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Abstract

In this paper we analyze boosting algorithms [15, 21, 24] in linear regression from a new
perspective: that of modern first-order methods in convex optimization. We show that classic
boosting algorithms in linear regression, namely the incremental forward stagewise algorithm
(FSε) and least squares boosting (LS-Boost(ε)), can be viewed as subgradient descent to
minimize the loss function defined as the maximum absolute correlation between the features and
residuals. We also propose a modification of FSε that yields an algorithm for the Lasso, and that
may be easily extended to an algorithm that computes the Lasso path for different values of the
regularization parameter. Furthermore, we show that these new algorithms for the Lasso may
also be interpreted as the same master algorithm (subgradient descent), applied to a regularized
version of the maximum absolute correlation loss function. We derive novel, comprehensive
computational guarantees for several boosting algorithms in linear regression (including LS-
Boost(ε) and FSε) by using techniques of modern first-order methods in convex optimization.
Our computational guarantees inform us about the statistical properties of boosting algorithms.
In particular they provide, for the first time, a precise theoretical description of the amount of
data-fidelity and regularization imparted by running a boosting algorithm with a prespecified
learning rate for a fixed but arbitrary number of iterations, for any dataset.

1 Introduction

Boosting [19, 24, 28, 38, 39] is an extremely successful and popular supervised learning method
that combines multiple weak1 learners into a powerful “committee.” AdaBoost [20, 28, 39] is one
of the earliest boosting algorithms developed in the context of classification. [5, 6] observed that
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1this term originates in the context of boosting for classification, where a “weak” classifier is slightly better than
random guessing.
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AdaBoost may be viewed as an optimization algorithm, particularly as a form of gradient descent
in a certain function space. In an influential paper, [24] nicely interpreted boosting methods used in
classification problems, and in particular AdaBoost, as instances of stagewise additive modeling [29]
– a fundamental modeling tool in statistics. This connection yielded crucial insight about the
statistical model underlying boosting and provided a simple statistical explanation behind the
success of boosting methods. [21] provided an interesting unified view of stagewise additive modeling
and steepest descent minimization methods in function space to explain boosting methods. This
viewpoint was nicely adapted to various loss functions via a greedy function approximation scheme.
For related perspectives from the machine learning community, the interested reader is referred to
the works [32,36] and the references therein.

Boosting and Implicit Regularization An important instantiation of boosting, and the topic
of the present paper, is its application in linear regression. We use the usual notation with model
matrix X = [X1, . . . ,Xp] ∈ Rn×p, response vector y ∈ Rn×1, and regression coefficients β ∈ Rp.
We assume herein that the features Xi have been centered to have zero mean and unit `2 norm,
i.e., ‖Xi‖2 = 1 for i = 1, . . . , p, and y is also centered to have zero mean. For a regression
coefficient vector β, the predicted value of the response is given by Xβ and r = y −Xβ denotes
the residuals.

Least Squares Boosting – LS-Boost(ε) Boosting, when applied in the context of linear re-
gression leads to models with attractive statistical properties [7, 8, 21, 28]. We begin our study by
describing one of the most popular boosting algorithms for linear regression: LS-Boost(ε) proposed
in [21]:

Algorithm: Least Squares Boosting – LS-Boost(ε)

Fix the learning rate ε > 0 and the number of iterations M .

Initialize at r̂0 = y, β̂0 = 0, k = 0 .

1. For 0 ≤ k ≤M do the following:

2. Find the covariate jk and ũjk as follows:

ũm = arg min
u∈R

(
n∑
i=1

(r̂ki − ximu)2

)
for m = 1, . . . , p, jk ∈ arg min

1≤m≤p

n∑
i=1

(r̂ki − ximũm)2 .

3. Update the current residuals and regression coefficients as:

r̂k+1 ← r̂k − εXjk ũjk

β̂k+1
jk
← β̂kjk + εũjk and β̂k+1

j ← β̂kj , j 6= jk .

A special instance of the LS-Boost(ε) algorithm with ε = 1 is known as LS-Boost [21] or
Forward Stagewise [28] — it is essentially a method of repeated simple least squares fitting of
the residuals [8]. The LS-Boost algorithm starts from the null model with residuals r̂0 = y.
At the k-th iteration, the algorithm finds a covariate jk which results in the maximal decrease
in the univariate regression fit to the current residuals. Let Xjk ũjk denote the best univariate fit
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for the current residuals, corresponding to the covariate jk. The residuals are then updated as
r̂k+1 ← r̂k −Xjk ũjk and the jk-th regression coefficient is updated as β̂k+1

jk
← β̂kjk + ũjk , with all

other regression coefficients unchanged. We refer the reader to Figure 1, depicting the evolution of
the algorithmic properties of the LS-Boost(ε) algorithm as a function of k and ε. LS-Boost(ε) has
old roots — as noted by [8], LS-Boost with M = 2 is known as “twicing,” a method proposed by
Tukey [42].

LS-Boost(ε) is a slow-learning variant of LS-Boost, where to counterbalance the greedy selection
strategy of the best univariate fit to the current residuals, the updates are shrunk by an additional
factor of ε, as described in Step 3 in Algorithm LS-Boost(ε). This additional shrinkage factor ε is
also known as the learning rate. Qualitatively speaking, a small value of ε (for example, ε = 0.001)
slows down the learning rate as compared to the choice ε = 1. As the number of iterations increases,
the training error decreases until one eventually attains a least squares fit. For a small value of ε,
the number of iterations required to reach a certain training error increases. However, with a small
value of ε it is possible to explore a larger class of models, with varying degrees of shrinkage. It
has been observed empirically that this often leads to models with better predictive power [21]. In
short, both M (the number of boosting iterations) and ε together control the training error and
the amount of shrinkage. Up until now, as pointed out by [28], the understanding of this tradeoff
has been rather qualitative. One of the contributions of this paper is a precise quantification of
this tradeoff, which we do in Section 2.

The papers [7–9] present very interesting perspectives on LS-Boost(ε), where they refer to the
algorithm as L2-Boost. [8] also obtains approximate expressions for the effective degrees of freedom
of the L2-Boost algorithm. In the non-stochastic setting, this is known as Matching Pursuit [31].
LS-Boost(ε) is also closely related to Friedman’s MART algorithm [25].

Incremental Forward Stagewise Regression – FSε A close cousin of the LS-Boost(ε) al-
gorithm is the Incremental Forward Stagewise algorithm [15, 28] presented below, which we refer
to as FSε.

Algorithm: Incremental Forward Stagewise Regression – FSε

Fix the learning rate ε > 0 and number of iterations M .

Initialize at r̂0 = y, β̂0 = 0, k = 0 .

1. For 0 ≤ k ≤M do the following:

2. Compute: jk ∈ arg max
j∈{1,...,p}

|(r̂k)TXj |

3. r̂k+1 ← r̂k − ε sgn((r̂k)TXjk)Xjk

β̂k+1
jk
← β̂kjk + ε sgn((r̂k)TXjk) and β̂k+1

j ← β̂kj , j 6= jk .

In this algorithm, at the k-th iteration we choose a covariate Xjk that is the most correlated
(in absolute value) with the current residual and update the jk-th regression coefficient, along
with the residuals, with a shrinkage factor ε. As in the LS-Boost(ε) algorithm, the choice of ε
plays a crucial role in the statistical behavior of the FSε algorithm. A large choice of ε usually
means an aggressive strategy; a smaller value corresponds to a slower learning procedure. Both the
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parameters ε and the number of iterations M control the data fidelity and shrinkage in a fashion
qualitatively similar to LS-Boost(ε) . We refer the reader to Figure 1, depicting the evolution
of the algorithmic properties of the FSε algorithm as a function of k and ε. In Section 3 herein,
we will present for the first time precise descriptions of how the quantities ε and M control the
amount of training error and regularization in FSε, which will consequently inform us about their
tradeoffs.

Note that LS-Boost(ε) and FSε have a lot of similarities but contain subtle differences too, as we
will characterize in this paper. Firstly, since all of the covariates are standardized to have unit `2
norm, for same given residual value r̂k it is simple to derive that Step (2.) of LS-Boost(ε) and FSε
lead to the same choice of jk. However, they are not the same algorithm and their differences are
rather plain to see from their residual updates, i.e., Step (3.). In particular, the amount of change
in the successive residuals differs across the algorithms:

LS-Boost(ε) : ‖r̂k+1 − r̂k‖2 = ε|(r̂k)TXjk | = ε · n · ‖∇Ln(β̂k)‖∞

FSε : ‖r̂k+1 − r̂k‖2 = ε|sk| where sk = sgn((r̂k)TXjk) ,
(1)

where ∇Ln(·) is the gradient of the least squares loss function Ln(β) := 1
2n‖y − Xβ‖22. Note

that for both of the algorithms, the quantity ‖r̂k+1 − r̂k‖2 involves the shrinkage factor ε. Their
difference thus lies in the multiplicative factor, which is n · ‖∇Ln(β̂k)‖∞ for LS-Boost(ε) and
is |sgn((r̂k)TXjk)| for FSε. The norm of the successive residual differences for LS-Boost(ε) is
proportional to the `∞ norm of the gradient of the least squares loss function (see herein equations
(5) and (7)). For FSε, the norm of the successive residual differences depends on the absolute
value of the sign of the jk-th coordinate of the gradient. Note that sk ∈ {−1, 0, 1} depending
upon whether (r̂k)TXjk is negative, zero, or positive; and sk = 0 only when (r̂k)TXjk = 0, i.e.,

only when ‖∇Ln(β̂k)‖∞ = 0 and hence β̂k is a least squares solution. Thus, for FSε the `2 norm
of the difference in residuals is almost always ε during the course of the algorithm. For the LS-
Boost(ε) algorithm, progress is considerably more sensitive to the norm of the gradient — as the
algorithm makes its way to the unregularized least squares fit, one should expect the norm of
the gradient to also shrink to zero, and indeed we will prove this in precise terms in Section 2.
Qualitatively speaking, this means that the updates of LS-Boost(ε) are more well-behaved when
compared to the updates of FSε, which are more erratically behaved. Of course, the additional
shrinkage factor ε further dampens the progress for both algorithms.

Our results in Section 2 show that the predicted values Xβ̂k obtained from LS-Boost(ε) converge
(at a globally linear rate) to the least squares fit as k → ∞, this holding true for any value of
ε ∈ (0, 1]. On the other hand, for FSε with ε > 0, the iterates Xβ̂k need not necessarily converge
to the least squares fit as k → ∞. Indeed, the FSε algorithm, by its operational definition, has a
uniform learning rate ε which remains fixed for all iterations; this makes it impossible to always
guarantee convergence to a least squares solution with accuracy less than O(ε). While the predicted
values of LS-Boost(ε) converge to a least squares solution at a linear rate, we show in Section 3
that the predictions from the FSε algorithm converges to an approximate least squares solution,
albeit at a global sublinear rate.2

2For the purposes of this paper, linear convergence of a sequence {ai} will mean that ai → ā and there exists
a scalar γ < 1 for which (ai − ā)/(ai−1 − ā) ≤ γ for all i. Sublinear convergence will mean that there is no such
γ < 1 that satisfies the above property. For much more general versions of linear and sublinear convergence, see [3]
for example.
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Since the main difference between FSε and LS-Boost(ε) lies in the choice of the step-size used to
update the coefficients, let us therefore consider a non-constant step-size/non-uniform learning rate
version of FSε, which we call FSεk . FSεk replaces Step 3 of FSε by:

residual update: r̂k+1 ← r̂k − εk sgn((r̂k)TXjk)Xjk

coefficient update: β̂k+1
jk
← β̂kjk + εk sgn((r̂k)TXjk) and β̂k+1

j ← β̂kj , j 6= jk ,

where {εk} is a sequence of learning-rates (or step-sizes) which depend upon the iteration index
k. LS-Boost(ε) can thus be thought of as a version of FSεk , where the step-size εk is given by
εk := εũjksgn((r̂k)TXjk).

In Section 3.2 we provide a unified treatment of LS-Boost(ε) , FSε, and FSεk , wherein we show
that all these methods can be viewed as special instances of (convex) subgradient optimization. For
another perspective on the similarities and differences between FSε and LS-Boost(ε) , see [8].

ρ = 0 ρ = 0.5 ρ = 0.9
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Figure 1: Evolution of LS-Boost(ε) and FSε versus iterations (in the log-scale), run on a synthetic dataset

with n = 50, p = 500; the covariates are drawn from a Gaussian distribution with pairwise correlations ρ.

The true β has ten non-zeros with βi = 1, i ≤ 10 and SNR = 1. Several different values of ρ and ε have

been considered. [Top Row] Shows the training errors for different learning rates, [Bottom Row] shows the

`1 norm of the coefficients produced by the different algorithms for different learning rates (here the values

have all been re-scaled so that the y-axis lies in [0, 1]). For detailed discussions about the figure, see the

main text.

Both LS-Boost(ε) and FSε may be interpreted as “cautious” versions of Forward Selection or
Forward Stepwise regression [33, 44], a classical variable selection tool used widely in applied sta-
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tistical modeling. Forward Stepwise regression builds a model sequentially by adding one variable
at a time. At every stage, the algorithm identifies the variable most correlated (in absolute value)
with the current residual, includes it in the model, and updates the joint least squares fit based
on the current set of predictors. This aggressive update procedure, where all of the coefficients in
the active set are simultaneously updated, is what makes stepwise regression quite different from
FSε and LS-Boost(ε) — in the latter algorithms only one variable is updated (with an additional
shrinkage factor) at every iteration.

Explicit Regularization Schemes While all the methods described above are known to deliver
regularized models, the nature of regularization imparted by the algorithms are rather implicit.
To highlight the difference between an implicit and explicit regularization scheme, consider `1-
regularized regression, namely Lasso [41], which is an extremely popular method especially for
high-dimensional linear regression, i.e., when the number of parameters far exceed the number of
samples. The Lasso performs both variable selection and shrinkage in the regression coefficients,
thereby leading to parsimonious models with good predictive performance. The constraint version of
Lasso with regularization parameter δ ≥ 0 is given by the following convex quadratic optimization
problem:

Lasso : L∗n,δ := min
β

1
2n‖y −Xβ‖22

s.t. ‖β‖1 ≤ δ .
(2)

The nature of regularization via the Lasso is explicit — by its very formulation, it is set up to find
the best least squares solution subject to a constraint on the `1 norm of the regression coefficients.
This is in contrast to boosting algorithms like FSε and LS-Boost(ε) , wherein regularization is
imparted implicitly as a consequence of the structural properties of the algorithm with ε and M
controlling the amount of shrinkage.

Boosting and Lasso Although Lasso and the above boosting methods originate from different
perspectives, there are interesting similarities between the two as nicely explored in [15,27,28].

For certain datasets the coefficient profiles3 of Lasso and FS0 are exactly the same [28], where
FS0 denotes the limiting case of the FSε algorithm as ε → 0+. Figure 2 (top panel) shows an
example where the Lasso profile is similar to those of FSε and LS-Boost(ε) (for small values of
ε). However, they are different in general (Figure 2, bottom panel). Under some conditions on
the monotonicity of the coefficient profiles of the Lasso solution, the Lasso and FS0 profiles are
exactly the same [15,27]. Such equivalences exist for more general loss functions [37], albeit under
fairly strong assumptions on problem data.

Efforts to understand boosting algorithms in general and in particular the FSε algorithm paved
the way for the celebrated Least Angle Regression aka the Lar algorithm [15] (see also [28]).
The Lar algorithm is a democratic version of Forward Stepwise. Upon identifying the variable
most correlated with the current residual in absolute value (as in Forward Stepwise), it moves

3By a coefficient profile we mean the map λ 7→ β̂λ where, λ ∈ Λ indexes a family of coefficients β̂λ. For example,
the family of Lasso solutions (2) {β̂δ, δ ≥ 0} indexed by δ can also be indexed by the `1 norm of the coefficients, i.e.,
λ = ‖β̂δ‖1. This leads to a coefficient profile that depends upon the `1 norm of the regression coefficients. Similarly,
one may consider the coefficient profile of FS0 as a function of the `1 norm of the regression coefficients delivered by
the FS0 algorithm.
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the coefficient of the variable towards its least squares value in a continuous fashion. An appealing
aspect of the Lar algorithm is that it provides a unified algorithmic framework for variable selection
and shrinkage – one instance of Lar leads to a path algorithm for the Lasso, and a different
instance leads to the limiting case of the FSε algorithm as ε → 0+, namely FS0. In fact, the
Stagewise version of the Lar algorithm provides an efficient way to compute the coefficient profile
for FS0.

Coefficient Profiles: LS-Boost(ε) , FSε and Lasso

Lasso LS-Boost(ε) , ε = 0.01 FSε, ε = 10−5
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Figure 2: Coefficient Profiles for different algorithms as a function of the `1 norm of the regression coefficients

on two different datasets. [Top Panel] Corresponds to the full Prostate Cancer dataset described in Section 6

with n = 98 and p = 8. All the coefficient profiles look similar. [Bottom Panel] Corresponds to a subset of

samples of the Prostate Cancer dataset with n = 10; we also included all second order interactions to get

p = 44. The coefficient profile of Lasso is seen to be different from FSε and LS-Boost(ε) . Figure 9 shows

the training error vis-à-vis the `1-shrinkage of the models, for the same profiles.

Due to the close similarities between the Lasso and boosting coefficient profiles, it is natural to
investigate probable modifications of boosting that might lead to the Lasso solution path. This
is one of the topics we study in this paper. In a closely related but different line of approach, [45]
describes BLasso, a modification of the FSε algorithm with the inclusion of additional “backward
steps” so that the resultant coefficient profile mimics the Lasso path.

Subgradient Optimization as a Unifying Viewpoint of Boosting and Lasso In spite
of the various nice perspectives on FSε and its connections to the Lasso as described above, the
present understanding about the relationships between Lasso, FSε, and LS-Boost(ε) for arbitrary
datasets and ε > 0 is still fairly limited. One of the aims of this paper is to contribute some
substantial further understanding of the relationship between these methods. Just like the Lar
algorithm can be viewed as a master algorithm with special instances being the Lasso and FS0,
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in this paper we establish that FSε, LS-Boost(ε) and Lasso can be viewed as special instances
of one grand algorithm: the subgradient descent method (of convex optimization) applied to the
following parametric class of optimization problems:

Pδ : minimize
r

‖XT r‖∞ +
1

2δ
‖r − y‖22 where r = y −Xβ for some β , (3)

and where δ ∈ (0,∞] is a regularization parameter. Here the first term is the maximum absolute
correlation between the features Xi and the residuals r, and the second term is a regularization
term that penalizes residuals that are far from the observations y (which itself can be interpreted
as the residuals for the null model β = 0). The parameter δ determines the relative importance
assigned to the regularization term, with δ = +∞ corresponding to no importance whatsoever. As
we describe in Section 4, Problem (3) is in fact a dual of the Lasso Problem (2).

The subgradient descent algorithm applied to Problem (3) leads to a new boosting algorithm that is
almost identical to FSε. We denote this algorithm by R-FSε,δ (for Regularized incremental Forward
Stagewise regression). We show the following properties of the new algorithm R-FSε,δ:

• R-FSε,δ is almost identical to FSε, except that it first shrinks all of the coefficients of β̂k by
a scaling factor 1 − ε

δ < 1 and then updates the selected coefficient jk in the same additive
fashion as FSε.

• as the number of iterations become large, R-FSε,δ delivers an approximate Lasso solution.

• an adaptive version of R-FSε,δ, which we call PATH-R-FSε, is shown to approximate the path
of Lasso solutions with precise bounds that quantify the approximation error over the path.

• R-FSε,δ specializes to FSε, LS-Boost(ε) and the Lasso depending on the parameter value δ
and the learning rates (step-sizes) used therein.

• the computational guarantees derived herein for R-FSε,δ provide a precise description of the
evolution of data-fidelity vis-à-vis `1 shrinkage of the models obtained along the boosting
iterations.

• in our experiments, we observe that R-FSε,δ leads to models with statistical properties that
compare favorably with the Lasso and FSε. It also leads to models that are sparser than
FSε.

We emphasize that all of these results apply to the finite sample setup with no assumptions about
the dataset nor about the relative sizes of p and n.

Contributions A summary of the contributions of this paper is as follows:

1. We analyze several boosting algorithms popularly used in the context of linear regression via
the lens of first-order methods in convex optimization. We show that existing boosting algo-
rithms, namely FSε and LS-Boost(ε) , can be viewed as instances of the subgradient descent
method aimed at minimizing the maximum absolute correlation between the covariates and
residuals, namely ‖XT r‖∞. This viewpoint provides several insights about the operational
characteristics of these boosting algorithms.
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2. We derive novel computational guarantees for FSε and LS-Boost(ε) . These results quantify
the rate at which the estimates produced by a boosting algorithm make their way towards
an unregularized least squares fit (as a function of the number of iterations and the learning
rate ε). In particular, we demonstrate that for any value of ε ∈ (0, 1] the estimates produced
by LS-Boost(ε) converge linearly to their respective least squares values and the `1 norm
of the coefficients grows at a rate O(

√
εk). FSε on the other hand demonstrates a slower

sublinear convergence rate to an O(ε)-approximate least squares solution, while the `1 norm
of the coefficients grows at a rate O(εk).

3. Our computational guarantees yield precise characterizations of the amount of data-fidelity
(training error) and regularization imparted by running a boosting algorithm for k iterations.
These results apply to any dataset and do not rely upon any distributional or structural
assumptions on the data generating mechanism.

4. We show that subgradient descent applied to a regularized version of the loss function
‖XT r‖∞, with regularization parameter δ, leads to a new algorithm which we call R-FSε,δ,
that is a natural and simple generalization of FSε. When compared to FSε, the algorithm
R-FSε,δ performs a seemingly minor rescaling of the coefficients at every iteration. As the
number of iterations k increases, R-FSε,δ delivers an approximate Lasso solution (2). More-
over, as the algorithm progresses, the `1 norms of the coefficients evolve as a geometric series
towards the regularization parameter value δ. We derive precise computational guarantees
that inform us about the training error and regularization imparted by R-FSε,δ.

5. We present an adaptive extension of R-FSε,δ, called PATH-R-FSε, that delivers a path of
approximate Lasso solutions for any prescribed grid sequence of regularization parameters.
We derive guarantees that quantify the average distance from the approximate path traced
by PATH-R-FSε to the Lasso solution path.

Organization of the Paper The paper is organized as follows. In Section 2 we analyze the
convergence behavior of the LS-Boost(ε) algorithm. In Section 3 we present a unifying algorithmic
framework for FSε, FSεk , and LS-Boost(ε) as subgradient descent. In Section 4 we present the
regularized correlation minimization Problem (3) and a naturally associated boosting algorithm
R-FSε,δ, as instantiations of subgradient descent on the family of Problems (3). In each of the
above cases, we present precise computational guarantees of the algorithms for convergence of
residuals, training errors, and shrinkage and study their statistical implications. In Section 5,
we further expand R-FSε,δ into a method for computing approximate solutions of the Lasso path.
Section 6 contains computational experiments. To improve readability, most of the technical details
have been placed in the Appendix A.

Notation

For a vector x ∈ Rm, we use xi to denote the i-th coordinate of x. We use superscripts to index
vectors in a sequence {xk}. Let ej denote the j-th unit vector in Rm, and let e = (1, . . . , 1) denote
the vector of ones. Let ‖·‖q denote the `q norm for q ∈ [1,∞] with unit ball Bq, and let ‖v‖0 denote
the number of non-zero coefficients of the vector v. For A ∈ Rm×n, let ‖A‖q1,q2 := max

x:‖x‖q1≤1
‖Ax‖q2
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be the operator norm. In particular, ‖A‖1,2 = max(‖A1‖2, . . . , ‖An‖2) is the maximum `2 norm of
the columns of A. For a scalar α, sgn(α) denotes the sign of α. The notation “ṽ ← arg max

v∈S
{f(v)}”

denotes assigning ṽ to be any optimal solution of the problem max
v∈S
{f(v)}. For a convex set P let

ΠP (·) denote the Euclidean projection operator onto P , namely ΠP (x̄) := arg minx∈P ‖x − x̄‖2.
Let ∂f(·) denote the subdifferential operator of a convex function f(·). If Q 6= 0 is a symmetric
positive semidefinite matrix, let λmax(Q), λmin(Q), and λpmin(Q) denote the largest, smallest, and
smallest nonzero (and hence positive) eigenvalues of Q, respectively.

2 LS-Boost(ε) : Computational Guarantees and Statistical Impli-
cations

Roadmap We begin our formal study by examining the LS-Boost(ε) algorithm. We study the
rate at which the coefficients generated by LS-Boost(ε) converge to the set of unregularized least
square solutions. This characterizes the amount of data-fidelity as a function of the number of
iterations and ε. In particular, we show (global) linear convergence of the regression coefficients
to the set of least squares coefficients, with similar convergence rates derived for the prediction
estimates and the boosting training errors delivered by LS-Boost(ε) . We also present bounds on
the shrinkage of the regression coefficients β̂k as a function of k and ε, thereby describing how the
amount of shrinkage of the regression coefficients changes as a function of the number of iterations
k.

2.1 Computational Guarantees and Intuition

We first review some useful properties associated with the familiar least squares regression prob-
lem:

LS : L∗n := min
β

Ln(β) := 1
2n‖y −Xβ‖22

s.t. β ∈ Rp ,
(4)

where Ln(·) is the least squares loss, whose gradient is:

∇Ln(β) = − 1
nXT (y −Xβ) = − 1

nXT r (5)

where r = y−Xβ is the vector of residuals corresponding to the regression coefficients β. It follows
that β is a least-squares solution of LS if and only if ∇Ln(β) = 0, which leads to the well known
normal equations:

0 = −XT (y −Xβ) = −XT r . (6)

It also holds that:
n · ‖∇Ln(β)‖∞ = ‖XT r‖∞ = max

j∈{1,...,p}
{|rTXj |} . (7)

The following theorem describes precise computational guarantees for LS-Boost(ε): linear con-
vergence of LS-Boost(ε) with respect to (4), and bounds on the `1 shrinkage of the coefficients
produced. Note that the theorem uses the quantity λpmin(XTX) which denotes the smallest nonzero
(and hence positive) eigenvalue of XTX.
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Theorem 2.1. (Linear Convergence of LS-Boost(ε) for Least Squares) Consider the LS-
Boost(ε) algorithm with learning rate ε ∈ (0, 1], and define the linear convergence rate coefficient
γ:

γ :=

(
1− ε(2− ε)λpmin(XTX)

4p

)
< 1 . (8)

For all k ≥ 0 the following bounds hold:

(i) (training error): Ln(β̂k)− L∗n ≤ 1
2n‖Xβ̂LS‖

2
2 · γk

(ii) (regression coefficients): there exists a least squares solution β̂kLS such that:

‖β̂k − β̂kLS‖2 ≤
‖Xβ̂LS‖2√
λpmin(XTX)

· γk/2

(iii) (predictions): for every least-squares solution β̂LS it holds that

‖Xβ̂k −Xβ̂LS‖2 ≤ ‖Xβ̂LS‖2 · γk/2

(iv) (gradient norm/correlation values): ‖∇Ln(β̂k)‖∞ = 1
n‖X

T r̂k‖∞ ≤ 1
n‖Xβ̂LS‖2 · γ

k/2

(v) (`1-shrinkage of coefficients):

‖β̂k‖1 ≤ min

{
√
k
√

ε
2−ε

√
‖Xβ̂LS‖22 − ‖Xβ̂LS −Xβ̂k‖22 ,

ε‖Xβ̂LS‖2
1−√γ

(
1− γk/2

)}

(vi) (sparsity of coefficients): ‖β̂k‖0 ≤ k.

Before remarking on the various parts of Theorem 2.1, we first discuss the quantity γ defined in
(8), which is called the linear convergence rate coefficient. We can write γ = 1 − ε(2−ε)

4κ(XTX)
where

κ(XTX) is defined to be the ratio κ(XTX) := p
λpmin(XTX)

. Note that κ(XTX) ∈ [1,∞). To see

this, let β̃ be an eigenvector associated with the largest eigenvalue of XTX, then:

0 < λpmin(XTX) ≤ λmax(XTX) =
‖Xβ̃‖22
‖β̃‖22

≤
‖X‖21,2‖β̃‖21
‖β̃‖22

≤ p , (9)

where the last inequality uses our assumption that the columns of X have been normalized (whereby
‖X‖1,2 = 1), and the fact that ‖β̃‖1 ≤

√
p‖β̃‖2. This then implies that γ ∈ [0.75, 1.0) – independent

of any assumption on the dataset – and most importantly it holds that γ < 1.

Let us now make the following immediate remarks on Theorem 2.1:

• The bounds in parts (i)-(iv) state that the training errors, regression coefficients, predictions,
and correlation values produced by LS-Boost(ε) converge linearly (also known as geometric
or exponential convergence) to their least squares counterparts: they decrease by at least
the constant multiplicative factor γ < 1 for part (i), and by

√
γ for parts (ii)-(iv), at every

iteration. The bounds go to zero at this linear rate as k →∞.
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• The computational guarantees in parts (i) - (vi) provide characterizations of the data-fidelity
and shrinkage of the LS-Boost(ε) algorithm for any given specifications of the learning rate
ε and the number of boosting iterations k. Moreover, the quantities appearing in the bounds
can be computed from simple characteristics of the data that can be obtained a priori without
even running the boosting algorithm. (And indeed, one can even substitute ‖y‖2 in place of
‖Xβ̂LS‖2 throughout the bounds if desired since ‖Xβ̂LS‖2 ≤ ‖y‖2.)

Some Intuition Behind Theorem 2.1 Let us now study the LS-Boost(ε) algorithm and build
intuition regarding its progress with respect to solving the unconstrained least squares problem (4),
which will inform the results in Theorem 2.1. Since the predictors are all standardized to have unit
`2 norm, it follows that the coefficient index jk and corresponding step-size ũjk selected in Step (2.)
of LS-Boost(ε) satisfy:

jk ∈ arg max
j∈{1,...,p}

|(r̂k)TXj | and ũjk = (r̂k)TXjk . (10)

Combining (7) and (10), we see that

|ũjk | = |(r̂
k)TXjk | = n · ‖∇Ln(β̂k)‖∞ . (11)

Using the formula for ũjk in (10), we have the following convenient way to express the change in
residuals at each iteration of LS-Boost(ε):

r̂k+1 = r̂k − ε
(

(r̂k)TXjk

)
Xjk . (12)

Intuitively, since (12) expresses r̂k+1 as the difference of two correlated variables, r̂k and sgn((r̂k)TXjk)Xjk ,
we expect the squared `2 norm of r̂k+1 (i.e. its sample variance) to be smaller than that of r̂k. On
the other hand, as we see from (1), convergence of the residuals is ensured by the dependence of the
change in residuals on |(r̂k)TXjk |, which goes to 0 as we approach a least squares solution. In the
proof of Theorem 2.1 in Appendix A.2.2 we make this intuition precise by using (12) to quantify
the amount of decrease in the least squares objective function at each iteration of LS-Boost(ε) .
The final ingredient of the proof uses properties of convex quadratic functions (Appendix A.2.1)
to relate the exact amount of the decrease from iteration k to k + 1 to the current optimality gap
Ln(β̂k)− L∗n, which yields the following strong linear convergence property:

Ln(β̂k+1)− L∗n ≤ γ · (Ln(β̂k)− L∗n) . (13)

The above states that the training error gap decreases at each iteration by at least the multiplicative
factor of γ, and clearly implies item (i) of Theorem 2.1.

Comments on the global linear convergence rate in Theorem 2.1 The global linear con-
vergence of LS-Boost(ε) proved in Theorem 2.1, while novel, is not at odds with the present
understanding of such convergence for optimization problems. One can view LS-Boost(ε) as per-
forming steepest descent optimization steps with respect to the `1 norm unit ball (rather than the
`2 norm unit ball which is the canonical version of the steepest descent method, see [35]). It is
known [35] that canonical steepest decent exhibits global linear convergence for convex quadratic
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optimization so long as the Hessian matrix Q of the quadratic objective function is positive definite,
i.e., λmin(Q) > 0. And for the least squares loss function Q = 1

nXTX, which yields the condition
that λmin(XTX) > 0. As discussed in [4], this result extends to other norms defining steepest
descent as well. Hence what is modestly surprising herein is not the linear convergence per se, but
rather that LS-Boost(ε) exhibits global linear convergence even when λmin(XTX) = 0, i.e., even
when X does not have full column rank (essentially replacing λmin(XTX) with λpmin(XTX) in
our analysis). This derives specifically from the structure of the least squares loss function, whose
function values (and whose gradient) are invariant in the null space of X, i.e., Ln(β + d) = Ln(β)
for all d satisfying Xd = 0, and is thus rendered “immune” to changes in β in the null space of
XTX.

2.2 Statistical Insights from the Computational Guarantees

Note that in most noisy problems, the limiting least squares solution is statistically less interesting
than an estimate obtained in the interior of the boosting profile, since the latter typically corre-
sponds to a model with better bias-variance tradeoff. We thus caution the reader that the bounds in
Theorem 2.1 should not be merely interpreted as statements about how rapidly the boosting itera-
tions reach the least squares fit. We rather intend for these bounds to inform us about the evolution
of the training errors and the amount of shrinkage of the coefficients as the LS-Boost(ε) algorithm
progresses and when k is at most moderately large. When the training errors are paired with the
profile of the `1-shrinkage values of the regression coefficients, they lead to the ordered pairs:(

1

2n
‖y −Xβ̂k‖22 , ‖β̂k‖1

)
, k ≥ 1 , (14)

which describes the data-fidelity and `1-shrinkage tradeoff as a function of k, for the given learning
rate ε > 0. This profile is described in Figure 9 in Appendix A.1.1 for several data instances. The
bounds in Theorem 2.1 provide estimates for the two components of the ordered pair (14), and they
can be computed prior to running the boosting algorithm. For simplicity, let us use the following
crude estimate:

`k := min

{
‖Xβ̂LS‖2

√
kε

2− ε
,
ε‖Xβ̂LS‖2

1−√γ

(
1− γ

k
2

)}
,

which is an upper bound of the bound in part (v) of the theorem, to provide an upper approximation
of ‖β̂k‖1. Combining the above estimate with the guarantee in part (i) of Theorem 2.1 in (14), we
obtain the following ordered pairs:(

1

2n
‖Xβ̂LS‖22 · γk + L∗n , `k

)
, k ≥ 1 , (15)

which describe the entire profile of the training error bounds and the `1-shrinkage bounds as a
function of k as suggested by Theorem 2.1. These profiles, as described above in (15), are illustrated
in Figure 3.

It is interesting to consider the profiles of Figure 3 alongside the explicit regularization framework
of the Lasso (2) which also traces out a profile of the form (14):(

1

2n
‖y −Xβ̂∗δ‖22 , ‖β̂∗δ‖1

)
, δ ≥ 0 , (16)
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LS-Boost(ε) algorithm: `1-shrinkage versus data-fidelity tradeoffs (theoretical bounds)

Synthetic dataset (κ = 1) Synthetic dataset (κ = 25) Leukemia dataset
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Figure 3: Figure showing profiles of `1 shrinkage of the regression coefficients versus training error for the

LS-Boost(ε) algorithm, for different values of the learning rate ε (denoted by the moniker “eps” in the

legend). The profiles have been obtained from the computational bounds in Theorem 2.1. The left and

middle panels correspond to synthetic values of the ratio κ = p
λpmin

, and for the right panel profiles the value

of κ (here, κ = 270.05) is extracted from the Leukemia dataset, described in Section 6. The vertical axes

have been normalized so that the training error at k = 0 is one, and the horizontal axes have been scaled to

the unit interval.

as a function of δ, where, β̂∗δ is a solution to the Lasso problem (2). For a value of δ := `k the
optimal objective value of the Lasso problem will serve as a lower bound of the corresponding
LS-Boost(ε) loss function value at iteration k. Thus the training error of β̂k delivered by the
LS-Boost(ε) algorithm will be sandwiched between the following lower and upper bounds:

Li,k :=
1

2n
‖y −Xβ̂∗`k‖

2
2 ≤

1

2n
‖y −Xβ̂k‖22 ≤

1

2n
‖Xβ̂LS‖22 · γk + L∗n =: Ui,k

for every k. Note that the difference between the upper and lower bounds above, given by: Ui,k−Li,k
converges to zero as k →∞. Figure 9 in Appendix A.1.1 shows the training error versus shrinkage
profiles for LS-Boost(ε) and Lasso for different datasets.

For the bounds in parts (i) and (iii) of Theorem 2.1, the asymptotic limits (as k → ∞) are the
unregularized least squares training error and predictions — which are quantities that are uniquely
defined even in the underdetermined case.

The bound in part (ii) of Theorem 2.1 is a statement concerning the regression coefficients. In this
case, the notion of convergence needs to be appropriately modified from parts (i) and (iii), since
the natural limiting object β̂LS is not necessarily unique. In this case, perhaps not surprisingly,
the regression coefficients β̂k need not converge. The result in part (ii) of the theorem states
that β̂k converges at a linear rate to the set of least squares solutions. In other words, at every
LS-Boost(ε) boosting iteration, there exists a least squares solution β̂kLS for which the presented

bound holds. Here β̂kLS is in fact the closest least squares solution to β̂k in the `2 norm — and the

particular candidate least squares solution β̂kLS may be different for each iteration.
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Figure 4: Figure showing the behavior of γ [left panel] and λpmin(XTX) [right panel] for different values

of ρ (denoted by the moniker “rho” in the legend) and p, with ε = 1. There are ten profiles in each panel

corresponding to different values of ρ for ρ = 0, 0.1, . . . , 0.9. Each profile documents the change in γ as a

function of p. Here, the data matrix X is comprised of n = 50 samples from a p-dimensional multivariate

Gaussian distribution with mean zero, and all pairwise correlations equal to ρ, and the features are then

standardized to have unit `2 norm. The left panel shows that γ exhibits a phase of rapid decay (as a

function of p) after which it stabilizes into the regime of fastest convergence. Interestingly, the behavior

shows a monotone trend in ρ: the rate of progress of LS-Boost(ε) becomes slower for larger values of ρ and

faster for smaller values of ρ.

Interpreting the parameters and algorithm dynamics There are several determinants of
the quality of the bounds in the different parts of Theorem 2.1 which can be grouped into:

• algorithmic parameters: this includes the learning rate ε and the number of iterations k, and

• data dependent quantities: ‖Xβ̂LS‖2, λpmin(XTX), and p.

The coefficient of linear convergence is given by the quantity γ := 1− ε(2−ε)
4κ(XTX)

, where κ(XTX) :=
p

λpmin(XTX)
. Note that γ is monotone decreasing in ε for ε ∈ (0, 1], and is minimized at ε = 1.

This simple observation confirms the general intuition about LS-Boost(ε) : ε = 1 corresponds
to the most aggressive model fitting behavior in the LS-Boost(ε) family, with smaller values of ε
corresponding to a slower model fitting process. The ratio κ(XTX) is a close cousin of the condition
number associated with the data matrix X — and smaller values of κ(XTX) imply a faster rate of
convergence.

In the overdetermined case with n ≥ p and rank(X) = p, the condition number κ̄(XTX) :=
λmax(XTX)
λmin(XTX)

plays a key role in determining the stability of the least-squares solution β̂LS and in

measuring the degree of multicollinearity present. Note that κ̄(XTX) ∈ [1,∞), and that the
problem is better conditioned for smaller values of this ratio. Furthermore, since rank(X) = p it
holds that λpmin(XTX) = λmin(XTX), and thus κ̄(XTX) ≤ κ(XTX) by (9). Thus the condition
number κ(XTX) always upper bounds the classical condition number κ̄(XTX), and if λmax(XTX)
is close to p, then κ̄(XTX) ≈ κ(XTX) and the two measures essentially coincide. Finally, since in
this setup β̂LS is unique, part (ii) of Theorem 2.1 implies that the sequence {β̂k} converges linearly
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to the unique least squares solution β̂LS.

In the underdetermined case with p > n, λmin(XTX) = 0 and thus κ̄(XTX) = ∞. On the other
hand, κ(XTX) <∞ since λpmin(XTX) is the smallest nonzero (hence positive) eigenvalue of XTX.
Therefore the condition number κ(XTX) is similar to the classical condition number κ̄(·) restricted
to the subspace S spanned by the columns of X (whose dimension is rank(X)). Interestingly,
the linear rate of convergence enjoyed by LS-Boost(ε) is in a sense adaptive — the algorithm
automatically adjusts itself to the convergence rate dictated by the parameter γ “as if” it knows
that the null space of X is not relevant.

Dynamics of the LS-Boost(ε) algorithm versus number of boosting iterations
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Figure 5: Showing the LS-Boost(ε) algorithm run on the same synthetic dataset as was used in Figure 9,

with p = 500 and ε = 1, for three different values of the pairwise correlation ρ. A point is “on” if the

corresponding regression coefficient is updated at iteration k. Here the vertical axes have been reoriented so

that the coefficients that are updated the maximum number of times appear lower on the axes. For larger

values of ρ, we see that the LS-Boost(ε) algorithm aggressively updates the coefficients for a large number

of iterations, whereas the dynamics of the algorithm for smaller values of ρ are less pronounced. For larger

values of ρ the LS-Boost(ε) algorithm takes longer to reach the least squares fit and this is reflected in the

above figure from the update patterns in the regression coefficients. The dynamics of the algorithm evident

in this figure nicely complements the insights gained from Figure 1.

As the dataset is varied, the value of γ can change substantially from one dataset to another,
thereby leading to differences in the convergence behavior bounds in parts (i)-(v) of Theorem 2.1.
To settle all of these ideas, we can derive some simple bounds on γ using tools from random matrix
theory. Towards this end, let us suppose that the entries of X are drawn from a standard Gaussian
ensemble, which are subsequently standardized such that every column of X has unit `2 norm. Then
it follows from random matrix theory [43] that λpmin(XTX) ' 1

n(
√
p−
√
n)2 with high probability.

(See Appendix A.2.4 for a more detailed discussion of this fact.) To gain better insights into the
behavior of γ and how it depends on the values of pairwise correlations of the features, we performed
some computational experiments, the results of which are shown in Figure 4. Figure 4 shows the
behavior of γ as a function of p for a fixed n = 50 and ε = 1, for different datasets X simulated
as follows. We first generated a multivariate data matrix from a Gaussian distribution with mean
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zero and covariance Σp×p = (σij), where, σij = ρ for all i 6= j; and then all of the columns of the
data matrix were standardized to have unit `2 norm. The resulting matrix was taken as X. We
considered different cases by varying the magnitude of pairwise correlations of the features ρ —
when ρ is small, the rate of convergence is typically faster (smaller γ) and the rate becomes slower
(higher γ) for higher values of ρ. Figure 4 shows that the coefficient of linear convergence γ is quite
close to 1.0 — which suggests a slowly converging algorithm and confirms our intuition about the
algorithmic behavior of LS-Boost(ε) . Indeed, LS-Boost(ε) , like any other boosting algorithm,
should indeed converge slowly to the unregularized least squares solution. The slowly converging
nature of the LS-Boost(ε) algorithm provides, for the first time, a precise theoretical justification
of the empirical observation made in [28] that stagewise regression is widely considered ineffective
as a tool to obtain the unregularized least squares fit, as compared to other stepwise model fitting
procedures like Forward Stepwise regression (discussed in Section 1).

The above discussion sheds some interesting insight into the behavior of the LS-Boost(ε) algo-
rithm. For larger values of ρ, the observed covariates tend to be even more highly correlated (since
p � n). Whenever a pair of features are highly correlated, the LS-Boost(ε) algorithm finds it
difficult to prefer one over the other and thus takes turns in updating both coefficients, thereby
distributing the effects of a covariate to all of its correlated cousins. Since a group of correlated
covariates are all competing to be updated by the LS-Boost(ε) algorithm, the progress made by
the algorithm in decreasing the loss function is naturally slowed down. In contrast, when ρ is small,
the LS-Boost(ε) algorithm brings in a covariate and in a sense completes the process by doing
the exact line-search on that feature. This heuristic explanation attempts to explain the slower
rate of convergence of the LS-Boost(ε) algorithm for large values of ρ — a phenomenon that we
observe in practice and which is also substantiated by the computational guarantees in Theorem
2.1. We refer the reader to Figures 1 and 5 which further illustrate the above justification. State-
ment (v) of Theorem 2.1 provides upper bounds on the `1 shrinkage of the coefficients. Figure 3
illustrates the evolution of the data-fidelity versus `1-shrinkage as obtained from the computational
bounds in Theorem 2.1. Some additional discussion and properties of LS-Boost(ε) are presented
in Appendix A.2.3.

3 Boosting Algorithms as Subgradient Descent

Roadmap In this section we present a new unifying framework for interpreting the three boosting
algorithms that were discussed in Section 1, namely FSε, its non-uniform learning rate extension
FSεk , and LS-Boost(ε). We show herein that all three algorithmic families can be interpreted
as instances of the subgradient descent method of convex optimization, applied to the problem of
minimizing the largest correlation between residuals and predictors. Interestingly, this unifying lens
will also result in a natural generalization of FSε with very strong ties to the Lasso solutions, as
we will present in Sections 4 and 5. The framework presented in this section leads to convergence
guarantees for FSε and FSεk . In Theorem 3.1 herein, we present a theoretical description of the
evolution of the FSε algorithm, in terms of its data-fidelity and shrinkage guarantees as a function of
the number of boosting iterations. These results are a consequence of the computational guarantees
for FSε that inform us about the rate at which the FSε training error, regression coefficients, and
predictions make their way to their least squares counterparts. In order to develop these results,
we first motivate and briefly review the subgradient descent method of convex optimization.
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3.1 Brief Review of Subgradient Descent

We briefly motivate and review the subgradient descent method for non-differentiable convex opti-
mization problems. Consider the following optimization problem:

f∗ := min
x

f(x)

s.t. x ∈ P ,
(17)

where P ⊆ Rn is a closed convex set and f(·) : P → R is a convex function. If f(·) is differentiable,

then f(·) will satisfy the following gradient inequality:

f(y) ≥ f(x) +∇f(x)T (y − x) for any x, y ∈ P ,

which states that f(·) lies above its first-order (linear) approximation at x. One of the most intuitive
optimization schemes for solving (17) is the method of gradient descent. This method is initiated
at a given point x0 ∈ P . If xk is the current iterate, then the next iterate is given by the update
formula: xk+1 ← ΠP (xk − αk∇f(xk)). In this method the potential new point is xk − αk∇f(xk),
where αk > 0 is called the step-size at iteration k, and the step is taken in the direction of the
negative of the gradient. If this potential new point lies outside of the feasible region P , it is
then projected back onto P . Here recall that ΠP (·) is the Euclidean projection operator, namely
ΠP (x) := arg miny∈P ‖x− y‖2.

Now suppose that f(·) is not differentiable. By virtue of the fact that f(·) is convex, then f(·)
will have a subgradient at each point x. Recall that g is a subgradient of f(·) at x if the following
subgradient inequality holds:

f(y) ≥ f(x) + gT (y − x) for all y ∈ P , (18)

which generalizes the gradient inequality above and states that f(·) lies above the linear function
on the right side of (18). Because there may exist more than one subgradient of f(·) at x, let ∂f(x)
denote the set of subgradients of f(·) at x. Then “g ∈ ∂f(x)” denotes that g is a subgradient of
f(·) at the point x, and so g satisfies (18) for all y. The subgradient descent method (see [40], for
example) is a simple generalization of the method of gradient descent to the case when f(·) is not
differentiable. One simply replaces the gradient by the subgradient, yielding the following update
scheme:

Compute a subgradient of f(·) at xk : gk ∈ ∂f(xk)
Peform update at xk : xk+1 ← ΠP (xk − αkgk) .

(19)

The following proposition summarizes a well-known computational guarantee associated with the
subgradient descent method.

Proposition 3.1. (Convergence Bound for Subgradient Descent [34, 35]) Consider the
subgradient descent method (19), using a constant step-size αi = α for all i. Let x∗ be an optimal
solution of (17) and suppose that the subgradients are uniformly bounded, namely ‖gi‖2 ≤ G for
all i ≥ 0. Then for each k ≥ 0, the following inequality holds:

min
i∈{0,...,k}

f(xi) ≤ f∗ +
‖x0 − x∗‖22
2(k + 1)α

+
αG2

2
. (20)

18



The left side of (20) is simply the best objective function value obtained among the first k iterations.
The right side of (20) bounds the best objective function value from above, namely the optimal
value f∗ plus a nonnegative quantity that is a function of the number of iterations k, the constant
step-size {αi}, the bound G on the norms of subgradients, and the distance from the initial point to
an optimal solution x∗ of (17). Note that for a fixed step-size α > 0, the right side of (20) goes to
αG2

2 as k →∞. In the interest of completeness, we include a proof of Proposition 3.1 in Appendix
A.3.1.

3.2 A Subgradient Descent Framework for Boosting

We now show that the boosting algorithms discussed in Section 1, namely FSε and its relatives
FSεk and LS-Boost(ε), can all be interpreted as instantiations of the subgradient descent method
to minimize the largest absolute correlation between the residuals and predictors.

Let Pres := {r ∈ Rn : r = y−Xβ for some β ∈ Rp} denote the affine space of residuals and consider
the following convex optimization problem:

Correlation Minimization (CM) : f∗ := min
r

f(r) := ‖XT r‖∞
s.t. r ∈ Pres ,

(21)

which we dub the “Correlation Minimization” problem, or CM for short. Note an important
subtlety in the CM problem, namely that the optimization variable in CM is the residual r and not
the regression coefficient vector β.

Since the columns of X have unit `2 norm by assumption, f(r) is the largest absolute correlation
between the residual vector r and the predictors. Therefore (21) is the convex optimization problem
of minimizing the largest correlation between the residuals and the predictors, over all possible
values of the residuals. From (6) with r = y − Xβ we observe that XT r = 0 if and only if β
is a least squares solution, whereby f(r) = ‖XT r‖∞ = 0 for the least squares residual vector
r = r̂LS = y −Xβ̂LS. Since the objective function in (21) is nonnegative, we conclude that f∗ = 0
and the least squares residual vector r̂LS is also the unique optimal solution of the CM problem
(21). Thus CM can be viewed as an optimization problem which also produces the least squares
solution.

The following proposition states that the three boosting algorithms FSε, FSεk and LS-Boost(ε)
can all be viewed as instantiations of the subgradient descent method to solve the CM problem
(21).

Proposition 3.2. Consider the subgradient descent method (19) with step-size sequence {αk} to
solve the correlation minimization (CM) problem (21), initialized at r̂0 = y. Then:

(i) the FSε algorithm is an instance of subgradient descent, with a constant step-size αk := ε at
each iteration,

(ii) the FSεk algorithm is an instance of subgradient descent, with non-uniform step-sizes αk := εk
at iteration k, and
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(iii) the LS-Boost(ε) algorithm is an instance of subgradient descent, with non-uniform step-sizes
αk := ε|ũjk | at iteration k, where ũjk := arg minu ‖r̂k −Xjku‖22.

Proof. We first prove (i). Recall the update of the residuals in FSε:

r̂k+1 = r̂k − ε · sgn((r̂k)TXjk)Xjk .

We first show that gk := sgn((r̂k)TXjk)Xjk is a subgradient of the objective function f(r) =
‖XT r‖∞ of the correlation minimization problem CM (21) at r = r̂k. At iteration k, FSε chooses
the coefficient to update by selecting jk ∈ arg max

j∈{1,...,p}
|(r̂k)TXj |, whereby

sgn((r̂k)TXjk)
(
(r̂k)TXjk

)
= ‖XT (r̂k)‖∞, and therefore for any r it holds that:

f(r) = ‖XT r‖∞ ≥ sgn((r̂k)TXjk)
(
(Xjk)T r

)
= sgn((r̂k)TXjk)

(
(Xjk)T (r̂k + r − r̂k)

)
= ‖XT (r̂k)‖∞ + sgn((r̂k)TXjk)

(
(Xjk)T (r − r̂k)

)
= f(r̂k) + sgn((r̂k)TXjk)

(
(Xjk)T (r − r̂k)

)
.

Therefore using the definition of a subgradient in (18), it follows that gk := sgn((r̂k)TXjk)Xjk is a
subgradient of f(r) = ‖XT r‖∞ at r = r̂k. Therefore the update r̂k+1 = r̂k − ε · sgn((r̂k)TXjk)Xjk

is of the form r̂k+1 = r̂k − εgk where gk ∈ ∂f(r̂k). Last of all notice that the update can also be
written as r̂k−εgk = r̂k+1 = y−Xβ̂k+1 ∈ Pres, hence ΠPres(r̂

k−εgk) = r̂k−εgk, i.e., the projection
step is superfluous here, and therefore r̂k+1 = ΠPres(r̂

k− εgk), which is precisely the update for the
subgradient descent method with step-size αk := ε.

The proof of (ii) is the same as (i) with a step-size choice of αk = εk at iteration k. Furthermore,
as discussed in Section 1, LS-Boost(ε) may be thought of as a specific instance of FSεk , whereby
the proof of (iii) follows as a special case of (ii).

Proposition 3.2 presents a new interpretation of the boosting algorithms FSε and its cousins as sub-
gradient descent. This is interesting especially since FSε and LS-Boost(ε) have been traditionally
interpreted as greedy coordinate descent or steepest descent type procedures [25,28]. This has the
following consequences of note:

• We take recourse to existing tools and results about subgradient descent optimization to
inform us about the computational guarantees of these methods. When translated to the
setting of linear regression, these results will shed light on the data fidelity vis-à-vis shrinkage
characteristics of FSε and its cousins — all using quantities that can be easily obtained prior
to running the boosting algorithm. We will show the details of this in Theorem 3.1 below.

• The subgradient optimization viewpoint provides a unifying algorithmic theme which we will
also apply to a regularized version of problem CM (21), and that we will show is very strongly
connected to the Lasso. This will be developed in Section 4. Indeed, the regularized version
of the CM problem that we will develop in Section 4 will lead to a new family of boosting
algorithms which are a seemingly minor variant of the basic FSε algorithm but deliver (O(ε)-
approximate) solutions to the Lasso.
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3.3 Deriving and Interpreting Computational Guarantees for FSε

The following theorem presents the convergence properties of FSε, which are a consequence of the
interpretation of FSε as an instance of the subgradient descent method.

Theorem 3.1. (Convergence Properties of FSε) Consider the FSε algorithm with learning
rate ε. Let k ≥ 0 be the total number of iterations. Then there exists an index i ∈ {0, . . . , k} for
which the following bounds hold:

(i) (training error): Ln(β̂i)− L∗n ≤
p

2nλpmin(XTX)

[
‖Xβ̂LS‖22
ε(k+1) + ε

]2

(ii) (regression coefficients): there exists a least squares solution β̂iLS such that:

‖β̂i − β̂iLS‖2 ≤
√
p

λpmin(XTX)

[
‖Xβ̂LS‖22
ε(k + 1)

+ ε

]

(iii) (predictions): for every least-squares solution β̂LS it holds that

‖Xβ̂i −Xβ̂LS‖2 ≤
√
p√

λpmin(XTX)

[
‖Xβ̂LS‖22
ε(k + 1)

+ ε

]

(iv) (correlation values) ‖XT r̂i‖∞ ≤
‖Xβ̂LS‖22
2ε(k + 1)

+
ε

2

(v) (`1-shrinkage of coefficients): ‖β̂i‖1 ≤ kε

(vi) (sparsity of coefficients): ‖β̂i‖0 ≤ k .

The proof of Theorem 3.1 is presented in Appendix A.3.2.

Interpreting the Computational Guarantees Theorem 3.1 accomplishes for FSε what The-
orem 2.1 did for LS-Boost(ε) — parts (i) – (iv) of the theorem describe the rate in which the
training error, regression coefficients, and related quantities make their way towards their (O(ε)-
approximate) unregularized least squares counterparts. Part (v) of the theorem also describes the
rate at which the shrinkage of the regression coefficients evolve as a function of the number of boost-
ing iterations. The rate of convergence of FSε is sublinear, unlike the linear rate of convergence for
LS-Boost(ε) . Note that this type of sublinear convergence implies that the rate of decrease of
the training error (for instance) is dramatically faster in the very early iterations as compared to
later iterations. Taken together, Theorems 3.1 and 2.1 highlight an important difference between
the behavior of algorithms LS-Boost(ε) and FSε:

• the limiting solution of the LS-Boost(ε) algorithm (as k → ∞) corresponds to the unregu-
larized least squares solution, but

• the limiting solution of the FSε algorithm (as k → ∞) corresponds to an O(ε) approximate
least squares solution.
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FSε algorithm: `1 shrinkage versus data-fidelity tradeoffs (theoretical bounds)

Synthetic dataset (κ = 1) Leukemia dataset Leukemia dataset (zoomed)
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Figure 6: Figure showing profiles of `1 shrinkage bounds of the regression coefficients versus training error

bounds for the FSε algorithm, for different values of the learning rate ε. The profiles have been obtained

from the bounds in parts (i) and (v) of Theorem 3.1. The left panel corresponds to a hypothetical dataset

using κ = p
λpmin

= 1, and the middle and right panels use the parameters of the Leukemia dataset.

As demonstrated in Theorems 2.1 and 3.1, both LS-Boost(ε) and FSε have nice convergence prop-
erties with respect to the unconstrained least squares problem (4). However, unlike the convergence
results for LS-Boost(ε) in Theorem 2.1, FSε exhibits a sublinear rate of convergence towards a
suboptimal least squares solution. For example, part (i) of Theorem 3.1 implies in the limit as
k →∞ that FSε identifies a model with training error at most:

L∗n +
pε2

2n(λpmin(XTX))
. (22)

In addition, part (ii) of Theorem 3.1 implies that as k →∞, FSε identifies a model whose distance

to the set of least squares solutions {β̂LS : XTXβ̂LS = XTy} is at most:
ε
√
p

λpmin(XTX)
.

Note that the computational guarantees in Theorem 3.1 involve the quantities λpmin(XTX) and

‖Xβ̂LS‖2, assuming n and p are fixed. To settle ideas, let us consider the synthetic datasets used
in Figures 4 and 1, where the covariates were generated from a multivariate Gaussian distribution
with pairwise correlation ρ. Figure 4 suggests that λpmin(XTX) decreases with increasing ρ values.
Thus, controlling for other factors appearing in the computational bounds4 , it follows from the
statements of Theorem 3.1 that the training error decreases much more rapidly for smaller ρ values,
as a function of k. This is nicely validated by the computational results in Figure 1 (the three top
panel figures), which show that the training errors decay at a faster rate for smaller values of
ρ.

Let us examine more carefully the properties of the sequence of models explored by FSε and the
corresponding tradeoffs between data fidelity and model complexity. Let TBound and SBound

4To control for other factors, for example, we may assume that p > n and for different values of ρ we have
‖Xβ̂LS‖2 = ‖y‖2 = 1 with ε fixed across the different examples.
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denote the training error bound and shrinkage bound in parts (i) and (v) of Theorem 3.1, respec-
tively. Then simple manipulation of the arithmetic in these two bounds yields the following tradeoff
equation:

TBound =
p

2nλpmin(XTX)

[
‖Xβ̂LS‖22

SBound + ε
+ ε

]2

.

The above tradeoff between the training error bound and the shrinkage bound is illustrated in
Figure 6, which shows this tradeoff curve for four different values of the learning rate ε. Except
for very small shrinkage levels, lower values of ε produce smaller training errors. But unlike the
corresponding tradeoff curves for LS-Boost(ε) , there is a range of values of the shrinkage for which
smaller values of ε actually produce larger training errors, though admittedly this range is for very
small shrinkage values. For more reasonable shrinkage values, smaller values of ε will correspond
to smaller values of the training error.

Part (v) of Theorems 2.1 and 3.1 presents shrinkage bounds for FSε and LS-Boost(ε) , respectively.
Let us briefly compare these bounds. Examining the shrinkage bound for LS-Boost(ε) , we can
bound the left term from above by

√
k
√
ε‖Xβ̂LS‖2. We can also bound the right term from above

by ε‖Xβ̂LS‖2/(1−
√
γ) where recall from Section 2 that γ is the linear convergence rate coefficient

γ := 1− ε(2−ε)λpmin(XTX)
4p . We may therefore alternatively write the following shrinkage bound for

LS-Boost(ε) :

‖β̂k‖1 ≤ ‖Xβ̂LS‖2 min
{√

k
√
ε , ε/(1−√γ)

}
. (23)

The shrinkage bound for FSε is simply kε. Comparing these two bounds, we observe that not only
does the shrinkage bound for FSε grow at a faster rate as a function of k for large enough k, but also
the shrinkage bound for FSε grows unbounded in k, unlike the right term above for the shrinkage
bound of LS-Boost(ε) .

One can also compare FSε and LS-Boost(ε) in terms of the efficiency with which these two methods
achieve a certain pre-specified data-fidelity. In Appendix A.3.3 we show, at least in theory, that
LS-Boost(ε) is much more efficient than FSε at achieving such data-fidelity, and furthermore it
does so with much better shrinkage.

4 Regularized Correlation Minimization, Boosting, and Lasso

Roadmap In this section we introduce a new boosting algorithm, parameterized by a scalar
δ ≥ 0, which we denote by R-FSε,δ (for Regularized incremental Forward Stagewise regression),
that is obtained by incorporating a simple rescaling step to the coefficient updates in FSε. We then
introduce a regularized version of the Correlation Minimization (CM) problem (21) which we refer
to as RCM. We show that the adaptation of the subgradient descent algorithmic framework to the
Regularized Correlation Minimization problem RCM exactly yields the algorithm R-FSε,δ. The
new algorithm R-FSε,δ may be interpreted as a natural extension of popular boosting algorithms
like FSε, and has the following notable properties:
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• Whereas FSε updates the coefficients in an additive fashion by adding a small amount ε
to the coefficient most correlated with the current residuals, R-FSε,δ first shrinks all of the
coefficients by a scaling factor 1− ε

δ < 1 and then updates the selected coefficient in the same
additive fashion as FSε.

• R-FSε,δ delivers O(ε)-accurate solutions to the Lasso in the limit as k → ∞, unlike FSε
which delivers O(ε)-accurate solutions to the unregularized least squares problem.

• R-FSε,δ has computational guarantees similar in spirit to the ones described in the context of
FSε – these quantities directly inform us about the data-fidelity vis-à-vis shrinkage tradeoffs
as a function of the number of boosting iterations and the learning rate ε.

The notion of using additional regularization along with the implicit shrinkage imparted by boosting
is not new in the literature. Various interesting notions have been proposed in [10, 14, 22, 26, 45],
see also the discussion in Appendix A.4.4 herein. However, the framework we present here is new.
We present a unified subgradient descent framework for a class of regularized CM problems that
results in algorithms that have appealing structural similarities with forward stagewise regression
type algorithms, while also being very strongly connected to the Lasso.

Boosting with additional shrinkage – R-FSε,δ Here we give a formal description of the
R-FSε,δ algorithm. R-FSε,δ is controlled by two parameters: the learning rate ε, which plays the
same role as the learning rate in FSε, and the “regularization parameter” δ ≥ ε. Our reason
for referring to δ as a regularization parameter is due to the connection between R-FSε,δ and the
Lasso, which will be made clear later. The shrinkage factor, i.e., the amount by which we shrink
the coefficients before updating the selected coefficient, is determined as 1− ε

δ . Supposing that we
choose to update the coefficient indexed by jk at iteration k, then the coefficient update may be
written as:

β̂k+1 ←
(
1− ε

δ

)
β̂k + ε · sgn((r̂k)TXjk)ejk .

Below we give a concise description of R-FSε,δ, including the update for the residuals that corre-
sponds to the update for the coefficients stated above.

Algorithm: R-FSε,δ

Fix the learning rate ε > 0, regularization parameter δ > 0 such that ε ≤ δ, and number of
iterations M .

Initialize at r̂0 = y, β̂0 = 0, k = 0.

1. For 0 ≤ k ≤M do the following:

2. Compute: jk ∈ arg max
j∈{1,...,p}

|(r̂k)TXj |

3. r̂k+1 ← r̂k − ε
[
sgn((r̂k)TXjk)Xjk + 1

δ (r̂k − y)
]

β̂k+1
jk
←
(
1− ε

δ

)
β̂kjk + ε sgn((r̂k)TXjk) and β̂k+1

j ←
(
1− ε

δ

)
β̂kj , j 6= jk

Note that R-FSε,δ and FSε are structurally very similar – and indeed when δ =∞ then R-FSε,δ is
exactly FSε. Note also that R-FSε,δ shares the same upper bound on the sparsity of the regression
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coefficients as FSε, namely for all k it holds that: ‖β̂k‖0 ≤ k. When δ < ∞ then, as previously
mentioned, the main structural difference between R-FSε,δ and FSε is the additional rescaling of
the coefficients by the factor 1− ε

δ . This rescaling better controls the growth of the coefficients and,
as will be demonstrated next, plays a key role in connecting R-FSε,δ to the Lasso.

Regularized Correlation Minimization (RCM) and Lasso The starting point of our formal
analysis of R-FSε,δ is the Correlation Minimization (CM) problem (21), which we now modify by
introducing a regularization term that penalizes residuals that are far from the vector of observations
y. This modification leads to the following parametric family of optimization problems indexed by
δ ∈ (0,∞]:

RCMδ : f∗δ := min
r

fδ(r) := ‖XT r‖∞ + 1
2δ‖r − y‖22

s.t. r ∈ Pres := {r ∈ Rn : r = y −Xβ for some β ∈ Rp} ,
(24)

where “RCM” connotes Regularlized Correlation Minimization. Note that RCM reduces to the
correlation minimization problem CM (21) when δ =∞. RCM may be interpreted as the problem
of minimizing, over the space of residuals, the largest correlation between the residuals and the
predictors plus a regularization term that penalizes residuals that are far from the response y
(which itself can be interpreted as the residuals associated with the model β = 0).

Interestingly, as we show in Appendix A.4.1, RCM (24) is equivalent to the Lasso (2) via du-
ality. This equivalence provides further insight about the regularization used to obtain RCMδ.
Comparing the Lasso and RCM, notice that the space of the variables of the Lasso is the space
of regression coefficients β, namely Rp, whereas the space of the variables of RCM is the space of
model residuals, namely Rn, or more precisely Pres. The duality relationship shows that RCMδ (24)
is an equivalent characterization of the Lasso problem, just like the correlation minimization (CM)
problem (21) is an equivalent characterization of the (unregularized) least squares problem. Recall
that Proposition 3.2 showed that subgradient descent applied to the CM problem (24) (which is
RCMδ with δ = ∞) leads to the well-known boosting algorithm FSε. We now extend this theme
with the following Proposition, which demonstrates R-FSε,δ is equivalent to subgradient descent
applied to RCMδ.

Proposition 4.1. The R-FSε,δ algorithm is an instance of subgradient descent to solve the regular-
ized correlation minimization (RCMδ) problem (24), initialized at r̂0 = y, with a constant step-size
αk := ε at each iteration.

The proof of Proposition 4.1 is presented in Appendix A.4.2.

4.1 R-FSε,δ: Computational Guarantees and their Implications

In this subsection we present computational guarantees and convergence properties of the boosting
algorithm R-FSε,δ. Due to the structural equivalence between R-FSε,δ and subgradient descent
applied to the RCMδ problem (24) (Proposition 4.1) and the close connection between RCMδ

and the Lasso (Appendix A.4.1), the convergence properties of R-FSε,δ are naturally stated with
respect to the Lasso problem (2). Similar to Theorem 3.1 which described such properties for
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FSε (with respect to the unregularized least squares problem), we have the following properties for
R-FSε,δ.

Theorem 4.1. (Convergence Properties of R-FSε,δ for the Lasso ) Consider the R-FSε,δ
algorithm with learning rate ε and regularization parameter δ ∈ (0,∞), where ε ≤ δ. Then the
regression coefficient β̂k is feasible for the Lasso problem (2) for all k ≥ 0. Let k ≥ 0 denote a
specific iteration counter. Then there exists an index i ∈ {0, . . . , k} for which the following bounds
hold:

(i) (training error): Ln(β̂i)− L∗n,δ ≤
δ
n

[
‖Xβ̂LS‖22
2ε(k+1) + 2ε

]
(ii) (predictions): for every Lasso solution β̂∗δ it holds that

‖Xβ̂i −Xβ̂∗δ‖2 ≤

√
δ‖Xβ̂LS‖22
ε(k + 1)

+ 4δε

(iii) (`1-shrinkage of coefficients): ‖β̂i‖1 ≤ δ
[
1−

(
1− ε

δ

)k] ≤ δ

(iv) (sparsity of coefficients): ‖β̂i‖0 ≤ k .

The proof of Theorem 4.1 is presented in Appendix A.4.3.

R-FSε,δ algorithm, Prostate cancer dataset (computational bounds)
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Figure 7: Figure showing the evolution of the R-FSε,δ algorithm (with ε = 10−4) for different values of

δ, as a function of the number of boosting iterations for the Prostate cancer dataset, with n = 10, p = 44,

appearing in the bottom panel of Figure 8. [Left panel] shows the change of the `1-norm of the regression

coefficients. [Middle panel] shows the evolution of the training errors, and [Right panel] is a zoomed-in

version of the middle panel. Here we took different values of δ given by δ = frac× δmax, where, δmax denotes

the `1-norm of the minimum `1-norm least squares solution, for 7 different values of frac.

Interpreting the Computational Guarantees The statistical interpretations implied by the
computational guarantees presented in Theorem 4.1 are analogous to those previously discussed for
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LS-Boost(ε) (Theorem 2.1) and FSε (Theorem 3.1). These guarantees inform us about the data-
fidelity vis-à-vis shrinkage tradeoffs as a function of the number of boosting iterations, as nicely
demonstrated in Figure 7. There is, however, an important differentiation between the properties
of R-FSε,δ and the properties of LS-Boost(ε) and FSε, namely:

• For LS-Boost(ε) and FSε, the computational guarantees (Theorems 2.1 and 3.1) describe
how the estimates make their way to a unregularized (O(ε)-approximate) least squares solu-
tion as a function of the number of boosting iterations.

• For R-FSε,δ, our results (Theorem 4.1) characterize how the estimates approach a (O(ε)-
approximate) Lasso solution.

Notice that like FSε, R-FSε,δ traces out a profile of regression coefficients. This is reflected in item
(iii) of Theorem 4.1 which bounds the `1-shrinkage of the coefficients as a function of the number
of boosting iterations k. Due to the rescaling of the coefficients, the `1-shrinkage may be bounded
by a geometric series that approaches δ as k grows. Thus, there are two important aspects of the
bound in item (iii): (a) the dependence on the number of boosting iterations k which characterizes
model complexity during early iterations, and (b) the uniform bound of δ which applies even in
the limit as k →∞ and implies that all regression coefficient iterates β̂k are feasible for the Lasso
problem (2).

On the other hand, item (i) characterizes the quality of the coefficients with respect to the Lasso
solution, as opposed to the unregularized least squares problem as in FSε. In the limit as k →∞,
item (i) implies that R-FSε,δ identifies a model with training error at most L∗n,δ + 2δε

n . This upper
bound on the training error may be set to any prescribed error level by appropriately tuning ε; in
particular, for ε ≈ 0 and fixed δ > 0 this limit is essentially L∗n,δ. Thus, combined with the uniform
bound of δ on the `1-shrinkage, we see that the R-FSε,δ algorithm delivers the Lasso solution in
the limit as k →∞.

It is important to emphasize that R-FSε,δ should not just be interpreted as an algorithm to solve
the Lasso. Indeed, like FSε, the trajectory of the algorithm is important and R-FSε,δ may identify
a more statistically interesting model in the interior of its profile. Thus, even if the Lasso solution
for δ leads to overfitting, the R-FSε,δ updates may visit a model with better predictive performance
by trading off bias and variance in a more desirable fashion suitable for the particular problem at
hand.

Figure 8 shows the profiles of R-FSε,δ for different values of δ ≤ δmax, where δmax is the `1-norm of
the minimum `1-norm least squares solution. Curiously enough, Figure 8 shows that in some cases,
the profile of R-FSε,δ bears a lot of similarities with that of the Lasso (as presented in Figure 2).
However, the profiles are in general different. Indeed, R-FSε,δ imposes a uniform bound of δ on
the `1-shrinkage, and so for values larger than δ we cannot possibly expect R-FSε,δ to approximate
the Lasso path. However, even if δ is taken to be sufficiently large (but finite) the profiles may
be different. In this connection it is helpful to draw the analogy between the curious similarities
between the FSε (i.e., R-FSε,δ with δ =∞) and Lasso coefficient profiles, even though the profiles
are different in general.

As a final note, we point out that one can also interpret R-FSε,δ as the Frank-Wolfe algorithm in
convex optimization applied to the Lasso (2) in line with [2]. We refer the reader to Appendix
A.4.5 for discussion of this point.
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Figure 8: Coefficient profiles for R-FSε,δ as a function of the `1-norm of the regression coefficients, for the

same datasets appearing in Figure 2. For each example, different values of δ have been considered. The

left panel corresponds to the choice δ = ∞, i.e., FSε. In all the above cases, the algorithms were run for

a maximum of 100,000 boosting iterations with ε = 10−4. [Top Panel] Corresponds to the Prostate cancer

dataset with n = 98 and p = 8. All the coefficient profiles look similar, and they all seem to coincide with

the Lasso profile (see also Figure 2). [Bottom Panel] Shows the Prostate cancer dataset with a subset

of samples n = 10 with all interactions included with p = 44. The coefficient profiles in this example are

sensitive to the choice of δ and are seen to be more constrained towards the end of the path, for decreasing

δ values. The profiles are different than the Lasso profiles, as seen in Figure 2. The regression coefficients

at the end of the path correspond to approximate Lasso solutions, for the respective values of δ.

5 A Modified Forward Stagewise Algorithm for Computing the
Lasso Path

In Section 4 we introduced the boosting algorithm R-FSε,δ (which is a very close cousin of FSε)
that delivers solutions to the Lasso problem (2) for a fixed but arbitrary δ, in the limit as k →∞
with ε ≈ 0. Furthermore, our experiments in Section 6 suggest that R-FSε,δ may lead to estimators
with good statistical properties for a wide range of values of δ, provided that the value of δ is not
too small. While R-FSε,δ by itself may be considered as a regularization scheme with excellent
statistical properties, the boosting profile delivered by R-FSε,δ might in some cases be different
from the Lasso coefficient profile, as we saw in Figure 8. Therefore in this section we investigate
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the following question: is it possible to modify the R-FSε,δ algorithm, while still retaining its basic
algorithmic characteristics, so that it delivers an approximate Lasso coefficient profile for any
dataset? We answer this question in the affirmative herein.

To fix ideas, let us consider producing the (approximate) Lasso path by producing a sequence
of (approximate) Lasso solutions on a predefined grid of regularization parameter values δ in the
interval (0, δ̄] given by 0 < δ̄0 < δ̄1 < . . . < δ̄K = δ̄. (A standard method for generating the grid
points is to use a geometric sequence such as δ̄i = η−i · δ̄0 for i = 0, . . . ,K, for some η ∈ (0, 1).)
Motivated by the notion of warm-starts popularly used in the statistical computing literature in
the context of computing a path of Lasso solutions (55) via coordinate descent methods [23], we
propose here a slight modification of the R-FSε,δ algorithm that sequentially updates the value of
δ according to the predefined grid values δ̄0, δ̄1, · · · , δ̄K = δ̄, and does so prior to each update of r̂i

and β̂i. We call this method PATH-R-FSε, whose complete description is as follows:

Algorithm: PATH-R-FSε

Fix the learning rate ε > 0, choose values δ̄i, i = 0, . . . ,K, satisfying 0 < δ̄0 ≤ δ̄1 ≤ · · · ≤ δ̄K ≤ δ̄
such that ε ≤ δ̄0.

Initialize at r̂0 = y, β̂0 = 0, k = 0 .

1. For 0 ≤ k ≤ K do the following:

2. Compute: jk ∈ arg max
j∈{1,...,p}

|(r̂k)TXj |

3. Set:

r̂k+1 ← r̂k − ε
[
sgn((r̂k)TXjk)Xjk + (r̂k − y)/δ̄k

]
β̂k+1
jk
←
(
1− ε/δ̄k

)
β̂kjk + ε sgn((r̂k)TXjk) and β̂k+1

j ←
(
1− ε/δ̄k

)
β̂kj , j 6= jk

Notice that PATH-R-FSε retains the identical structure of a forward stagewise regression type of
method, and uses the same essential update structure of Step (3.) of R-FSε,δ. Indeed, the updates

of r̂k+1 and β̂k+1 in PATH-R-FSε are identical to those in Step (3.) of R-FSε,δ except that they
use the regularization value δ̄k at iteration k instead of the constant value of δ as in R-FSε,δ.

Theoretical Guarantees for PATH-R-FSε Analogous to Theorem 4.1 for R-FSε,δ, the follow-
ing theorem describes properties of the PATH-R-FSε algorithm. In particular, the theorem provides
rigorous guarantees about the distance between the PATH-R-FSε algorithm and the Lasso coeffi-
cient profiles – which apply to any general dataset.

Theorem 5.1. (Computational Guarantees of PATH-R-FSε) Consider the PATH-R-FSε
algorithm with the given learning rate ε and regularization parameter sequence {δ̄k}. Let k ≥ 0
denote the total number of iterations. Then the following holds:

(i) (Lasso feasibility and average training error): for each i = 0, . . . , k, β̂i provides an approxi-
mate solution to the Lasso problem for δ = δ̄i. More specifically, β̂i is feasible for the Lasso
problem for δ = δ̄i, and satisfies the following suboptimality bound with respect to the entire
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boosting profile:

1

k + 1

k∑
i=0

(
Ln(β̂i)− L∗n,δ̄i

)
≤ δ̄‖Xβ̂LS‖22

2nε(k + 1)
+

2δ̄ε

n

(ii) (`1-shrinkage of coefficients): ‖β̂i‖1 ≤ δ̄i for i = 0, . . . , k.

(iii) (sparsity of coefficients): ‖β̂i‖0 ≤ i for i = 0, . . . , k.

Corollary 5.1. (PATH-R-FSε approximates the Lasso path) For every fixed ε > 0 and
k →∞ it holds that:

lim sup
k→∞

1

k + 1

k∑
i=0

(
Ln(β̂i)− L∗n,δ̄i

)
≤ 2δ̄ε

n
,

(and the quantity on the right side of the above bound goes to zero as ε→ 0).

The proof of Theorem 5.1 is presented in Appendix A.5.1.

Interpreting the computational guarantees Let us now provide some interpretation of the
results stated in Theorem 5.1. Recall that Theorem 4.1 presented bounds on the distance between
the training errors achieved by the boosting algorithm R-FSε,δ and Lasso training errors for a fixed
but arbitrary δ that is specified a priori. The message in Theorem 5.1 generalizes this notion to a
family of Lasso solutions corresponding to a grid of δ values. The theorem thus quantifies how the
boosting algorithm PATH-R-FSε simultaneously approximates a path of Lasso solutions.

Part (i) of Theorem 5.1 first implies that the sequence of regression coefficient vectors {β̂i} is feasible
along the Lasso path, for the Lasso problem (2) for the sequence of regularization parameter values
{δ̄i}. In considering guarantees with respect to the training error, we would ideally like guarantees
that hold across the entire spectrum of {δ̄i} values. While part (i) does not provide such strong
guarantees, part (i) states that these quantities will be sufficiently small on average. Indeed, for
a fixed ε and as k → ∞, part (i) states that the average of the differences between the training

errors produced by the algorithm and the optimal training errors is at most 2δ̄ε
n . This non-vanishing

bound (for ε > 0) is a consequence of the fixed learning rate ε used in PATH-R-FSε – such bounds
were also observed for R-FSε,δ and FSε.

Thus on average, the training error of the model β̂i will be sufficiently close (as controlled by the
learning rate ε) to the optimal training error for the corresponding regularization parameter value
δ̄i. In summary, while PATH-R-FSε provides the most amount of flexibility in terms of controlling
for model complexity since it allows for any (monotone) sequence of regularization parameter values
in the range (0, δ̄], this freedom comes at the cost of weaker training error guarantees with respect to
any particular δ̄i value (as opposed to R-FSε,δ which provides strong guarantees with respect to the
fixed value δ). Nevertheless, part (i) guarantees that the training errors will be sufficiently small on
average across the entire path of regularization parameter values explored by the algorithm.
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6 Some Computational Experiments

We consider an array of examples exploring statistical properties of the different boosting algorithms
studied herein. We consider different types of synthetic and real datasets, which are briefly described
here.

Synthetic datasets We considered synthetically generated datasets of the following types:

• Eg-A. Here the data matrix X is generated from a multivariate normal distribution, i.e., for
each i = 1, . . . , n, xi ∼ MVN(0,Σ). Here xi denotes the ith row of X and Σ = (σij) ∈ Rp×p
has all off-diagonal entries equal to ρ and all diagonal entries equal to one. The response

y ∈ Rn is generated as y = Xβpop + ε, where εi
iid∼ N(0, σ2). The underlying regression

coefficient was taken to be sparse with βpop
i = 1 for all i ≤ 5 and βpop

i = 0 otherwise. σ2 is
chosen so as to control the signal to noise ratio SNR := Var(x′β)/σ2.

Different values of SNR, n, p and ρ were taken and they have been specified in our results
when and where appropriate.

• Eg-B. Here the datasets are generated similar to above, with βpop
i = 1 for i ≤ 10 and βpop

i = 0
otherwise. We took the value of SNR=1in this example.

Real datasets We considered four different publicly available microarray datasets as described
below.

• Leukemia dataset. This dataset, taken from [12], was processed to have n = 72 and
p = 500. y was created as y = Xβpop + ε; with βpop

i = 1 for all i ≤ 10 and zero otherwise.

• Golub dataset. This dataset, taken from the R package mpm, was processed to have n = 73
and p = 500, with artificial responses generated as above.

• Khan dataset. This dataset, taken from the website of [28], was processed to have n = 73
and p = 500, with artificial responses generated as above.

• Prostate dataset. This dataset, analyzed in [15], was processed to create three types of
different datasets: (a) the original dataset with n = 97 and p = 8, (b) a dataset with n = 97
and p = 44, formed by extending the covariate space to include second order interactions,
and (c) a third dataset with n = 10 and p = 44, formed by subsampling the previous dataset.

For more detail on the above datasets, we refer the reader to the Appendix B.

Note that in all the examples we standardized X such that the columns have unit `2 norm, before
running the different algorithms studied herein.

6.1 Statistical properties of boosting algorithms: an empirical study

We performed some experiments to better understand the statistical behavior of the different boost-
ing methods described in this paper. We summarize our findings here; for details (including tables,
figures and discussions) we refer the reader to Appendix, Section B.
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Sensitivity of the Learning Rate in LS-Boost(ε) and FSε We explored how the training
and test errors for LS-Boost(ε) and FSε change as a function of the number of boosting iterations
and the learning rate. We observed that the best predictive models were sensitive to the choice of
ε—the best models were obtained at values larger than zero and smaller than one. When compared
to Lasso , stepwise regression [15] and FS0 [15]; FSε and LS-Boost(ε) were found to be as good
as the others, in some cases the better than the rest.

Statistical properties of R-FSε,δ, Lasso and FSε: an empirical study We performed some
experiments to evaluate the performance of R-FSε,δ, in terms of predictive accuracy and sparsity
of the optimal model, versus the more widely known methods FSε and Lasso. We found that
when δ was larger than the best δ for the Lasso (in terms of obtaining a model with the best
predictive performance), R-FSε,δ delivered a model with excellent statistical properties – R-FSε,δ
led to sparse solutions and the predictive performance was as good as, and in some cases better
than, the Lasso solution. We observed that the choice of δ does not play a very crucial role in
the R-FSε,δ algorithm, once it is chosen to be reasonably large; indeed the number of boosting
iterations play a more important role. The best models delivered by R-FSε,δ were more sparse than
FSε.
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A Technical Details and Supplementary Material

A.1 Additional Details for Section 1

A.1.1 Figure showing Training error versus `1-shrinkage bounds

Figure 9 showing profiles of `1 norm of the regression coefficients versus training error for LS-
Boost(ε) , FSε and Lasso.

`1 shrinkage versus data-fidelity tradeoffs: LS-Boost(ε) , FSε, and Lasso

T
ra

in
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g
E

rr
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`1 shrinkage of coefficients `1 shrinkage of coefficients `1 shrinkage of coefficients

Figure 9: Figure showing profiles of `1 norm of the regression coefficients versus training error for LS-

Boost(ε) , FSε and Lasso. [Left panel] Shows profiles for a synthetic dataset where the covariates are

drawn from a Gaussian distribution with pairwise correlations ρ = 0.5. The true β has ten non-zeros with

βi = 1 for i = 1, . . . , 10, and SNR = 1. Here we ran LS-Boost(ε) with ε = 1 and ran FSε with ε = 10−2.

The middle (and right) panel profiles corresponds to the Prostate cancer dataset (described in Section 6).

Here we ran LS-Boost(ε) with ε = 0.01 and we ran FSε with ε = 10−5. The right panel figure is a zoomed-in

version of the middle panel in order to highlight the difference in profiles between LS-Boost(ε) , FSε and

Lasso. The vertical axes have been normalized so that the training error at k = 0 is one, and the horizontal

axes have been scaled to the unit interval (to express the `1-norm of β̂k as a fraction of the maximum).

A.2 Additional Details for Section 2

A.2.1 Properties of Convex Quadratic Functions

Consider the following quadratic optimization problem (QP) defined as:

h∗ := min
x∈Rn

h(x) := 1
2x

TQx+ qTx+ qo ,

where Q is a symmetric positive semi-definite matrix, whereby h(·) is a convex function. We assume
that Q 6= 0, and recall that λpmin(Q) denotes the smallest nonzero (and hence positive) eigenvalue
of Q.
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Proposition A.1. If h∗ > −∞, then for any given x, there exists an optimal solution x∗ of (QP)
for which

‖x− x∗‖2 ≤

√
2(h(x)− h∗)
λpmin(Q)

.

Also, it holds that

‖∇h(x)‖2 ≥
√
λpmin(Q) · (h(x)− h∗)

2
.

Proof: The result is simply manipulation of linear algebra. Let us assume without loss of generality
that qo = 0. If h∗ > −∞, then (QP) has an optimal solution x∗, and the set of optimal solutions
are characterized by the gradient condition

0 = ∇h(x) = Qx+ q .

Now let us write the sparse eigendecomposition of Q as Q = PDP T where D is a diagonal matrix
of non-zero eigenvalues of Q and the columns of P are orthonormal, namely P TP = I. Because
(QP) has an optimal solution, the system of equations Qx = −q has a solution, and let x̃ denote
any such solution. Direct manipulation establishes:

PP T q = −PP TQx̃ = −PP TPDP T x̃ = −PDP T x̃ = −Qx̃ = q .

Furthermore, let x̂ := −PD−1P T q. It is then straightforward to see that x̂ is an optimal solution
of (QP) since in particular:

Qx̂ = −PDP TPD−1P T q = −PP T q = −q ,

and hence

h∗ = 1
2 x̂

TQx̂+ qT x̂ = −1
2 x̂

TQx̂ = −1
2q
TPD−1P TPDP TPD−1P T q = −1

2q
TPD−1P T q .

Now let x be given, and define x∗ := [I−PP T ]x−PD−1P T q. Then just as above it is straightforward
to establish that Qx∗ = −q whereby x∗ is an optimal solution. Furthermore, it holds that:

‖x− x∗‖22 = (qTPD−1 + xTP )P TP (D−1P T q + P Tx)

= (qTPD−
1
2 + xTPD

1
2 )D−1(D−

1
2P T q +D

1
2P Tx)

≤ 1
λpmin(Q)(qTPD−

1
2 + xTPD

1
2 )(D−

1
2P T q +D

1
2P Tx)

= 1
λpmin(Q)(qTPD−1P T q + xTPDP Tx+ 2xTPP T q)

= 1
λpmin(Q)(−2h∗ + xTQx+ 2xT q)

= 2
λpmin(Q)(h(x)− h∗) ,

and taking square roots establishes the first inequality of the proposition.
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Using the gradient inequality for convex functions, it holds that:

h∗ = h(x∗) ≥ h(x) +∇h(x)T (x∗ − x)

≥ h(x)− ‖∇h(x)‖2‖x∗ − x‖2

≥ h(x)− ‖∇h(x)‖2
√

2(h(x)−h∗)
λpmin(Q) ,

and rearranging the above proves the second inequality of the proposition.

A.2.2 Proof of Theorem 2.1

We first prove part (i). Utilizing (12), which states that r̂k+1 = r̂k − ε
(
(r̂k)TXjk

)
Xjk , we

have:
Ln(β̂k+1) = 1

2n‖r̂
k+1‖22

= 1
2n‖r̂

k − ε
(
(r̂k)TXjk

)
Xjk‖22

= 1
2n‖r̂

k‖22 − 1
nε
(
(r̂k)TXjk

)2
+ 1

2nε
2
(
(r̂k)TXjk

)2
= Ln(β̂k)− 1

2nε(2− ε)
(
(r̂k)TXjk

)2
= Ln(β̂k)− 1

2nε(2− ε)n
2‖∇Ln(β̂k)‖2∞ ,

(25)

(where the last equality above uses (11)), which yields:

Ln(β̂k+1)− L∗n = Ln(β̂k)− L∗n − n
2 ε(2− ε)‖∇Ln(β̂k)‖2∞ . (26)

We next seek to bound the right-most term above. We will do this by invoking Proposition A.1,
which presents two important properties of convex quadratic functions. Because Ln(·) is a convex
quadratic function of the same format as Proposition A.1 with h(·) ← Ln(·), Q ← 1

nXTX, and
h∗ ← L∗n, it follows from the second property of Proposition A.1 that

‖∇Ln(β)‖2 ≥

√
λpmin( 1

nXTX)(Ln(β)− L∗n)

2
=

√
λpmin(XTX)(Ln(β)− L∗n)

2n
.

Therefore

‖∇Ln(β)‖2∞ ≥ 1
p‖∇Ln(β)‖22 ≥

λpmin(XTX)(Ln(β)− L∗n)

2np
.

Substituting this inequality into (26) yields after rearranging:

Ln(β̂k+1)− L∗n ≤ (Ln(β̂k)− L∗n)

(
1− ε(2− ε)λpmin(XTX)

4p

)
= (Ln(β̂k)− L∗n) · γ . (27)

Now note that Ln(β̂0) = Ln(0) = 1
2n‖y‖

2
2 and

Ln(β̂0)−L∗n = 1
2n‖y‖

2
2− 1

2n‖y−Xβ̂LS‖22 = 1
2n‖y‖

2
2− 1

2n(‖y‖22−2yTXβ̂LS+‖Xβ̂LS‖22) = 1
2n‖Xβ̂LS‖22 ,
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where the last equality uses the normal equations (6). Then (i) follows by using elementary induc-
tion and combining the above with (27):

Ln(β̂k)− L∗n ≤ (Ln(β̂0)− L∗n) · γk = 1
2n‖Xβ̂LS‖22 · γk .

To prove (ii), we invoke the first inequality of Proposition A.1, which in this context states
that

‖β̂k − β̂LS‖2 ≤

√
2(Ln(β̂k)− L∗n)√
λpmin( 1

nXTX)
=

√
2n(Ln(β̂k)− L∗n)√
λpmin(XTX)

.

Part (ii) then follows by substituting the bound on (Ln(β̂k)− L∗n) from (i) and simplifying terms.

Similarly, the proof of (iii) follows from the observation that ‖Xβ̂k−Xβ̂LS‖2 =

√
2n(Ln(β̂k)− L∗n)

and then substituting the bound on (Ln(β̂k)− L∗n) from (i) and simplifying terms.

To prove (iv), define the point β̃k := β̂k + ũjkejk . Then using similar arithmetic as in (25) one
obtains:

L∗n ≤ Ln(β̃k) = Ln(β̂k)− 1
2n ũ

2
jk
,

where we recall that ũjk = (r̂k)TXjk . This inequality then rearranges to

|ũjk | ≤
√

2n(Ln(β̂k)− L∗n) ≤ ‖Xβ̂LS‖2 · γk/2 , (28)

where the second inequality follows by substituting the bound on (Ln(β̂i)−L∗n) from (i). Recalling
(7) and (11), the above is exactly part (iv).

Part (v) presents two distinct bounds on ‖β̂k‖1, which we prove independently. To prove the first
bound, let β̂LS be any least-squares solution, which therefore satisfies (6). It is then elementary to
derive using similar manipulation as in (25) that for all i the following holds:

‖X(β̂i+1 − β̂LS)‖22 = ‖X(β̂i − β̂LS)‖22 − (2ε− ε2)ũ2
ji (29)

which implies that

(2ε− ε2)
k−1∑
i=0

ũ2
ji = ‖X(β̂0 − β̂LS)‖22 − ‖X(β̂k − β̂LS)‖22 = ‖Xβ̂LS‖22 − ‖X(β̂k − β̂LS)‖22 . (30)

Then note that

‖β̂k‖1 ≤ ‖(εũj0 , . . . , εũjk−1
)‖1 ≤

√
kε‖(ũj0 , . . . , ũjk−1

)‖2 =
√
k
√

ε
2−ε

√
‖Xβ̂LS‖22 − ‖Xβ̂LS −Xβ̂k‖22 ,

where the last equality is from (30).

To prove the second bound in (v), noting that β̂k =
∑k−1

i=0 εũjieji , we bound ‖β̂k‖1 as follows:

‖β̂k‖1 ≤ ε
k−1∑
i=0

|ũji | ≤ ε‖Xβ̂LS‖2
k−1∑
i=0

γi/2

=
ε‖Xβ̂LS‖2

1−√γ

(
1− γk/2

)
,

38



where the second inequality uses (28) for each i ∈ {0, . . . , k−1} and the final equality is a geometric
series, which completes the proof of (v). Part (vi) is simply the property of LS-Boost(ε) that
derives from the fact that β̂0 := 0 and at every iteration at most one coordinate of β changes status
from a zero to a non-zero value.

A.2.3 Additional properties of LS-Boost(ε)

We present two other interesting properties of the LS-Boost(ε) algorithm, namely an additional
bound on the correlation between residuals and predictors, and a bound on the `2-shrinkage of the
regression coefficients. Both are presented in the following proposition.

Proposition A.2. (Two additional properties of LS-Boost(ε)) Consider the iterates of the
LS-Boost(ε) algorithm after k iterations and consider the linear convergence rate coefficient γ:

γ :=

(
1− ε(2− ε)λpmin(XTX)

4p

)
.

(i) There exists an index i ∈ {0, . . . , k} for which the `∞ norm of the gradient vector of the least
squares loss function evaluated at β̂i satisfies:

‖∇Ln(β̂i)‖∞ = 1
n‖X

T r̂i‖∞ ≤ min


√
‖Xβ̂LS‖22 − ‖Xβ̂LS −Xβ̂k+1‖22

n
√
ε(2− ε)(k + 1)

, 1
n‖Xβ̂LS‖2 · γ

k/2

 . (31)

(ii) Let J` denote the number of iterations of LS-Boost(ε) , among the first k iterations, where the
algorithm takes a step in coordinate `, for ` = 1, . . . , p, and let Jmax := max{J1, . . . , Jp}. Then the

following bound on the shrinkage of β̂k holds:

‖β̂k‖2 ≤
√
Jmax

√
ε

2− ε

√
‖Xβ̂LS‖22 − ‖Xβ̂LS −Xβ̂k‖22 . (32)

Proof. We first prove part (i). The first equality of (31) is a restatement of (11). For each
i ∈ {0, . . . , k}, recall that ũji = (r̂i)TXji and that |ũji | = |(r̂i)TXji | = ‖XT r̂i‖∞, from (11).
Therefore:(

min
i∈{0,...,k}

|ũji |
)2

= min
i∈{0,...,k}

ũ2
ji ≤

1

k + 1

k∑
i=0

ũ2
ji ≤

‖Xβ̂LS‖22 − ‖X(β̂k+1 − β̂LS)‖22
ε(2− ε)(k + 1)

, (33)

where the final inequality follows from (30) in the proof of Theorem 2.1. Now letting i be an index
achieving the minimum in the left hand side of the above and taking square roots implies that

‖XT r̂i‖∞ = |ũji | ≤

√
‖Xβ̂LS‖22 − ‖Xβ̂LS −Xβ̂k+1‖22√

ε(2− ε)(k + 1)
,
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which is equivalent to the inequality in (31) for the first right-most term therein. Directly applying
(28) from the proof of Theorem 2.1 and using the fact that i is an index achieving the minimum in
the left hand side of (33) yields:

‖XT r̂i‖∞ = |ũji | ≤ |ũjk | ≤ ‖Xβ̂LS‖2
(

1− ε(2− ε)λpmin(XTX)

4p

)k/2
,

which is equivalent to the inequality in (31) for the second right-most term therein.

We now prove part (ii). For fixed k > 0, let J (`) denote the set of iteration counters where
LS-Boost(ε) modifies coordinate ` of β, namely

J (`) := {i : i < k and ji = ` in Step (2.) of Algorithm LS-Boost(ε) } ,

for ` = 1, . . . , p. Then J` = |J (`)|, and the sets J (1), . . . ,J (p) partition the iteration index set
{0, 1, . . . , k − 1}. We have:

‖β̂k‖2 ≤ ‖(
∑

i∈J (1) εũji , . . . ,
∑

i∈J (p) εũji)‖2

≤
∥∥∥(√J(1)

√∑
i∈J (1) ε

2ũ2
ji
, . . . ,

√
J(p)

√∑
i∈J (p) ε

2ũ2
ji

)∥∥∥
2

≤ ε
√
Jmax

∥∥∥(√∑i∈J (1) ũ
2
ji
, . . . ,

√∑
i∈J (p) ũ

2
ji

)∥∥∥
2

= ε
√
Jmax

√(
ũ2
j0

+ . . .+ ũ2
jk−1

)
,

(34)

and the proof is completed by applying inequality (30).

Part (i) of Proposition A.2 describes the behavior of the gradient of the least squares loss func-
tion — indeed, recall that the dynamics of the gradient are closely linked to that of the LS-
Boost(ε) algorithm and, in particular, to the evolution of the loss function values. To illustrate
this connection, let us recall two simple characteristics of the LS-Boost(ε) algorithm:

Ln(β̂k)− Ln(β̂k+1) = n
2 ε(2− ε)‖∇Ln(β̂k)‖2∞

r̂k+1 − r̂k = −ε
(
(r̂k)TXjk

)
Xjk ,

which follow from (26) and Step (3.) of the FSε algorithm respectively. The above updates of
the LS-Boost(ε) algorithm clearly show that smaller values of the `∞ norm of the gradient slows
down the “progress” of the residuals and thus the overall algorithm. Larger values of the norm of
the gradient, on the other hand, lead to rapid “progress” in the algorithm. Here, we use the term
“progress” to measure the amount of decrease in training error and the norm of the changes in
successive residuals. Informally speaking, the LS-Boost(ε) algorithm operationally works towards
minimizing the unregularized least squares loss function — and the gradient of the least squares
loss function is simultaneously shrunk towards zero. Equation (31) precisely quantifies the rate at
which the `∞ norm of the gradient converges to zero. Observe that the bound is a minimum of two
distinct rates: one which decays as O( 1√

k
) and another which is linear with parameter

√
γ. This is
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similar to item (v) of Theorem 2.1. For small values of k the first rate will dominate, until a point
is reached where the linear rate begins to dominate. Note that the dependence on the linear rate
γ suggests that for large values of correlations among the samples, the gradient decays slower than
for smaller pairwise correlations among the samples.

The behavior of the LS-Boost(ε) algorithm described above should be contrasted with the FSε
algorithm. In view of Step (3.) of the FSε algorithm, the successive differences of the residuals in
FSε are indifferent to the magnitude of the gradient of the least squares loss function — as long
as the gradient is non-zero, then for FSε it holds that ‖r̂k+1 − r̂k‖2 = ε. Thus FSε undergoes a
more erratic evolution, unlike LS-Boost(ε) where the convergence of the residuals is much more
“smooth.”

A.2.4 Concentration Results for λpmin(XTX) in the High-dimensional Case

Proposition A.3. Suppose that p > n, let X̃ ∈ Rn×p be a random matrix whose entries are i.i.d.
standard normal random variables, and define X := 1√

n
X̃. Then, it holds that:

E[λpmin(XTX)] ≥ 1

n

(√
p−
√
n
)2

.

Furthermore, for every t ≥ 0, with probability at least 1− 2 exp(−t2/2), it holds that:

λpmin(XTX) ≥ 1

n

(√
p−
√
n− t

)2
.

Proof. Let σ1(X̃T ) ≥ σ2(X̃T ) ≥ . . . ≥ σn(X̃T ) denote the ordered singular values of X̃T (equiva-
lently of X̃). Then, Theorem 5.32 of [43] states that:

E[σn(X̃T )] ≥ √p−
√
n ,

which thus implies:

E[λpmin(XTX)] = E[(σn(XT ))2] ≥ (E[σn(XT )])2 =
1

n
(E[σn(X̃T )])2 ≥ 1

n

(√
p−
√
n
)2

,

where the first inequality is Jensen’s inequality.

Corollary 5.35 of [43] states that, for every t ≥ 0, with probability at least 1−2 exp(−t2/2) it holds
that:

σn(X̃T ) ≥ √p−
√
n− t ,

which implies that:

λpmin(XTX) = (σn(XT ))2 =
1

n
(σn(X̃T ))2 ≥ 1

n

(√
p−
√
n− t

)2
.

Note that, in practice, we standardize the model matrix X so that its columns have unit `2 norm.
Supposing that the entries of X did originate from an i.i.d. standard normal matrix X̃, standardiz-
ing the columns of X̃ is not equivalent to setting X := 1√

n
X̃. But, for large enough n, standardizing

is a valid approximation to normalizing by 1√
n

, i.e., X ≈ 1√
n
X̃, and we may thus apply the above

results.
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A.3 Additional Details for Section 3

A.3.1 An Elementary Sequence Process Result, and a Proof of Proposition 3.1

Consider the following elementary sequence process: x0 ∈ Rn is given, and xi+1 ← xi − αigi for
all i ≥ 0, where gi ∈ Rn and αi is a nonnegative scalar, for all i. For this process there are no
assumptions on how the vectors gi might be generated.

Proposition A.4. For the elementary sequence process described above, suppose that the {gi} are
uniformly bounded, namely ‖gi‖2 ≤ G for all i ≥ 0. Then for all k ≥ 0 and for any x ∈ Rn it holds
that:

1∑k
i=0 αi

k∑
i=0

αi(g
i)T (xi − x) ≤

‖x0 − x‖22 +G2
∑k

i=0 α
2
i

2
∑k

i=0 αi
. (35)

Indeed, in the case when αi = ε for all i, it holds that:

1

k + 1

k∑
i=0

(gi)T (xi − x) ≤ ‖x0 − x‖22
2(k + 1)ε

+
G2ε

2
. (36)

Proof. Elementary arithmetic yields the following:

‖xi+1 − x‖22 = ‖xi − αigi − x‖22

= ‖xi − x‖22 + α2
i ‖gi‖22 + 2αi(g

i)T (x− xi)

≤ ‖xi − x‖22 +G2α2
i + 2αi(g

i)T (x− xi) .

Rearranging and summing these inequalities for i = 0, . . . , k then yields:

2

k∑
i=0

αi(g
i)T (xi − x) ≤ G2

k∑
i=0

α2
i + ‖x0 − x‖22 − ‖xk+1 − x‖22 ≤ G2

k∑
i=0

α2
i + ‖x0 − x‖22 ,

which then rearranges to yield (35). (36) follows from (35) by direct substitution.

Proof of Proposition 3.1: Consider the subgradient descent method (19) with arbitrary step-sizes
αi for all i. We will prove the following inequality:

min
i∈{0,...,k}

f(xi) ≤ f∗ +
‖x0 − x∗‖22 +G2

∑k
i=0 α

2
i

2
∑k

i=0 αi
, (37)

from which the proof of Proposition 3.1 follows by substituting αi = α for all i and simplifying
terms. Let us now prove (37). The subgradient descent method (19) is applied to instances of
problem (17) where f(·) is convex, and where gi is subgradient of f(·) at xi, for all i. If x∗ is an
optimal solution of (17), it therefore holds from the subgradient inequality that

f∗ = f(x∗) ≥ f(xi) + (gi)T (x− xi) .
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Substituting this inequality in (35) for the value of x = x∗ yields:

‖x0 − x∗‖22 +G2
∑k

i=0 α
2
i

2
∑k

i=0 αi
≥ 1∑k

i=0 αi

k∑
i=0

αi(g
i)T (xi − x∗)

≥ 1∑k
i=0 αi

k∑
i=0

αi(f(xi)− f∗) ≥ min
i∈{0,...,k}

f(xi) .

A.3.2 Proof of Theorem 3.1

We first prove part (i). Note that item (i) of Proposition 3.2 shows that FSε is a specific instance of
subgradient descent to solve problem (21), using the constant step-size ε. Therefore we can apply the
computational guarantees associated with the subgradient descent method, particularly Proposition
3.1, to the FSε algorithm. Examining Proposition 3.1, we need to work out the corresponding values
of f∗, ‖x0−x∗‖2, α, and G in the context of FSε for solving the CM problem (21). Note that f∗ = 0
for problem (21). We bound the distance from the initial residuals to the optimal least-squares
residuals as follows:

‖r̂0 − r∗‖2 = ‖r̂0 − r̂LS‖2 = ‖y − (y −Xβ̂LS)‖2 = ‖Xβ̂LS‖2 .

From Proposition 3.2 part (i) we have α = ε. Last of all, we need to determine an upper bound G
on the norms of subgradients. We have:

‖gk‖2 = ‖sgn((r̂k)TXjk)Xjk‖2 = ‖Xjk‖2 = 1 ,

since the covariates have been standardized, so we can set G = 1. Now suppose algorithm FSε is
run for k iterations. Proposition 3.1 then implies that:

min
i∈{0,...,k}

‖XT r̂i‖∞ = min
i∈{0,...,k}

f(r̂i) ≤ f∗ +
‖r̂0 − r∗‖22
2α(k + 1)

+
αG2

2
=
‖Xβ̂LS‖22
2ε(k + 1)

+
ε

2
. (38)

The above inequality provides a bound on the best (among the first k residual iterates) empirical
correlation between between the residuals r̂i and each predictor variable, where the bound depends
explicitly on the learning rate ε and the number of iterations k. Furthermore, invoking (7), the
above inequality implies the following upper bound on the norm of the gradient of the least squares
loss Ln(·) for the model iterates {β̂i} generated by FSε:

min
i∈{0,...,k}

‖∇Ln(β̂i)‖∞ ≤
‖Xβ̂LS‖22

2nε(k + 1)
+

ε

2n
. (39)

Let i be the index where the minimum is attained on the left side of the above inequality. In
a similar vein as in the analysis in Section 2, we now use Proposition A.1 which presents two
important properties of convex quadratic functions. Because Ln(·) is a convex quadratic function
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of the same format as Proposition A.1 with h(·) ← Ln(·), Q ← 1
nXTX, and h∗ ← L∗n, it follows

from the second property of Proposition A.1 that

‖∇Ln(β̂i)‖2 ≥

√
λpmin( 1

nXTX)(Ln(β̂i)− L∗n)

2
=

√
λpmin(XTX)(Ln(β̂i)− L∗n)

2n
,

where recall that λpmin(XTX) denotes the smallest non-zero (hence positive) eigenvalue of XTX.
Therefore

‖∇Ln(β̂i)‖2∞ ≥ 1
p‖∇Ln(β̂i)‖22 ≥

λpmin(XTX)(Ln(β̂i)− L∗n)

2np
.

Substituting this inequality into (39) for the index i where the minimum is attained yields after
rearranging:

Ln(β̂i)− L∗n ≤
p

2nλpmin(XTX)

[
‖Xβ̂LS‖22
ε(k + 1)

+ ε

]2

, (40)

which proves part (i). The proof of part (ii) follows by noting from the first inequality of Proposition
A.1 that there exists a least-squares solution β̂∗ for which:

‖β̂∗ − β̂i‖2 ≤

√
2(Ln(β̂i)− L∗n)

λpmin

(
1
nXTX

) =

√
2n(Ln(β̂i)− L∗n)

λpmin(XTX)
≤

√
p

λpmin(XTX)

[
‖Xβ̂LS‖22
ε(k + 1)

+ ε

]
,

where the second inequality in the above chain follows using (40). The proof of part (iii) follows

by first observing that ‖X(β̂i − β̂LS)‖2 =

√
2n(Ln(β̂i)− L∗n) and then substituting the bound on

(Ln(β̂i) − L∗n) from part (i) and simplifying terms. Part (iv) is a restatement of inequality (38).
Finally, parts (v) and (vi) are simple and well-known structural properties of FSε that are re-stated
here for completeness.

A.3.3 A deeper investigation of the computational guarantees for LS-Boost(ε) and
FSε

Here we show that in theory, LS-Boost(ε) is much more efficient than FSε if the primary goal is
to obtain a model with a certain (pre-specified) data-fidelity. To formalize this notion, we consider
a parameter τ ∈ (0, 1]. We say that β̄ is at a τ -relative distance to the least squares predictions if
β̄ satisfies:

‖Xβ̄ −Xβ̂LS‖2 ≤ τ‖Xβ̂LS‖2 . (41)

Now let us pose the following question: if both LS-Boost(ε) and FSε are allowed to run with
an appropriately chosen learning rate ε for each algorithm, which algorithm will satisfy (41) in
fewer iterations? We will answer this question by studying closely the computational guarantees
of Theorems 2.1 and 3.1. Since our primary goal is to compute β̄ satisfying (41), we may optimize
the learning rate ε, for each algorithm, to achieve this goal with the smallest number of boosting
iterations.

Let us first study LS-Boost(ε) . As we have seen, a learning rate of ε = 1 achieves the fastest
rate of linear convergence for LS-Boost(ε) and is thus optimal with regard to the bound in part
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(iii) of Theorem 2.1. If we run LS-Boost(ε) with ε = 1 for kLS-Boost(ε) :=
⌈

4p
λpmin(XTX)

ln
(

1
τ2

)⌉
iterations, then it follows from part (iii) of Theorem 2.1 that we achieve (41). Furthermore, it
follows from (23) that the resulting `1-shrinkage bound will satisfy:

SboundLS-Boost(ε) ≤ ‖Xβ̂LS‖2
√
kLS-Boost(ε) .

For FSε, if one works out the arithmetic, the optimal number of boosting iterations to achieve (41)

is given by: kFSε :=
⌈

4p
λpmin(XTX)

(
1
τ2

)⌉
− 1 using the learning rate ε = ‖Xβ̂LS‖2√

kFSε+1
. Also, it follows

from part (v) of Theorem 3.1 that the resulting shrinkage bound will satisfy:

SboundFSε ≤ ε · kFSε ≈ ‖Xβ̂LS‖2 ·
√
kFSε .

Observe that kLS-Boost(ε) < kFSε , whereby LS-Boost(ε) is able to achieve (41) in fewer iterations
than FSε. Indeed, if we let η denote the ratio kLS-Boost(ε) /kFSε , then it holds that

η :=
kLS-Boost(ε)

kFSε
≈

ln
(

1
τ2

)
1
τ2

≤ 1

e
< 0.368 . (42)

The left panel of Figure 10 shows the value of η as a function of τ . For small values of the
tolerance parameter τ we see that η is itself close to zero, which means that LS-Boost(ε) will need
significantly fewer iterations than FSε to achieve the condition (41).

We can also examine the `1-shrinkage bounds similarly. If we let ϑ denote the ratio of

SboundLS-Boost(ε) to SboundFSε , then it holds that

ϑ :=
SboundLS-Boost(ε)

SboundFSε
=

√
kLS-Boost(ε)

kFSε
=

√
ln
(

1
τ2

)
1
τ

≤ 1√
e
< 0.607 . (43)

This means that if both bounds are relatively tight, then the `1-shrinkage of the final model pro-
duced by LS-Boost(ε) is smaller than that of the final model produced by FSε, by at least a factor
of 0.607. The right panel of Figure 10 shows the value of ϑ as a function of τ . For small values of
the relative predication error constant τ we see that ϑ is itself close to zero.

We summarize the above analysis in the following remark.

Remark A.1. (Comparison of efficiency of LS-Boost(ε) and FSε) Suppose that the primary
goal is to achieve a τ -relative prediction error as defined in (41), and that LS-Boost(ε) and FSε
are run with appropriately determined learning rates for each algorithm. Then the ratio of required
number of iterations of these methods to achieve (41) satisfies

η :=
kLS-Boost(ε)

kFSε
< 0.368 .
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Figure 10: Plot showing the value of the ratio η of iterations of LS-Boost(ε) to FSε (equation (42)) versus

the target relative prediction error τ [left panel], and the ratio ϑ of shrinkage bounds of LS-Boost(ε) to

FSε (equation (43)) versus the target relative prediction error τ [right panel].

Also, the ratio of the shrinkage bounds from running these numbers of iterations satisfies

ϑ :=
SboundLS-Boost(ε)

SboundFSε
< 0.607 ,

where all of the analysis is according to the bounds in Theorems 3.1 and 2.1.

We caution the reader that the analysis leading to Remark A.1 is premised on the singular goal
of achieving (41) in as few iterations as possible. As mentioned previously, the models produced
in the interior of the boosting profile are more statistically interesting than those produced at the
end. Thus for both algorithms it may be beneficial, and may lessen the risk of overfitting, to trace
out a smoother profile by selecting the learning rate ε to be smaller than the prescribed values

in this subsection (ε = 1 for LS-Boost(ε) and ε = ‖Xβ̂LS‖2√
kFSε+1

for FSε). Indeed, considering just

LS-Boost(ε) for simplicity, if our goal is to produce a τ -relative prediction error according to (41)
with the smallest possible `1 shrinkage, then Figure 3 suggests that this should be accomplished by
selecting ε as small as possible (essentially very slightly larger than 0).

A.4 Additional Details for Section 4

A.4.1 Duality Between Regularized Correlation Minimization and the Lasso

In this section, we precisely state the duality relationship between the RCM problem (24) and the
Lasso. We first prove the following property of the least squares loss function that will be useful
in our analysis.

Proposition A.5. The least squares loss function Ln(·) has the following max representation:

Ln(β) = max
r̃∈Pres

{
−r̃T ( 1

nX)β − 1
2n‖r̃ − y‖22 + 1

2n‖y‖
2
2

}
, (44)

where Pres := {r ∈ Rn : r = y −Xβ for some β ∈ Rp}. Moreover, the unique optimal solution (as
a function of β) to the subproblem in (44) is r̄ := y −Xβ.
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Proof. For any β ∈ Rp, it is easy to verify through optimality conditions (setting the gradient with
respect to r̃ equal to 0) that r̄ solves the subproblem in (44), i.e.,

r̄ = arg max
r̃∈Pres

{
−r̃T ( 1

nX)β − 1
2n‖r̃ − y‖22 + 1

2n‖y‖
2
2

}
.

Thus, we have

max
r̃∈Pres

{
−r̃T ( 1

nX)β − 1
2n‖r̃ − y‖22 + 1

2n‖y‖
2
2

}
= 1

n

(
1
2‖y‖

2
2 − yTXβ + 1

2‖Xβ‖
2
2

)
= 1

2n‖y −Xβ‖22 .

The following result demonstrates that RCM (24) has a direct interpretation as a (scaled) dual of
the Lasso problem (2). Moreover, in part (iii) of the below Proposition, we give a bound on the
optimality gap for the Lasso problem in terms of a quantity that is closely related to the objective
function of RCM.

Proposition A.6. (Duality Equivalence of Lasso and RCMδ, and Optimality Bounds)
The Lasso problem (2) and the regularized correlation minimization problem RCMδ (24) are dual
optimization problems modulo the scaling factor n

δ . In particular:

(i) (Weak Duality) If β is feasible for the Lasso problem (2), and if r̃ is feasible for the regularized
correlation minimization problem RCMδ (24), then

Ln(β) + δ
nfδ(r̃) ≥

1
2n‖y‖

2
2 .

(ii) (Strong Duality) It holds that:
L∗n,δ + δ

nf
∗
δ = 1

2n‖y‖
2
2 .

Moreover, for any given parameter value δ ≥ 0, there is a unique vector of residuals r̂∗δ
associated with every Lasso solution β̂∗δ , i.e., r̂∗δ = y −Xβ̂∗δ , and r̂∗δ is the unique optimal
solution to the RCMδ problem (24).

(iii) (Optimality Condition for Lasso) If β is feasible for the Lasso problem (2) and r = y−Xβ,
then

ωδ(β) := ‖XT r‖∞ −
rTXβ

δ
≥ 0 , (45)

and
Ln(β)− L∗n,δ ≤ δ

n · ωδ(β) .

Hence, if ωδ(β) = 0, then β is an optimal solution of the Lasso problem (2).

Proof. Let us first construct the problem RCMδ using basic constructs of minmax duality. As
demonstrated in Proposition A.5, the least-squares loss function Ln(·) has the following max rep-
resentation:

Ln(β) = max
r̃∈Pres

{
−r̃T ( 1

nX)β − 1
2n‖r̃ − y‖22 + 1

2n‖y‖
2
2

}
.
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Therefore the Lasso problem (2) can be written as

min
β∈Bδ

max
r̃∈Pres

{
−r̃T ( 1

nX)β − 1
2n‖r̃ − y‖22 + 1

2n‖y‖
2
2

}
where Bδ := {β ∈ Rp : ‖β‖1 ≤ δ}. We construct a dual of the above problem by interchanging the
min and max operators above, yielding the following dual optimization problem:

max
r̃∈Pres

min
β∈Bδ

{
−r̃T ( 1

nX)β − 1
2n‖r̃ − y‖22 + 1

2n‖y‖
2
2

}
.

After negating, and dropping the constant term 1
2n‖y‖

2
2, the above dual problem is equivalent to:

min
r̃∈Pres

max
β∈Bδ

{
r̃T ( 1

nX)β
}

+ 1
2n‖r̃ − y‖22 . (46)

Now notice that

max
β∈Bδ

{
r̃T ( 1

nX)β
}

= δ
n

(
max

j∈{1,...,p}
|r̃TXj |

)
= δ

n‖X
T r̃‖∞ , (47)

from which it follows after scaling by n
δ that (46) is equivalent to (24).

Let us now prove item (i). Let β be feasible for the Lasso problem (2) and r̃ be feasible for the
regularized correlation minimization problem RCMδ (24), and let r = y −Xβ and let β̃ be such
that r̃ = y −Xβ̃. Then direct arithmetic manipulation yields the following equality:

Ln(β) + δ
nfδ(r̃) = 1

2n‖y‖
2
2 + 1

2n‖r − r̃‖
2
2 + δ

n

(
‖XT r̃‖∞ −

r̃TXβ

δ

)
, (48)

from which the result follows since ‖r − r̃‖22 ≥ 0 and r̃TXβ ≤ ‖XT r̃‖∞‖β‖1 ≤ δ‖XT r̃‖∞ which
implies that the last term above is also nonnegative.

To prove item (ii), notice that both the Lasso and RCMδ can be re-cast as optimization problems
with a convex quadratic objective function and with linear inequality constraints. That being
the case, the classical strong duality results for linearly-constrained convex quadratic optimization
apply, see [1] for example.

We now prove (iii). Since β is feasible for the Lasso problem, it follows from the Holder inequality
that rTXβ ≤ ‖XT r‖∞‖β‖1 ≤ δ‖XT r‖∞, from which it then follows that ωδ(β) ≥ 0. Invoking (48)
with r̃ ← r = y −Xβ yields:

Ln(β) + δ
nfδ(r) = 1

2n‖y‖
2
2 + δ

n · ωδ(β) .

Combining the above with strong duality (ii) yields:

Ln(β) + δ
nfδ(r) = L∗n,δ + δ

nf
∗
δ + δ

n · ωδ(β) .

After rearranging we have:

Ln(β)− L∗n,δ ≤ δ
nf
∗
δ − δ

nfδ(r) + δ
n · ωδ(β) ≤ δ

n · ωδ(β) ,

where the last inequality follows since f∗δ ≤ fδ(r).
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A.4.2 Proof of Proposition 4.1

Recall the update formula for the residuals in R-FSε,δ:

r̂k+1 ← r̂k − ε
[
sgn((r̂k)TXjk)Xjk + 1

δ (r̂k − y)
]
. (49)

We first show that gk := sgn((r̂k)TXjk)Xjk + 1
δ (r̂k − y) is a subgradient of fδ(·) at r̂k. Recalling

the proof of Proposition 3.2, we have that sgn((r̂k)TXjk)Xjk is a subgradient of f(r) := ‖XT r‖∞
at r̂k since jk ∈ arg maxj∈{1,...,p} |(r̂k)TXj |. Therefore, since fδ(r) = f(r) + 1

2δ‖r − y‖22, it follows

from the additive property of subgradients (and gradients) that gk = sgn((r̂k)TXjk)Xjk + 1
δ (r̂k−y)

is a subgradient of fδ(r) at r = r̂k. Therefore the update (49) is of the form r̂k+1 = r̂k − εgk where
gk ∈ ∂fδ(r̂k). Finally note that r̂k−εgk = r̂k+1 = y−Xβk+1 ∈ Pres, hence ΠPres(r̂

k−εgk) = r̂k−εgk,
i.e., the projection step is superfluous here. Therefore r̂k+1 = ΠPres(r̂

k − εgk), which shows that
(49) is precisely the update for the subgradient descent method with step-size αk := ε.

A.4.3 Proof of Theorem 4.1

Let us first use induction to demonstrate that the following inequality holds:

‖β̂k‖1 ≤ ε
k−1∑
j=0

(
1− ε

δ

)j
for all k ≥ 0 . (50)

Clearly, (50) holds for k = 0 since β̂0 = 0. Assuming that (50) holds for k, then the update for
β̂k+1 in step (3.) of algorithm R-FSε,δ can be written as β̂k+1 = (1− ε

δ )β̂k + ε · sgn((r̂k)TXjk)ejk ,
from which it holds that

‖β̂k+1‖1 = ‖(1− ε
δ )β̂k + ε · sgn((r̂k)TXjk)ejk‖1

≤ (1− ε
δ )‖β̂k‖1 + ε‖ejk‖1

≤ (1− ε
δ )ε

k−1∑
j=0

(
1− ε

δ

)j
+ ε

= ε

k∑
j=0

(
1− ε

δ

)j
,

which completes the induction. Now note that (50) is a geometric series and we have:

‖β̂k‖1 ≤ ε

k−1∑
j=0

(
1− ε

δ

)j
= δ

[
1−

(
1− ε

δ

)k] ≤ δ for all k ≥ 0 . (51)

Recall that we developed the algorithm R-FSε,δ in such a way that it corresponds exactly to an
instantiation of the subgradient descent method applied to the RCM problem (24). Indeed, the
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update rule for the residuals given in Step (3.) of R-FSε,δ is: r̂k+1 ← r̂k − εgk where gk =[
sgn((r̂k)TXjk)Xjk + 1

δ (r̂k − y)
]
. We therefore can apply Proposition A.4, and more specifically

the inequality (36). In order to do so we need to translate the terms of Proposition A.4 to our
setting: here the variables x are now the residuals r, the iterates xi are now the iterates r̂i, etc.
The step-sizes of algorithm R-FSε,δ are fixed at ε, so we have αi = ε for all i ≥ 0. Setting the value
of x in Proposition A.4 to be least-squares residual value, namely x = r̂LS , the left side of (36) is
therefore:

1
k+1

∑k
i=0(gi)T (xi − x) = 1

k+1

∑k
i=0

(
X
[
sgn((r̂i)TXji)eji − 1

δ β̂
i
])T

(r̂i − r̂LS)

= 1
k+1

∑k
i=0

(
sgn((r̂i)TXji)Xji − 1

δ (Xβ̂i)
)T

r̂i

= 1
k+1

∑k
i=0

[
‖XT r̂i‖∞ − 1

δ (r̂i)TXβ̂i
]

= 1
k+1

∑k
i=0 ωδ(β̂

i) ,

(52)

where the second equality uses the fact that XT r̂LS = 0 from (6) and the fourth equality uses the
definition of ωδ(β) from (45).

Let us now evaluate the right side of (36). We have ‖x0−x‖2 = ‖r̂0− r̂LS‖2 = ‖y−(y−Xβ̂LS)‖2 =
‖Xβ̂LS‖2. Also, it holds that

‖gi‖2 = ‖sgn((r̂i)TXji)Xji− 1
δ (Xβ̂i)‖2 ≤ ‖Xji‖2 +‖X( β̂

i

δ )‖2 ≤ 1+ 1
δ‖X‖1,2‖β̂

i‖1 ≤ 1+‖X‖1,2 ≤ 2 ,

where the third inequality follows since ‖β̂i‖1 ≤ δ from (51) and the second and fourth inequalities
follow from the assumption that the columns of X have been normalized to have unit `2 norm.
Therefore G = 2 is a uniform bound on ‖gi‖2. Combining the above, inequality (36) implies that
after running R-FSε,δ for k iterations, it holds that:

min
i∈{0,...,k}

ωδ(β̂
i) ≤ 1

k + 1

k∑
i=0

ωδ(β̂
i) ≤ ‖Xβ̂LS‖22

2(k + 1)ε
+

22ε

2
=
‖Xβ̂LS‖22
2ε(k + 1)

+ 2ε , (53)

where the first inequality is elementary arithmetic and the second inequality is the application of
(36). Now let i be the index obtaining the minimum in the left-most side of the above. Then it
follows from part (iii) of Proposition A.6 that

Ln(β̂i)− L∗n,δ ≤ δ
n · ωδ(β̂

i) ≤ δ‖Xβ̂LS‖22
2nε(k + 1)

+
2δε

n
, (54)

which proves item (i) of the theorem.

To prove item (ii), note first that if β̂∗δ is a solution of the Lasso problem (2), then it holds that

‖β̂∗δ‖1 ≤ δ (feasibility) and ωδ(β̂
∗
δ ) = 0 (optimality). This latter condition follows easily from

the optimality conditions of linearly constrained convex quadratic problems, see [1] for example.
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Setting r̂∗δ = y −Xβ̂∗δ , the following holds true:

‖Xβ̂i −Xβ̂∗δ‖22 = 2n
(
Ln(β̂i)− Ln(β̂∗δ ) + (r̂∗δ )

TX(β̂i − β̂∗δ )
)

= 2n
(
Ln(β̂i)− L∗n,δ − δ‖XT r̂∗δ‖∞ + (r̂∗δ )

TXβ̂i
)

≤ 2n
(
Ln(β̂i)− L∗n,δ − δ‖XT r̂∗δ‖∞ + ‖XT r̂∗δ‖∞‖β̂i‖1

)
≤ 2n

(
Ln(β̂i)− L∗n,δ − δ‖XT r̂∗δ‖∞ + δ‖XT r̂∗δ‖∞

)
= 2n

(
Ln(β̂i)− L∗n,δ

)
≤ δ‖Xβ̂LS‖22

ε(k+1) + 4δε ,

where the first equality is from direct arithmetic substitution, the second equality uses the fact
that ωδ(β̂

∗
δ ) = 0 whereby (r̂∗δ )

TXβ̂∗δ = δ‖XT r̂∗δ‖∞, the first inequality follows by applying Holder’s
inequality to the last term of the second equality, and the final inequality is an application of (54).
Item (ii) then follows by taking square roots of the above.

Item (iii) is essentially just (51). Indeed, since i ≤ k we have:

‖β̂i‖1 ≤ ε
i−1∑
j=0

(
1− ε

δ

)j ≤ ε
k−1∑
j=0

(
1− ε

δ

)j
= δ

[
1−

(
1− ε

δ

)k] ≤ δ .

(Note that we emphasize the dependence on k rather than i in the above since we have direct
control over the number of boosting iterations k.) Item (iv) of the theorem is just a restatement of
the sparsity property of R-FSε,δ.

A.4.4 Regularized Boosting: Related Work and Context

As we have already seen, the FSε algorithm leads to models that have curious similarities with the
Lasso coefficient profile, but in general the profiles are different. Sufficient conditions under which
the coefficient profiles of FSε (for ε ≈ 0) and Lasso are equivalent have been explored in [27]. A
related research question is whether there are structurally similar algorithmic variants of FSε that
lead to Lasso solutions for arbitrary datasets? In this vein [45] propose BLasso, a corrective
version of the forward stagewise algorithm. BLasso, in addition to taking incremental forward
steps (as in FSε), also takes backward steps, the result of which is that the algorithm approximates
the Lasso coefficient profile under certain assumptions on the data. The authors observe that
BLasso often leads to models that are sparser and have better predictive accuracy than those
produced by FSε.

In [10], the authors point out that models delivered by boosting methods need not be adequately
sparse, and they highlight the importance of obtaining models that have more sparsity, better
prediction accuracy, and better variable selection properties. They propose a sparse variant of
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L2-Boost (see also Section 1) which considers a regularized version of the squared error loss,
penalizing the approximate degrees of freedom of the model.

In [26], the authors also point out that boosting algorithms often lead to a large collection of
nonzero coefficients. They suggest reducing the complexity of the model by some form of “post-
processing” technique—one such proposal is to apply a Lasso regularization on the selected set of
coefficients.

A parallel line of work in machine learning [14] explores the scope of boosting-like algorithms
on `1-regularized versions of different loss functions arising mainly in the context of classification
problems. The proposal of [14], when adapted to the least squares regression problem with `1-
regularization penalty, leads to the following optimization problem:

min
β

1
2n‖y −Xβ‖22 + λ‖β‖1 , (55)

for which the authors [14] employ greedy coordinate descent methods. Like the boosting algorithms
considered herein, at each iteration the algorithm studied by [14] selects a certain coefficient βjk
to update, leaving all other coefficients βi unchanged. The amount with which to update the
coefficient βjk is determined by fully optimizing the loss function (55) with respect to βjk , again
holding all other coefficients constant (note that one recovers LS-Boost(1) if λ = 0). This way
of updating βjk leads to a simple soft-thresholding operation [13] and is structurally different from
forward stagewise update rules. In contrast, the boosting algorithm R-FSε,δ that we propose here
is based on subgradient descent on the dual of the Lasso problem (2), i.e., problem (24).

A.4.5 Connecting R-FSε,δ to the Frank-Wolfe method

Although we developed and analyzed R-FSε,δ from the perspective of subgradient descent, one can
also interpret R-FSε,δ as the Frank-Wolfe algorithm in convex optimization [16,17,30] applied to the
Lasso (2). This secondary interpretation can be derived directly from the structure of the updates
in R-FSε,δ or as a special case of a more general primal-dual equivalence between subgradient descent
and Frank-Wolfe developed in [2]. We choose here to focus on the subgradient descent interpretation
since it provides a natural unifying framework for a general class of boosting algorithms (including
FSε and R-FSε,δ) via a single algorithm applied to a parametric class of objective functions. Other
authors have commented on the similarities between boosting algorithms and the Frank-Wolfe
method, see for instance [11] and [30].

A.5 Additional Details for Section 5

A.5.1 Proof of Theorem 5.1

We first prove the feasibility of β̂k for the Lasso problem with parameter δ̄k. We do so by induction.
The feasibility of β̂k is obviously true for k = 0 since β̂0 = 0 and hence ‖β̂0‖1 = 0 < δ̄0. Now
suppose it is true for some iteration k, i.e., ‖β̂k‖1 ≤ δ̄k. Then the update for β̂k+1 in step (3.) of
algorithm PATH-R-FSε can be written as β̂k+1 = (1− ε

δ̄k
)β̂k + ε

δ̄k
(δ̄ksgn((r̂k)TXjk)ejk), from which
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it follows that

‖β̂k+1‖1 = ‖(1− ε
δ̄k

)β̂k + ε
δ̄k

(δ̄ksgn((r̂k)TXjk)ejk)‖1

≤ (1− ε
δ̄k

)‖β̂k‖1 + ε
δ̄k
‖δ̄kejk‖1 ≤ (1− ε

δ̄k
)δ̄k + ε

δ̄k
δ̄k = δ̄k ≤ δ̄k+1 ,

which completes the induction.

We now prove the bound on the average training error in part (i). In fact, we will prove something
stronger than this bound, namely we will prove:

1

k + 1

k∑
i=0

1

δ̄i

(
Ln(β̂i)− L∗n,δ̄i

)
≤ ‖Xβ̂LS‖22

2nε(k + 1)
+

2ε

n
, (56)

from which average training error bound of part (i) follows since δ̄i ≤ δ̄ for all i. The up-
date rule for the residuals given in Step (3.) of R-FSε,δ is: r̂k+1 ← r̂k − εgk where gk =[
sgn((r̂k)TXjk)Xjk + 1

δ̄k
(r̂k − y)

]
. This update rule is precisely in the format of an elementary

sequence process, see Appendix A.3.1, and we therefore can apply Proposition A.4, and more
specifically the inequality (36). Similar in structure to the proof of Theorem 4.1, we first need
to translate the terms of Proposition A.4 to our setting: once again the variables x are now the
residuals r, the iterates xi are now the iterates r̂i, etc. The step-sizes of algorithm PATH-R-FSε
are fixed at ε, so we have αi = ε for all i ≥ 0. Setting the value of x in Proposition A.4 to be
least-squares residual value, namely x = r̂LS , and using the exact same logic as in the equations
(52), one obtains the following result about the left side of (36):

1

k + 1

k∑
i=0

(gi)T (xi − x) =
1

k + 1

k∑
i=0

ωδ̄i(β̂
i) .

Let us now evaluate the right side of (36). We have ‖x0−x‖2 = ‖r̂0− r̂LS‖2 = ‖y−(y−Xβ̂LS)‖2 =
‖Xβ̂LS‖2. Also, it holds that

‖gi‖2 = ‖sgn((r̂i)TXji)Xji− 1
δ̄i

(Xβ̂i)‖2 ≤ ‖Xji‖2+‖X( β̂
i

δ̄i
)‖2 ≤ 1+ 1

δ̄i
‖X‖1,2‖β̂i‖1 ≤ 1+‖X‖1,2 ≤ 2 ,

where the third inequality follows since ‖β̂i‖1 ≤ δ̄i from the feasibility of β̂i for the Lasso problem
with parameter δ̄i proven at the outset, and the second and fourth inequalities follow from the
assumption that the columns of X have been normalized to have unit `2 norm. Therefore G = 2
is a uniform bound on ‖gi‖2. Combining the above, inequality (36) implies that after running
PATH-R-FSε for k iterations, it holds that:

1

k + 1

k∑
i=0

ωδ̄i(β̂
i) ≤ ‖Xβ̂LS‖22

2(k + 1)ε
+

22ε

2
=
‖Xβ̂LS‖22
2ε(k + 1)

+ 2ε , (57)

where the inequality is the application of (36). From Proposition A.6 we have Ln(β̂i)−L∗
n,δ̄i
≤ δ̄i

n ·
ωδ̄i(β̂

i), which combines with (57) to yield:

1

k + 1

k∑
i=0

1

δ̄i

(
Ln(β̂i)− L∗n,δ̄i

)
≤ 1

(k + 1)

1

n

k∑
i=0

ωδ̄i(β̂
i) ≤ ‖Xβ̂LS‖22

2nε(k + 1)
+

2ε

n
.
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This proves (56) which then completes the proof of part (i) through the bounds δ̄i ≤ δ̄ for all
i.

Part (ii) is a restatement of the feasibility of β̂k for the Lasso problem with parameter δ̄k which
was proved at the outset, and is re-written to be consistent with the format and for comparison
with Theorem 4.1 Last of all, part (iii) follows since at each iteration at most one new coefficient
is introduced at a non-zero level.

B Additional Details on the Experiments

We describe here some additional details pertaining to the computational results performed in this
paper. We first describe in some more detail the real datasets that have been considered in the
paper.

Description of datasets considered
We considered four different publicly available microarray datasets as described below.

Leukemia dataset This dataset, taken from [12], has binary response with continuous covariates,
with 72 samples and approximately 3500 covariates. We further processed the dataset by taking a
subsample of p = 500 covariates, while retaining all n = 72 sample points. We artificially generated
the response y via a linear model with the given covariates X (as described in Eg-A in Section 6).
The true regression coefficient βpop was taken as βpop

i = 1 for all i ≤ 10 and zero otherwise.

Golub dataset The original dataset was taken from the R package mpm, which had 73 samples
with approximately 5000 covariates. We reduced this to p = 500 covariates (all samples were
retained). Responses y were generated via a linear model with βpop as above.

Khan dataset This dataset was taken from the dataset webpage http://statweb.stanford.

edu/~tibs/ElemStatLearn/datasets/ accompanying the book [28]. The original covariate matrix
(khan.xtest), which had 73 samples with approximately 5000 covariates, was reduced to p = 500
covariates (all samples were retained). Responses y were generated via a linear model with βpop

as above.

Prostate cancer dataset This dataset appears in [15] and is available from the R package LARS.
The first column lcavol was taken as the response (no artificial response was created here). We
generated multiple datasets from this dataset, as follows:

(a) One of the datasets is the original one with n = 97 and p = 8.

(b) We created another dataset, with n = 97 and p = 44 by enhancing the covariate space to
include second order interactions.
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(c) We created another dataset, with n = 10 and p = 44. We subsampled the dataset from (b),
which again was enhanced to include second order interactions.

Note that in all the examples above we standardized X such that the columns have unit `2 norm,
before running the different algorithms studied herein.
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Figure 11: Figure showing the training and test errors (in relative scale) as a function of boosting iterations,

for both LS-Boost(ε) (top panel) and FSε (bottom panel). As the number of iterations increases, the

training error shows a global monotone pattern. The test errors however, initially decrease and then start

increasing after reaching a minimum. The best test errors obtained are found to be sensitive to the choice

of ε. Two different datasets have been considered: the Leukemia dataset (left and middle panels) and the

Khan dataset (right panel), as described in Section 6.

Sensitivity of the Learning Rate in LS-Boost(ε) and FSε We performed several experiments
running LS-Boost(ε) and FSε on an array of real and synthetic datasets, to explore how the
training and test errors change as a function of the number of boosting iterations and the learning
rate. Some of the results appear in Figure 11. The training errors were found to decrease with
increasing number of boosting iterations. The rate of decay, however, is very sensitive to the value

55



Dataset SNR n LS-Boost(ε) FSε FS0 Stepwise Lasso
×10−2 ×10−2 ×10−2 ×10−2 ×10−2

Le
uk

em
ia 1 72 65.9525 (1.8221) 66.7713 (1.8097) 68.1869 (1.4971) 74.5487 (2.6439) 68.3471 (1.584)

3 72 35.4844 (1.1973) 35.5704 (0.898) 35.8385 (0.7165) 38.9429 (1.8030) 35.3673 (0.7924)
10 72 13.5424 (0.4267) 13.3690 (0.3771) 13.6298 (0.3945) 14.8802 (0.4398) 13.4929 (0.4276)

K
ha

n

1 63 22.3612 (1.1058) 22.6185 (1.0312) 22.9128 (1.1209) 25.2328 (1.0734) 23.5145 (1.2044)
3 63 9.3988 (0.4856) 9.4851 (0.4721) 9.6571 (0.3813) 10.8495 (0.3627) 9.2339 (0.404)
10 63 3.4061 (0.1272) 3.4036 (0.1397) 3.4812 (0.1093) 3.7986 (0.0914) 3.1118 (0.1229)

E
g-

A
, ρ

=
0.

8 1 50 53.1406 (1.5943) 52.1377 (1.6559) 53.6286 (1.4464) 60.3266 (1.9341) 53.7675 (1.2415)
3 50 29.1960 (1.2555) 29.2814 (1.0487) 30.0654 (1.0066) 33.4318 (0.8780) 29.8000 (1.2662)
10 50 12.2688 (0.3359) 12.0845 (0.3668) 12.6034 (0.5052) 15.9408 (0.7939) 12.4262 (0.3660)

E
g-

A
, ρ

=
0 1 50 74.1228 (2.1494) 73.8503 (2.0983) 75.0705 (2.5759) 92.8779 (2.7025) 75.0852 (2.1039)

3 50 38.1357 (2.7795) 40.0003 (1.8576) 41.0643 (1.5503) 43.9425 (3.9180) 41.4932 (2.2092)
10 50 14.8867 (0.6994) 12.9090 (0.5553) 15.2174 (0.7086) 12.5502 (0.8256) 15.0877 (0.7142)

Table B.1: Table showing the prediction errors (in percentages) of different methods: LS-Boost(ε) , FSε
(both for different values of ε), FS0, (forward) Stepwise regression, and Lasso. The numbers within paren-
theses denote standard errors. LS-Boost(ε) , FSε are found to exhibit similar statistical performances as
the Lasso, in fact in some examples the boosting methods seem to be marginally better than Lasso. The
predictive performance of the models were also found to be sensitive to the choice of the learning rate ε. For
FS0 and Stepwise we used the R package LARS [15] to compute the solutions. For all the cases, p = 500. For
Eg-A, we took n = 50. Both LS-Boost(ε) and FSε were run for a few values of ε in the range [0.001−0.8] –
in all cases, the optimal models (see the text for details) for LS-Boost(ε) and FSε were achieved at a value
of ε larger than its limiting version ε = 0+, thereby suggesting the sensitivity of the best predictive model
to the learning rate ε.

of ε, with smaller values of ε leading to slower convergence behavior to the least squares fit, as
expected. The test errors were found to decrease and then increase after reaching a minimum;
furthermore, the best predictive models were found to be sensitive to the choice of ε.

In addition to the above, we also performed a series of experiments on both real and synthetic
datasets comparing the performance of LS-Boost(ε) and FSε to other sparse learning methods,
namely Lasso , stepwise regression [15] and FS0 [15]. Our results are presented in Table B.1. In all
the cases, we found that the performance of FSε and LS-Boost(ε) were at least as good as Lasso.
And in some cases, the performances of FSε and LS-Boost(ε) were superior. The best predictive
models achieved by LS-Boost(ε) and FSε correspond to values of ε that are larger than zero or
even close to one – this suggests that a proper choice of ε can lead to superior models.

Statistical properties of R-FSε,δ, Lasso and FSε: an empirical study We performed some
experiments to evaluate the performance of R-FSε,δ, in terms of predictive accuracy and sparsity of
the optimal model, versus the more widely known methods FSε and Lasso. In all the cases, we took
a small value of ε = 10−3. We ran R-FSε,δ on a grid of twenty δ values, with the limiting solution
corresponding to the Lasso estimate at the particular value of δ selected. In all cases, we found
that when δ was large, i.e., larger than the best δ for the Lasso (in terms of obtaining a model with
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the best predictive performance), R-FSε,δ delivered a model with excellent statistical properties –
R-FSε,δ led to sparse solutions (the sparsity was similar to that of the best Lasso model) and the
predictive performance was as good as, and in some cases better than, the Lasso solution. This
suggests that the choice of δ does not play a very crucial role in the R-FSε,δ algorithm, once it
is chosen to be reasonably large; indeed the number of boosting iterations play a more important
role in obtaining good quality statistical estimates. When compared to FSε (i.e., the version of
R-FSε,δ with δ = ∞) we observed that the best models delivered by R-FSε,δ were more sparse
(i.e., with fewer non-zeros) than the best FSε solutions. This complements a popular belief about
boosting in that it delivers models that are quite dense – see the discussion herein in Section A.4.4.
Furthermore, it shows that the particular form of regularized boosting that we consider, R-FSε,δ,
does indeed induce sparser solutions. Our detailed results are presented in Table B.2.

Comments on Table B.1 In this experiment, we ran FSε and LS-Boost(ε) for thirty different
values of ε in the range 0.001 to 0.8. The entire regularization paths for the Lasso , FS0, and
the more aggressive Stepwise regression were computed with the LARS package. First, we observe
that Stepwise regression, which is quite fast in reaching an unconstrained least squares solution,
does not perform well in terms of obtaining a model with good predictive performance. The slowly
learning boosting methods perform quite well – in fact their performances are quite similar to the
best Lasso solutions. A closer inspection shows that FSε almost always delivers the best predictive
models when ε is allowed to be flexible. While a good automated method to find the optimal value
of ε is certainly worth investigating, we leave this for future work (of course, there are excellent
heuristics for choosing the optimal ε in practice, such as cross validation, etc.). However, we do
highlight that in practice a strictly non-zero learning rate ε may lead to better models than its
limiting version ε = 0+.

For Eg-A (ρ = 0.8), both LS-Boost(ε) and FSε achieved the best model at ε = 10−3. For
Eg-A (ρ = 0), LS-Boost(ε) achieved the best model at ε = 0.1, 0.7, 0.8 and FSε achieved the
best model at ε = 10−3, 0.7, 0.8 (both for SNR values 1, 3, 10 respectively). For the Leukemia
dataset, LS-Boost(ε) achieved the best model at ε = 0.6, 0.7, 0.02 and FSε achieved the best
model at ε = 0.6, 0.02, 0.02 (both for SNR values 1, 3, 10 respectively). For the Khan dataset,
LS-Boost(ε) achieved the best model at ε = 0.001, 0.001, 0.02 and FSε achieved the best model at
ε = 0.001, 0.02, 0.001 (both for SNR values 1, 3, 10 respectively).
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Real Data Example: Leukemia

Method n p SNR Test Error Sparsity ‖β̂opt‖1/‖β̂∗‖1 δ/δmax

FSε 72 500 1 0.3431 (0.0087) 28 0.2339 -
R-FSε,δ 72 500 1 0.3411 (0.0086) 25 0.1829 0.56
Lasso 72 500 1 0.3460 (0.0086) 30 1 0.11

FSε 72 500 10 0.0681 (0.0014) 67 0.7116 -
R-FSε,δ 72 500 10 0.0659 (0.0014) 60 0.5323 0.56
Lasso 72 500 10 0.0677 (0.0015) 61 1 0.29

Synthetic Data Examples: Eg-B (SNR=1)

Method n p ρ Test Error Sparsity ‖β̂opt‖1/‖β̂∗‖1 δ/δmax

FSε 50 500 0 0.19001 (0.0057) 56 0.9753 -
R-FSε,δ 50 500 0 0.18692 (0.0057) 51 0.5386 0.71
Lasso 50 500 0 0.19163 (0.0059) 47 1 0.38

FSε 50 500 0.5 0.20902 (0.0057) 14 0.9171 -
R-FSε,δ 50 500 0.5 0.20636 (0.0055) 10 0.1505 0.46
Lasso 50 500 0.5 0.21413 (0.0059) 13 1 0.07

FSε 50 500 0.9 0.05581 (0.0015) 4 0.9739 -
R-FSε,δ 50 500 0.9 0.05507 (0.0015) 4 0.0446 0.63
Lasso 50 500 0.9 0.09137 (0.0025) 5 1 0.04

Table B.2: Table showing the statistical properties of R-FSε,δ as compared to Lasso and FSε. Both R-FSε,δ
and FSε use ε = 0.001. The model that achieved the best predictive performance (test-error) corresponds

to β̂opt. The limiting model (as the number of boosting iterations is taken to be infinitely large) for each

method is denoted by β̂∗. “Sparsity” denotes the number of coefficients in β̂opt larger than 10−5 in absolute
value. δmax is the `1-norm of the least squares solution with minimal `1-norm. Both R-FSε,δ and Lasso
were run for a few δ values of the form ηδmax, where η takes on twenty values in [0.01, 0.8]. For the real
data instances, R-FSε,δ and Lasso were run for a maximum of 30,000 iterations, and FSε was run for 20,000
iterations. For the synthetic examples, all methods were run for a maximum of 10,000 iterations. The best
models for R-FSε,δ and FSε were all obtained in the interior of the path. The best models delivered by
R-FSε,δ are seen to be more sparse and have better predictive performance than the best models obtained by
FSε. The performances of Lasso and R-FSε,δ are found to be quite similar, though in some cases R-FSε,δ
is seen to be at an advantage in terms of better predictive accuracy.
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