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Abstract

I present evidence from index options that the price of risk over the value of
the S&P 500 increases as the investment horizon becomes shorter. I show first
how these risk prices may be estimated from options data, by translating the
risk-neutral probabilities implied by options prices into physical probabilities
that must provide unbiased forecasts of the terminal outcome. The risk price can
be interpreted as the marginal investor’s effective risk aversion, and estimating
this value over different option-expiration horizons for the S&P, I find that
risk aversion is reliably higher for near-term outcomes than for longer-term
outcomes. It is difficult to reconcile these findings with leading macro–finance
models, and I discuss necessary conditions for any such rational model to
produce such a pattern. Models with dynamically inconsistent risk preferences,
however, are capable of straightforwardly producing the findings presented
here, and I discuss possible specifications of such models and their applicability
to related results from previous literature.
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1. Introduction

How do people assess risky outcomes at different horizons? This question is central to
understanding intertemporal choice in the face of risk, and it has accordingly received
much attention in the recent finance literature. Several recent papers, beginning with
van Binsbergen, Brandt, and Koijen (2012), have argued that the term structure of equity
returns is downward-sloping, with claims to near-term dividends (short-term dividend
strips) exhibiting larger risk premia than longer-horizon claims on average.1 Such a finding
may seem intuitive in light of the observed risk premium on value stocks, which tend
to have shorter-duration cash flows than growth stocks (Campbell and Vuolteenaho,
2004; Lettau and Wachter, 2007). But a downward-sloping equity term structure in fact
runs counter to the predictions of many leading equilibrium asset-pricing models, and
a subset of the recent literature has challenged the empirical finding on the grounds of
measurement-error and sample-selection issues.2

In this paper, I contribute to the evidence on risk pricing at different horizons by
focusing specifically on digital (or binary) options over the market index value at short
to medium horizons. I show how the market’s effective risk aversion over the terminal
index value may be estimated at varying horizons using these option prices, by translating
the risk-neutral probabilities implied by options prices into physical probabilities that
by definition provide unbiased forecasts of the terminal outcome. Then conducting such
estimation using S&P 500 index options, I find evidence consistent with a downward-
sloping term structure of risk prices, as the market’s effective risk aversion is reliably
higher for near-term outcomes than for longer-term outcomes. In particular, a statistic
interpretable as relative risk aversion is estimated to be around 15 at a one-week horizon,
but it decreases essentially monotonically to around 3 at a 12-week horizon.

The evidence I present extends previous findings along two dimensions. First, and
most importantly, I show that the declining term structure of risk prices for binary options
provides additional information on the source of the declining risk premium for dividend
strips found in previous literature. The risk premium for a dividend strip at a given
maturity depends on both risk preferences (roughly, the “price” of risk) and the data-
generating process for consumption and dividends (roughly, the “quantity” of risk). For
example, Hasler and Marfè (2016) show that a rare-disasters model extended to allow for
recoveries following a disaster is capable of producing a downward-sloping term structure

1In addition to van Binsbergen, Brandt, and Koijen (2012), see, among others, Binsbergen, Hueskes,
Koijen, and Vrugt (2013), Binsbergen and Koijen (2017), Gormsen (2021), and Weber (2018).

2See Boguth, Carlson, Fisher, and Simutin (2022), Bansal et al. (2021), and Song (2018).
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of risk premia on dividend strips.3 Meanwhile, by considering binary options over the
index value as in this paper, my finding of a downward-sloping term structure of risk
prices is more difficult to rationalize by appealing to features of the data-generating process
alone. Intuitively, considering binary options allows me to fix the riskiness of outcomes
across horizons on at least one dimension (in my case, the percent deviation in the index
across the two possible index-value outcomes).

Second, the use of index options data leads me to consider risk pricing at the short
end of the term structure. Previous literature has tended to focus on either medium- to
long-maturity pricing (see Footnote 1) or very long-term pricing, as in the case of Giglio,
Maggiori, and Stroebel (2015).4 In addition to providing new evidence for the shorter end
of the term structure, these short-term options have the further advantage that they allow
for risk-price estimation using the returns on buy-and-hold claims. This is in contrast
to much of the literature examining longer maturities, where holding-period returns
are used given the short time span of available observations. As discussed by Boguth,
Carlson, Fisher, and Simutin (2022), this leads to possibly biased inference in the presence
of measurement error, which is mitigated by using buy-and-hold returns, as done here.
Further, I can account directly for the possibility of measurement error by instrumenting
my main estimation equation with lagged risk-neutral probabilities, which I show does
not affect the estimated results.5

Summarizing my estimation procedure in more detail (but without the full formal
apparatus built up in Section 2), the key steps are as follows:

1. Options allow for bets over the future asset price, and thus the prices of these bets
can be transformed into a probability distribution over the price at expiration using
standard techniques.

2. This probability distribution (referred to as the risk-neutral distribution) can be trans-
formed into a set of conditional probabilities over binary outcomes — in particular,
the probability that the index return over a fixed horizon T will be A conditional on
it being either A or B — as in Augenblick and Lazarus (2022).

3. These conditional risk-neutral probabilities (for now, π∗
t at date t) are in general

3The intuition can be expressed with a simple example following Binsbergen et al. (2013). Consider a
disaster-and-recovery process such that if a disaster strikes consumption and dividends in period t + 1, then
those values are expected to fully recover in t + 2. As of time t, the one-period dividend strip is fully exposed
to the t + 1 disaster risk, whereas the two-period strip is not, and it accordingly commands a lower premium.

4One exception is Dew-Becker, Giglio, Le, and Rodriguez (2017), who document a declining term
structure of variance-risk prices over the first few monthly maturity horizons.

5See Boguth, Carlson, Fisher, and Simutin (2011) for an argument in favor of similar (though differently
specified) instrumentation in a related context.
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distorted relative to the true physical probabilities (πt) over the binary outcome given
the presence of risk aversion. In particular, it can be shown that there is a one-to-
one relationship between π∗

t and πt that depends only on the marginal investor’s
effective risk aversion over the binary (A vs. B) outcome.

4. The value πt is unobserved, but it must be an unbiased forecast of the terminal
outcome by definition. I can thus use the terminal outcomes themselves to estimate
the degree of risk aversion embedded in π∗

t such that the implied πt value has zero
average forecast error for that terminal outcome (at all possible values of π∗

t ).

5. Varying T − t (or fixing t = 0 and varying T) allows for such estimation at varying
horizons, holding fixed the binary return outcome.

The unbiased-forecast condition in step 4 can be estimated straightforwardly using the
generalized method of moments.

This estimation procedure is similar in spirit to that of Hansen and Jagannathan (1991),
who show how risk premia may be related to the variance of the SDF process. I am
essentially using the estimated option risk premia at different horizons to obtain an
estimate of the slope of the SDF across return states. Unlike in their setting, I obtain a
point estimate rather than a bound, which is an advantage of this option-pricing setting
since options allow me to condition on the terminal value itself. Bliss and Panigirtzoglou
(2004) conduct similar estimation in an option-pricing setting closer to mine, focusing on
average risk-aversion estimates and using stronger parametric testing assumptions, and
see also Aı̈t-Sahalia and Lo (1998) and Rosenberg and Engle (2002) for estimation using
yet-stronger assumptions on the underlying data-generating processes.

The proposed estimation method also resembles what some previous literature — see
Lichtenstein, Fischhoff, and Phillips (1977) for an early reference — has referred to as
“calibration,” where individual forecast rationality is tested (in cases where probabilistic
forecasts are directly observable) by testing whether, for example, a given event happens
30 percent of the time on average when a given forecaster gives that outcome a 30 percent
ex-ante probability of occurring. As Augenblick and Rabin (2021) note, this estimation is
extremely inefficient given that it occurs pointwise across the entire distribution of ex-ante
probability forecasts. In my case, I effectively integrate across the entire distribution of
ex-ante forecasts to obtain a single relevant moment condition at each horizon, which
again yields an estimate of the SDF slope across return states at different horizons (rather
than a test of rationality per se).

The question then becomes how to interpret the finding that risk aversion increases
as the investment horizon becomes shorter. I first derive a necessary condition under
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which such a finding would arise naturally in a fully rational framework: it must be the
case that risk aversion over the terminal return outcome decreases with marginal utility.
Since most standard models feature contemporaneous increases in marginal utility and
risk aversion during bad times, it is difficult (though not impossible) to reconcile my
empirical findings with such models. By contrast, models with dynamically inconsistent
risk preferences are capable of straightforwardly producing the findings I present. I
argue that such models may be interpreted as reduced-form versions of models in which
loss-averse agents narrowly frame the outcomes of individual gambles (see Barberis and
Huang, 2008; Rabin and Weizsäcker, 2009), and that my empirical evidence points in favor
of narrower framing at shorter horizons.

The remainder of the paper is organized as follows. Section 2 introduces the theoretical
framework and derives moment conditions for estimating risk prices over index returns
at varying horizons. Section 3 then describes the data and presents my main empirical
results, while Section 4 discusses their interpretation in the context of various theoretical
frameworks. Section 5 concludes. The Appendix contains additional technical material.

2. Framework for Estimation

I first lay out the theoretical framework used to guide the estimation procedure. The
setting, presented in Section 2.1, is a slightly simplified version of the framework presented
in Augenblick and Lazarus (2022); I relegate additional technical detail to Appendix A.1.
Section 2.2 then discusses the estimation procedure.

2.1. Theoretical Setting

Consider a discrete-time economy with time t ∈ {0, 1, 2, . . .}. Denote the ex-dividend
value of the market index by Vt. I will be concerned with the realization of uncertainty
over the value VT for some option expiration date T (or, more generally, some set of option
expiration dates {T}). Denote the set of possible terminal index values (or some subset
thereof) by VT ≡ {v1, v2, . . . , vJ},6 ordered such that v1 < v2 < . . . < vJ , and consider two
arbitrary adjacent members of this set, vj, vj+1. Denoting the physical or objective probability
measure by P,7 denote the time-t probability of the terminal index value being equal to vj,

6I treat the set of possible index values as discrete to avoid additional technicalities and notational
complication, but the analysis could be extended without loss to accommodate continuous state spaces.

7More formally, I assume a discrete probability space (Ω,F , P) with filtration F = {Ft}t∈N.
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conditional on being either vj or vj+1, by

πt,j ≡ Pt(VT = vj | VT ∈ {vj, vj+1}). (1)

Under the absence of arbitrage, there exists a strictly positive stochastic discount factor
(SDF) process {Mt} such that the time-t price of a claim to an arbitrary state-contingent
payoff XT is given by Et[(MT/Mt)XT], where E is the expectation under P. This implies
the existence of a risk-neutral measure P∗ such that the time-t price of the same payoff XT

can equivalently be written as E∗
t [XT]/R f

t,T, where E∗ is the expectation under P∗ and R f
t,T

is the (T − t)-period gross risk-free rate at date t. Define the risk-neutral analogue to the
conditional probability in (1) as

π∗
t,j ≡ P∗

t (VT = vj | VT ∈ {vj, vj+1}). (2)

This risk-neutral probability can be measured from the set of option prices on date t
expiring on date T with different strikes K, using standard results as first presented by
Breeden and Litzenberger (1978).8 It can be seen that

π∗
t,j =

Et[MT/Mt | VT = vj]

Et[MT/Mt | VT ∈ {vj, vj+1}]
πt,j. (3)

An odds-ratio transformation of this equation yields

π∗
t,j

1 − π∗
t,j

= ϕt,T,j
πt,j

1 − πt,j
, (4)

where ϕt,T,j ≡
Et[MT/Mt | VT = vj]

Et[MT/Mt | VT = vj+1]
.

The values {ϕt,T,j} will be the objects of interest in the empirical exploration below.
Intuitively, ϕt,T,j represents the price of risk over the bad (low-index-value) state relative
to the good state, as encoded in the slope of the SDF across the two states. In the case in
which a representative agent faces the consumption process {Ct} and has time-separable
consumption utility and rational expectations, this value becomes ϕt,T,j = Et[U′(CT) |VT =

vj]/Et[U′(CT) | VT = vj+1]. With the additional restriction that the representative agent
in fact has (indirect) utility over time-T wealth, with wealth equal to the market index
value, then Augenblick and Lazarus (2022, Proposition 6) show that relative risk aversion

8For concreteness, a European call option on the index with strike price K (where K ∈ K ⊆ R+) has
payoff XT,K = max{VT − K, 0}. As above, see Appendix A.1 for further details.
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γt,T,j ≡ −vjU′′(vj)/U′(vj) is given to a first order around vj by

γt,T,j =
ϕt,T,j − 1

(vj+1 − vj)/vj
. (5)

Relative risk aversion is proportional in this case to ϕt,T,j − 1, as is intuitive given that
this gives the percent decrease in marginal utility obtained by moving from the bad index
outcome to the good outcome. To obtain relative risk aversion, this change in marginal
utility must be normalized by the “consumption” increase in moving from the bad state to
the good state, as in the denominator of (5).

I will in particular be interested in how the price of risk ϕt,T,j changes on average with
the horizon T − t. Augenblick and Lazarus (2022) make the assumption, referred to there
as conditional transition independence, that ϕt,T,j is constant over t for fixed j and T. I do not
make such an assumption, and in fact one interpretation of the results below is that they
provide direct empirical tests of that assumption. I do, however, make two simplifying
assumptions as follows.

ASSUMPTION 1 (Scale Independence). For arbitrary pairs of index values (vj, vj+1) and
(vk, vk+1) for terminal date T, if vj+1/vj = vk/vk+1, then ϕt,T,j = ϕt,T,k. ∥

Given (5), this assumption can be interpreted as a constant-relative-risk-aversion assump-
tion.9 I will in fact assume that the set of possible terminal values VT is equally (propor-
tionally) spaced so that vj+1/vj = vk/vk+1 for all j, k, as can be enforced by construction in
the empirical implementation below. The value ϕt,T,j can accordingly be written as ϕt,T.
The following assumption then allows for additional simplification.

ASSUMPTION 2 (Horizon Dependence). The value ϕt,T depends only on the horizon T − t
for all dates and terminal dates, and accordingly write this vaue as ϕT−t. ∥

These two assumptions are made largely for the purposes of notational simplification
and so that I can pool estimates across state pairs and expiration dates below. (I could,
for example, instead simply define ϕT−t ≡ E[ϕt,T,j], where the average is taken over all
dates and state pairs, and make appropriate stationarity assumptions so that the GMM
procedure below provides a meaningful estimate of such an average.)

9The approximate constancy of the scale of the equity risk premium in the U.S. (see, for example,
Caballero, Farhi, and Gourinchas, 2017, and Martin, 2017) can be taken as indirect evidence in favor of such
scale independence, and see Campbell (2018) for further discussion.
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2.2. Estimation of Horizon-Dependent Risk Pricing

2.2.1. Moment Condition

As discussed after equation (2), option prices allow for essentially direct observation of
risk-neutral probabilities (up to issues of measurement error, to be discussed below). But
physical probabilities are unobservable, yielding a continuum of possible solutions to
equation (4), the mapping between physical and risk-neutral probabilities. A rewriting of
that equation, however, makes clear how ϕT−t may nonetheless be estimated consistently
in the data. First, rearrange that equation (applying Assumptions 1–2) as

πt,j =
π∗

t,j

π∗
t,j + ϕT−t(1 − π∗

t,j)
. (6)

Since πt,j = Et[1{VT = vj} | VT ∈ {vj, vj+1}] by definition, we have

Et

[
1{VT = vj} −

π∗
t,j

π∗
t,j + ϕT−t(1 − π∗

t,j)

∣∣∣∣∣ VT ∈ {vj, vj+1}
]
= 0. (7)

Note that the random variable 1{VT = vj} is observable as of date T, as it simply
indexes whether the terminal index value is equal to vj. Thus every value in (7) is in
principle observable aside from πT−t, so applying the law of iterated expectations to this
equation yields a nonlinear moment condition for ϕT−t that can be estimated using the
generalized method of moments (GMM).

Economically, what this moment condition entails is estimation of the price-of-risk
parameter needed to reconcile the ex-ante market forecast of the terminal outcome (as in
π∗

t,j) with the average outcomes themselves. One can see from (6) that in general, given the
ordering vj < vj+1 so that ϕT−t is likely greater than 1 in the presence of risk aversion,10

it is the case that π∗
t,j > πt,j; given my labeling, π∗

t,j is the risk-neutral probability for
the “bad” state, which in general will be higher than the true physical probability of that
state occurring given the insurance value embedded in a contract that pays off in a bad
state of the world. That insurance value is indexed exactly by the value ϕT−t, and the
moment condition implied by (7) simply uses the insight that one can infer that insurance
value by setting ϕT−t such that the ex-post forecast errors between the implied πt,j and

10The “risk-aversion puzzle” documented by Jackwerth (2000) possibly confounds this general economic
intuition, though see Chabi-Yo, Garcia, and Renault (2008) and Linn, Shive, and Shumway (2018) for evidence
that this finding is not robust to proper conditioning on other date-t variables. Following these latter papers,
it will be the case in my reported results that I do not observe any such risk-aversion puzzle, as my point
estimates all indicate that ϕT−t > 1.
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the observed 1{VT = vj} must be mean-zero. Since these forecast errors are orthogonal to
date-t information by definition, there are no endogeneity-related concerns.11 The data
then provides quasi-experimental variation in the horizon T − t, as I can observe repeated
iterations of (7) for different forecast horizons with no ex-ante distinction between the
data-generating processes on these different dates, allowing for estimation of ϕT−t across
different horizons.

2.2.2. Measurement Error and an Implementable Orthogonality Condition

One possible concern with such estimation is the likelihood of price measurement er-
ror affecting the measured risk-neutral probabilities in (7) given, for example, market
microstructure noise. Unlike in the case of Augenblick and Lazarus (2022), the GMM
framework used here allows for me to account directly for this noise without needing to
estimate its magnitude separately. First, assume that the observed conditional risk-neutral
belief π̂∗

t,j is measured with additive error with respect to the true value π∗
t,j used in (7):

π̂∗
t,j = π∗

t,j + ϵt,j, (8)

where E[ϵt+k,j π∗
t+k′,j | VT ∈ {vj, vj+1}] = 0 for all k, k′, and ϵt,j follows an MA(q) for some

value q. (This is a slight relaxation of the assumptions used for the noise process in
Augenblick and Lazarus, 2022, where it is effectively assumed that ϵt,j follows an MA(0).)
It is shown in Appendix A.2 that the observed analogue of the second term in (7) is given
by

π̂∗
t,j

π̂∗
t,j + ϕT−t(1 − π̂∗

t,j)
=

π∗
t,j

π∗
t,j + ϕT−t(1 − π∗

t,j)
+ ϵt,j +O

((
ϵt,j + (ϕT−t − 1)

)2
)

︸ ︷︷ ︸
higher-order terms

(9)

as ϵt,j → 0 and ϕT−t → 1,12 where the latter limit ϕT−t = 1 corresponds to the case of
risk-neutrality as seen in (4).

Thus equation (7) can be re-expressed up to higher-order terms as

Et

[
1{VT = vj} −

π̂∗
t,j

π̂∗
t,j + ϕT−t(1 − π̂∗

t,j)

∣∣∣∣∣ VT ∈ {vj, vj+1}
]
= −ϵt,j. (10)

11If, however, the market systematically mis-forecasts future outcomes in one particular direction, then
this will affect the estimated ϕT−t values, as these departures from rationality are embedded in the SDF
sequence by construction. I discuss this possibility after presenting the empirical results below.

12More formally, one may write the remainder term as O((∥ϵt,j∥ + (ϕT−t − 1))2) as ∥ϵt,j∥ → 0 and
ϕT−t → 1, where ∥ϵt,j∥ indexes the bounds on ϵt,j.
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The risk-neutral probabilities used on the left side of this equation are now the observable
values (inclusive of noise, unlike the ideal values used in (4)). Since ϵt,j is assumed to
follow an MA(q), I can then form a set of unconditional moments by instrumenting using
lagged values of π̂∗

t,j, for any lags greater than q.

That is, defining the N-dimensional instrument vector

Zt,j ≡


π̂∗

t−q−1,j
...

π̂∗
t−q,j


for some q > q, I can then obtain the time-unconditional orthogonality condition

E

[ (
1{VT = vj} −

π̂∗
t,j

π̂∗
t,j + ϕT−t(1 − π̂∗

t,j)

)
Zt,j

∣∣∣∣∣ VT ∈ {vj, vj+1}
]
= 0,

or, using the definition of the conditional expectation,

E

[(
1{VT = vj} −

π̂∗
t,j

π̂∗
t,j + ϕT−t(1 − π̂∗

t,j)
1
{

VT ∈ {vj, vj+1}
})

Zt,j

]
= 0. (11)

This unconditional moment restriction is now amenable to empirical estimation. Note from
(10) that the instrument Zt = 1 would in fact yield unbiased estimates of the parameter
ϕT−t. But it is advantageous to use lagged-value instruments given both (a) the efficiency
gains from doing so (Hayashi and Sims, 1983; Hansen, 1985), and (b) the fact that they
allow for overidentification tests for the joint hypothesis that (7) and (8) are correctly
specified.

The moment condition (11) can then be estimated over many expiration dates T,
horizons T − t, and state pairs j. In particular, to account explicitly for the latter, denote a
date-T-observable M-dimensional data vector by Xt,T, and define the function h : RM ×
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R → R(J−1)·N as

h(Xt,T, ϕT−t) =



(
1{VT = v1} −

π̂∗
t,1

π̂∗
t,1+ϕT−t(1−π̂∗

t,1)
1 {VT ∈ {v1, v2}}

)
−→
1

...

(
1{VT = vJ−1} −

π̂∗
t,J−1

π̂∗
t,J−1+ϕT−t(1−π̂∗

t,J−1)
1 {VT ∈ {vJ−1, vJ}}

)
−→
1


,

where
−→
1 is an N-vector of ones. Define the full instrument vector Zt = (Z′

t,1, · · · , Z′
t,J−1)

′.
Then the moment condition from which I can estimate ϕT−t for a given horizon T − t is

E
[

h(Xt,T, ϕT−t)
′ Zt

]
= 0. (12)

The expectation is taken over all pairs t = τ1, T = τ2 such that τ2 − τ1 = κ, in order to
identify ϕκ. One can then stack the moment condition in (12) for values of κ = 1, 2, . . ., to
obtain horizon-dependent risk-price estimates, as I do in the estimation below.

3. Empirical Estimation and Main Results

3.1. Data Description

As in Augenblick and Lazarus (2022), I use S&P 500 index options data from the Option-
Metrics database, which lists end-of-day bid and ask prices for European options on the
index value over the sample January 1996–December 2018. This yields data for 5,537
trading dates and 991 expiration dates. I drop any options with bid prices of zero (or
less than zero), with Black–Scholes implied volatility of greater than 100 percent, or with
greater than 12 weeks to maturity (given the relative lack of observations and statistical
power beyond this maturity), and calculate each option’s end-of-day price as the midpoint
between its bid and ask prices.

For each observed expiration date T and associated initial option trading date 0, I
define the relevant (sub)set of possible terminal index values for the remainder of the
empirical analysis as

VT = (V0R f
0,T) exp

({
[−0.10,−0.08), [−0.08,−0.06), . . . , [0.06, 0.08), [0.08, 0.10)

})
. (13)
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In words, state v1 is said to be realized when the gross index-price appreciation, in excess
of the risk-free rate R f

0,T, is between exp(−0.1) and exp(−0.08), or equivalently when the
log excess return is between -10% and -8%, and analogously for v2, . . ., v10. Note that the
states are equally spaced, as required by Assumption 1. Further, I exclude all terminal
states more than 10% out of the money (where moneyness is relative to a zero excess
return) in either direction, in order to avoid excessive measurement error in the tails of the
distribution, but this does not require any assumption that the full set of possible terminal
states is itself finite.13

I again follow the procedure in Augenblick and Lazarus (2022), due originally to Malz
(2014) and building from the results of Breeden and Litzenberger (1978) discussed above
after equation (2), to obtain observed risk-neutral probabilities π̂∗

t,j (where the terminal
date T is suppressed for simplicity) from the relevant option-price cross-sections; see
Appendix A.3 for detail. Note again that these risk-neutral probabilities are conditional
on state j or j + 1 being realized.14 I can also observe the realization of 1{VT = vj} for all
pairs T, j directly from the S&P 500 index price data for days on which the option settles at
the end of the trading day, and I manually collect the settlement values for A.M.-settled
options for this calculation from the Chicago Board Options Exchange website.

I exclude any T, j pairs for which VT ̸∈ {vj, vj+1}, since their contribution to the sample
version of the moment condition in (11) is identically zero. This leaves 549 observations
(tuples (t, T, j)) at the one-day horizon, which declines monotonically to 222 observations
at the 60-day horizon (equivalently, the 12-week horizon), which motivates my focus on 1-
to 12-week horizons as above.

3.2. Estimation and Results

I conduct estimation using GMM for sample counterparts of the moment condition (12). I
make one further simplification relative to Assumptions 1–2 in this estimation: while I use
daily data in constructing my sample moments,15 I restrict ϕT−t to be fixed by weeks to
expiration. Thus, for T − t in days, I set ϕ1 = ϕ2 = . . . = ϕ5, and so on. In reporting results
below, I in fact refer to ϕ1 as the one-week-horizon estimated value, and so on through ϕ12

for 12 weeks.

I apply this restriction for two main reasons. First, it greatly reduces the computational

13Such an assumption is made, for example, by Ross (2015); see Borovička, Hansen, and Scheinkman
(2016) for a critical discussion.

14I also keep only conditional risk-neutral beliefs π̂∗
t,j for which the non-conditional terminal-state beliefs

satisfy π̂∗
t (VT = vj) + π̂∗

t (VT = vj) ⩾ 5%, in order to reduce measurement error.
15That is, I have 60 moment conditions of the form (12), one for each horizon T − t in days.
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burden in estimation to decrease the number of estimated parameters by a factor of five
(especially with respect to the bootstrap procedure used for inference), without sacrificing
the essential economic insights of the estimation. Second, it allows me to obtain overiden-
tifying restrictions even in the case where I use just one instrument (one lagged observed
risk-neutral probability) for each moment equation, as is the case in my baseline estimation
below.16

In my baseline estimation, I use the five-day-lagged observed risk-neutral probability
π̂∗

t−5,j as an instrument in the moment equation for π̂∗
t,j; following the discussion in

Section 2.2.2, this is equivalent to assuming an MA(4) measurement-noise process and
setting q = q + 1 = 5, and I can directly test this assumption by examining the J -statistic
arising from GMM estimation. I have experimented as well with a wide range of different
lagged values as instruments (as well as the case in which no instrument is used); in
all these cases, the estimates exhibit essentially identical patterns to those shown in the
baseline case in this section, with risk prices declining significantly by horizon, and those
results are available upon request. Details of my estimation procedure, as well as my
method of inference for the purpose of constructing confidence intervals, can be found in
Appendix A.4.

Figure 1 shows the main estimation results for ϕκ by week, along with pointwise 95%
confidence intervals. I show the raw values ϕ̂κ, though the “price of risk” should in fact
be thought of as ϕ̂κ − 1, given that ϕκ = 1 corresponds to the case of risk neutrality and
rational expectations, as can be seen in (4). This case is shown with a dotted line in the
figure.

We can see immediately a clear downward-sloping pattern of risk-price estimates as
the horizon increases, at least until about the six-week point, beyond which the values
are insignificantly different from 1. To give a sense of the economic magnitudes implied
by these estimates, note from equation (5) that we can interpret (ϕκ − 1) × 50 as the
coefficient of relative risk aversion for an agent with utility over the index level itself,
where the multiple 50 arises because I am using two-percentage-point bins as in (13) so
that (vj+1 − vj)/vj = 0.02. This yields point estimates for relative risk aversion of 14.7
at the one-week horizon (95 percent confidence interval [10.4, 18.9]), 9.5 at the two-week
horizon (CI [6.4, 12.6]), down to 3.4 at the 12-week horizon (CI [0.1, 6.6]). The J -statistic
resulting from this estimation has a p-value of 0.30, indicating little evidence against
the joint hypothesis that (7) and (8) are correctly specified, with the noise process in (8)

16In addition, as shown by Plagborg-Møller (2016, Chapter 3), given that we have a priori reasons to
believe that the prices of risk are smooth across horizons, there may be mean-squared-error benefits to
imposing this smoothness, as I do here in a particularly simple way by pooling estimates across days by
week to expiration.
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Figure 1: Estimates of Risk Prices by Horizon
Estimation by Two-Step GMM with Five-Day-Lag Instrument
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Notes: Point estimates are constructed using two-step GMM, using the five-day-lagged observation as an
instrument, on the sample counterparts of the moment conditions in equation (12) in order to minimize
forecast error. The price of risk parameter is constrained to be equal for all days within a given weekly horizon
to expiration. Error bars show 95% confidence intervals, constructed using procedure in Appendix A.4. See
that appendix for further details.

following an MA(q), 0 ⩽ q ⩽ 4, as assumed in my estimation.17

In order to more formally assess whether the downward slope by horizon in Figure 1 is
in fact a statistically robust finding across horizons, I estimate the following regression:

ϕ̂κ = α + β κ + εκ. (14)

That is, I run a regression of the estimated risk prices on a constant and a “horizon trend” κ,
testing whether the trend β is significantly different than zero. For inference I use the block
bootstrap discussed in Appendix A.4: I re-estimate ϕκ on 500 redrawn bootstrap samples,

17Further, none of the J -statistics across the robustness checks I have conducted (available upon request)
reject that joint hypothesis at any conventional significance level. For simplicity, these p-values are con-
structed using asymptotic χ2 critical values as originally developed by Hansen (1982) and applied in Hansen
and Singleton (1982), and which may be problematic in time-series contexts; see, e.g., Hall and Horowitz
(1996), Sun and Kim (2012), Lazarus, Lewis, and Stock (2021). As documented in those papers, however,
overrejection tends to be the issue when using χ2 critical values, so the fact that I am not rejecting the null
suggests that this concern is not binding in the current setting.
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rerun the regression (14) within each of these samples, and then calculate the distribution
of the statistic β̂∗ − β̂, where β̂∗ is the bootstrap estimate for β and β̂ is the estimate in the
original sample. Denoting by q∗(·) the quantile function of the bootstrap distribution of
β̂∗ − β̂, I then calculate the 95% confidence interval as [β̂ − q∗(0.975), β̂ − q∗(0.025)].

Conducting the above procedure, I obtain

β̂ = −0.018,

95 percent CI [−0.041,−0.007].

That is, the risk prices are estimated to decrease by roughly 0.02 by week to expiration (or,
in terms of relative risk aversion, roughly 1 per week), and this is estimated as significantly
different from zero in a two-sided 95 percent test. I thus conclude that risk pricing is
horizon-dependent, with greater prices of risk at short horizons, and the remainder of the
paper discusses how to interpret this finding.

4. Interpretation of Empirical Results

4.1. Rationalizing the Data in a Standard Framework

I begin by asking what features a standard, rational-expectations asset-pricing framework
would require in order to generate the finding documented in Section 3. For this purpose,
it is useful to consider a simple example. Assume a two-period horizon, T = 2, and
two possible terminal index values V2, denoted L, H, where L < H, with equal ex-ante
probabilities. The terminal index values are not perfect proxies for the representative
agent’s marginal utility and the SDF. In particular, assume that there are two possible SDF
realizations in each state, denoted as follows:

M2 =

{
aL with date-0 probability 0.5
bL with date-0 probability 0.5

}
if V2 = L,

M2 =

{
aH with date-0 probability 0.5
bH with date-0 probability 0.5

}
if V2 = H.

Normalize M0 = M1 = 1; this normalization is without loss of generality for deter-
mining conditional risk-neutral probabilities, since these depend only on Et[M2 | V2 =

L]/Et[M2 | V2 = H], as can be seen in (4).

The information and probability structure is illustrated graphically in Figure 2. I assume
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Figure 2: Resolution of Uncertainty in Example
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that as of date 1, there is no information revealed about whether the terminal index value
will be L or H, so that those probabilities stay at 0.5,18 but it is revealed what the SDF
realization will be conditional on each state being realized: the representative agent learns
either that aj will be realized if V2 = j is realized for j = L, H (i.e., aL in state L or aH in H),
or that bj will be realized if j is realized.

Since state L is the bad wealth state, set aL > aH, bL > bH, and we can label bj as the
bad marginal-utility state in either case (corresponding to, e.g., high stochastic volatility,
low long-run growth, lower surplus consumption in a model with habit formation), so
that bj > aj for j = L, H.

I can now ask under what conditions it would be the case that ϕ0 < E0[ϕ1], where, as
originally introduced in Section 2.1,

ϕt ≡
Et[M2 | VT = L]
Et[M2 | VT = H]

.

As can be seen from Figure 2, the condition ϕ0 < E0[ϕ1] can be stated as

ϕ0 =
aL + bL

aH + bH
<

1
2
aL

aH
+

1
2
bL

bH
= E0[ϕ1],

18This is an appropriate assumption given the finding in the previous section that risk aversion is higher
on average for each fixed value πt,j across the entire set of possible probabilities, though see the discussion
below in Footnote 19.
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which, under the normalization bj > aj for j = L, H, yields, after simplification,

aL

aH
>

bL

bH
.

That is, denoting ϕ1 at the upper node for t = 1 by ϕa, and similarly for the lower node by
ϕb, it must be the case that ϕa > ϕb.

Economically, what this requires is that risk aversion over the terminal index value
be higher when the agent receives information that times are good in the sense that the
part of marginal utility unrelated to the index return is expected to be low. The long-
horizon gamble on the good-state outcome must be a good hedge (relative to the bad-state
outcome) against bad intermediate marginal-utility news in order to generate a negative
risk premium for the holding-period return on this gamble. (Note that this must be the
case given that we observe increasing risk premia for such a gamble, held to maturity,
in the data as the horizon becomes shorter.) That is, when an agent receives bad news
about marginal utility, it must be the case that the relative price of the good-state gamble
increases, which occurs when ϕt decreases.19 Preliminary exploration indicates that this
intuition can be shown to hold in more general cases, and this will be an interesting topic
of future work on this subject.

The above condition is in general not met in leading representative-agent asset-pricing
models. As an example, Figure 3 plots average risk prices by monthly (not weekly) horizon,
as defined in the previous section, in the simulated long-run risks model of Bansal and
Yaron (2004). Using code from Pohl, Schmedders, and Wilms (2018), I solve the model
numerically using the calibration of Bansal and Yaron (2004, Case II) with stochastic
volatility.20 I then calculate average risk prices by months to expiration over 2,000,000
years of simulated monthly data. The risk prices are increasing very slightly by horizon,
though not enough to be visible given the scale of the y-axis (set to be equivalent to the
scale of Figure 1 for comparison).

Intuitively, when times are bad in the model, in the sense that marginal utility is high —
i.e., when either stochastic volatility is high or expected long-run consumption growth is
low — risk aversion over the terminal index value increases very slightly, violating the
requirement derived above for the declining term structure of risk prices. See Gormsen
(2021) for further discussion, as the requirement he derives to rationalize the cyclical

19This can also occur when the bad-state probability πt decreases relative to πt−1, which was assumed
away in this example, but again this requires bad news about marginal-utility growth to be concurrent with
good news about the return state.

20The solution uses projection methods and approximates expectations via quadrature in order to capture
higher-order effects. See Pohl, Schmedders, and Wilms (2018) for further details.
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Figure 3: Risk Prices by Horizon in the Long-Run Risks Model
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Notes: Risk prices are calculated as averages over 2,000,000 years of simulated monthly data, following the
formula in equation (4). The model and calibration are as given in Bansal and Yaron (2004), where I use their
Case II calibration. I solve the model numerically using the projection method of Pohl, Schmedders, and
Wilms (2018).

variation in the equity term structure is quite similar to the requirement derived here.

4.2. Dynamically Inconsistent Risk Preferences

Departing from the standard representative-agent frameworks above, I can now ask what
set of alternative assumptions could generate the patterns observed in the data. While
there are likely to be many such frameworks, perhaps the simplest way of explaining
the declining term structure of risk prices would be to take the declining relative-risk-
aversion estimates at face value and assume that agents have different risk preferences
over outcomes at different horizons. This is in fact exactly the tack taken by Eisenbach and
Schmalz (2016) and Andries, Eisenbach, and Schmalz (2019), who motivate their approach
by appealing both to experimental evidence and the previous asset-market evidence on
downward-sloping risk premia.21

21Eisenbach and Schmalz (2016) include a review of experimental evidence of preference reversals as
the horizon to uncertainty resolution decreases, as individuals seem to become more risk-averse or anxious
about a lottery (or, in other settings, they get stage-fright on the day of a performance and regret having
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I briefly present a version of the model considered by Andries, Eisenbach, and Schmalz
(2019), who generalize Epstein–Zin (1989) preferences to include horizon-dependent risk
aversion. Utility Vt is given by

Vt =

(1 − δ)C
1− 1

ψ

t + δEt

[
Ṽ1−γ1

t+1

] 1− 1
ψ

1−γ1


1

1− 1
ψ

, (15)

where continuation utility Ṽt+1 follows the recursion

Ṽt+1 =

(1 − δ)C
1− 1

ψ

t+1 + δEt

[
Ṽ1−γ2

t+2

] 1− 1
ψ

1−γ2


1

1− 1
ψ

. (16)

The case γ1 = γ2 is the usual Epstein–Zin (1989) case, with no dynamic inconsistency.
When γ1 > γ2, however, risk aversion over near-term outcomes is greater than over
distant-horizon outcomes. (This can be generalized to incorporate many different values
over different horizons.) Andries, Eisenbach, and Schmalz (2019) show that regardless of
the level of sophistication of the marginal (or representative) investor with respect to her
dynamically inconsistent risk preferences, this leads to a declining term structure of equity
risk premia.

The above specification is semi-reduced-form in the sense that it simply takes as given
that risk preferences differ by horizon. But one way of rationalizing this framework in
the context of pre-existing work on non-standard risk preferences may be to tie it to the
literature on narrow framing and the equity premium begun by Benartzi and Thaler (1995).
They propose that equity premia are higher than justified solely by the exposure of equity
to consumption risk, because people frame lotteries narrowly (so they experience gains
and losses with respect to equity returns themselves) and are loss-averse. See also Barberis
and Huang (2008) for a more recent survey, as well as Rabin and Weizsäcker (2009) for
a decision-making formalization of the earlier evidence and discussion of Tversky and
Kahneman (1981).

One possible downside of the narrow-framing approach is that there are no clear guide-
lines as to what choice problems are narrowly framed.22 For example, do individuals
narrowly frame every individual-stock-level investment decision, over all horizons? The
empirical results in the previous section suggest that this may not be the case: one inter-

volunteered to perform). See also Loewenstein (1996) for an earlier review across multiple domains.
22This relates to the literature discussing “free parameters” in behavioral models; see, for example,

Wachter (2002) for a discussion.
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pretation of that evidence is that near-term, salient outcomes are narrowly framed, which
in combination with loss aversion causes effective short-horizon risk aversion to increase,
at least for the overall equity index.23 This empirical approach can accordingly be thought
of as a disciplining mechanism for the specification of narrow framing, and perhaps leads
toward models of dynamically inconsistent risk preferences as discussed above.

4.3. Preferences over the Timing of Resolution of Uncertainty

The above evidence that near-term outcomes command higher risk premia may seem to
point in favor of a preference for late resolution of uncertainty, following the definition
of Kreps and Porteus (1978). This is not quite the case; the near-term outcomes are both
revealed and paid in the near term, whereas a test of preferences over the timing of the
resolution of uncertainty would require a comparison of outcomes paying out at the same
horizon, but with the payout value revealed early in some cases.24

There are nonetheless possible tests that do speak more directly to this preference. I
have not yet implemented these tests in the data, so I relegate the details to Appendix A.5,
but the intuition can be summarized briefly here. One can construct dynamic strategies that
generate early-resolution lotteries with late payoffs, simply by reinvesting the proceeds of
an early-resolving (and early-paying) option in a risk-free security that then pays off at the
desired (late) horizon. If the risk-free rate is uncorrelated with the index (and therefore
with the payoff of the early-resolving option), then this strategy is effectively as risky
as a strategy without the risk-free reinvestment, allowing the results above to speak to
the preference over the resolution of uncertainty. But in the case that the risk-free rate is
correlated with the payoff of the early-resolving option — for purposes of intuition, assume
the correlation is positive — then this increases the riskiness of the early-resolution/late-
payoff strategy relative to the late-resolution/late-payoff strategy, if one maintains the
same bins (which index the scale of the relative lottery payoffs) across option horizons as
in (13). It is thus as of yet unclear whether the options data suggests a preference for the
timing of uncertainty resolution in either direction.

23Note, however, that this is captured only at a high level and in reduced form in the specification of
Andries, Eisenbach, and Schmalz (2019) presented above, given that their preferences are not themselves
narrowly framed, and they are not loss-averse as they are continuously differentiable everywhere.

24Formally, Andries, Eisenbach, and Schmalz (2019) show that risk preferences can be dynamically
inconsistent in the manner above, with γ1 > γ2 in (15)-(16), in such a way as to nonetheless not yield any
clear prediction on the preference over the timing of resolution of uncertainty, as shown in their equation
(5). Nonetheless, their Corollary 1 shows that this horizon-dependent risk aversion unambiguously lowers
the timing premium relative to the benchmark case in which γ1 = γ2, even though the sign of the timing
premium is ambiguous.
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5. Conclusion

This paper presents evidence in favor of a declining term structure of risk prices with
respect to gambles over small changes in the market index value over short to medium
horizons; equivalently, it appears as if the market is more risk-averse with respect to
short-horizon uncertainty over the index value than longer-horizon uncertainty. While I
have discussed some classes of interpretations of the data, arguing here in favor of models
with dynamically inconsistent risk preferences, further work remains to be done with
respect to other classes of interpretations. It remains to be seen whether, for example,
certain heterogeneous-agent models may be capable of rationalizing these findings.

The findings here may speak as well to the interpretation of the findings of Augenblick
and Lazarus (2022), who find evidence against the rational-expectations assumption in the
data when considering the volatility of the risk-neutral probability processes used here.
The current paper has said little about the rationality of forecasts: I use the definitional
unbiasedness property of physical probabilities to construct risk-price estimates, and those
risk-price estimates can in theory incorporate both the effects of risk aversion and any
average forecast errors for the marginal investor. But the fact that the risk-price estimates
imply quite reasonable risk-aversion values (even at short horizons) seems to indicate
that such forecasts are closed to unbiased on average,25 though this of course does not
preclude the excess volatility in conditional forecasts found by Augenblick and Lazarus
(2022). Additional work remains to be done in understanding the two sets of results in a
unified framework.

25Further, these reasonable risk-aversion estimates stand in contrast to the equity premium puzzle
observed when considering the equity-index value itself, as documented by Mehra and Prescott (1985) and
Hansen and Jagannathan (1991). But as discussed by Aı̈t-Sahalia and Lo (2000) and Bliss and Panigirtzoglou
(2004), risk-aversion estimates obtained from option-price-based forecasts are in fact often much more
reasonable than the values obtained in the equity-premium-puzzle literature, so my results add further
evidence in favor of this pattern, particularly in the middle of the index-return distribution.
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Appendix: Additional Technical Material

A.1. Theoretical Framework: Technical Details

This appendix section presents the technical detail underlying the framework introduced in
Section 2.1, largely following the setup in Augenblick and Lazarus (2022), which includes
additional discussion.

I consider a discrete probability space (Ω,F , P) endowed with the filtration F =

{Ft}t∈N. A realization of the elementary state is denoted by ω ∈ Ω. I will be concerned
with the ex-dividend value of the market index, Vt : Ω → R+, on some option expiration
date T (or set of dates {T}); the subscript t will refer generally to Ft-adapted processes. A
European call option on the market index with strike price K has payoff XT,K = max{VT −
K, 0}, and denote its time-t price as qt,K. Assume without loss of generality that these
option prices are observable for some set of strike prices K ⊆ R+ beginning at date 0.

These option prices will be of interest for inferring a distribution over the change in
value of the market index from 0 to T, or equivalently, fixing the first trading date 0 and
F0, the value of the market index as of T. For notation, say that index state vj ∈ VT ⊂ R+

is realized for the market index as of date T if VT = vj, and I will consider an ordered
subset VT ⊆ VT, where VT ≡ {v1, v2, . . . , vJ}, and v1 < v2 < . . . < vJ . The measure
P : F → [0, 1] governs the objective or physical probabilities of these index states. The time-t
objective probability that the index realizes state vj at date T is

Pt(VT = vj) = ∑
ω : VT(ω)=vj

Pt(ω), (A.1)

where Pt(·) ≡ P(·|Ft) is the conditional probability.

The absence of arbitrage (assumed following the definition given by Campbell, 2018)
implies the existence of a strictly positive stochastic discount factor (SDF) or pricing kernel
process {Mt} (i.e., Mt : Ω → R++) such that the price St of a claim to an arbitrary state-
contingent payoff XT is given by

St(XT) = Et

[
MT

Mt
XT

]
, (A.2)

where Et[·] ≡ E[·|Ft], and we can initialize M0 = 1.

Define the risk-neutral measure P∗ with respect to the objective measure P according to
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the Radon-Nikodym derivative

dP∗

dP

∣∣∣∣
Ft

=
MT/Mt

Et[MT/Mt]
. (A.3)

From equation (A.2), the (T− t)-period gross risk-free rate is R f
t,T ≡ 1/St(1T) = 1/Et[MT/Mt],

where 1T refers to one unit of the numeraire delivered at T. Using this along with the
change of measure in (A.3), rewrite (A.2) as

St(XT) =
1

R f
t,T

E∗
t [XT], (A.4)

as stated in the text, and where E∗
t [·] is again the conditional expectation under P∗.

Now, using (A.1) and (A.3), the risk-neutral probability for index state vj is

P∗
t (VT = vj) =

Et[MT/Mt | VT = vj]

Et[MT/Mt]
Pt(VT = vj). (A.5)

The risk-neutral pricing equation (A.4) can then be used to show that the date-t schedule
of option prices {qt,K}K reveals the set of risk-neutral probabilities {P∗

t (VT = vj)}j, as
stated in the text. Assume for notational simplicity that the set of traded option strike prices
K coincides with VT, and denote Kj = vj for all j. We can then back out the risk-neutral
probabilities of interest from option prices as follows:

P∗
t (VT = vj) = R f

t,T

[
qt,Kj+1 − qt,Kj

Kj+1 − Kj
−

qt,Kj − qt,Kj−1

Kj − Kj−1

]
. (A.6)

Augenblick and Lazarus (2022, Appendix A) present a brief derivation of this result,
which follows directly from a discrete-state application of the classic result of Breeden and
Litzenberger (1978).

Then using the definitions of πt,j and π∗
t,j in equations (1) and (2), respectively, equa-

tion (3) in the text then follows immediately from (A.5).

A.2. Proof of Equation (9)

Under the assumption in equation (8), we have

π̂∗
t,j

π̂∗
t,j + ϕT−t(1 − π̂∗

t,j)
−

π∗
t,j

π∗
t,j + ϕT−t(1 − π∗

t,j)
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=
π∗

t,j + ϵt,j

π∗
t,j + ϵt,j + ϕT−t(1 − π∗

t,j − ϵt,j)
−

π∗
t,j

π∗
t,j + ϕT−t(1 − π∗

t,j)

=
ϵt,jϕT−t(

π∗
t,j + ϕT−t(1 − π∗

t,j)
) (

ϵt,j(ϕT−t − 1) + π∗
t,j + ϕT−t(1 − π∗

t,j)
) .

A Taylor expansion of this expression in ϵt,j and ϕT−t around the point (∥ϵt,j∥, ϕT−t) =

(0, 1), with notation as discussed in Footnote 12, yields

π̂∗
t,j

π̂∗
t,j + ϕT−t(1 − π̂∗

t,j)
−

π∗
t,j

π∗
t,j + ϕT−t(1 − π∗

t,j)

= ϵt,j +O
(
∥ϵt,j∥2

)
+
(
(2π∗

t,j − 1)ϵt,j +O
(
∥ϵt,j∥2

))
(ϕT−t − 1) +O

(
(ϕT−t − 1)2

)
= ϵt,j +O

(
(∥ϵt,j∥+ (ϕT−t − 1))2

)
,

as stated.

A.3. Measurement of Risk-Neutral Distribution

I briefly describe the measurement procedure here, and again see Augenblick and Lazarus
(2022) for further detail and discussion. In addition to the option prices described in the
text, OptionMetrics reports a risk-free zero-coupon yield curve across multiple maturities,
as well as the underlying S&P 500 index price. I use the risk-free rate at the relevant
horizon as an input in the measurement of risk-neutral beliefs, and I use the index price to
observe the ex-post index state for each option expiration date T and assign probability 1
to that state on date T.26

I then measure the risk-neutral distribution for returns by applying the following steps
to the observed option-price cross-sections, following Malz (2014):

1. Transform the collections of call- and put-price cross-sections (for example, for call
options on date t for expiration date T, this set is {qt,K}K∈K) into Black–Scholes implied
volatilities.

26The settlement value for many S&P 500 options in fact reflects the opening (rather than closing) price
on the expiration date; for example, the payoff for the traditional monthly S&P 500 option contract expiring
on the third Friday of each month depends on the opening S&P index value on that third Friday morning,
while the payoff for the more recently introduced end-of-month option contract depends on the closing S&P
index value on the last business day of the month. See http://www.cboe.com/SPX for further detail. For
my dataset, 441 of the 685 option expiration dates correspond to A.M.-settled options. To obtain the ex-post
return state for A.M.-settled options, I hand-collect the option settlement values for these expiration dates
from the Chicago Board Options Exchange (CBOE) website, which posts these values.
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2. Fit a cubic spline to interpolate a smooth function between the points in the resulting
implied-volatility schedule for each trading date–expiration date pair (separately for the
call- and put-option values). The spline is clamped: its boundary conditions are that the
slope of the spline at the minimum and maximum values of the knot points {qt,K}K∈K
is equal to 0; further, to extrapolate outside of the range of observed knot points, set
the implied volatilities for those unobserved strikes equal to the implied volatility for
the closest observed strike (i.e., maintain a slope of 0 for the implied-volatility schedule
outside the observed range).

3. Evaluate this spline (separately for calls and puts) at 1,901 strike prices, for S&P in-
dex values ranging from 200 to 4,000 (so that the evaluation strike prices are K =

200, 202, . . . , 4000), to obtain a set of implied-volatility values across this fine grid of
possible strike prices.27

4. Average the separate call- and put-option implied-volatility values from the previous
step at each strike for each (t, T) pair, to obtain a single implied-volatility schedule
across strikes for each such (t, T) pair. (Given put-call parity, the implied-volatility
values for calls and puts should in theory be equal at a given strike; in practice, they
tend to differ slightly given market microstructure issues, so using the mean of the two
values is a simple way of averaging out the effects of such idiosyncratic noise. This step
is the only point of distinction between our procedure and that of Malz, who assumes
access to a single implied-volatility schedule and thus does not consider call and put
prices separately.)

5. Invert the single resulting smoothed 1,901-point implied-volatility schedule for each
(t, T) pair to transform these values back into call prices, and denote this fitted call-price
schedule as {q̂t,K}K∈{200,202,...,4000}.

6. Calculate the risk-neutral CDF for the date-T index value at strike price K using
P∗

t (VT < K) = 1 + R f
t,T(q̂t,K − q̂t,K−2)/2, following equation (A.6). (The index-value

distance between the two adjacent strikes is equal to 2 given that I evaluate the spline at
intervals of two index points.)

7. For clarity, temporarily index the set of expiration dates by the subscript i, so that that
set is given by {Ti}i (rather than the generic {T}). Defining Vi,j,max and Vi,j,min to be the
date-Ti index values corresponding to the upper and lower bounds, respectively, of the

27This set of ∼1,900 strike prices is on average about 20 times larger than the set of strikes for which
there are prices in the data, as there is a mean of roughly 94 observed values in a typical set {qt,K}K∈K (and
similarly for put options).
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bin defining index state vj,28 I then calculate the risk-neutral probability that state vj

will be realized at date Ti, referred to with slight notational abuse as P∗
t (vj), as

P∗
t (sj) = P∗

t (VTi < Vi,j,max)− P∗
t (VTi < Vi,j,min),

where the CDF values are taken from the previous step using linear interpolation
between whichever two strike values K ∈ {200, 202, . . . , 4000} are nearest to Vi,j,max and
Vi,j,min, respectively.

Note that I transform the option prices into Black–Scholes implied volatilities simply for
purposes of fitting the cubic spline and then transform these implied volatilities back
into call prices before calculating risk-neutral beliefs, so this procedure does not require
the Black–Scholes model to be correct.29 The clamped cubic spline proposed by Malz
(2014), and used in step 2 above, is chosen to ensure that the call-price schedule obtained
in step 5 is decreasing and convex with respect to the strike price outside the range of
observable strike prices, as required under the restriction of no arbitrage. Violations of
these restrictions inside the range of observable strikes, as observed infrequently in the data,
generate negative implied risk-neutral probabilities; in any case that this occurs, I set the
associated risk-neutral probability to 0 and renormalize the remainder of the distribution.

A.4. Details on GMM Estimation and Inference Procedure

I construct risk-price point estimates by horizon, as reported in Figure 1, using two-step
GMM. I use the five-day-lagged observation as an instrument, and conduct estimation
on the sample counterparts of the moment conditions in equation (12). The price of
risk parameter is constrained to be equal for all days within a given weekly horizon to
expiration. The first-stage weight matrix is Z′Z/T , where Z is the data matrix for the
instruments and T is the number of observations. The second-stage weight matrix is then
clustered by blocks of 8 time-adjacent observations.

This weight-matrix clustering is designed to match the inference procedure for estimat-
ing equation (14), which is a block bootstrap with 8-observation (roughly 2-month) blocks.
This bootstrap proceeds by re-estimating ϕκ on 500 redrawn bootstrap samples, rerunning
the regression (14) within each of these samples, and then calculating the distribution of
the statistic β̂∗ − β̂, where β̂∗ is the bootstrap estimate for β and β̂ is the estimate in the
original sample. Denoting by q∗(·) the quantile function of the bootstrap distribution of

28That is, formally, Vi,j,min = R f
0i ,Ti

VT0 exp(sj − 0.01) and Vi,j,max = R f
0i ,Ti

V0i exp(sj + 0.01).
29I conduct this transformation following Malz (2014), as well as much of the related literature.
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β̂∗ − β̂, I then calculate the 95% confidence interval as [β̂ − q∗(0.975), β̂ − q∗(0.025)]. This
follows the standard procedure for handling possible asymmetries in the finite-sample
distribution of β̂ − β; see, e.g., Hall (1988), Hansen (2022).

A.5. Tests for Preferences over the Timing of Resolution of Uncertainty

Consider a simple economy with two possible outcomes for the index value at each possible
date, again H and L. Consider an option with a date-T payoff of XH,T = 1{VT = H}
and date-t price qH,t, as well as the complementary low-state option with payoff XL,T =

1{VT = L} = 1 − XH,T and price qL,t. Assume for now that T = 1. One can construct an
early-resolving but late-paying gamble (where the payment horizon is T > 1) using the
following date-0 strategy:

1. Purchase y/(qL,0 + qH,0) units of the low-state option (which costs yqL,0/(qL,0 +

qH,0) = yπ∗
0 ), for a value y to be determined below.

2. Purchase a forward contract to invest the proceeds of the date-1 option payoff from
the previous step in the forward rate from t = 1 to T, denoted f0,1,T, conditional on
the date-1 state being L. Set y = 1/ f0,1,T in the previous step.

It can be seen that this strategy pays off 1 at date T if state L is revealed to be realized at
date 1, and 0 otherwise. While the forward contract in step 2 is not directly observable
in the data, its (average) price can be inferred using ex-post realizations of the risk-free
rate R f

1,T
in state L, using an uncovered interest parity–like argument. This thus in theory

allows for a test of preferences over the timing of resolution of uncertainty.
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A ÏT-SAHALIA, Y. AND A. W. LO (1998): “Nonparametric Estimation of State-Price Densities
Implicit in Financial Asset Prices,” Journal of Finance, 53, 499–547.

——— (2000): “Nonparametric Risk Management and Implied Risk Aversion,” Journal of Economet-
rics, 94, 9–51.

ANDRIES, M., T. M. EISENBACH, AND M. C. SCHMALZ (2019): “Horizon-Dependent Risk Aversion
and the Timing and Pricing of Uncertainty,” Federal Reserve Bank of New York Staff Report No. 703.

AUGENBLICK, N. AND E. LAZARUS (2022): “A New Test of Excess Movement in Asset Prices,”
Working Paper.

AUGENBLICK, N. AND M. RABIN (2021): “Belief Movement, Uncertainty Reduction, and Rational
Updating,” Quarterly Journal of Economics, 136, 933–985.

BANSAL, R., S. MILLER, D. SONG, AND A. YARON (2021): “The Term Structure of Equity Risk
Premia,” Journal of Financial Economics, 142, 1209–1228.

BANSAL, R. AND A. YARON (2004): “Risks for the Long Run: A Potential Resolution of Asset
Pricing Puzzles,” Journal of Finance, 59, 1481–1509.

BARBERIS, N. AND M. HUANG (2008): “The Loss Aversion/Narrow Framing Approach to the
Equity Premium Puzzle,” in Handbook of the Equity Risk Premium, ed. by R. Mehra, Amsterdam:
Elsevier, chap. 6, 199–236.

BENARTZI, S. AND R. H. THALER (1995): “Myopic Loss Aversion and the Equity Premium Puzzle,”
Quarterly Journal of Economics, 110, 73–92.

VAN BINSBERGEN, J. H., M. BRANDT, AND R. KOIJEN (2012): “On the Timing and Pricing of
Dividends,” American Economic Review, 102, 1596–1618.

BINSBERGEN, J. V., W. HUESKES, R. KOIJEN, AND E. VRUGT (2013): “Equity Yields,” Journal of
Financial Economics, 110, 503–519.

BINSBERGEN, J. V. AND R. KOIJEN (2017): “The Term Structure of Returns: Facts and Theory,”
Journal of Financial Economics, 124, 1–21.

BLACK, F. AND M. SCHOLES (1973): “The Pricing of Options and Corporate Liabilities,” Journal of
Political Economy, 81, 637.

BLISS, R. R. AND N. PANIGIRTZOGLOU (2004): “Option-Implied Risk Aversion Estimates,” Journal
of Finance, 59, 407–446.

BOGUTH, O., M. CARLSON, A. FISHER, AND M. SIMUTIN (2011): “Conditional Risk and Per-
formance Evaluation: Volatility Timing, Overconditioning, and New Estimates of Momentum
Alphas,” Journal of Financial Economics, 102, 363–389.

——— (2022): “The Term Structure of Equity Risk Premia: Levered Noise and New Estimates,”
Forthcoming, Review of Finance.

27
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