the over-identification moment conditions imposed by the long-run risk model on the dynamic pa-

rameter θ is through the cross-equation restrictions on the beta coefficients βc, βx, βσ and the pricing coefficients

λc, λx, λσ. Because the shocks εc,t+1, εx,t+1, εσ,t+1, and εr,t+1 are mutually independent, the GMM setup is actu-

ally first-order asymptotically equivalent to the MLE for the joint distribution of (∆ct+1, xt, σ
2
t ,∆dt+1, r

e
m,t+1).

It should be noted that the whole joint distribution of the variables, including (∆ct+1, xt, σ
2
t ,∆dt+1, r

e
m,t+1)

and many other variables such as price-dividend ratios, may have more stochastic singularities and many

features that are not the targets of the long-run risk model to explain at the first place. Following the spirits

of GMM-based estimation and hypothesis testing for structural models, we focus on the moments targeted by

a particular long-run risk model.

The analytical formulas for the over-identification moment conditions are quite complicated, since how

the beta coefficients and market price of risk coefficients depend on model parameters in equilibrium is

very complicated for the long-run risk model. We ignore the formulas here and, in fact, we calculate them

numerically in obtaining the fragility measures. Moreover, we compute the information matrices for the

baseline and full moment conditions based on simulated stationary time series.
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