
Training Support Vector Machines: an Application to FaceDetection(To appear in the Proceedings of CVPR'97, June 17-19, 1997, Puerto Rico.)Edgar Osunay? Robert Freund? Federico GirosiyyCenter for Biological and Computational Learning and ?Operations Research CenterMassachusetts Institute of TechnologyCambridge, MA, 02139, U.S.A.AbstractWe investigate the application of Support VectorMachines (SVMs) in computer vision. SVM is alearning technique developed by V. Vapnik and histeam (AT&T Bell Labs.) that can be seen as anew method for training polynomial, neural network,or Radial Basis Functions classi�ers. The decisionsurfaces are found by solving a linearly constrainedquadratic programming problem. This optimizationproblem is challenging because the quadratic form iscompletely dense and the memory requirements growwith the square of the number of data points.We present a decomposition algorithm that guaranteesglobal optimality, and can be used to train SVM's oververy large data sets. The main idea behind the decom-position is the iterative solution of sub-problems andthe evaluation of optimality conditions which are usedboth to generate improved iterative values, and alsoestablish the stopping criteria for the algorithm.We present experimental results of our implementa-tion of SVM, and demonstrate the feasibility of ourapproach on a face detection problem that involves adata set of 50,000 data points.1 IntroductionIn recent years problems such as object detectionor image classi�cation have received an increasingamount of attention in the computer vision commu-nity. In many cases these problems involve \concepts"(like \face", or \people") that cannot be expressed interms of a small and meaningful set of features, andthe only feasible approach is to learn the solution froma set of examples. The complexity of these problemsis often such that an extremely large set of examplesis needed in order to learn the task with the desiredaccuracy. Moreover, since it is not known what arethe relevant features of the problem, the data pointsusually belong to some high-dimensional space (for ex-ample an image may be represented by its grey levelvalues, eventually �ltered with a bank of �lters, orby a dense vector �eld that puts it in correspondencewith a certain prototypical image). Therefore, thereis a need for general purpose pattern recognition tech-niques that can handle large data sets (105�106 datapoints) in high dimensional spaces (102 � 103).In this paper we concentrate on the Support VectorMachine (SVM), a pattern classi�cation algorithm re-cently developed by V. Vapnik and his team at AT&T

Bell Labs. [1, 3, 4, 12]. SVM can be seen as a newway to train polynomial, neural network, or RadialBasis Functions classi�ers. While most of the tech-niques used to train the above mentioned classi�ersare based on the idea of minimizing the training er-ror, which is usually called empirical risk, SVMs op-erate on another induction principle, called structuralrisk minimization, which minimizes an upper boundon the generalization error. From the implementationpoint of view, training a SVM is equivalent to solvinga linearly constrained Quadratic Programming (QP)problem in a number of variables equal to the num-ber of data points. This problem is challenging whenthe size of the data set becomes larger than a fewthousands. In this paper we show that a large scaleQP problem of the type posed by SVM can be solvedby a decomposition algorithm: the original problemis replaced by a sequence of smaller problems, that isproved to converge to the global optimum. In order toshow the applicability of our approach we used SVMas the core classi�cation algorithm in a face detectionsystem. The problem that we have to solve involvestraining a classi�er to discriminate between face andnon-face patterns, using a data set of 50,000 points.The plan of the paper is as follows: in the rest of thissection we brie
y introduce the SVM algorithm andits geometrical interpretation. In section 2 we presentour solution to the problem of training a SVM andour decomposition algorithm. In section 3 we presentour application to the face detection problem, and insection 4 we summarize our results.1.1 Support Vector MachinesIn this section we brie
y sketch the SVM algorithmand its motivation. A more detailed description ofSVM can be found in [12] (chapter 5) and [4].We start from the simple case of two linearly sepa-rable classes. We assume that we have a data set D =f(xi; yi)gì=1 of labeled examples, where yi 2 f�1; 1g,and we wish to determine, among the in�nite num-ber of linear classifers that separate the data, whichone will have the smallest generalization error. Intu-itively, a good choice is the hyperplane that leaves themaximum margin between the two classes, where themargin is de�ned as the sum of the distances of thehyperplane from the closest point of the two classes(see �gure 1).If the two classes are non-separable we can still look for
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(a) (b)Figure 1: (a) A Separating Hyperplane with smallmargin. (b) A Separating Hyperplane with largermargin. A better generalization capability is expectedfrom (b).the hyperplane that maximizes the margin and thatminimizes a quantity proportional to the number ofmisclassi�cation errors. The trade o� between marginand misclassi�cation error is controlled by a positiveconstant C that has to be chosen beforehand. In thiscase it can be shown that the solution to this problemis a linear classi�er f(x) = sign(Pì=1 �iyixTxi + b)whose coe�cents �i are the solution of the followingQP problem:Minimize W (�) = ��T1+ 12�TD��subject to �Ty = 0� �C1 � 0�� � 0 (1)where (�)i = �i, (1)i = 1 and Dij = yiyjxTi xj . Itturns out that only a small number of coe�cients �iare di�erent from zero, and since every coe�cient cor-responds to a particular data point, this means thatthe solution is determined by the data points associ-ated to the non-zero coe�cients. These data points,that are called support vectors, are the only ones whichare relevant for the solution of the problem: all theother data points could be deleted from the data setand the same solution would be obtained. Intuitively,the support vectors are the data points that lie at theborder between the two classes. Their number is usu-ally small, and Vapnik showed that it is proportionalto the generalization error of the classi�er.Since it is unlikely that any real life problem canactually be solved by a linear classi�er, the techniquehas to be extended in order to allow for non-linear de-cision surfaces. This is easily done by projecting theoriginal set of variables x in a higher dimensional fea-ture space: x 2 Rd ) z(x) � (�1(x); : : : ; �n(x)) 2 Rnand by formulating the linear classi�cation problemin the feature space. The solution will have the formf(x) = sign(Pì=1 �iyizT (x)z(xi) + b), and thereforewill be nonlinear in the original input variables. Onehas to face at this point two problems: 1) the choiceof the features �i(x), which should be done in a way

that leads to a \rich" class of decision surfaces; 2) thecomputation of the scalar product zT (x)z(xi), whichcan be computationally prohibitive if the number offeatures n is very large (for example in the case inwhich one wants the feature space to span the set ofpolynomials in d variables the number of features nis exponential in d). A possible solution to this prob-lems consists in letting n go to in�nity and make thefollowing choice:z(x) � (p�1 1(x); : : : ;p�i i(x); : : :)where �i and  i are the eigenvalues and eigenfunc-tions of an integral operator whose kernel K(x;y) is apositive de�nite symmetric function. With this choicethe scalar product in the feature space becomes par-ticularly simple because:zT (x)z(y) = 1Xi=1 �i i(x) i(y) = K(x;y)where the last equality comes from the Mercer-Hilbert-Schmidt theorem for positive de�nite func-tions (see [8], pp. 242{246). The QP problem thathas to be solved now is exactly the same as in eq.(1), with the exception that the matrix D has nowelements Dij = yiyjK(xi;xj). As a result of thischoice, the SVM classi�er has the form: f(x) =sign(Pì=1 �iyiK(x;xi) + b). In table (1) we list somechoices of the kernel function proposed by Vapnik: no-tice how they lead to well known classi�ers, whose de-cision surfaces are known to have good approximationproperties.Kernel Function Type of Classi�erK(x;xi) = exp(�kx� xik2) Gaussian RBFK(x;xi) = (xTxi + 1)d Polynomial of degree dK(x;xi) = tanh(xTxi ��) Multi Layer PerceptronTable 1: Some possible kernel functions and the typeof decision surface they de�ne2 Training a Support Vector MachineAs mentioned before, training a SVM using large datasets (above� 5,000 samples) is a very di�cult problemto approach without some kind of problem decompo-sition. To give an idea of some memory requirements,an application like the one described in section 3 in-volves 50,000 training samples, and this amounts to aquadratic form whose matrix D has 2:5 � 109 entriesthat would need, using an 8-bytes 
oating point rep-resentation, 20 Gigabytes of memory.In order to solve the training problem e�ciently,we take explicit advantage of the geometrical inter-pretation introduced in Section 1.1, in particular, theexpectation that the number of support vectors willbe very small, and therefore that many of the compo-nents of � will be zero.In order to decompose the original problem, onecan think of solving iteratively the system given by(1), but keeping �xed at zero level those components



�i associated with data points that are not supportvectors, and therefore only optimizing over a reducedset of variables.To convert the previous description into an algo-rithm we need to specify:1. Optimality Conditions: These conditions al-low us to decide computationally, if the problemhas been solved optimally at a particular iterationof the original problem. Section 2.1 states andproves optimality conditions for the QP given by(1).2. Strategy for Improvement: If a particular so-lution is not optimal, this strategy de�nes a wayto improve the cost function and is frequentlyassociated with variables that violate optimalityconditions. This strategy will be stated in section2.2.After presenting optimality conditions and a strategyfor improving the cost function, section 2.3 introducesa decomposition algorithm that can be used to solvelarge database training problems, and section 2.4 re-ports some computational results obtained with its im-plementation.2.1 Optimality ConditionsThe QP problem we have to solve is the following:Minimize W (�) = ��T1+ 12�TD��subject to �Ty = 0 (�)� �C1 � 0 (�)�� � 0 (�)(2)where �,�T = (�1; : : : ; �`) and�T = (�1; : : : ; �`) arethe associated Kuhn-Tucker multipliers.Since D is a positive semi-de�nite matrix ( the kernelfunction used is positive de�nite ), and the constraintsin (2) are linear, the Kuhn-Tucker, (KT) conditionsare necessary and su�cient for optimality. The KTconditions are as follows:rW (�) +��� + �y = 0�T (� � C1) = 0�T� = 0� � 0� � 0�Ty = 0� �C1 � 0�� � 0 (3)In order to derive further algebraic expressions fromthe optimality conditions (3), we assume the existenceof some �i such that 0 < �i < C, and consider thethree possible values that each component of � canhave:1. Case: 0 < �i < CFrom the �rst three equations of the KT condi-tions we have:

(D�)i � 1 + �yi = 0 (4)Using the results in [4] and [12] one can easilyshow that when � is strictly between 0 and C thefollowing equality holds:yi(X̀j=1 �jyjK(xi;xj) + b) = 1 (5)Noticing that(D�)i=X̀j=1�jyjyiK(xi;xj)=yiX̀j=1�jyjK(xi;xj)and combining this expression with (5) and (4)we immediately obtain that � = b.2. Case: �i = CFrom the �rst three equations of the KT condi-tions we have:(D�)i � 1 + �i + �yi = 0 (6)By de�ningg(xi) = X̀j=1�jyjK(xi;xj) + b (7)and noticing that(D�)i = yiX̀j=1 �jyjK(xi;xj) = yi(g(xi) � b)we conclude from equation (6) thatyig(xi) � 1 (8)(where we have used the fact that � = b andrequired the KT multiplier �i to be positive).3. Case: �i = 0From the �rst three equations of the KT condi-tions we have:(D�)i � 1� �i + �yi = 0 (9)By applying a similar algebraic manipulation asthe one described for case 2, we obtainyig(xi) � 1 (10)



2.2 Strategy for ImprovementThe optimality conditions derived in the previous sec-tion are essential in order to devise a decompositionstrategy that takes advantage of the expectation thatmost �i's will be zero, and that guarantees that atevery iteration the objective function is improved.In order to accomplish this goal we partition theindex set in two sets B and N in such a way that theoptimality conditions hold in the subproblem de�nedonly for the variables in the set B, which is called theworking set. Then we decompose � in two vectors �Band �N and set �N = 0. Using this decompositionthe following statements are clearly true:� We can replace �i = 0, i 2 B, with �j = 0,j 2 N , without changing the cost function or thefeasibility of both the subproblem and the originalproblem.� After such a replacement, the new subproblem isoptimal if and only if yjg(xj) � 1. This followsfrom equation (10) and the assumption that thesubproblem was optimal before the replacementwas done.The previous statements lead to the following propo-sition:Proposition 2.1 Given an optimal solution of a sub-problem de�ned on B, the operation of replacing �i =0, i 2 B, with �j = 0, j 2 N , satisfying yjg(xj) <1 generates a new subproblem that when optimized,yields a strict improvement of the objective functionW (�).Proof: We assume again the existence of �p suchthat 0 < �p < C. Let us also assume that yp = yj (theproof is analogous if yp = �yj). Then, there is some� > 0 such that �p � � > 0, for � 2 (0; �). Notice alsothat g(xp) = yp. Now, consider � = � + �ej � �ep,where ej and ep are the j-th and p-th unit vectors,and notice that the pivot operation can be handledimplicitly by letting � > 0 and by holding �i = 0. Thenew cost function W (�) can be written as:W (�)=��T1 + 12�TD�=��T1 + 12�TD� + �TD(�ej � �ep) ++12(�ej � �ep)TD(�ej � �ep)=W (�) + � [(g(xj )� b)yj � 1 + byp] ++�22 [K(xj ;xj)+K(xp ;xp)�2ypyjK(xp;xj)]=W (�) + � [g(xj )yj � 1] + �22 [K(xj ;xj)+K(xp;xp) � 2ypyjK(xp;xj)]Therefore, since g(xj)yj < 1, by choosing � smallenough we have W (�) < W (�).

2.3 The Decomposition AlgorithmSuppose we can de�ne a �xed-size working set B,such that jBj � `, and it is big enough to containall support vectors (�i > 0), but small enough suchthat the computer can handle it and optimize it usingsome solver. Then the decomposition algorithm canbe stated as follows:1. Arbitrarily choose jBj points from the data set.2. Solve the subproblem de�ned by the variables inB.3. While there exists some j 2 N , such thatg(xj)yj < 1, replace �i = 0, i 2 B, with �j = 0and solve the new subproblem.Notice that, according to (2.1), this algorithm willstrictly improve the objective function at each iter-ation and therefore will not cycle. Since the objectivefunction is bounded (W (�) is convex quadratic andthe feasible region is bounded), the algorithm mustconverge to the global optimal solution in a �nite num-ber of iterations. Figure 2 gives a geometric interpre-tation of the way the decomposition algorithm allowsthe rede�nition of the separating surface by addingpoints that violate the optimality conditions.
(a) (b)Figure 2: (a) A sub-optimal solution where the non-�lled points have � = 0 but are violating optimalityconditions by being inside the �1 area. (b) The deci-sion surface is rede�ned. Since no points with � = 0are inside the �1 area, the solution is optimal. No-tice that the size of the margin has decreased, and theshape of the decision surface has changed.2.4 Implementation and ResultsWe have implemented the decomposition algorithmusing MINOS 5.4 as the solver of the sub-problems.For information on MINOS 5.4 see [7]. The computa-tional results that we present in this section have beenobtained using real data from our Face Detection Sys-tem, which is described in Section 3.Figures 3a and 3b show the training time and the num-ber of support vectors obtained when training the sys-tem with 5,000, 10,000, 20,000, 30,000, 40,000, 49,000,and 50,000 data points. The discontinuity in thegraphs between 49,000 and 50,000 data points is due tothe fact that the last 1,000 data points were collected



in the last phase of bootstrapping of the Face Detec-tion System (see section 3.2). This means that the last1,000 data points are points which were misclassi�edby the previous version of the classi�er, which was al-ready quite accurate, and therefore points likely to beon the border between the two classes and thereforevery hard to classify. Figure 3c shows the relationshipbetween the training time and the number of supportvectors. Notice how this curve is much smoother thanthe one in �gure 3a. This means that the number oftraining data is not a good predictor of training time,which depends more heavily on the number of supportvectors: one could add a large number of data pointswithout increasing much the training time if the newdata points do not contain new support vectors. In �g-ure 3d we report the number of global iterations (thenumber of times the decomposition algorithm calls thesolver) as a function of support vectors. Notice thejump from 11 to 15 global iterations as we go from49,000 to 50,000 samples adding 1,000 \di�cult" datapoints.The memory requirements of this technique arequadratic in the size of the working set B. For the50,000 points data set we used a working set of 1,200variables, that ended up using only 25Mb of RAM.However, a working set of 2,800 variables will use ap-proximately 128Mb of RAM. Therefore, the currenttechnique can deal with problems with less than 2,800support vectors (actually we empirically found thatthe working set size should be about 20% larger thanthe number of support vectors). In order to overcomethis limitation we are implementing an extension ofthe decomposition algorithm that let us deal with verylarge numbers of support vectors (say 10,000).3 SVM Application: Face Detection inImagesThis section introduces a Support Vector Machine ap-plication for detecting vertically oriented and unoc-cluded frontal views of human faces in grey level im-ages. It handles faces over a wide range of scales andworks under di�erent lighting conditions, even withmoderately strong shadows.The face detection problem can be de�ned as fol-lows: given as input an arbitrary image, which couldbe a digitized video signal or a scanned photograph,determine whether or not there are any human facesin the image, and if there are, return an encoding oftheir location.Face detection as a computer vision task has manyapplications. It has direct relevance to the face recog-nition problem, because the �rst important step of afully automatic human face recognizer is usually lo-cating faces in an unknown image. Face detectionalso has potential application in human-computer in-terfaces, surveillance systems, census systems, etc.From the standpoint of this paper, face detectionis interesting because it is an example of a naturaland challenging problem for demonstrating and test-ing the potentials of Support Vector Machines. Thereare many other object classes and phenomena in thereal world that share similar characteristics, for exam-ple, tumor anomalies in MRI scans, structural defectsin manufactured parts, etc. A successful and general
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nsFigure 3: (a) Training Time on a SPARC station-20vs. number of samples; (b)Number of Support Vec-tors vs. number of samples; (c) Training Time ona SPARCstation-20 vs. Number of Support Vectors.Notice how the number of support vectors is a bet-ter indicator of the increase in training time than thenumber of samples alone; (d) Number of global itera-tions performed by the algorithm.methodology for �nding faces using SVM's should gen-eralize well for other spatially well-de�ned pattern andfeature detection problems.It is important to remark that face detection, likemost object detection problems, is a di�cult task dueto the signi�cant pattern variations that are hard toparameterize analytically. Some common sources ofpattern variations are facial appearance, expression,presence or absence of common structural features,like glasses or a moustache, light source distribution,shadows, etc.The system works by scanning an image for face-like patterns at many possible scales and uses a SVMas its core classi�cation algorithms to determine theappropriate class (face/non-face).3.1 Previous SystemsThe problem of face detection has been approachedwith di�erent techniques in the last few years. Thistechniques include Neural Networks [2, 9, 11], detec-tion of face features and use of geometrical constraints[13], density estimation of the training data [6], la-beled graphs [5] and clustering and distribution-basedmodeling [10].Out of all these previous works, the results of Sungand Poggio [10], and Rowley et al. [9] re
ect systemswith very high detection rates and low false positiverates.Sung and Poggio use clustering and distance met-rics to model the distribution of the face and non-facemanifold, and a Neural Network to classify a new pat-tern given the measurements. The key of the qualityof their result is the clustering and use of combined



Mahalanobis and Euclidean metrics to measure thedistance from a new pattern and the clusters. Otherimportant features of their approach is the use of non-face clusters, and the use of a bootstrapping techniqueto collect important non-face patterns. One drawbackof this technique is that it does not provide a prin-cipled way to choose some important free parameterslike the number of clusters it uses.Similarly, Rowley et al. have used problem infor-mation in the design of a retinally connected NeuralNetwork that is trained to classify faces and non-facespatterns. Their approach relies on training severalNN emphasizing subsets of the training data, in or-der to obtain di�erent sets of weights. Then, di�erentschemes of arbitration between them are used in orderto reach a �nal answer.Our approach to face detection with SVM uses noprior information in order to obtain the decision sur-face, so that this technique could be used to detectother kind of objects in digital images.3.2 The SVM Face Detection SystemThis system detects faces by exhaustively scanning animage for face-like patterns at many possible scales,by dividing the original image into overlapping sub-images and classifying them using a SVM to determinethe appropriate class (face/non-face). Multiple scalesare handled by examining windows taken from scaledversions of the original image. More speci�cally, thissystem works as follows:1. A database of face and non-face 19 � 19 = 361pixel patterns, assigned to classes +1 and -1 re-spectively, is used to train a SVM with a 2nd-degree polynomial as kernel function and an up-per bound C = 200.2. In order to compensate for certain sources of im-age variation, some preprocessing of the data isperformed:� Masking: A binary pixel mask is used toremove some pixels close to the boundaryof the window pattern allowing a reductionin the dimensionality of the input space to283. This step is important in the reduc-tion of background patterns that introduceunnecessary noise in the training process.� Illumination gradient correction: Abest-�t brightness plane is subtracted fromthe unmasked window pixel values, allowingreduction of light and heavy shadows.� Histogram equalization: A histogramequalization is performed over the patternsin order to compensate for di�erences in il-lumination brightness, di�erent cameras re-sponse curves, etc.3. Once a decision surface has been obtainedthrough training, the run-time system is used overimages that do not contain faces, and misclassi�-cations are stored so they can be used as negativeexamples in subsequent training phases. Imagesof landscapes, trees, buildings, rocks, etc., aregood sources of false positives due to the many

di�erent textured patterns they contain. Thisbootstrapping step, which was successfully usedby Sung and Poggio [10] is very important in thecontext of a face detector that learns from exam-ples because:� Although negative examples are abundant,negative examples that are useful from alearning point of view are very di�cult tocharacterize and de�ne.� The two classes, face and non-face are notequally complex since the non-face class isbroader and richer, and therefore needs moreexamples in order to get an accurate de�-nition that separates it from the face class.Figure 4 shows an image used for bootstrap-ping with some misclassi�cations, that werelater used as non-face examples.4. After training the SVM, we incorporate it as theclassi�er in a run-time system very similar to theone used by Sung and Poggio [10] that performsthe following operations:� Re-scale the input image several times.� Cut 19�19 window patterns out of thescaled image.� Preprocess the window using masking, lightcorrection and histogram equalization.� Classify the pattern using the SVM.� If the pattern is a face, draw a rectanglearound it in the output image.
Figure 4: Some false detections obtained with the �rstversion of the system. This false positives were laterused as non-face examples in the training process3.2.1 Experimental ResultsTo test the run-time system, we used two sets of im-ages. The set A, contained 313 high-quality imageswith one face per image. The set B, contained 23 im-ages of mixed quality, with a total of 155 faces. Both



sets were tested using our system and the one by Sungand Poggio [10]. In order to give true meaning to thenumber of false positives obtained, it is important tostate that set A involved 4,669,960 pattern windows,while set B 5,383,682. Table 2 shows a comparisonbetween the 2 systems. At run-time the SVM systemis approximately 30 times faster than the system ofSung and Poggio. One reason for that is the use ofa technique introduced by C. Burges [3] that allowsto replace a large numbers of support vectors with amuch smaller number of points (which are not neces-sarily data points), and therefore to speed up the runtime considerably.In �gure 5 we report the result of our system on sometest images. Notice that the system is able to handle,up to a small degree, non-frontal views of faces. How-ever, since the database does not contain any exampleof occluded faces the system usually misses partiallycovered faces, like the ones in the bottom picture of�gure 5. The system can also deal with some degree ofrotation in the image plane, since the data base con-tains a number of \virtual" faces that were obtainedby rotating some face example of up to 10 degrees.In �gure 6 we report some of the support vectors weobtained, both for face and non-face patterns. Werepresent images as points in a �ctitious two dimen-sional space and draw an arbitrary boundary betweenthe two classes. Notice how we have placed the sup-port vectors at the classi�cation boundary, accord-ingly with their geometrical interpretation. Noticealso how the non-face support vectors are not just ran-dom non-face patterns, but are non-face patterns thatare quite similar to faces.Test Set A Test Set BDetect False Detect FalseRate Alarms Rate AlarmsSVM 97.1 % 4 74.2% 20Sung et al. 94.6 % 2 74.2% 11Table 2: Performance of the SVM face detection sys-tem4 Summary and ConclusionsIn this paper we have presented a novel decompo-sition algorithm that can be used to train SupportVector Machines on large data sets (say 50,000 datapoints). The current version of the algorithm candeal with about 2,500 support vectors on a machinewith 128 Mb of RAM, but an implementation of thetechnique currently under development will be ableto deal with much larger number of support vectors(say about 10,000) using less memory. We demon-strated the applicability of SVM by embedding SVMin a face detection system which performs comparablyto other state-of-the-art systems. There are severalreasons for which we have been investigating the useof SVM. Among them, the fact that SVMs are verywell founded from the mathematical point of view, be-ing an approximate implementation of the StructuralRisk Minimization induction principle. The only freeparameters of SVMs are the positive constant C andthe parameter associated to the kernel K (in our case Figure 5: Results from our Face Detection system



NON-FACES

FACESFigure 6: In this picture circles represent face patternsand squares represent non-face patterns. On the bor-der between the two classes we represented some ofthe support vectors found by our system. Notice howsome of the non-face support vectors are very similarto faces.the degree of the polynomial). The technique appearsto be stable with respect to variations in both param-eters. Since the expected value of the ratio betweenthe number of support vectors and the total numberof data points is an upper bound on the generalizationerror, the number of support vector gives us an imme-diate estimate of the di�culty of the problem. SVMshandle very well high dimensional input vectors, andtherefore their use seem to be appropriate in computervision problems in which it is not clear what the fea-tures are, allowing the user to represent the image asa (possibly large) vector of grey levels 1.AcknowledgementsThe authors would like to thank Tomaso Poggio,Vladimir Vapnik, Michael Oren and Constantine Pa-pageorgiou for useful comments and discussion.References[1] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A trainingalgorithm for optimal margin classi�er. In Proc. 5th1This paper describes research done within the Center forBiological and Computational Learning in the Department ofBrain and Cognitive Sciences and at the Arti�cial IntelligenceLaboratory at MIT. This research is sponsored by a grant fromNSF under contract ASC-9217041 (this award includes fundsfrom ARPA provided under the HPCC program), by a grantfrom ARPA/ONR under contract N00014-92-J-1879 and by aMURI grant under contract N00014-95-1-0600.Additional sup-port is provided by Daimler-Benz, Sumitomo Metal Industries,and Siemens AG. Edgar Osuna was supported by Fundaci�onGran Mariscal de Ayacucho.
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