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1 Technical and Regularity Assumptions

We first discuss the relevant regularity conditions, including smoothness, rank, and identification. These

assumptions are also stated in the appendix of Chen, Dou, and Kogan (2021).

Assumption 1 (GMM Regularity Conditions). We assume that the moment function m(-, ), defined on a

compact set O, satisfies the following reqularity conditions:
(1) there exists 6y € int(©) such that Q(6y) is non-empty;
(i1) the moment restrictions are over-identified: dy < dy,;

(iii) EQo [mgl)(ﬁ(l))} =0 and EQ [my(0)] = 0 only when 6 = 9((]1) and 0 = 0y;
(iv) my(0) is continuously differentiable in 0, and D has full column rank.

The compactness of © and the assumption 6y € int(O) are the standard regularity conditions to ensure
the uniform law of large numbers (ULLN) and the first-order-condition characterization of GMM estimators,
respectively. Condition (i) means that the moment restrictions are satisfied under 6y and Qq, though Qg may
not be the true DGP. Condition (ii) is the standard over-identification condition in GMM (see Hansen, 1982).
Condition (iii) is also a standard identification assumption to ensure that the sequence of GMM estimators
has a unique limit (see Hansen, 1982). Condition (iv) is the rank condition for moment restrictions, and is

the sufficient condition for local identification enabling us to consistently estimate 6.

Assumption 2 (Markov Processes). {y;:t=0,1,---} is a time-homogeneous Harris ergodic and stationary

Markov process satisfying the Doeblin condition.

A Markov process is Harris ergodic if it is aperiodic, irreducible, and positive Harris recurrent (e.g. Jones,
2004; Meyn and Tweedie, 2009). Harris ergodicity guarantees the existence of a unique invariant probability
measure (e.g., Meyn and Tweedie, 2009). Given Harris ergodicity, stationarity only requires that the initial
distribution of y is the unique invariant probability measure. The Doeblin condition implies that the ¢-mixing
coefficients ¢(n) decay to zero exponentially fast (e.g. Bradley, 2005, Section 3.2 and Theorem 3.4), which
is useful for establishing the uniform law of large numbers (ULLN) (White and Domowitz, 1984) and the
central limit theorem (CLT) (e.g., Jones, 2004, Theorem 9).

In Assumption 3, we impose additional assumptions about the heteroskedasticity of the locally unstable
DGP under consideration, thereby extending the statistical setting of Andrews (1993), Sowell (1996) and Li
and Miiller (2009) to the semiparametric setting.



Assumption 3 (Tail Properties of Local Instability). As n — oo, it holds that under Qg

(i) n~' maxi<i<n [9(yi-1,y0)[* = 0p(1);
(ii) EQo [|g(yt_1,yt)]2+”] < o0, for some v > 0.

Condition (i) of Assumption 3 is needed for establishing the results on the law of large numbers (LLN)
of Lemma 4 of Li and Miiller (2009), which we use throughout our proofs. Condition (ii) of Assumption
3 implies n= 1Y), E?_OI Ng(ye—1,y0)*T] = 0p(1) and n =1 31 | |9(ye—1,¥¢) [>T = Op(1). Condition (ii) is
needed for establishing the local asymptotic normality (LAN) for time-inhomogeneous Markov processes
(see Proposition 3 in Appendix 2.1) and thus ensuring that the locally unstable DGP is contiguous to the
stable DGP (see Corollary 1 in Online Appendix 2.1). Condition (ii) is also a commonly adopted assumption
(e.g., Li and Miiller, 2009, Lemma 1). A direct implication of Assumption 3 is the LLN and CLT of partial

summations of score functions.

Assumption 4 (Global Identification Condition). There exists € > 0 such that 9(Qs ¢) is unique if it exists,
for all Qg5 € N(Qo) with the Hellinger distance H?(Qs 5, Qo) < €.

The following are regularity conditions on moments.

Assumption 5 (Tail Properties of Moments). We assume that the moment function m(-,0), defined on a

compact set O, satisfies the following conditions:
(i) B [Imy(60)|**] < oo for some v > 0, and E? [supyeq ||[Vome(0)|[2] < oo,
(i) n~? maxi<e<n [me(6o)| = o0p(1),

(i) 3= /B P] < oo, with 3, = B2 fmy(60)| 1] ~ E [m(80) ).

where || - ||s is the spectral norm of matrices, and the information set F; is the sigma-field generated by
{Yt—j };io

Conditions (i) and (ii) of Assumption 5 are needed to establish the functional central limit theorem
(invariance principle) of McLeish (1975b) and Phillips and Durlauf (1986). Condition (i) imposes restrictions
on the amount of heteroskedasticity allowed in the observed moment series and their gradients, which also
ensures the uniform square integrability of the moment function. This condition is commonly adopted in
the literature (e.g., Newey, 1985; Andrews, 1993; Sowell, 1996; Li and Miiller, 2009, for similar regularity
conditions). Condition (iii) states that the incremental information about the current moments between two
consecutive information sets eventually becomes negligible as the information sets recede in history from
the current observation. This condition ensures the martingale difference approximation for the temporal-
dependent moment function as in Hansen (1985), which plays a key role in analyzing the semiparametric
efficiency bound based on unconditional moment restrictions (see Proposition 5 in Online Appendix 2.2 and

Theorem 1 in Online Appendix 3).

Assumption 6 (Correct Baseline Structural Model). We assume that the true local DGP with a joint
distribution Py s o« e 15 such that g* € G5(Qo), where

95(Qo) = {9 € §(Q0) : AV (g1) = 0 and AV(gz) € lin(D11) } (1)
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Linear operator XV (-) is defined in (79).

Assumption 6 ensures that the baseline structural model is correctly specified because )\(1)( fat) =
XD (g2)b(t/n) € lin(Dyy) for every t € {1,--- ,n}. We can replace (1) with a seemingly weaker assumption
AD(g5), XD (g%) € lin(D11). However, this does not add generality because we can always replace 6y with a

sequence of new reference points (reparametrization) to ensure that (1) is satisfied.

2 Auxiliary Results

2.1 Auxiliary Results on Data-Generating Processes

In this section, we introduce auxiliary propositions that characterize the useful properties of the data-
generating processes under the regularity conditions. Proposition 1 derives the corresponding scores (or local
perturbations) of the univariate marginal distribution p, ; and the Markov transition kernel K, y when we
perturb the bivariate distribution from Qg to Qs s. Proposition 2 considers local data-generating processes
characterized by scores f,; and shows that the scores f,; satisfy the law of large numbers and the central
limit theorem. Proposition 2, together with Hellinger-differentiability, is needed to ensure the local asymptotic
normality of the local data-generating processes, as established in Proposition 3. The LAN property is
needed to establish the contiguity property of the locally unstable data-generating process Py, s o as a

local perturbation with respect to the reference process Py for asymptotic equivalence arguments. We denote

Z}Z{J by > e, and o lwn|+1 PY D4snp for notational simplicity.

Proposition 1 (Implied Scores of Marginal and Transition Distributions). Suppose Qs 5 € N(Qo) for some
Qo € H. Let p and K be the univariate marginal distribution and the Markov transition kernel of Qq,
respectively. Then, the marginal distribution psy and Markov transition kernel Ky ¢ of Qs ¢ satisfy the

Hellinger differentiability conditions:

AR5 (-y)
dKo(-|y)

d,us,f

; = 1+sf(y,") +sAk(y,s) Yy €Y, (2)
Ho

=1+sf+sA,(s) and

where A, (s) and Ak(y,s) converge to 0 in L*(Qq) for ally € Y as s — 0, and the marginal score and the

conditional score are

F3) =E? [fiy.¥y)ly] =E [f¥.y)ly] and f(y.¥)=fly.¥)— f(y). (3)

Proposition 2. Suppose Assumption 3 holds. Let fn,t = fot — E?fl [frt] and §(yi-1,yt) = 9(¥t—1,¥t) —
E?—Ol [9(yi—1,yt)]. Then it holds that under Qq,

nt Z f?zt 5 Y(r) and n! Z EtQ_l [~721,t] 2 Y (7)), where (4)

t<mn t<mn

Y(r) = E? [§7 Bxg] with B, =

™ Jorb(u)du ] ‘
Job(w)du [ b(u)?du



Further, the asymptotic normality result follows:

wlim n~1/2 Z frt = N(0,Y(n)). (6)

n—00
t<mn

Proposition 3 (LAN of Unstable Parametric Submodels). Suppose Assumption 3 holds. For any g € G(Qo)
and b € B, the corresponding locally unstable data-generating process with distribution Py mgb for y" =

{yo. -+, yn} satisfies
1

- ir(l) + 0p(1)7

APy /ngp 1
In ———~ e, n Zg yi1,v0)" b(t/n)

t<n

where g and Y (-) are defined in Proposition 2, and oy(1) denotes a sequence of random variables that converge

to zero in probability Py.

Corollary 1 (Contiguity). Suppose Assumption 3 holds. The locally unstable data-generating process with
distribution Py g o s contiguous to the stable data-generating process with distribution Po. More precisely,

X, Ly 0 under Py implies X, Ly 0 under Pl/\/ﬁ,g,b for all F*-measurable random variables X, : Y* — R.

2.2 Auxiliary Results on Moment Functions

In this section, we introduce the basic results (Proposition 4) extending the standard moment function
approximations (Hansen, 1982). Similar results on the (functional) central limit theorem with local instability
are developed and used in Andrews (1993), Sowell (1996), and Li and Miiller (2009).

Define A(g7) = [A(g1), M(g2)] for all g = [g1, g2]” with g € G(Qg). We denote

Mg | LT . M | LT
= ™ Odu | 2 Vo(g,b,m) = — 1 ) (7)
N /0 b(u)d 1 / b(u)du

™

ve(g,b,m) =

Proposition 4. Suppose Assumptions 1 — 5 hold. Then, under ISYN PR

1
—— 3= mu(by) L wr)
TN t<xn _ ﬁ Ve(gv bv 77)
1) wlim = on D([0,1]) for all
Kipa:s > mu(0o) L (W) - w(n) [uo<g,b,w> (0107

1—7T7’Lt>7rn \/1_71-

split point w € [0, 1], where W (7) is a dy,-dimensional Wiener process and D([0,1]) is the space of right

continuous functions on [0,1] endowed with the Skorohod Jy topology;

i L mg(Un,t A my
(“) (O t;ﬂ (9 ’ ) \/ﬁt;n (90) B [ l/e(g, b, 7'[')

m t;ﬂ my(On,t) \/(11_770” t;;n m¢(6o) vo(g, b, 7)

variables g1, g2 € T(Qo);

+ 0p(1), for all random

_ 1 ~ T 1NnT
S % mild.) [l — D(DTD)~'DT] > mi(bo)
(iii) \/? t<mn ) = F L= +op(1),

D(DTD)T' DT 5 my(6)

T < 08” m 0
L v(lfﬁ)nt;mmt( ») V( 1—7T nt;;n t(60) - N 1 Zan

where 0., is the efficient GMM estimator based on estimation sample y” and D is the Jacobian matriz




evaluated at 6y;

1 my j _ T 17T my
o | _FEE oA Gg S ]
D(ATD)1AT L 1 S ma(6p) PR

mt 90
\/ 1_7T nt>7rn ) \/ 1_7T nt;n ) N t<an

where Ge,n 18 the recursive GMM estimator based on estimation sample y”, D is the Jacobian matrixz
Dy 0

evaluated at 6y, and A is defined by A = A
22

] and Agg = [DQl(DﬁDH)_IDgl + I] -1 Dos.

We construct the martingale difference array h(y,y’, 6o) inspired by the martingale difference approximation
for the temporal-dependent moment function in Hansen (1985). The martingale difference approximation
plays a key role in analyzing the semiparametric efficiency bound of estimation based on moment restrictions.
To guarantee that h(y,y’,6p) is well defined in (8), we postulate the condition of asymptotic negligibility of
innovations (Assumption 5 (iii)), which has been used to establish Gordin’s CLT (Gordin, 1969).

Proposition 5. Suppose Assumptions 1 — 5 hold. Then h(-,00) is defined as follows:

hy,y',00) = m(y.y',00) — E2 [my(60)|yo = y] (8)

+ ) {EX® [mys1(60)|y1 = ¥'] = E® [myg1(60)lyo =y} -
t=1

Moreover, h(-,0p) satisfies E? [h(y,y’,00)|y] = 0 and E? [h(y,y’,00)h(y,y’,00)"] = I and

E [m(-,00) f] = E [h(-,00) f] for all f € L§(Qo). (9)

Therefore, the tangent set of Q at the distribution Qo can be represented by

= {f € L§(Qu) : A(f) € lin(D)}, (10)

where the operator \(f) = EQ0 [h(-,00) f] is a linear operator on L3(Qo), and the linear space lin(D) is spanned

by columns of D, the Jacobian matrix evaluated at 0g.

2.3 Auxiliary Results on GMM Estimators Based on the Estimation Sample

We now introduce the basic results that extend the standard GMM approximations (Hansen, 1982) in
Proposition 6. Then, we introduce a new set of GMM approximations in Proposition 7, which are novel

contributions of this paper.

Proposition 6. Suppose Assumptions 1 — 5 hold. Let 56,,,, and ém be the recursive GMM and the efficient
GMM estimators based on the estimation sample y" = {y1,--- ’yLWJ}’ respectively. Then, under Py /m o4,

LS m(6)

™ t<mn

(i) /an (9 - 90) — (ATD)1AT +0,(1),

Dy 0

0 A22

with A = and Asy = [Dar1 (DT, D11) "' DE, + 1) Dao;




(ii) \/ﬁ(ée,n—eo) — (DTD)~'DT [\/}?ntz m(80) | + 0p(1).

<mn

Proposition 7. Suppose Assumptions 1 — 6 hold and g € G5(Qo). Let HNM and ém be the recursive GMM
estimator and efficient GMM estimator based on the estimation sample y" = {y1,--- ’yLmJ}’ respectively.

Then, under Py, /m g5,

(i) \/rn = —1;'T] L1, DY) [1 S m 05D | + 0,(1);

n
™ t<mn ’

} 0 -] Apr 1
(i1) \/7mn .00 — (60 =1, Ty,1xq Lr thnmt(ﬁo) — Lpve(g,b,m) p + 0p(1).
Here the matrices Ly and L, are
Ly =1,'D]T,,1 and Lp=Tg,1;' D7, (11)

and D11 and D are the respective Jacobian matrices for the baseline and full model, 15 and 14 are the respective

information matrices for the baseline and full model, and the selection matrices I'y, 1 and I'g 1 are defined by

Lot = 1,04, x(d—dy,)] @ Do = |1, Ode,lx(de—de,l)]

Proposition 8. Suppose Assumptions 1 — 6 hold and g € G5(Qp). Let £L(0W,-) be the loss function for
assessing the goodness of fit of the baseline parameter 0 to the data as defined in Chen, Dou, and Kogan
(2021). Let éw and ée,n be the recursive GMM estimator and efficient GMM estimator based on the estimation
sample yI' = {y1, " ,¥|mn|}, respectively. Lety) ={y|xn|+1, "+ »¥n} be the holdout sample. Then, under

]Pl/ Vn,g,bs

. 'C(éf(;,ln) 7 y?) _ [ ((LB - 2LF)<e,n - 2LAV6)T IF (LBCe,n)
(Z) H(1). ,n - T + Op(l), and
L L(Qe,n ) yo ) ] L (LB<e,n - 2LFCo,n, - 2LAVO) IF (LBCC,TL)
(ZZ) [ L(é£}27y?) ] — i - (LFge,n +LAV6>TIF (LFCe,n+ LAI/E) +0 (1)
L L(eg(»yn)7y?) ] L (LF(Ce,n - 2<o,n) + LA(VG - 2”0)),1—‘ IF (LFCE,TL + LAVG) P ’

where ve(g,b,m) and vy(g,b,m) are defined in (7), and the random vectors ., and (,, are

Cen

jm S™ mi(6o) — velg,b,m) and ¢, = \/% S (o) — vo(g, b, ), (12)
t<mn

and the matrices Ly, Ly are defined in (11) and Ly = Ly — L. Further, using Proposition 4,

wlim [ e ] = ﬁw(w) : (13)
n—00 L (w(1) - w(n)

o,n

1—m



3 Semiparametric Minimax Efficiency Bounds

Given the LAN for the Markov processes with potential local instability, the local asymptotic minimax (LAM)
justification for the efficiency bounds can be established using the asymptotic equivalence argument.! For
the local data-generating process that is described by a locally unstable distribution Py, / o, the goal is to

estimate the average model parameter value:

1< .
Py mge) = > Qi p)s With fur = g1(yi-1,¥1) + ga(ye-1, y1)b(t/n). (14)
t=1

We formalize the precise meaning of semiparametric efficiency bounds based on local asymptotic minimax

risk, which is stated in the following theorem.

Theorem 1 (LAM Lower Bounds). Suppose assumptions 1 — 5 hold and 9(Py, /7 ) exists . Thus, for any

v e R¥ any arbitrary estimator sequence 0,, satisfies

y 2
lim liminf  sup /l Aot (0, — 9Py, =) )| APy oy > 01 (DT D) o
e [0 [ (5= ) 1

The method of first calculating the truncated mean squared error (MSE), then letting the ceiling [ increase
to infinity, is widely adopted in the literature (e.g., Bickel, 1981; Le Cam and Yang, 2000; Kitamura, Otsu,
and Evdokimov, 2013).

Theorem 2 (LAM Upper Bounds). Suppose assumptions 1 — 5 hold and 9(Py, /5 44) ewists. Then, for any

v € R% | there exists an estimator sequence 6, such that

lim liminf  sup /l A [\/HUT (én AUSYN b)ﬂ2 dPy ) /mgp < vT(DT D).
[=00 M0 ge5(Qo) beB v w

In our proof, we show that the efficient GMM estimator (Hansen, 1982) can achieve the semiparametric
efficiency bound. Importantly, the proof is similar to that of Theorem 1 in Li and Miiller (2009) through using
Le Cam’s theory of asymptotic equivalence. Therefore, Theorems 1 and 2 of the Online Appendix extend the
results on the minimax efficiency bounds for unconditional moment restrictions developed in Levit (1976),

Nevelson (1977), and Chamberlain (1987, Theorem 2) to general Markov processes with local instability.

Proof of Theorem 1 of the Online Appendix. The local asymptotic normality (LAN) (see Proposition
3), as well as the implied contiguity, and Le Cam’s first and third lemmas play crucial roles in the proof as in
the standard proof of semiparametric minimax lower bounds (e.g. van der Vaart, 1998, Theorem 8.11 and The-
orem 25.21). Our results are new in the sense that they apply to Markov processes with local instability,
which is more general than the i.i.d. case.

Following the literature (e.g. Bickel, Klaassen, Ritov, and Wellner, 1993; van der Vaart, 1998), we define
the functional ¥(Q) to be pathwise differentiable at Qg relative to the parametric submodels s — Q, ¢, if

Dou, Pollard, and Zhou (2010) also appeal to the asymptotic equivalence argument to establish the global minimax upper
bound for a non-parametric estimation problem.



there exists a measurable function 9: Y x Y — R% with 9 € L2(Qq) such that

tim ©[9(Qu )~ 9(Q)] = B [i], (15)
where ﬁ(yt,l,yt) = (DTD)'DTh(y;_1,y+,00) with h(yi_1,yt,60) defined in Proposition 5 (e.g., Greenwood
and Wefelmeyer, 1995). According to Proposition 5, h(-, ) satisfies the conditions: EQ [h(y,y’,6o)|y] =0
and EQo [h(y,y’,@o)h(y,y’,HO)T] =1

First, we only need to consider the case ¢1(y,y’) = vTﬁ(y,y’), 92(yt-1,y+) = 0, and b(u) = 0 for
establishing the lower bound. In such case, f(yi—1,y¢) = ¢1(yt—1,y:) for all 1 <t < n. Second, we further
focus on the estimators 6,, such that 4D (9n — 90) is uniformly tight under the distribution Py, similar to
van der Vaart (1998). The tightness assumption can be dropped by a compactification argument (e.g. van der
Vaart, 1988; van der Vaart and Wellner, 1996, Chapter 3.11). Moreover, without loss of generality, due to

Prohorov’s theorem, we can assume that

wlim <\/ﬁ (vTén — UTOO) , \/15 Zgl (Ytl,}’t)> = (Zo, Up), (16)
t=1

n—oo

where Uy ~ N(0,v? (DT D)~'v) (see Proposition 2). Using the contiguity between Py /mg,0 and Py, Le Cam’s
third lemma (e.g. van der Vaart, 1998, Theorem 6.6), and differentiability of ¥(Q,, ¢) with respect to s, we

know that under the sequence of distributions P, J/71,9,07

wlim \/ﬁ <UTén - UTﬂ(Pl/\/ﬁgp)) = Eg, (17)

n—oo
where, appealing to Theorem 8.3 of van der Vaart (1998), the limiting random variable Z4 has the following
representation with a certain measurable function 7 : R% — R:
= _ T
By =7(Xg) —v7 ¢ (18)
7(Xy) — EQo [vTﬁf}

7(Xg) — [vT(DTD) 1]

Here, the local estimation bias is € = (DT D)~'DT\(g1) = (DT D)~ 'v (similar to Corollary 1 or the proof of
Proposition 4 (ii)) and X, ~ N(&,(DTD)™1). Based on Theorem 8.6 of van der Vaart (1998) for estimating

normal means, it holds that for all measurable function 7,
EQ/vn.f [E;] > EQo [(UTXO)Q] - UT(DTD)_IU. (19)

The key idea of (16) — (18) is a change-of-measure argument, inspired by Le Cam’s theory of asymptotic
equivalence, whose stronger form has also been developed and used in the minimax inference of Dou, Pollard,
and Zhou (2010).

Consequently, it suffices to show that the left-hand side of (19) is a lower bound for the minimax risk R:

o 2
R = lim liminf / I A [\/ﬁvT (an —3(Py, ﬁ,gp))} AP, i oo (20)

l—o00 n—0oo



In fact, it holds that

lim inf/l A [\/ﬁvT <9n - 19(19’1/\/77,9,0)”2 APy /g0

n—o0

> liminf [ I A [\/ﬁvT (én - ﬁ(Pl/ﬁ,g,O)H : AP/ /ng,0

n—oo

= E%/vrao [INE2].
Thus, the minimax risk can be bounded from below by
R > lim E?/vis [IAE2] > lim EQuvas [1AE2].
=00 9 =0 g

According to the monotone convergence theorem, it follow that

R > EQvar [22].

Combining (19) and (22), the local asymptotic minimax lower bound result holds: R > v1(DT D)~ 1.

Proof of Theorem 2 of the Online Appendix. We start with

Vn [én - 79(“”1/%,;;,2;)} =/n <én - 90) —/n [?9(19’1/\/5,;;,17) - 90} '

According to Proposition 6 (ii), it follows that

N (én - 00) — (DTp)~'DT [\/1% > " me(0) | + op(1).
t=1

Consequently, similar to Corollary 1 or the proof of Proposition 4 (ii),

Vi [0 ) — 0] = ~(DT D) DT Man) + o).
Thus, appealing to Proposition 4 (i), we can show that

wlim /7 [én - 19(1@1/%7975)] = —(D"D)"'DTW (1),

n—oo

where W (-) is a d,,-dimensional Wiener process. Therefore, for any v € R%,

N 2
liminf [ I A [ﬁvT (en —9(Py, ﬁjg,b))] AP, gy = E[IAX?], with X ~ N(0,0" (DT D) ).

n—oQ

Let [ increase monotonically to infinity, and using the monotonic convergence theorem, we obtain

lim lim inf / LA VAT (0 = (P i )| TPy gy = B[X2) = o (DT D) L.

l—o0 n—oo
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(24)

(25)

(27)



4 Proofs of the Main Theorems, Propositions, and Corollaries

4.1 Proofs of the Main Theorems

Proof of Theorem 1 of Chen, Dou, and Kogan (2021). The test statistic based on the C statistic is
®n = 14C,>ei_o}» Where ¢1_g is the (1 — ) quantile of a chi-square distribution with dy, 2 — dg 2 degrees of
freedom. From Proposition 4, we know that Assumption 3.1 of Chen and Santos (2018) is satisfied. Thus,
by Lemma 3.2 of Chen and Santos (2018) and the results of Newey (1985), it follows that for any GMM

specification test ¢, with an asymptotic level a and an asymptotic local power function (¥ ¢, € ®,(Qo)),

inf  lim ppdP < inf  lim 5, dP i.e., C test is asymptotically optimal
gEAL(Qp) 00 o 1/\/ﬁ,g,0—g€AK(Qo)n_>oo Pndl/ /n,g,0 ( ymp y op )

(29)
2
gefllil(Qo)nl—{I;o 1/v/n,9,0 {‘ c1 } (30)
where A (Qo) = {g € 95(Qo) : AN (g1)| > K and XP(g1) L lin(Da2) }, and
G - 1 & R
G = (Ao — AaDT DHAS) ™ | =3 m®(0,)| (31)
Vi

see page 243 of Newey (1985) and Online Appendix 5.4. Here Ag = I — Dao(D1, Do) "1 DI,
Now, we obtain (e.g., Newey, 1985; Chen and Santos, 2018, or Proposition 4 of this onine appendix)

: ~ 2 2
whim |Gy |” = X4, ,—dy , (tg), (32)

where Xim s—dp.s (11g) is a noncentral chi-squared random variable with degrees of freedom d, 2 — dp 2 and the
noncentrality parameter g, = A2 (g1) (Ag — AnglIngglAg) A2 (g1)-
Using (29) and (30), we conclude that

2
> cl_a} = inf P {Xflm,dg (1g) > C1-a} - (33)

inf ,9) < inf  lim Py, . ’@n
(g, ®) 1/\f»9{ 9€AR(Qo)

9€AR(Qo)  9EAR(Qo) N0

Note that pg > 0 for all g € Ak(Qo), since AyDoiI 1D2T1A2 does not have unit eigenvalues. The local

asymptotic maximin power is then bounded from above by

inf  q(g,9) < inf Ma,,-dp, (\/Mg7 w/Cl—a) = Ma,, y-dq, ( inf )‘/,ug, ,/Cl_a> , (34)
2 2

geAR(QO) o QGAK(QO) QE-AK(QO

where the equality above is due to the continuity and monotonicity of the Marcum Q-function M, (z1,x2).

Following the definition of ug and the fact that A2 = A, as a projection matrix onto the linear space

11



spanned by the column vectors of Dso, it holds that
inf = inf AP (g1)TAg (I — AaDy T DI Ag) ApA@
ot Jpe = fnf (91)" Ao ( 2 D1 X Dy Ag) Ag AP (g1)

= filn(fQ : XD (g)T MA@ (g1)] x the smallest eigenvalue of I — Ay Doy T DL Ay
g€ K 0

= k2 x the smallest eigenvalue of I — Ao DoiI 1D2TlA2,

where the last equality is due to the definition of the set A, (Qo), in which |A?)(g;)| > & and A (g1) L lin(Das).
We shall now show that 1/(1 + o(fp)) is an eigenvalue of I — Ay Do Iz DI, Ay, and thus infycq, Qo) Vg <

VEZJ(+ 0(60)). Tn fact, 1 — 1/(1 + o(6g)) is an eigenvalue of Iy /% (Ip — Ip) Iy /% = Ip /(DL Ay Doy )T /2,
and thus an eigenvalue of Ao DoI; 1DQTIAQ. Therefore, 1/(1 + o(6p)) is an eigenvalue of I — Ao Do Iy 1D2T1A2.

Due to the monotonicity of the generalized Marcum Q-function, the local asymptotic maximin power is

upper bounded by

/{2
inf P) < Ma, .- M aa . 35
m Q(g 90) — d ,22 d9,2 < 1"‘@(90) C1 ) ( )

gEAK (QO)

Proof of Theorem 2 of Chen, Dou, and Kogan (2021). According to Proposition 8 (ii), it follows
that

B |yl (£0uui?) — £(0052)) | = B (W) LEL LW () (36)

n—00

+ [velg, b, 1) — vol(g, b, ™) LATe Lave(g, b, ),

where wlim,,_,~ is the weak convergence limit and W (-) is a d,,-dimensional Wiener process, and Ly =
I;'DET,, Le =TI, DT, and Ly = Ly — L. The first term above is

B [W(m) LI LW (r)] = 7B [tr (Ié/ 2 LeW (m)W (r)TLI1Y 2)} (37)
— tr (1;/ Lo LTTY 2) : (38)

According to the definition of Ly in (11),
Le Ll =Ty I;'Tg, =11 (39)

Combining (38) and (39) yields
7B [W(m)T LT Le W (7)] = dp,1. (40)

Because A(g1) € lin(D), it holds that LxA(¢g1) = 0, and thus

1 1 1
\/7?<x/7?+\/ﬁ

(Ve — VO]T I&IFLN/6 =

> (/0” b(u)du>2 Ag2)" LATr LaX(g2). (41)



The left-hand side of (41) is bounded from above by

1 1 1 a 2
— | =+ —= b(u)du ) Mgo)T LATLaN 42
ﬁ<ﬁ f77)(/0 (u) u) (92)" LA, LaA(2) (42)
< <1 + 17T) IA(g2)|? x the largest eigenvalue of LA LA. (43)
— T

The largest eigenvalue of LZIFLA is that of II = 111?/ QLALzlé/ 2, which is the dark matter measure o(fp).
Proof of Theorem 3 of Chen, Dou, and Kogan (2021). According to Proposition 8 (i), it follows that

E [Wlim; (L(ée,,,; v = L0, ; y?))} = 'E [W(r)" L{T.LeW (7)), (44)

n—o0

where wlim,,_,~ is the weak convergence limit and W (-) is a d,,,-dimensional Wiener process. Further,
7B [W(m) LT LW (r)] = tr(Ty *Ly LTTY?). (45)

Because Ly LL = I5' DT [DH, 0dm,1X(d9—de,1)] I(f)llﬂ@T’1 = F971151F£1 = I}, the equality (45) can further be
rewritten as
-1 TrT _
T E [W(m) LiLe Ly W (m)| = dg 1. (46)
4.2 Proofs of Propositions

Proof of Proposition 1 of Chen, Dou, and Kogan (2021). Following the standard argument such as
in the proof of Theorem 7.2 of van der Vaart (1998), we can show that EQ° [f] = 0. Thus,

B0 A =5 |G 1) = [aqu, - [a@y o (47)

According to Proposition 1, the conditional expectations denoted by f(y:—1) = EQ [f(y:_1,y¢)|y:—1] and
fly)) = EQo [f(yt—1,y¢)|y:] are the scores for the marginal distributions of y;—1 and yy, respectively. Because

the marginal distributions are constant over time,
E® [f(y,y)ly] =E¥® [f(y',¥)ly]- (48)
Proof of Proposition 2 of Chen, Dou, and Kogan (2021). According to Definition 4, it follows that
B4/ Ve [m(0p)] = /mt(eo) [1+ faz/vn+ Ay] dQo. (49)

Because EQ [my(f)] = 0, the equality (49) above leads to

A(g1) + A(g2)b(t/n
NG

EQ1/\/Efn,t [mt(ao)] =

) +/mt(90)Anon- (50)
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Based on Assumption 5 and Definition 4, the Cauchy-Schwarz inequality leads to

| /mt(GO)AndQO| < B [Imy(00)]] 2 EQ [|A.)7] =0 (%) : (51)

Proof of Proposition 1 of the Online Appendix. By the definition of a marginal distribution,

dnns) = [ d0usy) = [ (14 sy) + sa(e)] 4y )
y y

. [1 o [ ey R+ [ AQ<s>sz,f<y'|y>] duly).
y'ey y'ey
By the definition of f(y), we know that
dps,(y) = [1+ sf(y) + sAu(s)] duly), (52)

where A, (s) = E?[Aq(s)|y] and it converges to zero in quadratic mean under p as s — 0. Further, by
definition, it holds that

dQs s (y,y)  1+sf(y,y') +58q(s) dQ(y,y’)

dEs s (y'ly) = = =
S1) dpes, f(y L+sf(y) +sAu(s)  duly
1+ sf(y.5) +58q(s) .
= < dK .
1+ sf(y) + sAu(s) vly)
Rearranging and combining terms leads to
dKs 1 (y'ly) = {1+ s [f(y,¥) = F(¥)] + sAk(y,s)} AK(Y'ly), (53)

where Ak (y, s) converges to zero in quadratic mean under K(y’ly) as s — 0 for all y € Y. By definition of
f(y, y'), it follows that EQ {f(y, y’)b’} = 0. Thus, similar to the proof of Proposition 1, we can show that

EQ[Ak(y,s)ly] = 0.
Proof of Proposition 2 of the Online Appendix. According to Assumption 3 (i),

-1 2 P
_ . 4
n féltag)% 19(yi-1,¥¢)]” = 0 (54)

According to simple algebra, we can show that

S 2 =0t Y ey + 201 (Yoo, ¥Ry 1 yOb(t/n) + Galyeor, yo)?b(t/n)?]) . (55)

t<mn t<mn

Therefore, by Lemma 4 of Li and Miiller (2009), it follows that

WS 72 BB (g w25 ) [ b+ B [32) [ ofua
0 0

t<mn
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and hence
n 'Y f2, = Y(r) =E¥ [§7Brg). (56)

t<mn

Using the same argument, we can show that

nUSER 2] B r(m) =B (37 B.g) (57)

t<mn

The results above and Assumption 3 (i) together lead to a Lindeberg-type condition. Thus, according to the
mixing condition implied by the Doeblin condition for the Markov process, we can obtain the following CLT

result for martingale difference sequences:

1 _
wlim — nt = N(0,T(m)).
wiim \/ﬁt%;nf &= N(0,Y(m)) (58)

Proof of Proposition 3 of the Online Appendix. The proof is similar to that of Theorem 7.2 in van der
Vaart (1998), except that we allow for non-IID time series and local instability. For brevity, we denote
Knt =Ky /ngn.- The random variable W, ; = dd[;?[)’t — 1 is well defined with probability one. According to

(53), it follows that

Z Wn,t = \/15 Z fn,t + \}ﬁ Z An,t- (59)

t<n t<n t<n

where fn,t = fot — E?f’l [fn,t]. Because Eg’l [An,t:| =0 and EQo [A%J] —0asn—ooforalt=1,---,n,it
follows that

1« x 1 «— & 1 )
EQ WE "Ans| =0 and var® ﬁE Bue| <> B [Am 0. (60)
t<n

t<n t<n

Thus, ﬁ Y i<n An,t = 0p(1) under Qp. And hence, the following approximation holds:
ZWm:ianﬁo(l). (61)
) \/ﬁ ) p
t<n t<n

By Taylor expansion, we have
1
In(l4+2z)=2z— 5:1:2 + 2*R(x), (62)

where R(x) is a continuous function such that R(x) — 0 as x — 0. Therefore, it follows that

dKn,t 1 2 2
ln;l:[ dK = Z;L ln(l + Wn,t) = Z |:Wn,t - iwn,t + Wn,tR(Wn,t) (63)

t<n

= Wi 5 W+ S W), (64)

t<n t<n t<n
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Combining (61) and (64) yields

dK,; 1 |
ln H ¢ = % Z fn’t - 5 Z W"’vat + Z W,,%JR(Wn,t) + Op(l)- (65)
t<n

dK,
t<n t<n t<n

We shall first show that

W= SRt op(). (66)

t<n t<n

In fact, by the triangular inequality and the Cauchy-Schwarz inequality, it follows that

1 = 1 - 2 - 1 -
; it n tSZ; t tgz;l \/ﬁ it \/ﬁ it \/ﬁ R ( )
1/2 1/2
1 <9 1 ~ ~ 2
E ;}/ An,t ﬁ ; <2f’n,t + An,t) . (68)

Based on (53), it is straightforward to show that = ZKn 2 = 0p(1). Further, according to Assumption
3 (ii), it follows that 1 Zt<n <2fn t+ A, t) <5 ZKH 4f,2lt + 2Ant = Op(1). Substituting them into (68)
leads to ), W2, — = Ztgn ¢ = 0p(1). Therefore, the equality (65) can be rewritten as

In H dK” "= \/15 Z Fot — % Z fﬁ,t + Z Wvg,tR(Wn,t) +0p(1) (69)

t<n t<n t<n t<n

— = e ;/ u)du -+ 3" W2 R(Was) + 0y(1). (70)

t<n

Finally, we show that >, W 2 R(W,+) = 0,(1). Because we have shown that > i<n W2, = 0py(1), and

> W2 IR(Way)| < rgax\R W) > W2, (71)

t<n t<n

it suffices to show that maxj<i<, |[R(Wp )| = 0p(1).

For any € > 0, there exists ep > 0 such that

Po (ax [ROV.0| > €) < R0 (ROVa)| > 0 < 3P0 (W2, > ca) (72)

t<n t<n
<> o (f2, > nen/4) + > Po (A2, > nep/4). (73)
t<n t<n

By Markov’s inequality, we can further show that

- ~ 4 ~
< R ]+ e )
IED0 <1I£lta<xn |R( nt)| > 6> neg ;LE n,tl{fn,t > TLER/4} + ner ;E Anvt (74)
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According to Assumption 3 (ii), the squared conditional scores f;%t are uniformly integrable, and thus

%ZEQO [ﬁ%’tl{fit > neR/4}} — 0 asn — oo. (75)

t<n

Further, according to (53), it holds that

1 ~
— ZEQD [A%,t] — 0 as n — oc. (76)

t<n

Therefore, Py (maxi<i<p [R(Wyt)| > €) = 0 as n — oo.

Proof of Proposition 4 of the Online Appendix. We first prove part (i). According to Proposition 2,

1
if defining m(6p) = m(6y) — ﬁ)\(gT) fort =1,--- ,n, we have

b(t/n)

EQl/ﬁ,fn,t [Tht(eo)] =0 (\/15> , with fmt = g(yt_l,yt)T [ b(tl/n) ] . (77)

Further, for m;(6y) which satisfies Assumption 5, we know that the corresponding m(6y) also satisfies
Assumption 5. Therefore, according to the functional central limit theorem (invariance principle) of McLeish
(1975a) and Phillips and Durlauf (1986), we know that

1 ~
wlim —— t; m(6p) = W(m), forall w € [0,1]. (78)

Thus,

1 1 Ag") 1
T X ) = o 3 o)+ 3 A !b<t/n>]’ )

t<mn t<mn t<mn

and hence,

Ve ViV [ gb<u>du]' (80)

Similarly, we can show that

W) -W(r) = g") L—m
yzvggo},/ 1—m)n tgr:nmt (B0) = V1-—m +\/1f71' [f:b(u)du] (81)

Now, we prove part (ii). Because g1, g2 € T(Qo), by the definition of 6,,;, we know that

0= / 1 (0s)AQ ) i g, 1, for all £, (82)

Using the Taylor expansion, we obtain
0= / [m0(80) + Voma(6.0) On = 00) | [1+ /i + Any/v/0] dQu, for all t,m, (83)
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where émt lies between 6y and 6,,+ for all ¢ and n. Suppose 6, ; converges 0y at the rate of \/n (as we verify

later). According to Assumption 5, it follows that

1
+ D(0p —6p) +0 <

\/ﬁ> , for all t,n. (84)

1
b(t/n)

Therefore, the parameter sequence 6, ; can be specified as

1

o ATy-1nT LT
Ont — 0o = (D"D)~"D Ag )[b(t/n)

NG

1
+o (ﬁ) , for all ¢, n. (85)

Hence, using the Taylor expansion again leads to

g™ 1
my(6n me—— Vomi(0ne)(DT D) DT =2~ +o(1). (86
R A R
Due to Assumption 5, according to Lemma 4 of Li and Miiller (2009), it follows that
Z 0 Z mi(6o) — D(DT D)~ 1DT)\( D) [ . +0(1). (87)
o t<mn t<7rn fO
Because g1, 92 € T(Qo), it holds that A(g1), A(g2) € lin(D), and thus
Tan Z )= 7= Z my(0o) — M) [ " +o(1) (88)
t<mn o t<mn ﬁ f(;T b(u)du
Similarly, we can show that
1 AgTh) 1—m
my (O, mye(0g) — +o(l). 89
WZ o) = = 2, AR | b | O Y

Finally, we prove parts (iii) and (iv). Using the Taylor expansion, we obtain the following approximation:

= Y ) = o= Ym0+ — Y Vomu(0.,) [Van(h., —00)] £, (90)

where 6, lies between 0,,, and 6y. According to Proposition 6 (ii),

\/ﬁ > mi(ben) W > mu(6o) — D(D"D)' DT W > mu(bo) | +op (1) (91)

t<mn t<mn t<mn

Further rearranging the terms on the right-hand side of (91) leads to

0..) = [I - D(D"D) 'DT] L Z m¢(00) | + op (1). (92)

1
Fmm =
mn t<mn mn t<mn
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Similarly,

1

T 2 milf) = _ 3" mu(60) - D(DD) DT LS )| +0p (1) (93)

Z ? / o /TN
t>mn 1 7T t>7rn t<mn

Part (iv) can be proved using analogous steps, which we do not repeat.

Proof of Proposition 5 of the Online Appendix. Similar to the results in Severini and Tripathi (2013)
and Chen and Santos (2018), the tangent set T(Qg) can be characterized as follows:

T(Qo) = {f € L§(Qo) : E¥ [m(-,60)f] € lin(D)}, (94)
where lin(D) is the linear space spanned by the column vectors of D. Therefore, it suffices to show that
E [m(-, 09) f] = EX [h(-,0p) f] for all f € L§(Qo). (95)

Under the assumption, the following identity holds:
E® [h(y,y,00)f(y,y")] = E® [m(y,y’,00) f ZAk’ (96)

where
Ay, = EX {E® [m(yi_1,¥k,00)lyo = y] f(y,¥)} = EX{EP® [m(yr,ye+1,00)ly1 =¥'] f(y,¥)}.  (97)
Further, for each k£ > 1, the Markov property implies that
EY [m(yr, yit1,00)|y1 = ¥'] f(y,¥') = E¥ [m(yr—1,yx,00)lyo = ¥'] f(y.¥')- (98)
Thus, the equation (97) can be rewritten as
A = E¥ {EY [m(yi—1,yx.0)lyo = y] f(y,¥")} —E¥ {E® [m(yi—1.yk 60)lyo = ¥'] f(v,¥)}.  (99)

It suffices to show that Ax = 0 for all k. In fact, the following equalities hold:

E® {EY [m(yi_1, ¥k, 00)lyo = ¥'] f(y.¥)}
= EY {EY [m(ys—1,¥ 00)lyo = ¥'] E2 [f(y,¥)|y’]} (Law of Iterated Projections)

= EY {EY [m(y4_1,¥ 00)lyo = ¥'] E¥ [f(y',¥)ly’]} (Proposition 1)
— EQ {EQO [m(ye—1,¥%,60)lyo =y'] f(¥',y)} (Law of Iterated Projections)

Therefore, Ay, = 0 for all £ > 1, and hence from (96), it follows that

E [h(y,y’,00)f(y,¥")] = B [m(y.y',00) f(v.¥")] - (100)
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According to Greenwood and Wefelmeyer (1995), we know that

E® [h(yo,y1,00)h(y0,¥1,00)" ] Z E [m(yo,y1,00)m(y-,yr+160)"] = I. (101)

T=—0C

By Markov’s property and the law of iterated projections, for all k& > 0,

E® {E m(yk, yis1,00)|y1] [yo} = E? [m(ye, Yit1,00)|yo) - (102)

Therefore, EQ [h(y,y’, 0)|y] = 0.

Proof of Proposition 6 of the Online Appendix. The proof follows the standard GMM approximations
in Hansen (1982), Hansen (2007), and Hansen (2012).

Proof of Proposition 7 of the Online Appendix. The cases of ¥s with s € {e,0} follow the same
derivations, and so we only show the case s = e. We first prove part (i). Given the parameter value 9&,13: the
constrained efficient GMM estimator (9(52,1#4952))71 for the full model satisfies the first-order condition
VIO, 0 (00)):y2) = T§1 A, with Lo = [1,04, ;x4 ] (103)
and A, isadgx1 vector of Lagrangian multipliers for the constraints I'g 10 = 9&1)
GMM estimator (A(! ol RIRCIS )) The Taylor expansion of V.J(6()

en ?

in search of the constrained
Yo (9&));3’2) around 6y leads to

F9T71Ae,n =2D7T \/7 Z my(0p) | + 2L/ 70 [ % + op(1). (104)

t<7TTL ge,n) - 9(() )

1
VTN

-1
We first multiply both sides of (104) by F9711§1, and then by (Fg,llglfgl) . The optimal Lagrangian

multipliers can be represented as

\/ﬁA (Pg 1IQ F@ 1) P9 1I 1DT \/ﬁ Z mt 9() (105)

t<mn

_ —1
2 (T L, 'T5,) " Van(6) — 65) + o, (1).

Substituting (104) and (105) into (103) yields

1 _
WVJ(GS?,wC(GS?);yZ) =20y, (Toa15'T ) ! ToqI' DT | — Z mi (o) (106)

420 (T35 )~ /an(0Y) — 05Y) + op(1).
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According to Proposition 1, we substitute (84) into (106) and obtain

1
——vJOW o (0D y) = oTT 1.y I DT (60) 107
\/ﬁ ( C,l’l7/(/) ( c,n)’yc) 971 F 971 Q rt;:nmt 0 ( )

™

~or LI, 'Y, [\/%A“)(gl) A0 [

0

b(u)du/\/ﬂ + 0p(1).

Based on (7), we have

1 N _ _
ﬁw<0£27¢e<9£2>;ye>=2r£11F Tp 15! D" Fzm (00) | = T3 DYyl 1v(g,b,7) | + 0p(1).

(108)

Given the baseline efficient GMM estimator éﬁln) based on the estimation sample, the constrained GMM
estimator (égil),zﬂe(égn)))T for the full model satisfies the first-order condition

v.J (9(1) V. (9(1 )i y") = FT AL

e,n?

with I'g 1 = [I7Od611><d9’2]7 (109)

and A(l) is a dy 1 x 1 vector of Lagrangian multipliers for the constraints Fg 10 = 0( ) in search of the constrained
GMM estimator (0(1) (R ( DY)T. The Taylor expansion of V.J(A ) PRIRCIS o ): y") around (9£,1n), we(eg}n)))T,
together with (109), leads to

90) 9()

(6D — oy | T 110)

T=THAL = VIR v 0):y?) + 2Ly [

-1
We first multiply both sides of (110) by ngllgl, and then by (FQJIQFHTl) . The optimal Lagrangian

multipliers can be represented as

1
—— A =1, 15!
ch Y

Further substituting (106) into equation (111) above yields

T(O8), e (68)); ) + 20 /T (65 — 651)) + 0,(1). (111)

ngl“) 21Ty 115 DT W S meo) | + 20ev/mn(dY) — 657) + 0,(1). (112)
t<mn

Based on Proposition 6 of the Online Appendix, we obtain

- _ 1
V(@Y — iy = —15' D7, o= ST mM650) | + op(1). (113)
t<mn
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Substituting (113) into (112) gives the following asymptotic representation of 1 A(}):

/ﬂ.n e, n
1 — 1)
A = 21,1y, 1, DT >~ mi(fo) | —2LI; "Dy | = VO | +op(1).  (114)
™o B \/7t<7rn t ' t<7rn ’

We substitute (106) and (114) into (110) and multiply the both sides by I;'/2. The estimator can be
represented by

g _ p(0) .
VTn [ 1) - = _IglrgIIFIng{l Z ( ) Vél) (97 bv 77) + Op(l) (115)
e (00)) — . (01)) i<
_ _Iglr;flIFIngﬂ Z mD (05D |+ 0p(1).
t<7rn

Now we prove part (ii). The estimators v, (6} ()Y and ég%‘) =1, (éﬁ)) are the constrained efficient GMM
estimators for the nuisance parameter #) when controlling for g 10 = Gg}n) and I'g 10 = ée(}n), respectively. Due
to the first order condition V.J (9&1), Ve (91(11)); y") = 0, the Taylor expansion of V.J (é,(f), (I (éﬁf)); y!) around
(68), 4. (B0)))" leads to

1) M. o1 — o) — o)
0 = VJ(He,n Y we(ge,n )? ye ) + 2IQ ™ w (0(1)) we(eg’ln)) + Op(l)' (]‘16)

Substituting (106) into (116) and multiplying the both sides by 151/2, we have

t<mn

) _ )
en en _ —1pT —1 T
D) — o) ] - LTI, {1“97119 D

\/7 Z my(0o) ] - IB1D1T1Fm71Ve} + 0p(1).
(117)

Proof of Proposition 8 of the Online Appendix. We first provide an approximation for L(ég}ln);y”).

e

According to the second-order Taylor expansion around (95}3, we(eg}g)), it follows that

(0. N S 6t — 6t 18
( en7ye) I:\/ﬁ ( e,n?dje( e,n)’ye ):| ™ we(égyln))_lbe(gg}n)) ( )
T -
oL _ p1) gL _ p(1)
+ n N e,n I n _ e,n e, n + 0 1
v [wews}s) Ce®y | YT @) - ey | W
Thus, following (108) and (115),

L(ON;y") = =2 [LpCep + Lave]” LeLpCop + ¢ LI Te LG + 0p(1). (119)

We now provide an approximation for L(é(l)'

e,n ?

y"). According to the second-order Taylor expansion around
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(08D, 45,(61))), it follows that

o,n’

£(@D L 5.} = 05) 120
( n>yo) |:\/ﬁ ( onﬂﬁo( n)?yO):| ~£n)) 1/1((9(1)) ( )
— 60) —60) 99,? - 90 ;
v [ $o(0D) — ,(01) wiew | o
Thus, similar to the derivation of (119), we can show that
(eggln)ﬂ yo ) 2 I:LFCO,H + LAVO]T IFLBCe,n + CZnLgIFLBCe,n + Op(l)- (121)

We now provide an approximation for L(ég’ln);yg). According to the second-order Taylor expansion around
(0%), 4, (6C1))), it follows that

LO0);yr) = L 900 .00 37 ' Jan 60) —60) (12
| ; ™ L ;
e,n ? Ye \/ﬁ e,n’ ¥Ye\Yen /9 ye we(eg,ln)) —_ we(ggln))
ooy ] 6 _ (v
VI @) - o) | YT v - oy | T
Thus, similar to the derivation of (119), we can show that
£08)52) = = [LeCon + Lavel e [LrCon + Lave] + 0p(1)- (123)

We now provide an approximation for L(ég}n);y?). According to the second-order Taylor expansion around
(01), 4, (6£1)), it follows that

L0 yr) = (124)

Thus, similar to the derivation of (119), we can show that
L(00)syY) = =2[LeCon + Lavo]" Ty [LeCon + Lave] + [LeCon + Lavel e [LeCon + Lave] +0p(1). (125)

4.3 Proofs of Corollaries

Proof of Corollary 1 of Chen, Dou, and Kogan (2021). We can derive the result following the same
derivations for (85) under the baseline GMM model Q).

Proof of Corollary 1 of the Online Appendix. The proof is similar to that of Lemma 1 of Li and
Miiller (2009), which is based on Le Cam’s first lemma (e.g., van der Vaart, 1998, Page 88).
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5 Miscellaneous Proofs and Derivations

5.1 Asymptotic Covariance of Moments

The derivations here are for the simulated studies in the example of time-varying disaster risk models. Let

gt = Tt [Te12 — priy1 — (1 — p)p]. Then, it is obvious that E; [¢;] = 0 and E [gy1£g:] =0 when |k| > 2.

Expectation E [g;+1¢¢] can be computed as follows:

Elgi119:) = —pE [pr—1pepe+1(1 — pry1)]
= [p(1 = p)*p* — p(1 = p)P] E [pr—1p/]
+[20°(1 = p)P — p* + poy) E [pe-1pi] + p°E [pe—19}] -

Expectations E [p;_1ps], E [pt_lpﬂ, and E [pt_lpg’] are computed as follows:

E[pi—1pt] = E[(ppe—1 + (1 — p)D)pt—1]
= pE [pi_1] + (1 = p)PE [pe—1]
E [pi-1p7] = E [(ppe-1 + (1 = p)P)*pe—1] + 0,E [p_|]
= p°E [p{_1] + 2p(1 = p)PE [p{_1] + (1 — p)*DE [pr—1]
E [pe-1pf] = E [(ppe—1 + (1 = p)P)*pr—1] + 303E [pf 1 (ppe1 + (1 - p)p)]
= p°E [p{1] +3[p*(1 = p)B+ poy] E [pi_1] + 3 [p(1 = p)*P° + (1 = p)poy] E [p}_4]
+ (1= p)°P°E[pi—1].

Expectations E [pi—1], E [p?_], E [p_,], and E [p}_] are computed as follows:

Elpi-1]=p

27
2 1 _ -2 9pP
E [pt—l] =p~ + l—p

pp

E [pj1] =7° + 377

42
O'pp O'pp

B [pi-i] :p4+6p21—p2 BN

Moreover, expectation E [g.g;] can be computed as follows:

E [gtgt] =E|n (Ut+2 - PUtH)ﬂ

= E[zpii1(1 = pry1)] + p°E [zpi(1 — pr)]
= (L= p)p[L1 = (1= p)P|E [pe—1] — 20°E [wep}] + [p+ p* — 2p(1 — p)Pp — o2]E [wepy] -
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Expectations E [z;p;] and E [a;p}] are

E [zpe] = (1 — p)PE [pe—1] + pE [p} 4]

E [z:p7] = (1 — p)*P°E [pe—1] + 2p(1 — p)BE [p7_1] + p°E [p}_1] + o2E [p}_1] -

Therefore, the asymptotic covariance is

. 1 ¢
ngrfoo var <\/ﬁ ; gt> = E[gt9t) + 2E [g1—19:] -

5.2 Moment Rotations

L
Construct a lower block triangular matrix L = 1 such that
Loy Lo
Q'="LTL

It is most straightforward to analyze a rotated system of moment restrictions. Let

) Lm0 ] [ MASICIO)
me(0) = Lmy(0) = =
(6) = Limy(6) [ o=

LoymM(0W) + Lyym? ()

Further, we let

N Ly1D 0 D 0
B ID= 11D11 _| Pu ‘
Lo1 D11 + Lo Doy LagDas Ds1 Do

For notational simplicity, we drop the ~ but use the transformed system.

5.3 Hellinger-Differentiability Condition

The condition (72) is equivalent to the condition

dQse\?* 1
<dQ) = 1+§Sg+38(5),

where £(s) converges to zero in L?(Q) as s — 0. Equation (132) is equivalent to

4Q, .\ 2 2
i |3 ((%2) 1) 30| a0y [rraan

5.4 The Expression of A

Let D = [Dy, Ds] where DI = D%, DI] and DI = [0, D1,]. Thus, we have

I 0
0 As

)

Py=1-D,(DID,)" DI = [
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(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)



where the matrix inversion is the generalized inversion.

Using the rules for the inversion of partitioned matrices, the matrix (DTD) ! has the following expression:

(DT PDy) " — (DT PDy) " DT Dy (DI D)™
— (D¥Dy) ' DIDy (DT PDy) ™ (DED,) ™' + (DEDy) ™ DED, (DY PyDy) ' DY Dy (DE D)™
We can then show that

D(D"D)"' DT = Dy (DY PDy) ™

-1
DI — Dy (D{P,Dy)  Di (I —P,)
— (I —P) Dy (DTP,Dy) " DT
-1
+(I—Py)+ (I —Ms)Dy (DI PDy) DY (I - Py)
=I—Py+ P,Dy (DT PDy) " DY P, (135)
We conclude that
A=T1-D(D™D)"' DT = P,— P,D, (DT P,Dy) ' DI P,. (136)

Recall that I = DT P, Dy (from Equation (27)). The matrix A can be rewritten as

A | I~ Duli'Df DI D As (137)
AoDI-IDT Ay — Ao Do 17 DI A,

6 Disaster Risk Model: Solutions and Moments

6.1 Model Solution

We first show how to derive the Euler equation, and then how to obtain the dark matter measure o(p,§).
The total return of market equity from ¢ to t + 1 is e":t+1 which is unknown at ¢, and the total return
of the risk-free bond from ¢ to ¢ 4+ 1 is €"/t, which is known at ¢. Thus, the excess log return of equity
is 1441 = TMme4+1 — 7f¢- The inter-temporal marginal rate of substitution is M1 = de™79*+1. The Euler

equations for the market equity return and the risk-free rate are
1 =E; [My41e™t+ ] and e "t =E; [My441], respectively. (138)
Thus, we obtain the following Euler equation for the excess log return:
E; My 1] = Ey My q1€"+1]. (139)

The left-hand side of (139) is equal to

et

E¢ Mt t11] = Eq [e‘”gtﬂ} =(1 _p)e—w+§7%2 4t
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and the right-hand side of (139) is equal to

1262 2 @é*(’Y*b)E
By [Myyy1e™+] = B [6—79t+1+m+1] =(1- p)e—’yu+n+5(7 &2+712—2vpoT) .

E+b—v
Thus, the Euler equation (139) can be rewritten as
2
( ) 'Yl/'+1'Y2O'2 |: 77+T2 YPOT :| A(&-) h A(&.) 5 eY €%+(’y_b)y ( 4 )
1—pleF2 el 2T -1l =»p , Where = - 140
§—v &+b—y
Using the Taylor expansion, we obtain the approximation
72 7'2
e TIP0T 1 + 5 PO (141)
which, combined with (140), gives the following approximated Euler equation:
7(p.§) =(L—pn—pl(v+1/§), where (142)
2
2 2,2 v S+HO—0v
T _2%0” p . e €2
n=nypor — — + e T2 A(§)——, with A(§) =& — 143
2 1= = e Ty (149)

The term 7 in (142) is the log equity premium in the normal regime. The first two terms of 7 in (143) describe
the market risk premia due to Gaussian consumption shocks; the third term is the disaster risk premium,
which explodes as & approaches v from above. In other words, there is an upper bound on the average
disaster size for the equity premium to remain finite, which also limits how heavy the tail of the disaster size

distribution can be.

6.2 Dark Matter Measure

Now, we show how to derive the dark matter measure. The Jacobian matrix of the moment restrictions and

the asymptotic variance-covariance matrix are

o -1 0 Lo — p(1-p) 0 p(l—=p) O velv. (144
11 = 0 _% and {211 = 0 (l—p)02+% ~ 0 é% , respectively. (144)

The approximation above is simply due to the tiny magnitude of o2 ~ 0. The information matrix for the

baseline model is )

T -1 p(1—p) 0
Cooe

Next, the Jacobian matrix of moments restrictions and the asymptotic variance-covariance matrix for the
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full model are

1 0
D= 0 &
= 3 , (146)
on(p,§) on(p,§) pb
—(1 P) 77@2; (1 —p) ?7312 - %
and
p(1—p) 0 0
Q= 0 (1-p)o”+ % (1—p)poT +bp/&* | | (147)
0 (1—=p)por +bp/&* (1 —p)r* + pb®/&?
where -
_ 72 _72202 e 12 ¢ 7= P
n(p§) =ypor — o +1n |1+ 5(5_7—6 £+b_7>1_p]. (148)

We can also derive the closed-form solution for the dark matter measure if we use the approximate Euler
equation in (143). In this case, using the notation introduced in (143), we can express the information matrix
for (p, &) under the full GMM model as

1 A(§>2 GQWDM—W%U2 P eQ’YDH—’Y%O'Q .
+ §)A(E

s | PEmP) (A=) (1=p)”  (1=p)r (1-p)° © (2) (149)

27pp—r30 . A 20 ’
(1 _]702)7—2 e (1 — p)DQ A(é)A(&) g% + (1_([)2)7_262’YDM 0 21pfp
where A(€) is the first derivative of A(€), and

. 24} (v—0Ov(~ _
Ag)=——2T 4 ¢ (=0 22, (150)

E—2 T et o2

The largest eigenvalue of the matrix 21/221_121/2 is also the largest eigenvalue of 21_1/2221_1/2. In this
case, the eigenvalues and eigenvectors are available in closed form. This gives us the formula for o(f) as

follows:

pA (5)2 +p (1 B p) £2A (5)2 62fyu7'y?o2.

O T -y

(151)

7 Time-Varying Disaster Risk Model: Solutions and Moments

7.1 Model Solution

The model can be viewed as a discrete-time version of Wachter (2013). The representative agent has recursive
preferences with unit elasticity of intertemporal substitution (EIS), and maximizes her lifetime utility V; as
follows:

InV; =(1-8)InC+5(1—7) " InE [Vfgﬁ], (152)
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where (Y is consumption at time ¢, § is the rate of time preference, and + is the coefficient of risk aversion for

timeless gambles. The log growth rate of consumption per capita, Aci11 = In(Cyy1/Cy), evolves as follows:

Aciy1 = p+0ccet1 — Gy, (153)

where the consumption shock €. ;41 follows a standard normal distribution, and (41 is a disaster variable

characterized by

Git+1 = 24410141, (154)

where the variable usy1 is a disaster shock following a truncated exponential distribution with lower bound v:
Vi1 ~ Hupn > vpge ), (155)

and the Bernoulli variable z;,1 captures the occurrence of disasters with diaster probability p; = max(p, p;)

and p; evolving according to an AR(1) process:

Per1 = (1 — p)D+ ppt + Op\/DtEp,t+1- (156)

We impose a small positive lower bound p (= 1 bps) on disaster probability p; in solutions and simulations.
Negative values of disaster probability can also be avoided by changing the specification. For example, the
process of In(p;) can be specified as an AR(1) process as in Gourio (2012), and the disaster probability can be
specified as max(p;,0) with boom jump to be max(—p;,0) as in Cheng, Dou, and Liao (2021).

We model dividends D; as levered consumption with log dividend growth Ady1 = In(Dyy1/Dy):

1
Adir1 = p— §<P203

+ ¢0cEcir1 — PCii1 + POEG 1415 (157)
similar in spirit to Abel (1999).

The shocks (ect+1,dt+1,Ep,t+1, Ji+1) are mutually independent and i.i.d. over t. The Bernoulli variables
zt+1 are independent of the contemporaneous jump probability shock e, 11 and its leads in the time series,
but z;11 and the lags of €)1 are dependent through the jump probability p;. The two processes z;41 and
(€cit+1,Edt+1, Ji+1) are mutually independent.

Because the EIS coefficient is one, the first-order condition of optimal consumption results in Cy = (1—6)W;.

Due to the homotheticity of the preference, it is natural to conjecture that
V;g = ﬂ(pt)C’t, (158)

where J(p;) is a deterministic function of p;, capturing the marginal value of net worth. The specification of

the dynamics is consistent with the exponential-affine models, and thus, we further conjecture that
I(pr) = elotnm (159)

with constants Iy and I; to be determined by equilibrium conditions.
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The constants Iy and I; can be solved by plugging (158) and (159) into (152). Specifically, it holds that
Ip+Iipe+InCr = (1-68)InCy + (1 — 7)1 InE, |- Uothre) gl on] (160)

By matching the constant term and p; term, we obtain that
I ~6Lip+ %(1 —y)0I o) + (1 =)' 62(y — 1) (161)

1
Io~ 0Qo + 6L(1 = p)p + 0p+ (1 = v)602, (162)

with E(z) = ewf_% — 1. Equation (161) has two roots:

1—6p+ \/(1 —6p)? — 262022(y — 1)
h= (1—7)doy ‘

(163)

Economic intuition can help select the reasonable root. When v — 0 and £ — 400, the disaster risk becomes

negligible. In the limit, the value function should become independent of p;, which rules out the root
2 2,25

1= 0p+/(1—0p)2 - 262022(7 — 1) 21— 6p)

(1—7)day, (1—7)éo,
to (161) and (162) is

< 0. Therefore, the relevant solution

since it approaches to

. 1-6p— \/(1 — 6p)? — 262022(y — 1)
o (1—7)do2

o 1
Io=1—5 [Il(l—P)P‘FM‘FQ(l_’Y)Uz : (165)

(164)

To ensure the existence of the equilibrium, the following restrictions on model parameters need to be satisfied:
2 2 2
(1—=46p)° —26%0,=Z(y— 1) > 0. (166)

The equilibrium stochastic discount factor (SDF) is

1 1—v
V,
M1 =6 (Ct“) g (167)
1 [Vt+17}

After plugging in the equilibrium value function and rearranging the terms, we get the log SDF, denoted by

mer1 = In My as follows:

mip1 ~ Lo+ T1pr — Aeocetr1 — Apopy/Dicpt1 + AcCas (168)
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where the predictive coefficients are

To=1Ind —pu— %(1 —7)%02 (169)
M= 5 (1 =)L~ 2(y ~ 1), (170)

and the loading coeflicients are
Ae=7, Ap=(y—1)1, and A\¢ = 7. (171)

The log risk-free rate, denoted by rf; = —InE; [M;11], is

rie=—InE; [t
1 1 _
=Ty — §A§ 2+ §A§,a§ +Z(\e) | pe (172)
1 1 _ _
=—no+p+5(1- v)%0% — 57203 —[EM -E(y-D]p (173)

Using the Campbell-Shiller decomposition and linearization, we can represent the return in terms of log

price-dividend ratio and log dividend growth:

Tmjt+1 = Km0 + Km,12m,t+1 + Adi1 — Zmgt, (174)
where
Km,0 = log(l + efm) - ﬁm,1§m7 (175)
and _
esm
= _ 176
K/m,l 1 + eZm ( )

and Z,, is long-run mean of market log price-dividend ratio.

Using the log-linearization approximation, we search the equilibrium characterized by
Zm,t = Am,() + Am,lpta (177)

where the constants A,, o and A,, 1 can be computed recursively as follows.
Define the period-t price of the dividend strip paid at the period ¢t +n as H(Dy,pt,n) = E¢ [My 40 Ditn)

where My 4 = e2i=1™t+i The price function H (Dy, pe,m) satisfies the following recursive relations:

H(Dy,pe,n) = Ey €™ H(Dyy1, pey1,n — 1)) (178)
H(Dt7pt)0) = Dta (179)

for arbitrary ¢t and n > 1.
We conjecture that H(Dy,ps,n) = Dyt BnPt. Then, the recursive relations in (178) and (179) can be
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rewritten as follows:

eAn+Bnpt =F, |:6Adt+1+mt+1+An—l+Bn—1pt+l:|

= ]Et [e(“_%@202+¢gcacvt+l_¢Ct+1+900'05d,t+1)+(FO+F1pt_>\c0'c5c,t+1—)\po'p«/ptép,t+1+>\Cct+1)+(An,1+Bn,1pt+1)

— eAn-l-Bnpt—%sO?UfEt [e(¢—/\c)0c€c,t+1+(3n—1—)\p)Up\/ptEp,t+1+()\g—¢)Ct+1+<p0c8d,t+1

where A,, = w+To+ Ap_1+ Bp_1(1 — p)p, and B, =Ty + By _1p.

The moment generating function of (441 is
Iy [ | & pE(y - 9).
Thus, it holds that
A=At 5 (9 =)0
=pu+To+ A, 1+ Br1(1—p)p+ %@5 — ’7)20'?
:ma—%u—yﬂﬁ+Am4+Bmﬂ1—Mﬁ+%w—vfﬁ,

and

~ 1 _
Bn = Bn + 5 [Bn—l - (’Y - 1)11]2 012) + ‘:'(fy - d))

1 _ -
= an_l + 53727(,10'5 — (’Y - 1)]—10-}%-371—1 + ‘:‘(’Y - (ZS) - ‘:‘(7 - 1)7

with the initial values Ay = By = 0.

Therefore, the log price-dividend ratio is
“+o0o
Zmt = In [Z eA"JrB"pt] .
n=1

According to Taylor expansion in terms of p; around p, it follows that

400 An+Bnp

Zn:l B”e e
+0© A, +B,.p
Doy €At Enp

+oo
Am,O =1In [Z 6A"+B";E — Amjlf? and Am,l =
n=1

According to (174), the equilibrium log market return can be rewritten as

Tyl = Et [Pmeg1] + Beoceeir1 + Bpopy/Pipit1 — Be [Ga1 — pe(v + 1/8)] + wocedit1,

where 3. = ¢, By = Km,14m1, and B¢ = ¢.

The Euler equation for the log market return is

1= Et [6Tm,t+1+mt+1] ,
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which leads to the following equilibrium characterization of conditional equity premium:

Es [rmi41] — 7p4
- — 1
= BeAe? + BpApoypi + [E(7) = B(y = ¢) — d(u+1/8)]pe — 5 [(B7 + "ol + Byoppi] - (185)
The conditional variance of the log market return is

vary(rm11) = 8202 + 2o + zaipt + Bg [(v+ 1/6)2(1 —py) + 1/52] Dt (186)

Now, we derive the yield of the defaultable government bond, denoted by u;, and the expected return of
the defaultable government bond, denoted by pp ¢ = E; [rp¢41], where

, if not default
Thgs1 = { - (187)

Ybt — Vit1, if default.

A default on the government bond occurs with probability ¢ conditional on the occurrence of a disaster. Thus,
by definition, it holds that

Pt = Yoe — Peq(v 4+ 1/8). (188)

According to the Euler equation of the defaultable government bond and the risk-free bond, it holds that
By [emitoenTTa] = By [ (189)
Some calculations show that the following relation approximately holds:
InE, [emeitroenri]
=To+Tipt +ypr —7pe + %)\gag + %)\fﬂgpt +[(1 = a)=Z(v) — ¢E(v = D] pr. (190)
Combining (172), (189), and (190), it follows that
Yot — e =q[E(y) = E(v = D] pe. (191)

Further, by putting together equations (188) and (191), we can obtain the following relation:

pog — e = q[E(Y) —E(y = 1) = (u+ /)] pr. (192)

Therefore, the conditional mean and variance of excess log returns of the market portfolio relative to the

defaultable government bill are

Bt [Pmit1 — Thir1] =BeAeo? + 5p/\p0§pt +[EM) —E(y—¢) — v+ 1/8)]p:

S (B2 4002+ Botm) —aEG) 2 - 1)~ w+1/O]p (193)
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and

vary [mt+1 — Thit1] = 5600 + p ppt + ¢? U + [(1 — Q)ff?z +q(¢

= 1% [(u+1/6)* + 1/€] ¢
— (60— a)’(L+1/€)*p; (194)
Some More Derivations. From equation (164), it follows that
Sl —p
L~ —Pr 195
(1=7)o3 (195)
because (671 — p)? ~ 2025(y — 1).

The affine coefficient B,, has the following (approximate) recursive relation

Bu= o+ S0 00t Brrt -0 -20 - 1)

. (196)
Let p=p+ %aﬁ. When j < 1, it holds that
—p

(197)
The coefficient A,, can be expressed as

1 2 2
“(¢— 1
: Fo—? (%)
g+ (0= (@+1-29)07 + (1= p") [E(y—¢) —E(y - 1)]p (199)
Thus, it holds that
1 — — 1 1-=p" — _
Ay =n{Ind + 36 1)(6 +1- 202 + 5~ 9) - = - VIpp 47 (26 - 6) =0 - Dl (200
and hence, it holds that
a 1
Ap + B,p~ —nd, where 0= — {ma +5(@-D@+1- 27)02 + [E(y — ¢) — E(y — 1)]p} . (201)
Therefore, the coefficients in (177) satisfies the following relations in equilibrium
+oo ~
1 _an
Z — e—mS
Ama = [E(y = ¢) = E(v - 1)] "= (202)
Z 6—n6
n=1
~E(y-¢)-E(v-1 (203)
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and

—+o00 N
Amo =1In [Z e — ApiD (204)
n=1
o0
=In ] A 1D- (205)
—e
And thus, the steady-state log price dividend ratio is
o0
Zm =Amo+ Am1p=1In - . (206)
1—ed
The log-linearization coefficient is
b = €70 = §ez (@~ D(G+1-27)02+[E(7—-¢)~E(-1)]p (207)
The beta to the time-varying disaster risk is
Bp = km1Am1 = 0[E(y —¢) —E(y —1)]. (208)
The market price of risk is
st —p
Ap=0nW—-1) =— o (209)
P

The equilibrium conditional mean and variance of excess log returns of the market portfolio relative to the

government bill are
Et [Fmit1 — roer1] =9700 + [E(v = 1) = E(y = @) (1 = 6p)pe + [E(7) — E(v — ¢) — d(v + 1/&)] pr
— 6207 —q[E0) ~Zly 1) — (0 + 1/)] (210)

and

var [Fmg41 — Togr1) = Beos + Baoipy + o + [(1— )¢ + q(¢ — 1)*] [(v + 1/€)* + 1/€] py
— (¢ — @) (v + 1/€)°p}. (211)

7.2 Generalized Methods of Moments

Denote the set of moment functions for the baseline model to be m(l)(yt_l,yt; 9(1)) with the data y; =
(Act, Ady, 2y, x4—1, T 1, V¢, Zmt, Ter) and the baseline parameters 6 = (u, 02,7, p, 05,5, é,0,q)T. More pre-

cisely, there are eight moment conditions specified as follows:

E [m(l)(ytq,yf; o] =0, (212)
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with

m Wy, ye;00) =

Tt —Pp

T2 2t — pri1 — (1 — p)P]

wi-1(x¢ — D) — pogp/ (1 — p?)

Tht—1 — 4P

Aciy1 — p+plu+1/€)

(Aciyr — p)® —oZ —plu+1/€)? +1/€7]
Acit1 — Ze41Vep1 — [

Adgy1 — ¢Acir — (1 — ¢)p + 30%072

[Adit1 — ¢Aciy1 — (1= @)+ p%02)* — 202

The first row of Jacobian matrix Di1(#) for the baseline moment restrictions is

[0,0,—1,0,0,0,0,0,0].

The second row of Jacobian matrix D;1(6) for the baseline moment restrictions is

[0707 _ﬁ(l - p)7 _poﬁp/(l - p2))0)0705070]'

The third row of Jacobian matrix D;(#) for the baseline moment restrictions is

[07 07 —p— Paz/(l - p2)7 _ngyﬁ(l + p2)/(1 - 102)27 —pﬁ/(l - p2)70707070]'

The fourth row of Jacobian matrix Di1(#) for the baseline moment restrictions is

[07 07 -9, 07 Oa Oa 07 07 _Tj]

The fifth row of Jacobian matrix Dj1(6) for the baseline moment restrictions is

[—1,0,v 4+ 1/£,0,0,—p/£2,0,0,0].

The sixth row of Jacobian matrix Dj;(#) for the baseline moment restrictions is

[Qﬁ(y—i- 1/5)7 —1, _(Q"i‘ 1/5)2 - 1/52’0707 Qﬁ(y/gz + 2/53)7 0,0, 0]

The seventh row of Jacobian matrix Dq1(f) for the baseline moment restrictions is

[-1,0,0,0,0,0,0,0,0].

The eighth row of Jacobian matrix Di1(#) for the baseline moment restrictions is

[_(1 - ¢)7 19027070701 O,ﬁ(ﬂ“‘ 1/§)a 900270]'

2
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(214)

(215)

(216)

(217)

(218)

(219)

(220)
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The ninth row of Jacobian matrix D;;(6) for the baseline moment restrictions is
[07 _90270707070707 _2Q00'§70] (222)

In time-varying disaster risk models, the major focus is to understand the equity premium, the average
volatility, the predictability of excess returns based on price-dividend ratios, and the comovement between
excess returns and price-dividend ratios explained by the consumption process and dividend process specified

in (153) — (157). These asset pricing cross-equation restrictions can be specified as follows:

E m(2)(yt,yt,1;0)} =0, (223)

with
Tm,it — Tbht — Xl(e)
m (v, yi-1;0) = (Tmt — Tp2)* — x2(0) ,
¢ — x3(0)2m,t — X4(0)2m—1 — x5(0)

where 7§ = rpt — 1p4 + (¢ — 2p4) G, and

x1(0) = ¢702 + Bphpoyh + [2(7) — E(y = 6) — du+ 1/9)]p - % (¢%0¢ + Byoyp + ¢70t)
—q[E(v) —E(v—1) — (v + 1/9)]p,

x2(0) = E[rm: — rb,t]2 +var [rp ¢ — rpe] = X1(0)2 + E [var,—1(rm¢ — rpe)] + var [Ee1(rme — rp)] s

x3(0) = A, By,

) = a4 {802 +20) 20— 6) - 3202 ~a[E0) 20— D] = o .

X5(0) = 02— Amo[x3(0) + xa(0)] — Bp(1 — p)p — % (B202 + ¢°0?).

In the definition of x2(#) above, the expectation of conditional variance is

E [vare1(rme = 1)) = 6202 + 202 + Bo2p+ [(1 = )6 + (6 — 1] [(w+1/8)° + 1/¢*] p

02
— (0 —q)(u+1/8)? <p2 +1 _pp2p> , (224)

and, the variance of conditional expectation is

var [Eo—1 (rme — 1o,0)] = Apy 1 [xa(0) + pxa(0)]* o35/ (1 = p?). (225)

pL)
The parameter vector 6 = [ o) includes the baseline parameter #(1) = (02,9, p, Ug, £,6,0,9)7 and

the nusance parameter 6(2) = ~. The auxiliary parameters are v and d, treated as part of the functional-form

specification of the model.

The analytical formulas for the Jacobian matrix of the over-identification moment conditions are quite

complicated. We ignore the formulas here and, in fact, we calculate them numerically in obtaining the fragility
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measures. Moreover, we compute the Fisher Information matrices for the moments in m™(-,0(1)) and m(-, 9)

based on simulated stationary time series using the Monte Carlo method.

8 Long-Run Risk Model: Solutions and Moments

8.1 Model Solution

We consider a long-run risk model similar to Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012).
The log growth rate of aggregate consumption Ac, the long-run risk component in consumption growth x,

and stochastic volatility o, follow the joint processes

Aciy1 = pe + T4 + Ogec it (226a)
Ti41 = PTt + PaOt€x t+1 (226Db)
Gr1 =0 + (0] —T°) + Oweo i1 (226¢)
Ut2+1 = maX(QQa 5t2+1)v (226d)

where the shocks €., €, ¢, and €, are i.i.d. standard normal variables and they are mutually independent.
Similar to Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012), we adopt the local approximation

method to linearize the model and thus the solution. In the log-linearized approximation system, it is fair to

assume that o7 = 7.

The representative agent has Epstein-Zin-Weil preferences:

9

1— 1— % 1—v
Vi=|1-0)C,7 +34 (Et [VM’YD ] (227)
where ¥ = (1 —7)/(1 — 4~ 1). Define the wealth process and the gross return on consumption claims:
Wt+1 == (Wt - Ct)Rc,t—i-l- (228)

Therefore, the stochastic discount factor (SDF) can be expressed as follows:

Con\ ™Y o
My =69 ( g 1) RITL. (229)
The log SDF can be written as
¥
me41 = ﬂlogé — JACHJ + (19 — 1)7’07754_1. (230)

The state variables in long-run risk models are x; and Uf . The dependence of r. ;1 on the state variables
are endogenous. To turn the model into an affine system, we first exploit the Campbell-Shiller log-linearization
approximation:

Tet+1l = Ko + K121 + Acpyr — 2, (231)

where z; = log(W;/C}) is log wealth-consumption ratio and wealth is the price of consumption claims. The
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log-linearization constants are determined by the long-run steady state:

ko = log(l + €*) — k1Z (232)
oF
= — 2
R1 1+ oz’ ( 33)

where Z is the long-run mean of the log price-consumption ratio.

Given the log-linearization approximation (231) — (233), we can search the equilibrium log consumption-
wealth ratio characterized by
zt = Ao+ A1y + AQJE, (234)

where the constants Ag, A1 and As are to be determined by the equilibrium conditions.

Thus, the log return on the consumption claim can be written as
Tegr1 = ko + k1 (Ao + A1z + A2Ut2+1) + Aciy1 — (Ao + Ay + A20t2) . (235)
Therefore, the log SDF can be re-written in terms of state variables and exogenous shocks
myr1 = Do+ T1xy + D207 — AeOtecir1 — MaOtPuutrl — AoTweotils (236)

where predictive coefficients are

o = logd — v~ e — 590 — 1) (1 Aso)? (237)

D=y, (238)
2

Dy = (0~ (kv —1)As = (v~ D)™ —7) [1 + (fijp) ] , (239)

and the market price of risk coefficients are

Ae =1, (240)
_ R1Pg
Ao = (v =9 1) 1_17/{1;)7 (241)
2
Ao =—(v—1) (v—w_l)ﬁ [1+ <1H_1ijp) ] (242)

The coefficients A;’s are determined by the equilibrium condition (i.e., the Euler equation for price of

consumption claim) as follows:

1=Ky [My1Re 1] = By [eMertFrest] (243)
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It leads to the equilibrium conditions:

Ay = - [log(s +ro+ (1—97") pe + k142 (1 — v)5° + g (k14200)° ], (244)
1w

Al - 1—7/431/)7 (245)
(- -wh F1ga )

Ag = - 2(1 — k1v) [1 " <1 - '€1P> ] ' 240

The long-run mean Z is also determined endogenously in the equilibrium. More precisely, given all
parameters fixed, we have A; = A;(Z) in Equations (244) — (246) because ko and x1 are functions of Z. In the

long-run steady state, we have
Z = Ao(Z) + A2(2)7% (247)

Thus, in the equilibrium, the long-run mean z is a function of all parameters in the model, according to (247)

and the Implicit Function Theorem,

Zz?(uc,p,¢x,52,u,aw,~~). (248)

And hence, based on equation (248), we can also solve out kg = ko(le, P, Pz, T2, V, Oy -+ ) and Ky =
K1(fhes Py Pz, T2, V, Oy - - - ), Whose explicit forms are usually not available. The gradients rg and s with
respect to the parameters, such as p and v, can be calculated using the Implicit Function Theorem in (247).

We specify the joint distribution of the exogenous state variables and the log dividend growth Ad;, these
joint distributional assumptions are part of the structural component of the model. More precisely, we assume

that the log dividend growth process is
Adiy1 = p1g + GdTt + Pd.cOt€ct+1 + PddOtEd+1- (249)

Market Equity Return. Using the Campbell-Shiller decomposition and linearization, we can represent

the return in terms of log price-dividend ratio and log dividend growth:

Tmyi+1 = Km0 + Em,12m,i+1 + Adiy1 — 2mit, (250)
where
Km,0 = log(l + ezm) — Km,12m, (251)
and _
eFm
= —, 252
Fm1 = T (252)

and Z,, is long-run mean of market log price-dividend ratio. We search for the equilibrium where the log

market price-dividend ratio is a linear function of the states in the following form:

Zm,t = Am,O + Am,lwt + Am,20t27 (253)
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where the constants A, 9, Ap,1 and Ay, o are to be determined by equilibrium condition (i.e., Euler equation

for market equity returns). Thus, we have

T+l — Bt [Pmgs1] = @d,c0t€cit1 + Em,1 Am,10a0t€ 141

+ ’{'m,lAm,QO-wecr,tJrl + ©d,d0t€d t+1, (254)

where
IEt [Tm7t+1] = g + Km,0 + (K'm,l - 1)Am,O + ﬁm,lAm,Q(l - V)EQ (255)
+[ba + (Km1p — D) Al @ + (K1 — 1) Am 207 (256)

Plugging the equation above into the following Euler equation:
1=FE; [emt+1+rm,t+1] , (257)

we can derive the coefficients,

1 1 1
Appo=—————|To+ kmo + ta + =05 4 + km1Ama(l — V)T + = (km1Ama — Aw)?02 |,
1-— Km,1 2@ 2
ba — Uy !
A = 258
m,1 1_ Hm,1p7 ( )
and . )
Amg=———— T2+ 5 (ha+ (e — Ae)* + (Fm,1Am,102 — Ao)?) | - (259)
1—km1v 2 ’

Taken together, according to (254), the log return of the market portfolio can be re-written as the following

beta representation for the priced aggregate shocks:
Tmyt+1 — Bt [Pmt+1) = Beoi€cir1 + BeTi€r i1 + BoOwee i1 + PddOt€dt+1, (260)
where the equilibrium betas are
Be = Pde, Br=Em1Am1Pz, and B, = Km1A4Am 2. (261)

Excess Market Return and Equity Premium. The Fuler equations for the market equity return and

risk-free rate can be written in one equation
B[] = By [emen s | (262)
The risk premium is given by the beta pricing rule:
Ex [ in] = Moo+ Ae0?Be + Moo — 2071 (263)

where Ufmyt = B0} + B0} + BRol + wz’daf. (264)
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Similarly, the long-run mean of log market price-dividend ratio is
Zm = Amo(Zm) + Apm2(Zm)7 (265)

Based on equation (260), the excess log return of the market portfolio, defined by Todt+1 = Tmit+1 — T'fe, has

the following expression:

Tinir1 — Bt [T i11] = Beotecit1 + BeOt€airr + BoOwee 1 + Pd,dot€d 41 (266)

Therefore, the equilibrium excess log return of the market portfolio follows the dynamics below:
Trnt1 = Myt + BeOtécti1 + Brot€r i1 + BoOweot1 + Pd,d0ted 41, (267)

where py, = AeBe0? 4+ AeBr02 + AoBr0? — % (ﬁgaf + 202 + B202 + gpfl,dcrtz). To avoid the stochastic
singularity, we assume that the underlying marginal distribution of (Acsi1, s, 02, Ads11) has some features
not captured by the structural model Q. More precisely, we assume that the excess log return’s true distribution

is characterized by

Trt1 = Myt + BeOtécti1 + Bu0t€r t+1 + BoOweot+1l + Pdd0ted 41 + Protér i1, (268)

which augments the characterization in (267) by adding a normal shock ¢, 06 141.

8.2 Generalized Methods of Moments

The likelihood function of the baseline statistical model can be seen clearly below when re-arranging the

terms:

Aciy1 — e — Tt

= €cttl, (269a)
Ot
Lt+1 — PTt €attls (269b)
POt
o2, —32) —v(o? — 52
ond i1 )~ vloi ) _ €ott1s (269c)

Ow

where €., €;+ and €, are i.i.d. standard normal variables and they are mutually independent. The dividend

growth process is

Adiy1 = pd + Gaxs + @d e (Acip1 — fe — Tt) + Pd.dT1€d 141 (270)

We consider the GMM setup where the baseline moments functions are identical to the score functions of the
likelihood function. We denote the set of baseline moment functions by m(!) (Acit1, Tit1, Tty 0t2+1, o2, Adyi1; 0(1)),

which includes ten moment conditions. The moment conditions that only involve Ac;y1, 24, and o are the
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following six baseline moment conditions:

0 [Acii1 — ple — wt] _0

2
O

& (241 — Pﬂft)%} _0

| p2o?
_(l‘t+1 — P%)Q
- s
T
g | [0 = 7°) — v(of = 7%)] (o — ﬁ)] 0
¢ _
Uw

o [0t %) —vio} ~7*)]" 1] 0

Ow

E

(ot =) —vlot = 7)] _,
o2 -
The six baseline moment conditions above captures the distribution characterized by (269a) — (269c). The

joint distribution of fundamental variables (Acgy1, 7, 07) and dividend growth Adg,q is captured by the
following four additional baseline moment conditions:

2

E Adiyy — pg — ¢at — Pae(Acii1 — pe — x¢)
2 =0
¥d,dot

E 2y [Adysy — pg — damr — dc(Aciyr — pre — )] | 0
) =
Y34t

E (A0t+1 — He — SL“t) [Adt+1 — ptd — Paxt — de,c(ACtJrl = He — xt)]] -0

2 2
L Pd.,d%t

E [Adiy1 — pd — Gaxe — Pd.c(Aciy1 — fre — xt)]Q . 1] = 0.

2 2
Yd,d%t

In the long-run risk model, the primary goal is to understand how the excess log return of the market
portfolio is affected by the consumption process and dividend process specified in (269a) — (269c) and (270).
The joint distribution of the excess log return 77, ,.;, the consumption variables, and the dividend variables

can be seen clearly from the following formula:

Tt41 — PT
Oroter 41 = Toppi1 — Mot — (Be — @ae) (Acti1 — pe — 2¢) — ﬂxt“‘Tpt
x
— Bo [0841 — v5;] = (Ady1 — pa — daze) , (271)
where 67 = 07 — o2 and
1
Hie = MBnoi + AeBeoi + wbBuoy, = 5 (Byoi + Boot + Buo, + ¢3.407) - (272)
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Because . = @q,, equation (271) can be rewritten as

Ti+1 — PT ~ ~
OrOterty1 = i1 — Hyy — 53:% — B0 [0711 — V07| = (Adi1 — p1a — dazy) - (273)
X

We choose the asset pricing cross-equation moments, denoted by m? (Acty1, Tpr1, e, O't2 15 o2, Ady 1, T dt15 0),
to include the score functions of the conditional likelihood of 77, ;1 above. Thus, the moment conditions for

the optimal GMM setup to assess the fragility of the benchmark version of long-run risk model are

1 2 2 1
. m( )(Act+17xt+17xt7o-t+17ot7Adt+176( ))

2 2 e
m(ACt+1, Tt41y Tty Ut+17 O, rt+17 Adt-{-la 0) == (2) 2 2 e
m (ACt+1,l’t+1,l‘t,0’t+1,Ut ) Adt+17rm7t+179)

Intuitively, the over-identification moment conditions imposed by the long-run risk model on the dynamic pa-
rameter 6 is through the cross-equation restrictions on the beta coefficients ., B;, 8, and the pricing coefficients
Acy Azs Ag. Because the shocks €41, €2,141, €5,i4+1, and €411 are mutually independent, the GMM setup is actu-
ally first-order asymptotically equivalent to the MLE for the joint distribution of (Acyy1, 24, 02, Adyy1, Tt 41)-
It should be noted that the whole joint distribution of the variables, including (Acy1, ¢, 07, Adgy1, Tt 1)
and many other variables such as price-dividend ratios, may have more stochastic singularities and many
features that are not the targets of the long-run risk model to explain at the first place. Following the spirits
of GMM-based estimation and hypothesis testing for structural models, we focus on the moments targeted by

a particular long-run risk model.

The analytical formulas for the over-identification moment conditions are quite complicated, since how
the beta coefficients and market price of risk coefficients depend on model parameters in equilibrium is
very complicated for the long-run risk model. We ignore the formulas here and, in fact, we calculate them
numerically in obtaining the fragility measures. Moreover, we compute the information matrices for the

baseline and full moment conditions based on simulated stationary time series.
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