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Following are four appendices which provide further details to the data analysis discussed in the body of the 

article. The appendices are: 

• Appendix A: Descriptive Categorical Data Analysis 

• Appendix B: Log-linear p1 Statistical Analysis 

• Appendix C: Logit p* Statistical Modeling of the Alignment Matrix 

• Appendix D: Threats to Validity 
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Appendix A. Descriptive Categorical Data Analysis 

 

The objective of our analysis is to study how certain factors such as organizational/system boundaries, 

design interface strength, indirect ties, and system modularity influence the alignment of design interfaces and 

team interactions characterized by the four states illustrated in Figure 6. We first complete a descriptive 

categorical data analysis (See Table A1) based on chi-square tests of independence and homogeneity which 

make the strong assumption of independence between cells of both the design interface matrix and team 

interaction matrix. (See Sosa 2000 for details.) Hence, the conclusions listed are only preliminary. In order to 

effectively test whether the observed differences are larger than what one would expect from random variation 

in the data, we need to control for other factors that are typically embedded in network data. 

Additional References 

Sosa, M.E. 2000. Analyzing the Effects of Product Architecture on Technical Communication in Product 

Development Organizations. Doctoral Thesis. MIT. Cambridge, MA. 
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Table A1. Results of Descriptive Categorical Data Analysis 
Hypothesis Sample Results χ2 Preliminary 

Conclusion  
H1a: Effect of 
organizational 
boundaries 

569 design 
interfaces 

81% of the 231 within-boundary design interfaces 
were matched by team interactions, whereas 48% 
of the 338 cross-boundary design interfaces were 
matched by team interactions 

63.101 H1 
tentatively 
supported a 

H1b: Effect of 
systems 
boundaries 

423 team 
interactions 

90% of the 208 within-boundary team interactions 
were predicted by design interfaces, whereas 75% 
of the 215 cross-boundary team interactions were 
predicted by design interfaces 

15.517 H1 
tentatively 
supported a 

H2: Effect of 
design interface 
strength 

569 design 
interfaces 

72% of the 250 strong design interfaces were 
matched by team interactions, whereas 53% of the 
319 weak design interfaces were matched by team 
interactions  

21.385 H2 
tentatively 
supported a 

H3: Moderating 
effects of 
boundaries on 
design interface 
strength 

338 cross-
boundary 
design 
interfaces 

54% of the 115 strong cross-boundary design 
interfaces were matched by team interactions, 
whereas 45% of the 223 weak cross-boundary 
design interfaces were matched by team 
interactions  

2.501 H3 
tentatively 
NOT 
supported a  

H4: Effect of 
indirect team 
interactions 

2439 
potential 
cases for 
indirect 
team 
interactions 

20% of the 459 cases with more than one potential 
indirect team interaction corresponded to 
unmatched design interfaces, whereas 10% of the 
579 cases with one potential indirect team 
interactions corresponded to unmatched design 
interfaces, and only 5% of the 1401 cases with no 
potential indirect interactions corresponded to 
unmatched design interfaces 

93.911 H4 
tentatively 
supported b 

H5: Effect of 
indirect design 
interfaces 

2293 
potential 
cases for 
indirect 
interfaces 

7% of the 645 cases with more than three 
potential indirect interfaces corresponded to 
unmatched team interactions, whereas 4% of the 
643 cases with less than three potential indirect 
interfaces corresponded to unmatched team 
interaction, and less than 1% of the 1005 cases 
with no indirect interfaces corresponded to 
unmatched team interaction. 

51.561 H5 
tentatively 
supported b 

H6a: Moderating 
effect of system 
modularity on 
organizational 
boundaries 

338 cross-
boundary 
design 
interfaces 

54% of the 228 cross-boundary design interfaces 
with integrative systems were matched by team 
interactions, whereas 36% of the 110 cross-
boundary design interfaces between modular 
systems were matched by team interactions  

8.740 H6 
tentatively 
supported a 

H6b: Moderating 
effect of system 
modularity on 
system boundaries 

215 cross-
boundary 
team 
interactions 

81% of the 150 cross-boundary team interactions 
with integrative teams were predicted by design 
interfaces, whereas 62% of the 65 cross-boundary 
team interaction between modular teams were 
predicted by design interfaces 

9.566 H6 
tentatively 
supported a 

a: The null hypothesis is rejected when χ2  is greater than the critical χ2
(0.99,1) =6.635 

b: The null hypothesis is rejected when χ2  is greater than the critical χ2
(0.99,2) =9.210 
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Appendix B. Log-linear p1 Statistical Analysis 

The statistical models described in this appendix are based on the p1 distribution introduced by Holland 

and Leinhardt (1981). In order to introduce the p1 distribution, let us consider the four-dimensional Y-array 

whose component Yijkl describes the interaction between element i and element j. The third and fourth 

dimensions of the Y-array are binary and describe the state of dyad ij of a network. Hence, k=1 if element i 

interacts with element j, and l=1 if element j interacts with element i. Fienberg and Wasserman (1981) show that 

Holland and Leinhardt's distribution, p1, can be expressed in a log-linear format, as follows: 

ln  P Yijkl =1{ }= λij + (k + l)θ + k ⋅ αi + l ⋅ βi + l ⋅ α j + k ⋅ β j + (kl)ρ    (B1) 

The {αi} parameters measure the expansiveness of the elements of the network, indicating how likely an 

element is to generate relational ties (non-zero cells in row i of the matrices). The {βj} parameters measure the 

attraction of the elements of the network, indicating how likely an element is to receive relational ties (non-zero 

cells in column j of the matrices). The "reciprocity" parameter, ρ, measures the overall tendency in the network 

to reciprocate interactions. The θ parameter indicates the overall volume of interaction in the network. Finally, 

the λij parameters are "dyadic" effects that ensure that the probabilities sum to one for each dyad (equation B1); 

they have no substantive meaning. For a more detailed description of these parameters, refer to Holland and 

Leinhardt (1981). 

Similar to our logit p* approach, we build our log linear models in two stages. First, we model our 

alignment matrix considering binary design interfaces to test H1 and H6. Then, we extend our log-linear models 

to consider trichotomous design interfaces in order to test H2 and H3. 

1. Log-linear p1 models of alignment matrix with binary design interfaces  

Similar to Van den Bulte and Moenaert (1998) we build log-linear models of our alignment matrix (with 

binary design interfaces) in five steps: 

1.1. Build a p1 model of the alignment matrix 

Fienberg et al. (1985) and Wasserman and Iacobucci (1988) extend p1 to multiple sociometric relations. 

Based upon these results we develop a log-linear model of the alignment matrix. We consider the joint 

distribution of both design interfaces and team interactions for a given dyad. That is, each dyad (i,j) of the 

alignment matrix has 16 states. Four (2 x 2) states are associated with the dyad's design interface relation, and 

four (2 x 2) states are associated with its team interaction relation, resulting in 16 states. Following the 

definitions of the variables k and l introduced before, we assign the subscripts (k1,l1) to describe the four states 
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associated with the design interface relation of dyad (i,j), while the subscripts (k2,l2) refer to the four states 

associated with the team interaction relation of dyad (i,j). Hence, the redefined Y-array has now six dimensions 

54 x 54 x (2 x 2) x (2 x 2), and its characteristic element can be defined as follows: 

Y ij k1,l1 k2,l2 = 1 if dyad (i,j) behaves as described by (k1,l1) for their design interfaces AND by (k2,l2) for their team 

interactions. 

Y ij k1,l1 k2,l2 = 0 otherwise. 

Considering the joint distribution of design interfaces and team interactions yields a log-linear model 

which describes simultaneously the behavior of the elements of our network according to two independent 

relations (design interfaces and team interactions). Hence, the first base log-linear model can be written as 

follows: 

ln  P Yij k1l1 k2l 2
=1{ }= λij + (k1 + l1)θ1 + k1α1i + l1β1i + l1α1 j + k1β1 j + (k1l1)ρ1 +

(k2 + l2)θ2 + k2α 2i + l2β 2i + l2α 2 j + k2β2 j + (k2l2 )ρ2

   (B2) 

The parameters of this model have the same meaning as in the original p1 model, but applied to either 

design interfaces (subscript 1) or team interactions (subscript 2). 

1.2. Aggregate physical components and design teams into groups 

Fienberg and Wasserman (1981) introduced the approach of placing actors into subsets using relevant actor 

characteristics such that actors within a subset are assumed to behave similarly. Based on this approach we 

aggregate the 54 elements of the Y-array into 8 subsets according to the system boundaries of the product and 

the organizational boundaries of the development organization, respectively. By doing so, we obtain a much 

smaller W-array whose dimensions are 8 x 8 x (2 x 2) x (2 x 2), with elements {Wrs k1,l1 k2,l2} to be equal to the 

number of dyads between groups r (Gr) and s (Gs) whose design interfaces are described by (k1,l1) and  whose 

team interactions are described by (k2,l2). Hence, 

wrs k1l1 k 2l2 = yij k1l1 k2l2
j ∈Gs

∑
i ∈Gr

∑       (B3) 

Therefore, we can rewrite the model in equation (B2) to specify the expected number of dyads between 

groups r and s that behave as (k1,l1, k2,l2) as follows: 

22222222222222

11111111111111
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lkkllklkWn E

ssrr
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++++++

++++++++=
 (B4) 

It is important to note that even though we have grouped components and teams into groups to facilitate the 

estimation and statistical inference of the models, the unit of analysis is still the dyad. 
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1.3. Capture the alignment of design interfaces and team interactions 

The base model specified in equation (B4) assumes that design interfaces and team interactions are two 

independent relations of the same network of elements. However, we need to consider second-order interaction 

effects between design interfaces and team interactions to capture the association between the design interface 

matrix and the team interaction matrix. Following the notation of Wasserman and Iacobucci (1988), we define 

the following two association parameters, θ1,2 and ρ12. θ1,2 measures any tendency toward conformity across 

relationships. That is, component i depends on component j, AND team i reports interaction with team j (the "#" 

cells of the alignment matrix). On the other hand, ρ12 measures tendency toward flow reversal. That is, 

component i depends upon component j, AND team j reports interaction with team i. These two parameters 

correspond to association and exchange parameters included in our logit p* formulation. By including these two 

parameters, we extend our base model (equation B4) as follows: 

ln E (Wrs k1l1  k2l2
) = λrs + (k1 + l1)θ1 + k1α1r + l1β1r + l1α1s + k1β1s + (k1l1)ρ1 +

(k2 + l2)θ2 + k2α2r + l2β2r + l2α2s + k2β2s + (k2l2)ρ2 + (k1k2 + l1l2)θ1,2 + (k1k2 + l1l2)ρ1,2

  (B5) 

1.4. Extend the model with structural parameters: ACROSS and MODULAR 

To explicitly represent organizational and system boundary effects, we define the following indicator 

variable: 

ACROSS = 1 if elements (i.e. component and team) i and j are in the different groups (r≠s) 

ACROSS = 0 if r=s 

By expanding the dimension of the W-array with ACROSS as the seventh dimension, we can estimate 

parameters associated with the second-order interaction terms ACROSS x k1, and ACROSS x k2, due to symmetry 

of the W-array identical to ACROSS x l1 and ACROSS x l2, respectively. These terms capture the within-

boundary effects exhibited in both the design interface matrix and team interaction matrix. Indeed, we expect 

these terms to be significantly negative indicating that it is less likely to encounter design interfaces across 

system boundaries and team interactions across organizational boundaries. 

In order to include the effects due to system modularity into the model we define another indicator variable, 

MODULAR, as follows:  

MODULAR=1 if both components of a dyad belong to modular systems (r<7 and s<7) 

MODULAR=0 if one of the components of a dyad belongs to integrative systems (r≥7 or s≥7) 
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Having defined the indicator variables ACROSS and MODULAR, we proceed to define third-order and 

fourth-order interaction effects that allow us to test the effects due to group boundaries (H1) and the moderating 

effects due to system modularity (H6). 

We estimate the parameter associated with the third-order interaction effect ACROSS x k1 x k2 (due to 

symmetry of the W-array identical to ACROSS x l1 x l2). Thus, θACROSS,1,2 captures whether the occurrence of 

dyads across boundaries with design interfaces matched by team interactions is significantly less than the 

occurrence of those dyads within boundaries. Hence, a formal hypothesis testing for H1 can be specified as 

follows: 

H1: θACROSS,1,2 < 0 

We also estimate the parameter associated with the fourth-order interaction effect MODULAR x ACROSS x 

k1 x k2 (due to symmetry of the W-array identical to MODULAR x ACROSS x l1 x l2). Thus, θMODULAR,ACROSS,1,2 

captures whether the effect due to organizational/system boundary is significantly different for modular systems 

than for integrative systems. We expect this effect to be significantly negative, which corresponds to fewer 

cross-boundary design interfaces (matched by team interactions) between modular systems than to integrative 

systems (H6). Hence, a formal hypothesis testing for H6 is expressed as follows: 

H6: θ MODULAR,ACROSS,1,2 < 0 

After extending the model with indicator variables, ACROSS and MODULAR, to include the high-order 

interaction effects, we write our final log-linear model as follows: 

ln E (Wrs k1l1 k2l2
) = λrs + (k1 + l1)θ1 + k1α1r + l1β1r + l1α1s + k1β1s + (k1l1)ρ1 +

(k2 + l2)θ2 + k2α2r + l2β2r + l2α2s + k2β2s + (k2l2)ρ2 + (k1k2 + l1l2)θ1,2 + (k1k2 + l1l2)ρ1,2 +

(ACROSS ⋅ k1 + ACROSS ⋅ l1)θACROSS,1 + (ACROSS ⋅ k2 + ACROSS ⋅ l2)θACROSS,2 +

(ACROSS ⋅ k1 ⋅ k2 + ACROSS ⋅ l1 ⋅ l2)θACROSS,1,2 +

(MODULAR ⋅ k1 + MODULAR ⋅ l1)θMODULAR ,1 + (MODULAR ⋅ k2 + MODULAR ⋅ l2)θMODULAR ,2 +

(MODULAR ⋅ k1 ⋅ k2 + MODULAR ⋅ l1 ⋅ l2)θMODULAR ,1,2

(MODULAR ⋅ ACROSS ⋅ k1 ⋅ k2 + MODULAR ⋅ ACROSS ⋅ l1 ⋅ l2)θMODULAR ,ACROSS,1,2

         (B6) 

1.5. Fit models to data and test hypotheses H1 and H6 

Fitting a model to data means finding the best (maximum likelihood) estimates of all parameters in the 

model that could produce the interaction data represented in the aggregated alignment matrix (W-array). To test 

the significance of the parameters we ask how much the expected and observed matrices differ. We do so by 

using conventional rules for likelihood-ratio and conditional likelihood-ratio tests for log-linear models for 

categorical data (Bishop et al. 1975). Based on results presented by Fienberg and Wasserman (1981) we use 
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standard iterative proportional fitting computer programs for contingency tables (We used SPSS) to fit the 

models to data (W-array).   

Table B1 shows the estimates of the parameters for five log-linear models with their respective likelihood-

ratio statistics, G2, and their numbers of degrees of freedom. The first model (Model 0, independent) does not 

include the association parameters between design interfaces and team interactions. (This model corresponds to 

equation B4.) Model 1 (base, which corresponds to equation B5) includes θ1,2 which substantially improves the 

goodness-of-fit of the independent model (∆G2 = 943.71, ∆df =1) indicating, as expected, that there is 

significantly strong association of design interfaces and team interactions. Model 1 also includes the exchange 

parameter, ρ12, which is not statistically significant. Including the second-order interaction effects with ACROSS 

greatly improves the goodness of fit of the base model (G2 = 3719.18, df =5688, model not shown). The 

inclusion of these effects resulted in significantly negative parameters indicating, as expected, that significantly 

smaller portions of design interfaces and team interactions take place across boundaries.  

Consistent with our logit p* analysis, model 2 (across) includes a significantly positive θACROSS,1,2 parameter 

indicating that the "pure" alignment of design interfaces and team interactions are more likely to take place 

across boundaries. Yet, due to strong clustering effects model 2 still predicts a lower probability of finding 

aligned design interfaces and team interactions across boundaries.  

When adding second-order and third-order interaction effects with MODULAR, the log-linear model does 

not significantly improve its goodness-of-fit (see Model 3), which indicates that system modularity does not 

have a direct effect on the alignment of design interfaces and team interactions. Finally, Model 4, corresponding 

to equation B6, includes the fourth-order interaction parameter θMODULAR,ACROSS,1,2, whose value is significantly 

negative, indicating that cross-boundary design interfaces matched by team interactions are less likely to occur 

between modular systems (supporting H6).  

2. Log-linear p1 models of the alignment matrix with valued design interfaces  

In order to test the effects of design interface strength (H2 and H3) we need to consider non-binary design 

interfaces. By using the metric STRENGTHij, defined in section 5.1, a cell of the design interface matrix can 

have three possible states (i.e. NULL design interface, WEAK design interface, or STRONG design interface). 

Therefore, a dyad of the design interface matrix would have nine possible states and a dyad of the alignment 

matrix would have 36 possible states (nine states corresponding to the design interface dyad times four states 

corresponding to the binary team interaction dyad).  
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Wasserman and Iacobucci (1986) extended p1 models for statistical analysis of discrete relational data. 

Using their notation, we can write a p1 model that estimates the probability that dyad (i,j) of the design interface 

matrix will behave as the newly defined (k1,l1) as follows:  

ln P (Yij k1l1 ) = λij + θk1
+θ l1 + αi(k1 ) +α j ( l1 ) + β j(k1 ) + βi( l1 ) + ρk1 ,l1     (B7) 

The most important difference between this model and the one described by equation (B1) is that this 

model includes expansiveness {αi(k1)}, popularity {βj(k1)}, and reciprocity {ρk1, l1} parameters associated with 

each non-zero design interface strength (i.e. WEAK and STRONG).  

 Following the same rationale as in the previous sub-section, we extend the model described by equation 

(B7) to a model that describes the joint probability distribution of  trichotomous design interfaces and binary 

team interactions including higher-order interaction effects at specific strengths. Hence, the equivalent model to 

equation (B5) using trichotomous design interfaces can be expressed as follows: 

ln E (Wrs k1l1k2l2
) = λrs + θk1

+ θl1
+ α r(k1 ) + α s(l1 ) + βs(k1 ) + βr( l1 ) + ρk1 ,l1

+

θk2
+ θl2

+ α r(k2 ) + α s( l2 ) + βs(k2 ) + βr(l2 ) + ρk2 ,l2
+ θ1,2 + ρ1,2

  (B8) 

The {θ1,2} parameters are associated with the second-order interaction effects k1 x k2 (which due to symmetry 

are identical to l1 x l2). Since k1 and l1 have two non-zero states (WEAK and STRONG), including these effects 

results in estimating two θ1,2 parameters, θWEAK,2 and  θSTRONG,2. θWEAK,2 captures the level of association of the 

design interface matrix and team interaction matrix at k1=WEAK whereas θSTRONG,2 captures the level of 

association at k1=STRONG. Hence, a formal hypothesis testing of H2 can be expressed as follows: 

H2: θSTRONG,2 - θWEAK,2 > 0 

In order to test the moderating effects of organizational and systems boundaries on the effects of design 

interface strength (H3) we extend our model with structural parameter ACROSS to examine the third-order 

interaction effects ACROSS x k1 x k2 (due to symmetry identical to ACROSS x l1 x l2). As before, including this 

interaction effect means estimating two parameters (one for each non-zero strength). Hence, we estimate 

θACROSS,WEAK,2 and θACROSS,STRONG,2. However, we are interested in testing whether the level of association is 

stronger (across boundaries) for cases with strong design interfaces (H3). Hence, a formal hypothesis testing of 

H3 is formulated as follows: 

H3: θACROSS,STRONG,2 - θACROSS,WEAK,2 > 0 

In order to test H2 and H3 we follow a similar procedure to the one described in step 5 of the previous sub-

section, fitting the newly defined log-linear models to data. For the purpose of brevity, Table B2 shows only the 

estimates of relevant parameters of the models used to test H2 and H3 with their respective likelihood-ratio 

statistics, G2, and their numbers of degrees of freedom.  
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Model 1 (exchange) includes second-order exchange parameters and serves as our base model. Model 2 

(clustering) includes parameters to capture tendencies to cluster design interfaces and team interactions within 

boundaries which, as expected, are all significantly negative. Model 3 (association) includes association 

parameters between design interfaces and team interaction for both WEAK and STRONG design interfaces. 

Note that both θWEAK,2 and θSTRONG,2 are significantly positive (∆G2 = 224.70, ∆df = 2, p <0.001), indicating that 

there is a strong association between design interfaces and team interaction at both levels. To test whether the 

difference of these parameters is significantly positive we estimate a reduced model that includes a single 

parameter to capture the association of design interfaces and team interactions. Since this reduced model 

exhibits a significantly worse goodness-of-fit than model 3, we can conclude that θSTRONG,2 is significantly 

greater than θWEAK,2 (supporting H2). 

Model 4 includes third-order interaction effects with ACROSS (i.e. θACROSS,STRONG,2 and θACROSS,WEAK,2). 

Consistent with our binary log-linear models, these parameters are significantly positive (∆G2 =17.89, ∆df = 2, p 

<0.001) indicating that the pure tendency for alignment is stronger across boundaries for both WEAK and 

STRONG interface strengths. Yet, we are interested in testing whether there is a significance difference between 

the newly included parameters. To do so, we estimate a reduced model that captures, with a single parameter, 

the association of design interfaces and team interactions across boundaries. Since the reduced model does NOT 

exhibit a significantly worse goodness-of-fit than model 4, we cannot conclude that θACROSS,STRONG,2 is 

significantly different than θACROSS,WEAK,2, hence H3 is  not supported.  

Finally, we ran additional models including the indicator variable MODULAR to test whether there was a 

moderating effect of system modularity on the effect of design interface strength and found no evidence of such 

effect (models not included in Table B2). 
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Table B1. Results of Log-Linear Analysis (Binary Relations) 
Parameters Model 0 

(Independent) 
Model 1 
(Base) 

Model 2 
(ACROSS) 

Model 3 
(MODULAR) 

Model 4 
(FINAL) 

Parameters for the design interface matrix 
α1FAN 0.4321 0.3632 0.3743 0.2598 0.3128 
α1LPC 0.2090 0.3632 0.3161 0.2603 0.2562 
α1HPC -0.0120 0.1061 0.0517 0.0108 -0.0129 
α1BD -0.0172 -0.2137 -0.1407 -0.2924 -0.2042 
α1HPT -0.5653 -0.5731 -0.5401 -0.6408 -0.6033 
α1LPT -0.0771 -0.0533 -0.0621 -0.1451 -0.1301 
α1MC -0.2567 -0.1496 -0.1596 0.0862 0.0280 
α1EC 0.2869 0.1575 0.1606 0.4612 0.3535 
β1FAN -0.7416 -0.6587 -0.6993 -0.7507 -0.7918 
β1LPC -0.0672 0.1355 0.0896 0.0263 0.0284 
β1HPC 0.0509 0.2169 0.1834 0.1045 0.1177 
β1BD -0.0957 -0.4262 -0.3557 -0.5249 -0.3993 
β1HPT 0.4363 0.3360 0.3757 0.2159 0.3253 
β1LPT -0.3862 -0.2229 -0.2226 -0.3289 -0.3016 
β1MC 0.3176 0.1773 0.1667 0.4843 0.3522 
β1EC 0.4856 0.4420 0.4624 0.7738 0.6691 
θ1 -2.1306 0.2063 0.1198 1.0958 0.3526 
ρ1 3.9891 3.5224 3.4502 3.5083 3.4532 

Parameters for the team interaction matrix 
α2FAN 0.2779 0.2312 0.2269 0.0776 0.1370 
α2LPC 0.0062 -0.2327 -0.2088 -0.3657 -0.3203 
α2HPC -0.0313 -0.1437 -0.1321 -0.2783 -0.2500 
α2BD 0.0009 0.2323 0.2945 0.0904 0.2538 
α2HPT -0.3079 -0.0678 -0.0237 -0.1989 -0.1104 
α2LPT -0.0197 0.0706 0.1023 -0.0797 -0.0017 
α2MC -0.3880 -0.3491 -0.4667 0.0249 -0.1738 
α2EC 0.4620 0.2595 0.2076 0.7297 0.4655 
β2FAN -0.5182 -0.2337 -0.3480 -0.4008 -0.4945 
β2LPC -0.1838 -0.3553 -0.3426 -0.5244 -0.4493 
β2HPC -0.1618 -0.3120 -0.3185 -0.4837 -0.4220 
β2BD 0.2767 0.5694 0.6579 0.3802 0.6202 
β2HPT 0.3069 0.2591 0.3355 0.0683 0.2941 
β2LPT -0.5070 -0.3638 -0.3993 -0.5360 -0.5222 
β2MC 0.4625 0.4057 0.4521 0.9271 0.6903 
β2EC 0.3249 0.0307 -0.0371 0.5690 0.2834 
θ2 -2.1239 -0.4895 -0.8373 0.9959 -0.3599 
ρ2 3.5191 2.5124 2.206 2.4583 2.1749 

Second-order, third-order and fourth-order interaction parameters  
 θ1 2 3.2314a 3.2902 3.2318 2.9670
ρ12 -0.2101a -0.3290 -0.2453 -0.3603
θACROSS 1 -0.2081 -0.6137
θACROSS 2 -1.0284 -1.4850
θACROSS,1,2    0.9016b  0.5645 
θMODULAR,1,2     0.0547c -0.4831 
θMODULAR,ACROSS,1,2     -0.3487d 

Goodness-of-fit
G2  ✝  5243.00 4298.70 3705.60 4134.61 3670.23
df 5692 5690 5687 5687 5683

✝  G2 provided by statistical packages is incorrect because the unit of analysis is still the dyad rather than the group of dyads. We calculate G2 as follows 
(Fienberg and Wasserman 1981): 

G 2 = 2 yijk1l1k2l2
k1 ,l1 ,k2 ,l2

∑
i< j
∑ log(yijk1l1k2 l 2

/ y
∧

ijk1l1k 2l2
) = −2 w rsk1l1k2l2

log(w
∧

rsk1l1 k2l 2 /[GrGs ])
k1 ,l1,k2 ,l2

∑
r< s
∑ + w rrk1l1k2l2

log(w
∧

rrk1l1k2l2 /[Gr (Gr − 1)])
k1,l1,k2 ,l2

∑
r

∑ 

  
 

  
 

a: The unconstrained model against which significance of  θ1,2 was assessed is model 1. Hence, ∆G2 = 943.71, ∆df = 1, p < .001. Model 2 does not 
significantly improve its goodness-of-fit when the term ρ12 is added (∆G2 =0.59, ∆df = 1, hence p > 0.1) 
b: The unconstrained model against which the hypothesis (H1) is tested  includes second-order parameters with ACROSS (G2 =3719.18,  df = 5688). 
Hence, ∆G2 = 13.58, ∆df = 1, p < 0.001 
c: The unconstrained model against which the significance is assessed includes the second-order parameters with MODULAR (G2 = 4134.90,  df = 5688). 
Hence, ∆G2 = 0.29, ∆df = 1, p > 0.1 
d: The unconstrained model against which the hypothesis (H6) is tested includes second and third-order interaction terms with both ACROSS and 
MODULAR (G2 = 3706.68, df = 5684). Hence, ∆G2 = 36.45, ∆df = 1, p < .001) 
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Table B2. Results of Log-linear Analysis with Valued Design Interfaces 
 

Parameters 
 Model 1  

(Exchange) 
Model 2  

(Clustering) 
Model 3  

(Association) 
Model 4  

(Association 
across) 

Second order exchange parameters 
ρWEAK,2  2.0508 a 1.8575 -0.3786 -0.3099 

ρSTRONG,2  2.6590 a 2.2256 -0.5228 -0.4705 
Second-order interaction parameters with ACROSS  

θACROSS,WEAK    -0.8299 b -0.7179 0.0204 
θACROSS,STRONG   -1.3483 b -1.2106 -0.6157 

θACROSS,2    -1.2892 b -1.2596 -1.1904 
Second-order association parameters  

θWEAK,2    2.9187 c,c1 3.1348 
θSTRONG,2    3.5711 c,c1 3.6950 

Third-order interaction parameters with ACROSS 
θACROSS,WEAK,2     1.1398. d,d1 

θACROSS,STRONG,2     0.74.18 d,d1 
Goodness-of-fit 

G2  ✝   5399.20 4739.95 4515.25 4497.36 
df  8535 8532 8530 8528 

✝  G2 is determined as indicated in Table B1.  
a: The unconstrained model against which the significance is assessed is the independent model (equation B7) whose G2 

=6112.07, df = 8537.   Hence, ∆G2 =712.87,   ∆df = 2, p < 0.001 
b: The unconstrained model against which the significance is assessed is Model 1. Hence, ∆G2 = 659.25, ∆df = 3, p < 0.001 
c: The unconstrained model against which the significance is assessed is Model 2. Hence, ∆G2 = 224.70, ∆df = 2, p < 0.001 
c1: The model against which the significance of the parameters difference is assessed is a reduced model with a single 
association parameter, G2 = 4522.63, df = 8531. Hence, ∆G2 = 7.38, ∆df = 1, p < 0.01 
d: The unconstrained model against which the significance is assessed is Model 3. Hence, ∆G2 = 17.89, ∆df = 2, p < 0.001 
d1: The model against which the significance of the parameters difference is assessed is a reduced model with a single 
association parameter across boundaries, G2 = 4498.85, df = 8527. Hence, ∆G2 =1.49, ∆df = 1, p >0.1 
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Appendix C. Logit p* Statistical Modeling of the Alignment Matrix 

 

The general log-linear form of p* can be expressed as (Wasserman and Pattison, 1996): 

Pr(X = x) =
exp θ 'z(x){ }

κ(θ)
=

exp{θ1z1(x) + ...+ θnzn (x)}
κ(θ)

   (C1) 

where x is the observed matrix of the network of interest. The response variable is the probability of the 

observed x. θ is a vector of n model parameters and z(x) is the vector of the n explanatory variables. The θ  

parameters are unknown “regression-type” coefficients that must be estimated. The function κ(θ) is a constant 

that ensures a proper probability distribution (i.e., the sum of Pr(X=x) over all possible X is unity).  

The problem with this formulation is that the constant κ is very difficult to determine analytically and 

computationally for most networks (except for very small ones). Hence, a logit formulation for p* models that 

does not depend on the normalizing constant has been developed for single dichotomous relation networks 

(Strauss and Ikeda 1990, Wasserman and Pattison 1996). As a result, Wasserman and Pattison (1996) define the 

log of conditional odds as follows: 

ϖ ij = log
Pr(Xij =1 | Xij

c )
Pr(Xij = 0 | Xij

c )

 
 
 

 
 
 

= θ ' z(xij
+) − z(xij

− )[ ]= θ 'δ(xij )    (C2) 

This expression is discussed at length by Wasserman and Pattison (1996). Of interest is the term δ(xij), which is 

the vector of explanatory variables that surfaces when the tie ij changes from 1 to 0. As indicated by Wasserman 

and Pattison (1996, p. 407), “to specify a logit p* model, one chooses a priori a collection of network statistics 

that is supposed to affect the log odds of a tie being present to absent”. Hence, the model depends on the 

network effects that one believes to have a significant tendency of being present in the network. For each 

network effect (such as expansiveness, reciprocation, or transitivity), there is a corresponding network statistic 

and a corresponding explanatory variable in the logit model. It is important to emphasize that the explanatory 

variable is the change in the network statistic when the tie from element i to element j (Xij) changes from being 

present to absent. Wasserman and Pattison (1996) describe how by explicitly assuming a dependence structure 

between the ties in a network the independence dyad assumption is no longer needed. Extensions of the logit p* 

model for multivariate and valued relations are presented by Pattison and Wasserman (1999) and Robins et al. 

(1999), respectively.  

Having introduced the logit p* model for single dichotomous relation, our next task is to build specific 

members of the logit p* family to properly model our alignment matrix and test our hypotheses. We carry out 

this task in two stages. First, based on Pattison and Wasserman (1999), we rewrite equation (C2) for two binary 
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relations by considering the dichotomous random variable Xijm which records whether tie ij of type m is present. 

In our case, m=1 corresponds to design interfaces while m=2 corresponds to team interactions. With such 

models, we test hypotheses H1, H4, H5, and H6. We can express our logit p* for two binary relations as follows 

(Pattison and Wasserman 1999): 

ϖ ijm = log
Pr(Xijm =1 | Xijm

c )
Pr(Xijm = 0 | Xijm

c )

 
 
 

 
 
 

= θ ' z(xijm
+ ) − z(xijm

− )[ ]= θ 'δ(xijm )    (C3) 

In the second stage, we extend our formulation to incorporate the effects of design interface strength (to test 

hypotheses H2 and H3) based on Robins et al. (1999). When considering trichotomous design interfaces, our 

original Xijm array will have 1s and 2s for m=1. As a result, we need to transform our newly defined 

trichotomous Xijm array into a three-way binary array, Yij,m, in which the third dimension has three states (m=1w, 

m= 1s, and m= 2). That is, m=1w corresponds to WEAK design interfaces, while m=1s corresponds to STRONG 

design interfaces, and m=2 corresponds to team interactions. Hence, the transformation takes the following 

form: 

Yij,2 = Xij2    If Xij1 = 0, then Yij,1w = Yij,1s = 0  

If Xij1 = 1, then Yij,1w = 1 and Yij,1s is undefined 

If Xij1 = 2, then Yij,1s = 1 and Yij,1w is undefined 

As a result of such a transformation, we can write the logit p* model using our newly defined Yij,m which 

purposely excludes “response” variables for which Yij,m is undefined. Hence, we write the expression for the 

logit p* for the Yij,m array as follows: 

ϖ ij,m = log
Pr(Yij,m =1 |Yij,m

c )
Pr(Yij,m = 0 |Yij,m

c )

 
 
 

 
 
 

= γ ' z(yij,m
+ ) − z(yij,m

− )[ ]= γ 'δ(yij,m )   (C4) 

Additional References 

Strauss, D. and M. Ikeda. 1990. Pseudolikelihood estimation for social networks. J. Amer. Statist. Assoc. 85, 

204-212. 
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Table C1. Network effects included in logit p* models 
Network 

effect label 
Description Graphical 

configuration
Parameters Network statistic 

z(x) 
Dyadic effects 

Choice For m=1, propensity of components to 
have a design interface with others  
For m=2, propensity of teams to 
report interactions with others 

i j

 

θ1   θ2  Lm = Xij,m
ij
∑  

Reciprocation  
(or mutuality) 

Configurations in which ties ij and ji 
are both present for each network of 
type m 

i j

 
ρ1   ρ2 Mm = Xij ,m X ji,m

i< j
∑  

Triadic effects 

2-In-star  
(overall 
attractiveness) 

Configurations in which two separate 
ties are directed towards the same 
element. This effect captures the 
overall tendency for each element to 
attract ties of type m 

j k

i  
σI,1   σI,2 SI ,m = X ji,m Xki,m

i, j,k
∑  

2-Out-star  
(overall 
expansiveness) 

Configurations in which two separate 
ties are directed away from the same 
element. This effect captures the 
overall tendency for each element to 
generate ties of type m 

j k

i  
σO,1   σO,2 SO,m = Xij,m Xik,m

i, j,k
∑  

2-mixed-star Configurations in which a tie is 
directed away from an element to 
which another tie is directed to 

j k

i  
σM,1  σM,2 SM ,m = X ji,m Xik,m

i, j,k
∑  

Transitivity Configurations in which three 
elements form a transitive triad (such 
as ij, jk, and ik) of type m 

j k

i  
τ1    τ2 TT ,m = Xij,m X jk,m Xik,m

i, j,k
∑

Cyclicity Configurations in which three ties of 
type m form an intransitive cycle such 
as ij, jk, and ki 

j k

i

 
ζ1     ζ2 TC ,m = Xij ,m X jk,m Xki,m

i, j,k
∑

Bivariate effects 
Exchange Configurations in which a design 

interface is present and it is 
reciprocated by a team interaction, or 
vice versa 

i j

Design
interface

Team
interaction  

ρ12 M1,2 = Xij,1X ji,2
i< j
∑  

Association Configurations in which both design 
interface and team interactions are 
present 

i j

Design
interface

Team
interaction  

θ12 L1,2 = Xij ,1Xij ,2
ij
∑  

Indirect team 
interactions 

Configurations in which a transitive 
triad is formed by two subsequent 
team interactions with a design 
interface 

j k

i
Team

interaction

Team
interaction

Design
interface

 

τ221 T221 = Xij ,2X jk,2Xik,1
i, j ,k
∑  

Indirect design 
interfaces 

Configurations in which a transitive 
triad is formed by two subsequent 
design interfaces with a team 
interaction 

j k

i

Design
interface

Design
interface

Team
interaction

 

τ112 T112 = Xij ,1X jk,1Xik,2
i, j ,k
∑  
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 Table C2. Results of logit p* analysis (dichotomous relations) 

Params. Model 0 
Independent 

Model 1 
Assoc. 

Model 2 
Across 

Model 3 
Indirect 

Model 4 
Ind. Within 

Model 5 
Modular 

Model 6 
All 

Design interface effects 
θ1 -2.446 (91.259) -3.046 -2.490 -2.547 -1.703 -2.701 -1.877 
ρ1 3.246 (360.035) 2.871  2.846 2.826 2.735 2.819 2.711 
σI,1 021 (.890) .000  .002 -.029 -.028 .003 -.028 
σO,1 .020 (.754) -.017  -.015  .034 .043 -.013 .043 
σM,1 -.129 (35.304) -.084  -.074 -.086 -.090 -.072 -.089 
τ1 .267 (111.052) .262  .259 .283 .280 .259 .280 
ζ1 -.134 (3.903) -.176  -.195  -.171 -.147 -.192 -.144 

Team interaction effects 
θ2 -3.319(177.838) -4.178 -3.056 -3.020 -3.198 -3.753 -3.948 
ρ2 3.815 (362.516) 3.231 3.021 3.001 2.977 2.972 2.944 
σI,2 -.004 (.028) -.023  .000 -.081 -.088 .012  -.079 
σO,2 .063 (15.965) .090 .111  .139  .142  .121  .152  
σM,2 -.092 (27.383) -.072  -.045  -.037  -.033  -.038  -.029  
τ2 .334 (113.162) .249  .212  .229  .225  .212  .222  
ζ2 -.389 (20.849) -.366  -.421  -.392  -.439  -.408  -.442 

Alignment effects 
ρ12  -.242 (2.124) -.224 (1.740) -.242 (1.970) -.196 (1.282) -.198 (1.343)  -.166  (.900) 
θ12  2.769 

(329.614) 
1.917 

(46.185) 
2.121 

(54.088) 
2.203 

(56.673) 
1.807 

(22.092) 
2.227 

(29.711) 
Clustering effects and boundary effects (H1) 

θACROSS,1   -.803  
(9.864) 

-.860  
(10.522) 

-1.807 
(20.093) 

-.771  
(9.050) 

-1.738 
(18.194) 

θACROSS,2   -1.895 
(35.314) 

-1.908 
(35.209) 

-1.659 
(15.251) 

-1.816 
(31.969) 

-1.462 
(11.508) 

θACROSS,12   1.013 
(10.681) 

1.077 
(11.721) 

.977  
(9.315) 

1.375 
(11.924) 

1.265  
(8.937) 

Effects of indirect team interactions and indirect design interfaces (H4, H5)  
τ221    -.004  

(.004) 
-.004  
(.004) 

 .000  
(.000) 

τ112    -.082 (2.732) -.061 (1.490)  -.059 (1.392)
τWITHIN,221     .228  

(5.746) 
 .258  

(7.183) 
τWITHIN,112     -.330   

(11.809) 
 -.337 

(12.004) 
Effects between modular systems (H6) 

θMOD,1      .230 (1.359) .196 (.941) 
θMOD,2      .681 (6.866) .701 (7.034) 
θMOD,12      .117  (0.086) -.089 (.045) 

θACR,MOD,1,2      -.749 (3.003) -.687 (2.283)
N. Params. 14 16 19 23 25 23 29 

GPL
2 2451.659 2021.192 1984.473 1955.779 1944.521 1974.203 1934.936 

WaldPL statistics are shown between parentheses. For approximate statistical inference we compare WaldPL against χ2
. 

Hence, p < 0.1 if WaldPL > 2.706 
Models 3, 4 and 6 also include lower order parameters σI,12 andσO,12 . For models 4 and 6, we define WITHINij to capture 
whether tie ij is within boundaries. 
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Appendix D. Threats to Validity 

Although we have carefully studied the significance of some effects to explain the mismatches between 

design interfaces and team interactions, we have not included all potentially contributing factors. Of particular 

concern would be omitted factors that correlate with one or more of the independent variables included in our 

statistical models. We briefly discuss here the possible impact of two such effects: team interactions with system 

integration teams and design interface carry-over.  

We expect the effects of interactions with system integration teams (i.e., the last six teams in the team 

interaction matrix) to be insignificant because these teams interact with almost every other team in the 

organization. We found no significant evidence of indirect team interactions through system integration teams 

(Sosa 2000). This is consistent with our results which suggest that design teams tend to use indirect interactions 

to exchange technical information only within group boundaries.  

In cases of incremental innovation such as with derivative products, many design interfaces may not change 

from one generation of a product to the next. This “carry-over effect” could result in unaddressed design 

interfaces as long as the current organization “remembers” the state of those unchanged interfaces and needs no 

interaction to verify them. During follow-up data collection with the high-pressure turbine and low-pressure 

turbine design teams, we found that some unchanged design interfaces were still addressed by team interactions 

due to the high level of criticality of the interface and/or the presence of new design participants (Sosa 2000). 

Although we believe it an important factor to consider when planning team interactions, we do not expect carry-

over effects to significantly impact the significance of effects studied in this paper. 

 


