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Abstract

Motivated principally by the low-rank matrix completion problem, we present an extension
of the Frank-Wolfe Method that is designed to induce near-optimal solutions on low-dimensional
faces of the feasible region. This is accomplished by a new approach to generating “in-face”
directions at each iteration, as well as through new choice rules for selecting between in-face and
“regular” Frank-Wolfe steps. Our framework for generating in-face directions generalizes the
notion of away-steps introduced by Wolfe. In particular, the in-face directions always keep the
next iterate within the minimal face containing the current iterate. We present computational
guarantees for the new method that trade off efficiency in computing near-optimal solutions with
upper bounds on the dimension of minimal faces of iterates. We apply the new method to the
matrix completion problem, where low-dimensional faces correspond to low-rank matrices. We
present computational results that demonstrate the effectiveness of our methodological approach
at producing nearly-optimal solutions of very low rank. On both artificial and real datasets,
we demonstrate significant speed-ups in computing very low-rank nearly-optimal solutions as
compared to the Frank-Wolfe Method (as well as several of its significant variants).

1 Introduction

In the last ten years the problem of matrix completion (see, for example, [7, 8, 32]) has emerged
as an important and ubiquitous problem in statistics and machine learning, with applications in
diverse areas [6, 36], with perhaps the most notable being recommender systems [2, 3, 20]. In matrix
completion one is given a partially observed data matrix X ∈ Rm×n, i.e., there is only knowledge of
the entries Xij for (i, j) ∈ Ω where Ω ⊆ {1, . . . ,m}× {1, . . . , n} (often, |Ω| � m× n), and the task
is to predict (fill in) the unobserved entries of X. The observed entries are possibly contaminated
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with noise, i.e., X = Z∗+E where Z∗ ∈ Rm×n represents the “true data matrix” and E is the noise
term, and the goal is to accurately estimate the entire matrix Z∗, which most importantly includes
estimating the entries Z∗ij for (i, j) 6∈ Ω. Clearly, this problem is in general ill-posed – without
any restrictions, the unobserved entries can take on any real values. The ill-posed nature of the
problem necessitates that any successful approach must, either explicitly or implicitly, make some
type of assumption(s) about underlying structure of the matrix Z∗. The most common approach,
especially without a priori knowledge about the data-generating mechanism, is to assume that the
matrix Z∗ is low-rank. This situation is similar to the “bet on sparsity” principle in linear regression
[16]: if Z∗ does not have low-rank structure, then we cannot expect any method to successfully fill
in the missing entries; on the other hand, if Z∗ does have low-rank, then a method that makes such
a structural assumption should have a better chance at success.

The low-rank structural assumption naturally leads to the following optimization problem:

Pr : min
Z∈Rm×n

1

2

∑
(i,j)∈Ω

(Zij −Xij)
2

s.t. rank(Z) ≤ r ,

(1)

where r is a parameter representing the assumed belief about the rank of Z∗. Notice that (1) is a
combinatorially hard problem due to the rank constraint [9].

Pioneered by [10], a promising strategy for attacking (1) is to use the nuclear norm as a proxy
for the rank. Recall that, for a given Z ∈ Rm×n, the sum of the singular values of Z is a norm often
referred to as the nuclear norm. Directly replacing the combinatorially hard rank constraint in (1)
with a constraint on the nuclear norm of Z leads to the following convex optimization problem:

NNδ : f∗ := min
Z∈Rm×n

1

2

∑
(i,j)∈Ω

(Zij −Xij)
2

s.t. ‖Z‖N1 ≤ δ .

(2)

Let BN1(Z, δ) := {Y ∈ Rm×n : ‖Y − Z‖N1 ≤ δ} denote the nuclear norm ball of radius δ centered
at the point Z, so that the feasible region of (2) is BN1(0, δ). Despite its apparent absence from the
problem formulation, it is nevertheless imperative that computed solutions of (2) have low rank.
Such low-rank computed solutions are coerced by the nuclear norm constraint, and there has been
substantial and influential work showing that, for many types of data generating mechanisms, an
optimal solution of (2) will have appropriately low rank (see, for instance, [7, 8, 10, 31]). This line
of work typically focuses on studying the properties of optimal solutions of (2), and thus abstracts
away the choice of algorithm to solve (2). Although this abstraction may be reasonable in some
situations, and is certainly a reasonable way to study the benefits of nuclear norm regularization, it
may also be limiting. Indeed, in recent years, the notion that “convex optimization is a black box”
has become increasingly unreasonable. Concurrently with the explosion of “big data” applications,
there has been a substantial amount of recent work on the development and analysis of algorithms
for huge-scale convex optimization problems where interior point methods and other polynomial-
time algorithms are ineffective. Moreover, there has been an increasing interest in algorithms that
directly promote desirable structural properties of their iterates. One such algorithm that satisfies

2



both of these properties – scalability to huge-size problems and structurally favorable iterates –
is the Frank-Wolfe Method and its extensions, which is the starting point of the work herein.
Indeed, much of the recent computational work for matrix completion is based on directly applying
first-order methods and related methods that have structurally favorable iterates [5, 19, 24, 35].
Mazumder et al. [25] develop a related algorithm based on SVD soft thresholding that efficiently
utilizes the special structure of matrix completion problems. In one of the earlier works applying
the Frank-Wolfe Method to nuclear norm regularized problems, Jaggi and Sulovský [18] consider
first lifting the nuclear norm regularized problem (2) to a problem over the semidefinite cone and
then apply the Frank-Wolfe Method. Tewari et al. [34] as well as Harchaoui et al. [14] pointed out
that the Frank-Wolfe Method can be applied directly to the nuclear norm regularized problem (2),
and [14] also developed a variant of the method that applies to penalized nuclear norm problems,
which was also studied in [35]. Mishra et al. [26] develop a second-order trust region method that
shares a few curious similarities with the extended Frank-Wolfe Method developed herein. Mu et
al. [27] consider a hybrid proximal gradient/Frank-Wolfe method for low-rank matrix and tensor
recovery. Rao et al. [30] consider a variant of Frank-Wolfe with “backward steps” (which differ from
the classical “away steps” of Wolfe [38] and Guélat and Marcotte [13]) in the general context of
atomic norm regularization. Backward steps comprise a flexible methodology aimed at producing
sparse representations of solutions. In this regard, backward steps are unrelated to away steps
except to the extent that both may result in sparse solutions.

The Frank-Wolfe Method, in-face directions, and structural implications. Due to its
low iteration cost and convenient structural properties (as we shall soon discuss), the Frank-Wolfe
Method (also called the conditional gradient method) is especially applicable in several areas of
machine learning and has thus received much renewed interest in recent years, see [12, 15, 17, 23, 34]
and the references therein. The Frank-Wolfe Method, originally developed by [11] in the context
of quadratic programming, was later generalized to convex optimization problems with smooth
(differentiable) convex objective functions and bounded convex feasible regions, of which (2) is
a particular instance. Indeed, letting f(Z) := 1

2

∑
(i,j)∈Ω(Zij − Xij)

2 denote the least squares
objective in (2), it is easy to see that f(·) is a smooth convex function, and the feasible region of
(2) is BN1(0, δ), which is a bounded convex set.

As applied to problem (2), the Frank-Wolfe Method proceeds at the current iterate Zk by
solving a linear optimization subproblem to compute Z̃k ← arg minZ∈BN1(0,δ)

{
∇f(Zk) • Z

}
(here

“•” denotes the usual trace inner product) and updates the next iterate as

Zk+1 ← Zk + ᾱk(Z̃
k − Zk) , (3)

for some ᾱk ∈ [0, 1]. It can be shown, see for instance [12, 15, 17] and as we expand upon in Section
2, that for appropriate choices of the step-size sequence {ᾱk} it holds that

f(Zk)− f∗ ≤ 8δ2

k + 3
and rank(Zk) ≤ k + 1 . (4)

The bound on the objective function gap in (4) is well understood and follows from a standard
analysis of the Frank-Wolfe Method. The bound on the rank of Zk in (4), while also well understood,
follows from the special structure of the nuclear norm ball. Specifically, and as we further expand
upon in Sections 2 and 3, for the nuclear norm regularized matrix completion problem (2), the
solutions to the linear optimization subproblem solved at each iteration are specially structured –
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they are rank one matrices arising from the leading left and right singular vectors of the matrix
∇f(Zk). Thus, assuming that Z0 is a rank one matrix, the simple additive form of the updates (3)
leads to the bound on the rank in (4). The above bound on the rank of Zk is precisely the “favorable
structural property” of the iterates of the Frank-Wolfe Method that was mentioned earlier, and
when combined with the bound on the objective function gap in (4) yields a nice tradeoff between
data fidelity and low-rank structure. However, note that when k is large – as might be necessary if
the desired objective function value gap needs to be very small – then the bound on the rank of Zk

might not be as favorable as one might wish. Indeed, one of the primary motivations underlying the
research herein is to develop theoretical and practical methods for solving (2) that simultaneously
achieve both good data fidelity (i.e., a small optimality gap in (2)) and low rank of the iterates Zk.

Here we see that in the case of the Frank-Wolfe Method, the properties of the algorithm provide
additional insight into how problem (2) induces low-rank structure. A natural question is: can the
tradeoff given by (4) be improved, either theoretically or practically or both? That is, can we modify
the Frank-Wolfe Method in a way that maintains the bound on the objective function gap in (4)
while strictly improving the bound on the rank? This is the motivation for the development of what
we call “in-face” directions and their subsequent analysis herein. We define an in-face direction to
be any descent direction that keeps the next iterate within the minimal face of BN1(0, δ) containing
the current iterate (where the minimal face of a point x ∈ S is the smallest face of the convex set
S that contains the point x). It turns out that the faces of the nuclear norm ball are characterized
by the (thin) SVDs of the matrices contained within them [33]. Therefore an in-face direction will
move to a new point Zk+1 with a similar SVD structure as Zk, and moreover will keep the rank
of Zk+1 the same (or will lower it, which is even better), i.e., rank(Zk+1) ≤ rank(Zk). Clearly if
we can find good in-face directions, then the bound on the rank in (4) will be improved. At the
same time, if there are no in-face directions that are “good enough” with respect to improvements
in objective function values, then a “regular” Frank-Wolfe direction may be chosen, which will
usually increase the rank of the next iterate by one. In this paper, we develop an extension of the
Frank-Wolfe Method that incorporates in-face directions and we provide both a precise theoretical
analysis of the resulting tradeoff akin to (4), as well as computational results that demonstrate
significant improvements over existing methods both in terms of ranks and run times.

1.1 Organization/Results

The paper is organized as follows. In Section 2, after reviewing the basic Frank-Wolfe Method and
the away-step modification of Wolfe and Guélat and Marcotte, we present our extended Frank-
Wolfe Method based on “in-face” directions (in addition to regular Frank-Wolfe directions), this
being the main methodological contribution of the paper. This In-Face Extended Frank-Wolfe
Method is specifically designed to induce iterates that lie on low-dimensional faces of the feasible
set S, since low-dimensional faces of the feasible region contain desirable “well-structured” points
(sparse solutions when S is the `1 ball, low-rank matrices when S is the nuclear norm ball). The
in-face directions are any directions that keep the current iterate in its current minimal face of S.
We present two main strategies for computing in-face directions: (i) away-steps as introduced by
Wolfe [38] and Guélat and Marcotte [13], and (ii) approximate full optimization of the objective
f(·) over the current minimal face. The In-Face Extended Frank-Wolfe Method uses a simple
decision criterion for selecting between in-face and regular Frank-Wolfe directions. In Theorem 2 we
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present computational guarantees for the In-Face Extended Frank-Wolfe Method. These guarantees
essentially show that the In-Face Extended Frank-Wolfe Method maintains O(c/k) convergence
after k iterations (which is optimal for Frank-Wolfe type methods in the absence of polyhedral
structure or strong convexity [23]), all the while promoting low-rank iterates via the parameters of
the method which affect the constant c above, see Theorem 2 for specific details.

In Section 3 we discuss in detail how to apply the In-Face Extended Frank-Wolfe Method to
solve the matrix completion problem (2). We resolve issues such as characterizing and working with
the minimal faces of the nuclear norm ball, solving linear optimization subproblems on the nuclear
norm ball and its faces, computing steps to the boundary of the nuclear norm ball, and updating
the SVD of the iterates. In Proposition 2 we present a bound on the ranks of the matrix iterates of
the In-Face Extended Frank-Wolfe Method that specifies how the in-face directions reduce the rank
of the iterates over the course of the algorithm. Furthermore, as a consequence of our developments
we also demonstrate, for the first time, how to effectively apply the away-step method of [13] to
problem (2) in a manner that works with the natural parameterization of variables Z ∈ Rm×n (as
opposed to an “atomic” form of [13], as we expand upon at the end of Section 2.1).

Section 4 contains a detailed computational evaluation of the In-Face Extended Frank-Wolfe
Method and discusses several versions of the method based on different strategies for computing
in-face directions and different algorithmic parameter settings. We compare these versions to the
regular Frank-Wolfe Method, the away-step method of [13], an atomic version of [13] (as studied
in [1, 21, 22, 28]), as well as the “fully corrective” variant of Frank-Wolfe [15, 17, 22] and the
CoGEnT “forward-backward” method of [30]. We present several experiments on simulated prob-
lem instances as well as on the MovieLens10M dataset. Our results demonstrate that the In-Face
Extended Frank-Wolfe Method (in different versions) shows significant computational advantages
in terms of delivering low rank and low run time to compute a target optimality gap. Especially
for larger instances, one version of our method delivers very low rank solutions with reasonable run
times, while another version delivers the best run times, beating existing methods by a factor of 10
or more.

1.2 Notation

Let E be a finite-dimensional linear space. For a norm ‖ · ‖ on E, let ‖ · ‖∗ be the associated
dual norm, namely ‖c‖∗ := max{cT z : ‖z‖ ≤ 1} and cT z denotes the value of the linear operator
c acting on z. The ball of radius δ centered at z̄ is denoted B(z̄, δ) := {z : ‖z − z̄‖ ≤ δ}. We
use I to denote the identity matrix whose dimension is dictated by the context. For X,Y ∈ Sk×k
(the set of k × k symmetric matrices), we write “X � 0” to denote that X is symmetric and
positive semidefinite, “X � Y ” to denote that X − Y � 0, and “X � 0” to denote that X
is positive definite, etc. For a given Z ∈ Rm×n with r := rank(Z), the (thin) singular value
decomposition (SVD) of Z is Z = UDV T where U ∈ Rm×r and V ∈ Rn×r are each orthonormal
(UTU = I and V TV = I), and D = Diag(σ1, . . . , σr) comprises the non-zero (hence positive)
singular values of Z. The nuclear norm of Z is then defined to be ‖Z‖N1 :=

∑r
j=1 σj . (In much

of the literature, this norm is denoted ‖ · ‖∗; we prefer to limit the use of “∗” to dual norms, and
hence we use the notation ‖ · ‖N1 instead.) Let BN1(Z, δ) := {Y ∈ Rm×n : ‖Y − Z‖N1 ≤ δ}
denote the nuclear norm ball of radius δ centered at the point Z. Let ‖Z‖F denote the Frobenius

norm of Z, namely ‖Z‖F =
√∑r

j=1 σ
2
j =

√
Tr(ZTZ). The dual norm of the nuclear norm is
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the largest singular value of a matrix and is denoted by ‖ · ‖∗N1 = ‖ · ‖N∞; given S ∈ Rm×n
with SVD S = UDV T , then ‖S‖N∞ = max{σ1, . . . , σr}. A spectrahedron is a set of the form
Skt := {X ∈ Sk×k : X � 0, I •X ≤ t} or S̄kt := {X ∈ Sk×k : X � 0, I •X = t}, where “•” denotes
the usual trace inner product.

2 Frank-Wolfe Method, Away Steps, and In-Face Steps

Problem (2) is an instance of the more general problem:

f∗ := min
x∈S

f(x) (5)

where S ⊂ E is a closed and bounded convex set, and f(·) is a differentiable convex function on S.
We first review solving instances of (5) using the Frank-Wolfe Method, whose basic description is
given in Algorithm 1.

Algorithm 1 Frank-Wolfe Method for optimization problem (5)

Initialize at x0 ∈ S, (optional) initial lower bound B−1, k ← 0 .

At iteration k:
1. Compute ∇f(xk) .
2. Compute x̃k ← arg min

x∈S
{f(xk) +∇f(xk)

T (x− xk)} .

Bw
k ← f(xk) +∇f(xk)

T (x̃k − xk) .
Update best bound: Bk ← max{Bk−1, B

w
k } .

3. Set xk+1 ← xk + ᾱk(x̃k − xk), where ᾱk ∈ [0, 1] .

Typically the main computational burden at each iteration of the Frank-Wolfe Method is solving
the linear optimization subproblem in Step (2.) of Algorithm 1. The quantities Bw

k are lower
bounds on the optimal objective function value f∗ of (5), a fact which follows easily from the
gradient inequality, see Jaggi [17] or [12], and hence Bk = max{B−1, B

w
0 , . . . , B

w
k } is also a lower

bound on f∗. The lower bound sequence {Bk} can be used in a variety of step-size strategies [12]
in addition to being useful in termination criteria.

When the step-size sequence {ᾱk} is chosen using the simple rule ᾱk := 2
k+2 , then the Frank-Wolfe

Method has the following computational guarantee at the kth iteration, for k ≥ 0:

f(xk)− f∗ ≤ f(xk)−Bk ≤
2LD2

k + 3
, (6)

where D := maxx,y∈S ‖x− y‖ is the diameter of S, and L is a Lipschitz constant of the gradient of
f(·) on S, namely:

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x, y ∈ S . (7)

If ᾱk is instead chosen by exact line-search, namely ᾱk ← arg minα∈[0,1] f(xk+α(x̃k−xk)), then the
guarantee (6) still holds, see Section 3.4 of [12], this being particularly relevant when f(·) is a convex
quadratic as in (2) in which case the exact line-search reduces to a simple formula. Alternatively,
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one can consider a step-size rule based on minimizing an upper-approximation of f(·) inherent from
the smoothness of the gradient, namely:

f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ‖y − x‖2 for all x, y ∈ S , (8)

which follows from (7) (see [12], for example, for a concise proof). The following is a modest
extension of the original analysis of Frank and Wolfe in [11].

Theorem 1. (extension of [11]) Let L̄ ≥ L be given, and consider using either an exact line-
search or the following step-size rule for the Frank-Wolfe Method:

ᾱk ← min

{∇f(xk)
T (xk − x̃k)

L̄‖xk − x̃k‖2
, 1

}
for all k ≥ 0 . (9)

Then f(xk) is monotone decreasing in k, and it holds that:

f(xk)− f∗ ≤ f(xk)−Bk ≤
1

1
f(x0)−B0

+ k
2L̄D2

<
2L̄D2

k
. (10)

Proof: The first inequality of (10) follows from the fact that Bk ≤ f∗, and the third inequality
follows from the fact that f(x0) ≥ f∗ ≥ B0. The second inequality can be rewritten as:

1

f(xk)−Bk
≥ 1

f(x0)−B0
+

k

2L̄D2
,

which states that the reciprocal of the optimality bound gap grows at least according to the indicated
linear function in k. The above inequality holds trivially for k = 0, and hence to prove the second
inequality of (10) it suffices to show that:

1

f(xk+1)−Bk+1
≥ 1

f(xk)−Bk
+

1

2L̄D2
for all k ≥ 0 , (11)

whose proof is given in Appendix A, and wherein the monotonicity of f(xk) is also proved.

In addition to being the crux of the proof of (10), we will also use inequality (11) and related
inequalities as the basis for choosing among candidate directions in the in-face extension of Frank-
Wolfe that we will develop in Section 2.2.

2.1 Away Steps

In [38] Wolfe introduced the concept of an “away step” in a modified version of the Frank-Wolfe
method, and Guélat and Marcotte [13] provided a modification thereof and an extensive treatment
of the convergence properties of the away-step-modified Frank-Wolfe method, including eventual
linear convergence of the method when the objective function is strongly convex, the feasible region
is polyhedral, and a form of strict complementarity holds. Quite recently there has been much
renewed interest in the Frank-Wolfe method with away steps, with most of the focus being on
demonstrating global linear convergence with computational guarantees for a particular “atomic”
version of [13], see Lacoste-Julien and Jaggi [21, 22], Beck and Shtern [1], and Peña et al. [28].
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Algorithm 2 presents the modified Frank-Wolfe Method with Away Steps as developed in [13].
The algorithm needs to work with the minimal face of a point x ∈ S, which is the smallest face of
S that contains the point x; here we use the notation FS(x) to denote the minimal face of S which
contains x. Step (2.) of the modified Frank-Wolfe method is the “away step” computation, where
x̌k is the point on the current minimal face FS(xk) that is farthest along the ray from the “bad”
solution x̂k through the current point xk. Step (3.) of the modified method is the regular Frank-
Wolfe step computation, which is called a “toward step” in [13]. (Please see [13] as well as [38] for
an expanded exposition of away-steps, including illustrative figures.) Notice that implementation of
the away-step modified Frank-Wolfe method depends on the ability to characterize and work with
the minimal face FS(xk) of the iterate xk. When S is not a polytope this minimal face capability
is very much dependent on problem-specific knowledge of the structure of the set S.

Algorithm 2 Modified Frank-Wolfe Method with Away Steps, for optimization problem (5)

Initialize at x0 ∈ S, (optional) initial lower bound B−1, k ← 0 .

At iteration k:
1. Compute ∇f(xk) .
2. Compute x̂k ← arg max

x
{∇f(xk)

Tx : x ∈ FS(xk)} .

αstop
k ← arg max

α
{α : xk + α(xk − x̂k) ∈ FS(xk)} .

x̌k ← xk + αstop
k (xk − x̂k) .

3. Compute x̃k ← arg min
x
{∇f(xk)

Tx : x ∈ S} .

Bw
k ← f(xk) +∇f(xk)

T (x̃k − xk) .
Update best bound: Bk ← max{Bk−1, B

w
k } .

4. Choose descent direction:
If ∇f(xk)

T (x̃k − xk) ≤ ∇f(xk)
T (xk − x̂k), then dk ← x̃k − xk and β̄k ← 1 ;

Else dk ← xk − x̂k and β̄k ← αstop
k .

5. Set xk+1 ← xk + ᾱkdk, where ᾱk ∈ [0, β̄k] .

The convergence of the modified Frank-Wolfe method is proved in Theorem 4 of [13] under the
assumption that ᾱk in Step (5.) is chosen by exact line-search; however a careful review of the
proof therein shows that convergence is still valid if one uses a step-size rule in the spirit of (9)
that uses the quadratic upper-approximation of f(·) using L or L̄ ≥ L. The criterion in Step (4.)
of Algorithm 2 for choosing between the regular Frank-Wolfe step and the away step seems to be
tailor-made for the convergence proof in [13]. In examining the proof of convergence in [13], one
finds the fact that x̂k is an extreme point is not relevant for the proof, nor even is the property
that x̂k is a solution of a linear optimization problem. Indeed, this begs for a different way to think
about both generating and analyzing away steps, which we will do shortly in Subsection 2.2.

Away-steps are not affine-invariant. The feasible region S of (5) can always be (implicitly)
expressed as S = conv(A) where A = {x̃j : j ∈ J } is a (possibly infinite) collection of points in S
that includes all of the extreme points of S. In fact, in many current applications of Frank-Wolfe
and its relatives, S is explicitly constructed as S := conv(A) for a given collection A whose members
are referred to as “atoms”; and each atom x̃j ∈ A is a particularly “simple” point (such as a unit
coordinate vector ±ei, a rank-1 matrix, etc.). Let us consider the (possibly infinite-dimensional)
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vector space V := {α ∈ R|J | : support(α) is finite}, and define the simplicial set ∆J by:

∆J :=

α ∈ V : α ≥ 0,
∑
j∈J

αj = 1

 ,

and consider the linear map M(·) : ∆J → S such that M(α) :=
∑

j∈J αj x̃
j . Then it is obvious

that the following two optimization problems are equivalent:

min
x∈S

f(x) ≡ min
α∈∆J

f(M(α)) , (12)

where the left-side is our original given problem of interest (5) and the right-side is its re-expression
using the convex weights α ∈ ∆J as the variables. Furthermore, it follows from the fundamental
affine-invariance of the regular Frank-Wolfe Method (Algorithm 1) as articulated by Jaggi [17] that
the Frank-Wolfe Method applied to the left-side problem above is equivalent (via the linear mapping
M(·)) to the Frank-Wolfe Method applied to the right-side problem above. However, this affine
invariance property does not extend to the away-step modification of the method, due to the fact
that the facial structure of a convex set is not affine invariant – not even so in the case when S is
a polytope. This is illustrated in Figure 1. The left panel shows a polytopal feasible region S ⊂ R3

with FS(xk) highlighted. The polytope S has 10 extreme points. The right panel shows FS(xk) by
itself in detail, wherein we see that xk = .25x̃1 + .25x̃2 + .50x̃3 (among several other combinations of
other extreme points of FS(xk) as well). Let us now consider the atomic expression of the set S using
the 10 extreme points S and instead expressing our problem in the format of the right-side of (12),
wherein the feasible region is the unit simplex in R10, namely ∆10 := {α ∈ R10 : α ≥ 0, eTα = 1}
where e = (1, . . . , 1) is the vector of ones. If the current iterate xk is given the atomic expression
αk = (.25, .25, .50, 0, 0, 0, 0, 0, 0, 0), then the minimal face F∆10(αk) of αk in ∆10 is the sub-simplex
{α ∈ R10 : α ≥ 0, eTα = 1, α4 = · · ·α10 = 0}, which corresponds back in S ⊂ R3 to the narrow
triangle in the right panel of Figure 1, and which is a small subset of the pentagon corresponding
to the minimal face FS(xk) of xk in S. Indeed, this example illustrates the general fact that the
faces of the atomic expression of S will always correspond to subsets of the faces of the facial
structure of S. Therefore, away-step sub-problem optimization computations using the original
representation of S will optimize over larger subsets of S than will the corresponding computations
using the atomic re-expression of the problem. Indeed, we will show in Section 4 in the context of
matrix completion that by working with the original representation of the set S in the setting of
using away-steps, one can obtain significant computational savings over working with the atomic
representation of the problem.

Last of all, we point out that the away-step modified Frank-Wolfe methods studied by Lacoste-
Julien and Jaggi [21, 22], Beck and Shtern [1], and Peña et al. [28] can all be viewed as applying
the away-step method (Algorithm 2) to the “atomic” representation of the optimization problem
as in the right-side of (12).

2.2 An “In-Face” Extended Frank-Wolfe Method

Here we present an “in-face” extension of the Frank-Wolfe method, that is significantly more general
than the away-step method of Wolfe [38] and Guélat and Marcotte [13] (Algorithm 2), and its atomic
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Figure 1: Illustration that facial structure of a polytope is not affine invariant.

version studied by by Lacoste-Julien and Jaggi [21, 22], Beck and Shtern [1], and Peña et al. [28].
The method is motivated by the desire to compute and work with points x that have specific
structure, usually sparsity (in the case when x is a vector or matrix) or low-rank (in the case when
x is a matrix). More generally, we will think of the structure as being related to the dimension of
the minimal face FS(x) of S containing x. The algorithm is designed to balance progress towards
two different goals, namely (i) progress towards optimizing the objective function, and (ii) the
aim of having the iterates lie in low-dimensional faces of S. In the case of the matrix completion
problem (2) in particular, if an iterate lies in a low-dimensional face of S then the iterate will have
low rank (see Theorem 3). Such low rank is advantageous not only because we want the output
solution to have low rank, but also because a low-rank iterate yields a substantial reduction in
the computation costs at that iteration. This last point will be further developed and exploited in
Sections 3 and 4.

We present our “In-Face Extended Frank-Wolfe Method” in Algorithm 3. At Step (2.) of each
iteration the algorithm works with an “in-face” direction dk which will keep the next candidate
point in the current minimal face FS(xk). This is equivalent to requiring that xk + dk lies in the
affine hull of FS(xk), which is denoted by Aff(FS(xk)). Other than the affine hull condition, the
direction dk can be any descent direction of f(·) at xk if such a direction exists. The candidate
iterate xBk is generated by stepping in the direction dk all the way to the relative boundary of the
minimal face of the current point xk. The point xAk is the candidate iterate generated using the
in-face direction and a suitable step-size β̄k, perhaps chosen by exact line-search or by a quadratic
approximation rule. In Steps (3a.) and (3b.) the algorithm applies criteria for choosing which, if
any, of xBk or xAk to accept as the next iterate of the method. If the criteria are not met for either
xBk or xAk , then the method computes a regular Frank-Wolfe step in Step (3c.) and updates the
lower bound Bk.

Let us now discuss a few strategies for computing in-face directions. One recovers the away-step
direction of the method of Guélat and Marcotte [13] by choosing:

dk ← xk − x̂k , where x̂k ← arg max
x
{∇f(xk)

Tx : x ∈ FS(xk)} . (13)

Another natural way to compute a suitable dk, that is computationally facile for relatively low-
dimensional faces and for certain problem instances (including matrix completion), is to directly
solve for an (approximately) optimal objective function solution over the low-dimensional face
FS(xk) and thereby set:

dk ← xMk − xk , where xMk ← arg min
x
{f(x) : x ∈ FS(xk)} . (14)

10



Algorithm 3 In-Face Extended Frank-Wolfe Method for optimization problem (5)

Initialize at x0 ∈ S, (optional) initial lower bound B−1, k ← 0 .
Choose L̄ ≥ L, D̄ ≥ D, and constants γ1, γ2 satisfying 0 ≤ γ1 ≤ γ2 ≤ 1 .

At iteration k:
1. Compute ∇f(xk) . Bk ← Bk−1 .
2. Compute direction dk for which xk + dk ∈ Aff(FS(xk)) and ∇f(xk)

Tdk < 0. (If no dk exists,
go to Step (3c.).)

αstop
k ← arg max

α
{α : xk + αdk ∈ FS(xk)} .

xBk := xk + αstop
k dk .

xAk := xk + β̄kdk where β̄k ∈ [0, αstop
k ] .

3. Choose next iterate:
(a.) (Go to a lower-dimensional face.)

If 1
f(xBk )−Bk

≥ 1
f(xk)−Bk + γ1

2L̄D̄2 , set xk+1 ← xBk .

(b.) (Stay in current face.)
Else if 1

f(xAk )−Bk
≥ 1

f(xk)−Bk + γ2
2L̄D̄2 , set xk+1 ← xAk .

(c.) (Do regular FW step and update lower bound.) Else, compute:
x̃k ← arg min

x
{∇f(xk)

Tx : x ∈ S} .

xk+1 ← xk + ᾱk(x̃k − xk) where ᾱk ∈ [0, 1] .
Bw
k ← f(xk) +∇f(xk)

T (x̃k − xk), Bk ← max{Bk−1, B
w
k } .

Note that in this case, we may naturally set β̄k := 1. Another related type of in-face direction that
may be of interest is to consider a regular Frank-Wolfe step within FS(xk), whereby we select:

dk ← x̃Fk − xk , where x̃Fk ← arg min
x
{∇f(xk)

Tx : x ∈ FS(xk)} . (15)

One may interpret this “in-face Frank-Wolfe step” as a single iteration of the Frank-Wolfe Method
applied to the subproblem in (14). As we elaborate in Section 4 when discussing the practical merits
of these approaches, our main interests are in the away-step strategy (13) and the full optimization
strategy (14). Both of these in-face Frank-Wolfe step strategies lead to significant computational
advantages over the regular Frank-Wolfe Method, as will be shown in Section 4.

One immediate advantage of the In-Face Extended Frank-Wolfe Method (Algorithm 3) com-
pared to the away-step modified Frank-Wolfe method of Guélat and Marcotte [13] (Algorithm 2)
has to do with the number and sizes of linear optimization sub-problems that are solved. Algorithm
2 needs to solve two linear optimization subproblems at each iteration – a “small” subproblem on
the minimal face FS(xk) and a “large” subproblem on the entire set S. In contrast, even when
computing directions using away-step computations, Algorithm 3 must solve the “small” linear op-
timization problem on the minimal face FS(xk), but the method will only need to solve the “large”
subproblem on the entire set S if it needs to process Step (3c.). The computational advantage from
not having to solve the “large” subproblem at every iteration will be shown in Section 4.

We now discuss the criteria that are used in Step (3.) to choose between the next step xBk
that lies in the relative boundary of the current minimal face FS(xk), the step xAk that does not
necessarily lie in the relative boundary of the current minimal face FS(xk), and a regular Frank-
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Wolfe step. We see from Step (3.) of Algorithm 3 that a regular Frank-Wolfe step will be chosen
as the next iterate unless the criterion of either Step (3a.) or (3b.) are met. The criteria in Step
(3a.) is met if xBk (which lies on the relative boundary of FS(xk) by virtue of the definition of αstop

k )
provides sufficient decrease in the optimality gap as measured with the criterion:

1

f(xBk )−Bk
≥ 1

f(xk)−Bk
+

γ1

2L̄D̄2
.

The criteria in Step (3b.) is met if xAk provides sufficient decrease in the optimality gap as measured
similar to above but using γ2 rather than γ1. Since γ1 ≤ γ2, Step (3a.) requires a lesser decrease
in the optimality bound gap than does Step (3b.).

In settings when we strongly desire to compute iterates that lie on low-dimensional faces (as in
the low-rank matrix completion problem (2)), we would like the criteria in Steps (3a.) and (3b.) to
be relatively easily satisfied (perhaps with it being even easier to satisfy the criteria in Step (3a.)
as this will reduce the dimension of the minimal face). This can be accomplished by setting the
values of γ1 and γ2 to be lower rather than higher. Indeed, setting γ1 = 0 ensures in Step (3a.)
that the next iterate lies in a lower-dimensional face whenever xBk (which by definition lies in a
lower dimensional face than xk) does not have a worse objective function value than f(xk). Also,
if one sets γ2 to be smaller, then the criteria in Step (3b.) is more easily satisfied, which ensures
that the new iterate will remain in the current face FS(xk) as desired when the criterion of Step
(3b.) is satisfied.

As we have discussed, the ability to induce solutions on low-dimensional faces by setting γ1 and
γ2 to have low values can be extremely beneficial. However, this all comes at a price in terms of
computational guarantees, as we now develop. Before presenting the computational guarantee for
Algorithm 3 we first briefly discuss step-sizes; the step-size β̄k for steps to the in-face point xAk are
determined in Step (2.), and the step-size ᾱk for regular Frank-Wolfe steps is chosen in Step (3c.).
One strategy is to choose these step-sizes using an exact line-search if the line-search computation
is not particularly burdensome (such as when f(·) is a quadratic function). Another strategy is
to determine the step-sizes according to the quadratic upper approximation of f(·) much as in
Theorem 1, which in this context means choosing the step-sizes as follows:

β̄k := min

{−∇f(xk)
Tdk

L̄‖dk‖2
, αstop

k

}
, ᾱk := min

{∇f(xk)
T (xk − x̃k)

L̄‖xk − x̃k‖2
, 1

}
. (16)

Let Na
k , N b

k, and N c
k denote the number of times within the first k iterations that the iterates are

chosen according to the criteria in Steps (3a.), (3b.), and (3c.), respectively. Then k = Na
k+N b

k+N c
k ,

and we have the following computational guarantee.

Theorem 2. Suppose that the step-sizes used in Algorithm 3 are determined either by exact line-
search or by (16). After k iterations of Algorithm 3 it holds that:

f(xk)− f∗ ≤ f(xk)−Bk ≤
1

1

f(x0)−B0
+
γ1N

a
k

2L̄D̄2
+
γ2N

b
k

2L̄D̄2
+

N c
k

2L̄D̄2

<
2L̄D̄2

γ1Na
k + γ2N b

k +N c
k

.

Proof: The first inequality is true since Bk ≤ f∗, and the third inequality is true since f(x0) ≥ B0,
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so we need only prove the second inequality, which can be equivalently written as:

1

f(xk)−Bk
≥ 1

f(x0)−B0
+
γ1N

a
k

2L̄D̄2
+
γ2N

b
k

2L̄D̄2
+

N c
k

2L̄D̄2
. (17)

Notice that (17) is trivially true for k = 0 since Na
k = N b

k = N c
k = 0 for k = 0. Let ∆k := (f(xk)−

Bk)
−1 denote the inverse objective function bound gap at iteration k. Then if the next iterate is

chosen by satisfying the criteria in Step (3a.), it holds that ∆k+1 ≥ (f(xk+1)−Bk)−1 ≥ ∆k + γ1
2L̄D̄2

where the first inequality derives from Bk+1 ≥ Bk and the second inequality is from the criterion
of Step (3a.). Similarly, if the next iterate is chosen by satisfying the criteria in Step (3b.), it
holds using similar logic that ∆k+1 ≥ ∆k + γ2

2L̄D̄2 . And if the next iterate is chosen in Step (3c.),

namely we take a regular Frank-Wolfe step, then inequality (11) holds, which is ∆k+1 ≥ ∆k+ 1
2L̄D̄2 .

Applying induction then establishes (17), which completes the proof.

Here we see that choosing smaller values of γ1 and γ2 can have a detrimental effect on the
progress of the algorithm in terms of the objective function optimality gap, while larger values
ensure better convergence guarantees. At the same time, smaller values of γ1 and γ2 are more
effective at promoting iterates to lie on low-dimensional faces. Thus there is a clear tradeoff
between objective function optimality gap accuracy and low-dimensional structure, dictated by the
values of γ1 and γ2. One strategy that is worth studying is setting γ1 = 0 and γ2 to be relatively
large, say γ2 = 1 for example. With these values of the parameters we take an in-face step in Step
(3a.) (which lowers the dimension of the face of the iterate) whenever doing so will not adversely
affect the objective function value. This and other strategies for setting γ1 and γ2 will be examined
in Section 4.

A simplified algorithm in the case of full optimization over the current minimal face.
Let us further examine the dynamics of Algorithm 3 in the case of (14), where we select the in-
face direction by fully optimizing the objective function f(·) over the low-dimensional face FS(xk).
Consider performing an in-face step in this case, i.e., suppose that the next iterate is chosen
according to the criteria in Steps (3a.)/(3b.) (recall that we set β̄k := 1 in this case). Then, at
the next iteration, Algorithm 3 is guaranteed to select a regular Frank-Wolfe step via Step (3c.).
Indeed, since the next iterate xk+1 is chosen as the optimal solution over FS(xk), by definition there
are no descent directions at xk+1 that remain within FS(xk+1) ⊆ FS(xk) and thus no valid in-face
directions to be selected. Here we see that the parameters γ1 and γ2 are superfluous – a much more
natural procedure is to simply alternate between regular Frank-Wolfe steps and fully optimizing
over FS(xk). This bears some similarity to, but is distinct from, the “fully corrective” variant
of Frank-Wolfe, see, e.g., [15, 17, 22]. (Indeed, these two algorithms coincide if we consider this
alternating procedure applied to the lifted problem (12).) In this case, the following computational
guarantee follows simply from Theorem 1.

Proposition 1. Consider a slight variation of Algorithm 3 that alternates between full optimizations
(14) over the current face FS(xk) and regular Frank-Wolfe steps, with step-size ᾱk chosen either by
exact line-search or by a quadratic approximation rule (16). For simplicity, consider one iteration
to consist of both of these operations in sequence. Then, for all k ≥ 0, it holds that:

f(xk)− f∗ ≤ f(xk)−Bk ≤
1

1
f(x0)−B0

+ k
2L̄D2

<
2L̄D2

k
.
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3 Solving Matrix Completion Problems using the In-Face Ex-
tended Frank-Wolfe Method

We now turn our attention to solving instances of (2) using the the In-Face Extended Frank-Wolfe
Method (Algorithm 3). We work directly with the natural parameterization of variables as m× n
matrices Z ∈ Rm×n (although, as we discuss in Section 3.6, we utilize low-rank SVD updating
to maintain the variables in an extremely memory efficient manner). Recall that the objective
function of (2) is f(Z) := 1

2

∑
(i,j)∈Ω(Zij − Xij)

2, whose gradient is ∇f(Z) = (Z − X)Ω. The
feasible region of (2) is S = BN1(0, δ), which notation we shorten to B := BN1(0, δ). We first
discuss the specification and implementation issues in using Algorithm 3 to solve (2).

We will fix the norm on Z to be the nuclear norm ‖ · ‖N1, whose dual norm is easily seen to be
‖ · ‖∗N1 = ‖ · ‖N∞. Then it is plain to see that under the nuclear norm it holds that the Lipschitz
constant of the objective function of (2) is L = 1. This follows since for any Z, Y ∈ Rm×n we have:

‖∇f(Z)−∇f(Y )‖N∞ ≤ ‖∇f(Z)−∇f(Y )‖N2 = ‖(Z −X)Ω − (Y −X)Ω‖F

≤ ‖(Z − Y )‖F = ‖(Z − Y )‖N2 ≤ ‖(Z − Y )‖N1 .

Since the feasible region of (2) is S = B := BN1(0, δ) it follows that the diameter of S is D = 2δ.
Let us use the superscript Zk to denote the kth iterate of the algorithm, to avoid confusion with
the subscript notation Zij for indices of the (i, j)th component of Z.

3.1 Characterization of faces of the nuclear norm ball

In order to implement Algorithm 3 we need to characterize and work with the minimal face of
B = BN1(0, δ) containing a given point. Let Z̄ ∈ B be given. The minimal face of B containing Z̄
is formally notated as FB(Z̄). We have the following characterization of FB(Z̄) due to So [33]:

Theorem 3. (So [33]) Let Z̄ ∈ B have thin SVD Z̄ = UDV T and let r = rank(Z̄). Let FB(Z̄)
denote the minimal face of B containing Z̄. If

∑r
j=1 σj = δ, then Z̄ ∈ ∂B and it holds that:

FB(Z̄) = {Z ∈ Rm×n : Z = UMV T for some M ∈ Sr×r, M � 0, I •M = δ} ,

and dim(FB(Z̄)) = r(r + 1)/2 − 1. Otherwise
∑r

j=1 σj < δ and it holds that FB(Z̄) = B and

dim(FB(Z̄)) = dim(B) = m× n.

Theorem 3 above is a reformulation of Theorem 3 of So [33], as the latter pertains to square
matrices (m = n) and also does not explicitly treat the minimal faces containing a given point, but
is a trivial extension of So’s theorem.

Theorem 3 explicitly characterizes the correspondence between the faces of the nuclear norm ball
and low-rank matrices on its boundary. Note from Theorem 3 that if Z̄ ∈ ∂B and r = rank(Z̄), then
FB(Z̄) is a linear transformation of the r× r spectrahedron S̄rδ := {M ∈ Sr×r : M � 0, I •M = δ}.
This property will be most useful as it will make it very easy to compute in-face directions, especially
when r is relatively small, as we will see in Section 3.3 and Section 3.4.
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3.2 Linear optimization subproblem solution for regular Frank-Wolfe step

In Step (3c.) of Algorithm 3 we need solve a linear optimization problem. Here we show how this
can be done efficiently. We need to compute:

Z̃k ← arg min
Z∈BN1(0,δ)

∇f(Zk) • Z . (18)

Then an optimal solution Z̃k is readily seen to be:

Z̃k ← −δukvTk (19)

where uk and vk denote the left and right singular vectors, respectively, of the matrix ∇f(Zk)
corresponding to the largest singular value of ∇f(Zk). Therefore computing Z̃k in Step (3c.) is
relatively easy so long as the computation of the largest singular value of ∇f(Zk) and associated
left and right eigenvalues thereof are easy to accurately compute. If |Ω| is relatively small, then
there are practically efficient methods (such as power iterations) that can effectively leverage the
sparsity of ∇f(Zk).

3.3 Strategies and computation of the in-face direction Dk

Let Dk denote the in-face direction computed in Step (2.) of Algorithm 3. As suggested in Section
2.2, we present and discuss two different strategies for generating a suitable Dk, namely (i) using
an away-step approach (13), and (ii) directly solving for an optimal objective function solution over
the low-dimensional face FB(Zk) (14). In either case, computing Dk requires working with the thin
SVD of Zk, which characterizes FB(Zk) as stated in Theorem 3. Of course, the thin SVD of Zk

can be recomputed at every iteration, but this is generally very inefficient. As we expand upon in
Section 3.6, the thin SVD of Zk+1 can be efficiently updated from the thin SVD of Zk by utilizing
the structure of the regular Frank-Wolfe and in-face directions. For now, we simply assume that
we have access to the thin SVD of Zk at the start of iteration k.

Away-step Strategy. Here we choose Dk by setting Dk ← Zk − Ẑk where Ẑk is the solution of
the linear optimization maximization problem over the current minimal face, as in Step (2.) of the
away-step algorithm (Algorithm 2). We compute the “away-step point” Ẑk by computing:

Ẑk ← arg max
Z∈FB(Zk)

∇f(Zk) • Z , (20)

and set Dk ← Zk − Ẑk. To see how to solve (20) efficiently, we consider two cases, namely when
Zk ∈ int(B) and when Zk ∈ ∂(B). In the case when Zk ∈ int(B), then FB(Zk) = B and the optimal
solution in (20) is just the negative of the solution of (19), namely Ẑk = δukv

T
k .

In the case when Zk ∈ ∂(B), rank(Zk) = r, and Zk has thin SVD Zk = UDV T , we use the
characterization of FB(Zk) in Theorem 3 to reformulate (20) as:

Ẑk ← UM̂kV T where M̂k ← arg max
M∈S̄rδ

Gk •M , (21)

and where Gk := 1
2(V T∇f(Zk)TU + UT∇f(Zk)V ) so that ∇f(Zk) • UMV T = Gk •M for all

M ∈ S̄rδ . An optimal solution to the subproblem in (21) is readily seen to be

M̂k ← δukuk
T (22)
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where uk is the normalized eigenvector corresponding to the largest eigenvector of the r × r sym-
metric matrix Gk. Therefore computing Ẑk in (20) is relatively easy so long as the computation
of the largest eigenvalue of Gk and associated eigenvector thereof are easy to accurately compute.
Furthermore, note that Ẑk = UM̂kV T = δUukuk

TV T is a rank-one matrix.

The above computational steps require the thin SVD of Zk as well as being able to effi-
ciently compute the largest eigenvalue/eigenvector pair of Gk. Efficient computational strategies
for managing the thin SVD of Zk are described in Section 3.6. We compute the largest eigen-
value/eigenvector pair of Gk by either direct factorization of the r × r matrix Gk, or by power-
method approximation, depending on the value of r.

The development of the in-face Frank-Wolfe step strategy (15) in this case is quite similar.
Indeed, we simply replace the maximization in (21) with a minimization, which corresponds to a
smallest eigenvalue computation, and set Dk accordingly.

Direct Solution on the Minimal Face. In this strategy we use the alternating version of
Algorithm 3 described at the end of Section 2.2 and we choose Dk by setting Dk ← Z̄k − Zk

where Z̄k optimizes (exactly or perhaps only approximately) the original objective function f(Z)
over the current minimal face, under the assumption that such optimization can be done efficiently
and accurately. Indeed, when Zk ∈ int(B), then we default to the previous away-step strategy
since optimizing over the minimal face is identical to the original problem (2). Otherwise, when
Zk = UDV T ∈ ∂(B) we again use the characterization of FB(Zk) in Theorem 3 to compute Z̄k as:

Z̄k ← UM̄kV T where M̄k ← arg min
M∈S̄rδ

f(UMV T ) . (23)

Of course, it is only sensible to consider this strategy when Zk has low rank, for otherwise (23) is
nearly as difficult to solve as the original problem (2) whose solution we seek to approximate using
the In-face Extended Frank-Wolfe Method. Since f(·) is a convex quadratic function, it follows
that the subproblem in (23) is solvable as a semidefinite/second-order conic optimization problem
and thus conic interior-point methods may be practical. Alternatively, one can approximately solve
(23) by taking a number of steps of any suitably effective method, such as a proximal/accelerated
first-order method [37] (or even the Frank-Wolfe Method itself).

3.4 Computing the maximal step-size αstop
k in Step (2.)

Here we describe how to efficiently compute the maximal step-size αstop
k in Step (2.) of Algorithm

3, which is determined as:

αstop
k ← arg max

α
{α : Zk + αDk ∈ FB(Zk)} . (24)

Let us first assume that Zk ∈ ∂(B). We will utilize the SVD of the current iterate Zk = UDV T .
Using either the away-step strategy or the direct solution strategy for determining the in-face
direction Dk in Section 3.3, it is simple to write Dk = U∆V T for an easily given matrix ∆ ∈ Sr×r.
Since Zk ∈ ∂(B) and Zk + Dk ∈ FB(Zk) it holds that I •D = δ and hence I •∆ = 0. Using the
characterization of FB(Zk) in Theorem 3 it follows that (24) can be reformulated as:

αstop
k ← arg max

α,M
{α : UDV T +αU∆V T = UMV T , M ∈ S̄rδ} = arg max

α
{α : D+α∆ � 0} . (25)
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In the case when Dk is chosen using the away-step approach, we have from (21) and (22) that
∆ := D − δukukT satisfies Dk = Zk − Ẑk = U∆V T . In this case the maximum α satisfying (25)

is easily seen to be αstop
k :=

(
δuk

TD−1uk − 1
)−1

. When Dk is chosen by some other method,
such as the direct solution method on the minimal face, the optimal solution of (25) is seen to be

αstop
k := −

[
λmin

(
D−

1
2 ∆D−

1
2

)]−1

.

In the case when Zk ∈ int(B), then (24) can be written as αstop
k ← arg max{α : ‖Zk+αDk‖N1 ≤

δ}, and we use binary search to approximately determine αstop
k .

3.5 Initial values, step-sizes, and computational guarantees

We initialize Algorithm 3 by setting
Z0 ← −δu0v

T
0 (26)

where u0 and v0 denote the left and right singular vectors, respectively, of the matrix ∇f(0)
corresponding to the largest singular value of ∇f(0). This initialization corresponds to a “full
step” iteration of the Frank-Wolfe Method initialized at 0 and conveniently satisfies rank(Z0) = 1
and Z0 ∈ ∂B. We initialize the lower bound as B−1 ← max

{
f(0) +∇f(0) • Z0, 0

}
, where the

first term inside the max corresponds to the lower bound generated when computing Z0 and the
second term is a valid lower bound since f∗ ≥ 0. Moreover, this initialization has a provably good
optimality gap, namely f(Z0) ≤ B−1 + 2δ2 ≤ f∗ + 2δ2, which follows from Proposition 3.1 of [12].

Because f(·) is a convex quadratic function, we use an exact line-search to determine β̄k and ᾱk
in Steps (2.) and (3c.), respectively, since the line-search reduces to a simple formula in this case.

Utilizing the bound on the optimality gap for Z0, and recalling that L = 1 and D = 2δ, we
have from Theorem 2 that the computational guarantee for Algorithm 3 is:

f(Zk)−Bk ≤ f(Zk)− f∗ ≤ 1

1

f(Z0)−B0
+
γ1N

a
k

8δ2
+
γ2N

b
k

8δ2
+
N c
k

8δ2

≤ 8δ2

4 + γ1Na
k + γ2N b

k +N c
k

.

3.6 Efficiently Updating the Thin SVD of Zk

At each iteration of Algorithm 3 we need to access two objects related to the current iterate
Zk: (i) the current gradient ∇f(Zk) = (Zk − X)Ω (for solving the regular Frank-Wolfe linear
optimization subproblem and for computing in-face directions), and (ii) the thin SVD Zk = UDV T

(for computing in-face directions). For large-scale matrix completion problems, it can be very
burdensome to store and access all mn entries of the (typically dense) matrix Zk. On the other
hand, if r := rank(Zk) is relatively small, then storing the thin SVD of Zk requires only keeping
track of mr+ r+ nr entries. Thus, when implementing Algorithm 3 as discussed above, instead of
storing the entire matrix Zk, we store in memory the thin SVD of Zk (i.e., the matrices U, V , and
D), which we initialize from (26) and efficiently update as follows. Let Dk denote the direction
chosen by Algorithm 3 at iteration k ≥ 0, which is appropriately scaled so that Zk+1 = Zk+Dk. To
compute the thin SVD of Zk+1, given the thin SVD of Zk, we consider the cases of regular Frank-
Wolfe directions and in-face directions separately. In the case of a regular Frank-Wolfe direction,
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we have that Dk = ᾱk(−δukvTk − Zk) and therefore:

Zk+1 = Zk + ᾱk(−δukvTk − Zk) = (1− ᾱk)Zk − ᾱkδukvTk = (1− ᾱk)UDV T − ᾱkδukvTk .

Thus, given the thin SVD of Zk, computing the thin SVD of Zk+1 is a scaling plus a rank-1
update of the thin SVD, which can be performed very efficiently in terms of both computation
time and memory requirements, see [4]. An analogous argument applies to the away-step strategy
when Zk ∈ int(B). Otherwise, when Zk ∈ ∂(B), recall that we can write any in-face direction as
Dk = U∆V T for an easily given matrix ∆ ∈ Sr×r. Thus we have:

Zk+1 = Zk +Dk = UDV T + U∆V T = U(D + ∆)V T .

Recall from (25) that we have D + ∆ � 0. Therefore, to compute the thin SVD of Zk+1, we first
compute an eigendecomposition of the r× r symmetric positive semidefinite matrix D+ ∆, so that
D + ∆ = RSRT where R is orthonormal and S is diagonal with nonnegative entries, and then
update the thin SVD of Zk+1 as Zk+1 = (UR)S(V R)T .

To compute the current gradient from the thin SVD of Zk, note that ∇f(Zk) = (Zk−X)Ω is a
sparse matrix that is 0 everywhere except on the Ω entires; thus computing ∇f(Zk) from the thin
SVD of Zk requires performing |Ω| length r inner product calculations. As compared to storing the
entire matrix Zk, our implementation requires a modest amount of extra work to compute ∇f(Zk),
but the cost of this extra work is far outweighed by the benefits of not storing the entire matrix
Zk. Alternatively, it is slightly more efficient to update only the Ω entries of Zk at each iteration
(separately from the thin SVD of Zk) and to use these entries to compute ∇f(Zk).

3.7 Rank accounting

As developed throughout this Section, the computational effort required at iteration k of Algorithm
3 depends very much on rank(Zk) for tasks such as computing the in-face direction Dk (using either
the away-step approach or direct solution on the minimal face), computing the maximal step-size
αstop
k in Step (3.), and updating the thin SVD of Zk. Herein we examine how rank(Zk) can change

over the course of the algorithm. At any given iteration i, there are four relevant possibilities for
how the next iterate is chosen:

(a) The current iterate Zi lies on the boundary of B, and the next iterate Zi+1 is chosen according
to the criteria in Step (3a.).

(b) The current iterate Zi lies on the boundary of B, and the next iterate Zi+1 is chosen according
to the criteria in Step (3b.).

(c) The next iterate Zi+1 is chosen according to the criteria in Step (3c.).

(d) The current iterate Zi lies in the interior of B, and the next iterate is chosen according to either
the criteria in Step (3a.) or Step (3b.).

The following proposition presents bounds on rank of Zk.

Proposition 2. Let Na
k , N b

k, N c
k, and Nd

k denote the number of times within the first k iterations
that the above conditions (a), (b), (c), and (d) hold, respectively. Then

rank(Zk) ≤ k + 1− 2Na
k −N b

k . (27)
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Proof. Using the choice of the initial point Z0 developed in Section 3.5, it holds that rank(Z0) = 1.
Now consider the ith iterate value Zi for i = 1, . . . , k. If condition (a) holds, then Zi+1 lies on
a lower-dimensional face of FB(Zi) ⊂ B, whence from Theorem 3 it follows that rank(Zi+1) ≤
rank(Zi) − 1. If instead condition (b) holds, then rank(Zi+1) = rank(Zi) since Zi+1 lies in the
relative interior of FB(Zi) ⊂ B. Finally, in either case that condition (c) or condition (d) holds, it
follows from (19) that Z̃i is a rank-one matrix and thus it holds that rank(Zi+1) ≤ rank(Zi) + 1.
Since the four cases above are exhaustive, we have k = Na

k + N b
k + N c

k + Nd
k and we obtain

rank(Zk) ≤ 1 +N c
k +Nd

k −Na
k = k + 1− 2Na

k −N b
k.

4 Computational Experiments and Results

In this section we present computational results of experiments wherein we apply different versions
of the In-Face Extended Frank-Wolfe Method to the nuclear norm regularized matrix completion
problem (2).1 Our main focus is on simulated problem instances, but we also present results
for the MovieLens10M dataset. The simulated instances were generated according to the model
X := w1UV

T +w2E , where the entries of U ∈ Rm×r, V ∈ Rn×r and E ∈ Rm×n are all i.i.d. standard
normal random variables, and the scalar parameters w1, w2 control the signal to noise ratio (SNR),
namely w1 := 1/‖UV T ‖F and w2 := 1/(SNR‖E‖F ). The set of observed entries Ω was determined
using uniform random sampling of entries with probability ρ, where ρ is the target fraction of
observed entries. The objective function f(·) values were normalized so that f(0) = .5 and we
chose the regularization parameter δ using a cross-validation-like procedure based on an efficient
path algorithm variant of Algorithm 1.2

We study several versions of the In-Face Extended Frank-Wolfe Method (Algorithm 3) based
on different strategies for setting the parameters γ1,γ2, which we compare to the regular Frank-
Wolfe Method (Algorithm 1) and the away-step method (Algorithm 2). We also study the atomic
version of the away-step method and the “fully corrective” variant of Frank-Wolfe [15, 17, 22] –
both of which reformulate (2) in the atomic format of the right-side of (12). Finally, we also include
comparisons with CoGEnT: the “forward-backward” variant of the Frank-Wolfe Method studied
in [30]. All methods are implemented according to the details presented in Section 3, except for
CoGEnT.3 We focus on the following ten versions of methods with names given below and where
“IF- ·” stands for In-Face:

• Frank-Wolfe – Algorithm 1

• IF-(1,1) – Algorithm 3 using an away-step strategy, with γ1 = 1, γ2 = 1

• IF-(0,1) – Algorithm 3 using an away-step strategy, with γ1 = 0, γ2 = 1

• IF-(0,∞) – Algorithm 3 using an away-step strategy, with γ1 = 0, γ2 = ∞. This corresponds
to always moving to the relative boundary of the minimal face containing Zk (thereby reducing
the rank of Zk+1) as long as the objective function value does not increase, while never moving
partially within the current face.

1All computations were performed using MATLAB R2015b on a 3 GHz Intel Core i7 MacBook Pro laptop.
2Specifically, we apply a version of Algorithm 1 that periodically increases the value of δ, utilizing the previously

found solution as a warm-start at the new value of δ. We maintain a holdout set Ω′ and ultimately select the value
of δ that minimizes the least-squares error on this set.

3The MATLAB code for CoGEnT was obtained from [29].
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• IF-Optimization – The simplified version of Algorithm 3 with full in-face optimization as
described at the end of Section 2.2. The in-face optimization subproblem is (approximately)
solved using the proximal gradient method with matrix entropy prox function.

• IF-Rank-Strategy – Algorithm 3 with the away-step strategy and with γ1 and γ2 set dynam-
ically as follows: we initially set γ1 = γ2 =∞, and then reset γ1 = γ2 = 1 after we observe five
consecutive iterations where rank(Zk) does not increase. This version can be interpreted as a
two-phase method where we run Algorithm 1 until we observe that rank(Zk) begins to “stall,”
at which point we switch to Algorithm 3 with γ1 = γ2 = 1.

• FW-Away-Natural – Algorithm 2

• FW-Away-Atomic – Algorithm 2 applied to the atomic reformulation of (2) using the right-side
of (12) [1, 21, 22, 28].

• FW-Fully-Corrective – The “fully corrective” variant of Frank-Wolfe [15, 17, 22], which
works with the atomic reformulation of (2) and, at each iteration, fully optimizes the objec-
tive function of (2) over the convex hull of the current set of active atoms. The “correction”
optimization subproblem is (approximately) solved using the proximal gradient method with
entropy prox function over the standard unit simplex.

• CoGEnT – The matrix completion variant of the CoGEnT Method studied in [30]. This
variant uses singular value thresholding for the truncation/backward step – at each iteration,
the algorithm computes the SVD of the current iterate and truncates small singular values to
zero. This step is followed by an enhancement step that optimizes the objective function over
the weights in the SVD. The singular value thresholding parameter is set to .05 · δ and the
algorithmic parameter η is set to 0.5.

Tables 1, 2, and 3 present our aggregate computational results. Before discussing these in detail,
it is useful to first study Figure 2 which shows the behavior of each method in terms of ranks of
iterates4 (left panel) and relative optimality gap (right panel) as a function of run time, for a
particular (and very typical) simulated instance. Examining the rank plots in the left panel, we see
that the evolution of rank(Zk) is as follows: the four methods IF-(1,1), IF-(0,1), IF-(0,∞), and
FW-Away-Natural all quickly attain rank(Zk) ≈ 37 (the apparent rank of the optimum) and
then stay at or near this rank from then on. In contrast, the four methods Frank-Wolfe, IF-
Rank-Strategy, IF-Optimization and FW-Away-Atomic all grow rank(Zk) approximately
linearly during the early stages (due to a larger percentage of regular Frank-Wolfe steps), and
then reach a maximum value that can be an order of magnitude larger than the optimal rank
before the rank starts to decrease. Once the rank starts to decrease, IF-Rank-Strategy and IF-
Optimization decrease rank(Zk) rather rapidly, whereas Frank-Wolfe and FW-Away-Atomic
decrease rank(Zk) painfully slowly.

The right panel of Figure 2 shows the relative optimality gaps of the methods. It is noteworthy
that two methods – IF-Optimization and IF-Rank-Strategy – achieve very rapid progress
during their early stages, a point that we will soon revisit. However, all methods exhibit eventual
slow convergence rates which is in line with the O(1/k) theoretical convergence bound.

Let us now synthesize the two panels of Figure 2. The four methods Frank-Wolfe, IF-
Rank-Strategy, IF-Optimization and FW-Away-Atomic each go through two phases: in the

4The rank of a matrix is computed as the number of singular values larger than 10−6. The rank-1 SVD computation
for equation (18) is performed using the Matlab function eigs.
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first phase each constructs a “high information” (high rank) solution (by taking mostly regular
Frank-Wolfe steps), followed by a second phase where the solution is “refined” by lowering the
rank while further optimizing the objective function (by taking proportionally more away-steps).
Frank-Wolfe and FW-Away-Atomic build up to very high information but their build-down
is sorely ineffective both in terms of ranks and objective function values. IF-Rank-Strategy is
extremely effective at the refinement phase, and IF-Optimization is less effective in terms of rank
reduction but still more so than the other methods except of course for IF-Rank-Strategy. The
other four methods, namely IF-(1,1), IF-(0,1), IF-(0,∞), and FW-Away-Natural, all rarely
exceed rank 37, as they spend a very high proportion of their effort on away-steps. Of these four
methods, IF-(0,∞) tends to perform best in terms of objective function values, as will be seen
shortly in Tables 1 and 2. Last of all, we point out that for very large-scale problems storing the
SVD of a high-rank matrix may become burdensome (over and above the computational cost for
computing in-face directions on high-dimensional faces); thus it is important that the maximum
rank of the iterates be kept small. In this regard Figure 2 indicates that excessive memory may arise
for Frank-Wolfe, IF-Rank-Strategy, FW-Away-Atomic, and possibly IF-Optimization.

Rank(Zk) vs. Time (secs) Log10

(
f(Zk)−f∗

f∗

)
vs. Time (secs)
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IF w/ In−Face Optimization
IF w/ Rank Strategy
FW w/ Natural Away Steps
FW w/ Atomic Away Steps

Figure 2: Figure showing plots of rank and relative optimality gap (log-scale) versus run time for different
methods/strategies, for a single randomly generated problem instance with m = 2000, n = 2500, ρ = 0.01,
r = 10, SNR = 4, and δ = 8.01. This problem has a (very nearly) optimal solution with rank 37.

Table 1 presents computational results for three different types of small-scale examples, averaged
over 25 sample instances generated and run for each type. Note that the run time, final rank, and
maximum ranks reported in Table 1 are in sync with the patterns observed in Figure 2. IF-Rank-
Strategy exhibits the best run times, followed by IF-Optimization and then by IF-(0,∞), all
of which significantly outperform Frank-Wolfe, FW-Away-Natural, and FW-Away-Atomic.
Furthermore, IF-Optimization and IF-(0,∞) have relatively low values of the maximum rank
(unlike IF-Rank-Strategy), while not giving up too much in terms of run time relative to IF-
Rank-Strategy. Note that FW-Away-Atomic and FW-Fully-Corrective are dramatically
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ineffective at delivering low rank solutions, which is undoubtedly related to the fact that the faces
of the atomic representation are simply too small to be effective – see Figure 1 and the discussion
at the end of Section 2. Note that our best In-Face methods – IF-(0,∞), IF-Optimization, and
IF-Rank-Strategy – significantly beat both FW-Fully-Corrective and CoGEnT in both
run time and final rank; this fact may be attributed to several factors including the considerable
time required to solve the correction/enhancement subproblems when the number of atoms is large.

Table 2 presents computational results for eight individual medium-large scale examples. Here
we see mostly similar performance of the different methods as was seen for the small-scale examples
in Table 1. IF-Rank-Strategy, IF-(0,∞), and IF-Optimization deliver the best balance be-
tween final rank, maximum rank, and run time, with perhaps IF-(0,∞) delivering consistently lower
rank solutions albeit with higher run times. We note that for these instances IF-Rank-Strategy
does not consistently deliver low rank solutions, which is due to the extra time it takes before the
second phase (“refinement”) of the method commences. We did not include results for CoGEnT as
there was insufficient memory to run CoGEnT on any of these instances.5 Similar to observations
from Table 1, our best In-Face methods – IF-(0,∞), IF-Optimization, and IF-Rank-Strategy
– significantly beat FW-Fully-Corrective in both run time and final rank.

Small-Scale Examples (25 samples per example)

In-Face Extended FW (IF-. . .) Away Steps
Regular γ1, γ2 In-Face Rank Fully

Data Metric FW 1,1 0,1 0,∞ Opt. Strategy Natural Atomic Corrective FW CoGEnT

m = 200, n = 400, ρ = 0.10 Time (secs) 29.51 22.86 23.07 7.89 2.34 2.30 14.71 6.21 8.76 20.85
r = 10,SNR = 5, δavg = 3.75 Final Rank 118.68 16.36 16.36 16.44 29.32 28.20 16.72 119.00 92.84 79.96

Maximum Rank 146.48 19.04 17.28 17.56 32.08 145.20 18.04 121.96 991.60* **

m = 200, n = 400, ρ = 0.20 Time (secs) 115.75 153.42 150.89 27.60 20.62 3.48 50.52 24.52 196.29 65.88
r = 15,SNR = 4, δavg = 3.82 Final Rank 96.44 16.16 16.12 16.52 19.88 21.24 16.68 106.60 107.04 93.40

Maximum Rank 156.52 26.72 17.96 17.80 31.48 160.36 18.84 106.80 1812.92* **

m = 200, n = 400, ρ = 0.30 Time (secs) 171.23 198.96 202.01 35.93 31.67 5.04 66.22 67.72 >381.91 93.93
r = 20,SNR = 3, δavg = 3.63 Final Rank 91.80 20.08 20.08 20.60 21.72 25.56 20.44 94.64 113.84 104.60

Maximum Rank 162.24 25.80 22.04 21.96 33.36 168.72 22.16 95.08 1609.40* **

Table 1: Table reports the time required for each method to reach a relative optimality gap of 10−2.5,
the rank of the corresponding final solution, and the maximum rank of the iterates therein (as an indicator
of additional memory/computational requirements). Numbers highlighted in boldface indicate the methods
that perform well with regard to each criteria, while not performing poorly on run time. All results are
averaged over 25 samples for each problem type.
*For this algorithm, we counted the maximum number of atoms instead of the maximum rank.
**For CoGEnT, neither maximum rank nor maximum atoms is a relevant metric of memory requirements.

Table 3 shows computational tests on a large-scale real dataset, namely the MovieLens10M
dataset, with m = 69878, n = 10677, |Ω| = 107 (with sparsity approximately 1.3%), and δ = 2.59.
We only tested IF-(0,∞) (and benchmarked against Frank-Wolfe and FW-Away-Natural)
since IF-(0,∞) appears to be very promising for large-scale instances due to its ability to maintain
relatively low-rank iterates throughout, while also performing well in terms of run time. The results
in Table 3 further reinforce the findings from Table 2 concerning the advantages of IF-(0,∞) both
in terms of rank of the final iterate as well as run time to achieve the target optimality gap.

5The CoGEnT code directly works with the variables Zij , and thus has large memory requirements. A more
efficient implementation of CoGEnT may be able to run on the instances in Table 2 and may also have better
performance on the instances in Table 1.
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Medium-Large Scale Examples

In-Face Extended FW (IF-. . .) Away Steps
Regular γ1, γ2 In-Face Rank Fully

Data Metric FW 1,1 0,1 0,∞ Opt. Strategy Natural Atomic Corrective FW

m = 500, n = 1000, ρ = 0.25 Time (secs) 137.62 51.95 53.21 18.20 4.41 6.37 31.55 157.31 39.81
r = 15, SNR = 2, δ = 3.57 Final Rank (Max Rank) 53 (126) 16 (17) 15 (17) 16 (17) 17 (19) 121 (136) 15 (17) 50 (52) 78 (984*)

m = 500, n = 1000, ρ = 0.25 Time (secs) 256.08 110.37 110.77 46.07 6.76 7.91 73.95 322.24 227.50
r = 15, SNR = 10, δ = 4.11 Final Rank (Max Rank) 41 (128) 15 (17) 15 (17) 16 (17) 15 (18) 18 (140) 16 (17) 48 (48) 81 (971*)

m = 1500, n = 2000, ρ = 0.05 Time (secs) 124.76 108.97 113.58 24.75 11.09 12.71 40.23 60.83 48.76
r = 15, SNR = 2, δ = 6.01 Final Rank (Max Rank) 169 (210) 15 (18) 16 (17) 16 (16) 31 (44) 206 (206) 16 (16) 128 (138) 106 (736*)

m = 1500, n = 2000, ρ = 0.05 Time (secs) >800.01 518.72 496.08 166.01 21.90 31.41 309.58 407.22 >801.89
r = 15, SNR = 10, δ = 8.94 Final Rank (Max Rank) 119 (266) 15 (17) 15 (17) 15 (17) 15 (23) 15 (256) 15 (18) 172 (185) 125 (790*)

m = 2000, n = 2500, ρ = 0.01 Time (secs) 105.44 45.39 36.47 23.15 20.07 47.83 30.07 26.92 39.65
r = 10,SNR = 4, δ = 7.92 Final Rank (Max Rank) 436 (436) 37 (38) 35 (38) 37 (38) 67 (107) 430 (430) 37 (39) 245 (276) 238 (502*)

m = 2000, n = 2500, ρ = 0.05 Time (secs) 99.84 51.90 48.26 18.79 6.92 6.70 30.37 89.09 55.11
r = 10,SNR = 2, δ = 5.82 Final Rank (Max Rank) 68 (98) 10 (11) 10 (11) 11 (11) 13 (15) 94 (94) 10 (11) 52 (52) 62 (370*)

m = 5000, n = 5000, ρ = 0.01 Time (secs) 251.33 168.66 172.21 64.56 26.25 17.70 96.79 90.41 350.88
r = 10, SNR = 4, δ = 12.19 Final Rank (Max Rank) 161 (162) 10 (24) 11 (18) 11 (20) 22 (34) 20 (112) 10 (16) 181 (182) 92 (616*)

m = 5000, n = 7500, ρ = 0.01 Time (secs) 272.19 107.19 116.58 52.65 54.02 145.13 107.60 94.96 209.86
r = 10, SNR = 4, δ = 12.19 Final Rank (Max Rank) 483 (483) 33 (43) 34 (36) 32 (37) 63 (123) 476 (476) 36 (42) 229 (298) 204 (331*)

Table 2: Table reports the time required for each method to reach a relative optimality gap of 10−2.5, the
rank of the corresponding final solution, and the maximum rank of the iterates therein (as an indicator of
additional memory/computational requirements), for eight single problem instances. Numbers highlighted
in boldface indicate the methods that perform well with regard to each criteria, while not performing poorly
on run time.
*For this algorithm, we counted the maximum number of atoms instead of the maximum rank.

Note that IF-(0,∞) dominates both Frank-Wolfe and FW-Away-Natural in terms of run
time, and dominates Frank-Wolfe in terms of final rank, while it is essentially the same as
FW-Away-Natural on the final rank. Also note that FW-Away-Natural generally dominates
Frank-Wolfe in terms of both run time and final rank.

MovieLens10M Dataset

Frank-Wolfe FW-Away-Natural IF-(0,∞)
Relative Optimality Gap Time (mins) Rank Time (mins) Rank Time (mins) Rank

10−1.5 7.38 103 10.86 52 7.01 44
10−2 28.69 315 23.08 87 14.73 79

10−2.25 69.53 461 34.78 113 22.80 107
10−2.5 178.54 454 76.64 141 42.24 138

Table 3: CPU time and rank of final solutions for Frank-Wolfe, FW-Away-Natural, and IF-(0,∞)
for different relative optimality gaps for the MovieLens10M dataset.

We conclude our computational research with a diagnostic evaluation of the different types of
iterations and associated CPU times of different methods. Table 4 presents a detailed breakdown
of the types of iterations and other algorithmic diagnostics for different methods applied to the
middle grouping of 25 small-scale examples of Table 1. Recall that there are four types of iterations
that can arise in the In-Face Extended Frank-Wolfe method, namely types (a), (b), (c), and (d)
as exposited in Section 3.7. These types naturally extend to FW-Away-Natural, FW-Away-
Atomic and FW-Fully-Corrective, but not to CoGEnT; hence CoGEnT is not included in
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our evaluation. Rows 2-5 of Table 4 break down the iterations into the four types, and rows 7-9
report information on the CPU time spent on in-face directions and regular Frank-Wolfe directions.
For methods that use standard away steps (IF-(1,1), IF-(0,1), IF-(0,∞), IF-Rank-Strategy,
and FW-Away-Natural), most of the time is spent computing regular Frank-Wolfe directions.
Indeed, as the bottom row of the table indicates, for four of these methods the average CPU
time spent per in-face direction is a mere 2 − 6% of that spent computing regular Frank-Wolfe
directions. IF-Rank-Strategy spends comparatively more time computing the in-face direction
because the computational burden of the in-face direction scales with the ranks of the iterates. Also,
IF-Optimization spends more time computing in-face directions because solving the proximal
gradient algorithm is more expensive than elementary linear optimization. Furthermore, the atom-
based methods (FW-Away-Atomic and FW-Fully-Corrective) spend more time computing
in face directions because the computational burden scales with the number of atoms and the
number of atoms becomes extremely large.

Row 6 of Table 4 reports the final rank and the bound on the final rank from Proposition 2.
Very curiously, the bound from Proposition 2 is nearly tight for both IF-(0,∞) and FW-Away-
Natural, whereas it is generally very loose otherwise. The tightness of the bounds for these two
methods is due to the fact that the different steps taken are almost evenly split between regular
Frank-Wolfe steps (type (c)), and steps of type (a) – iterations that go to the boundary of the
current minimal face. The former almost always increases the rank by one, whereas the latter
always decreases the rank by at least one.

Details of Algorithm Steps Averaged over the 25 Small-Scale Examples with m = 200, n = 400, ρ = 0.20, r = 15, SNR = 4, and δavg = 3.82

In-Face Extended FW (IF-. . .) Away Steps
Regular γ1, γ2 In-Face Rank Fully

Metric FW 1,1 0,1 0,∞ Opt. Strategy Natural Atomic Corrective FW

Total Number of Iterations 5368 6691 6605 2744 790 330 2804 1163 2797
Number of Regular FW Steps (Type (c)) 5368 2338 2304 1374 396 189 1400 684 1399

Number of Away Steps from the Interior of BN1(0, δ) (Type (d)) 0 12 13 8 7 1 8 0 0
Number of Interior IF Steps (Type (b)) 0 2280 2224 0 325 0 9 434 1355

Number of Boundary IF Steps (Type (a)) 0 2062 2063 1362 63 139 1387 45 43
Final Rank (Upper Bound from Proposition 2) 96 (5368) 16 (288) 16 (254) 17 (19) 20 (340) 21 (51) 17 (22) 107 (639) 108 (1356)

Percentage of CPU Time Spent Computing IF Directions 0.00% 4.55% 4.44% 9.93% 16.87% 21.58% 5.63% 39.00% 79.33%
Percentage of CPU Time Spent Computing Regular FW Directions 79.58% 91.94% 92.13% 82.33% 80.88% 37.09% 90.90% 50.99% 12.90%

Avg. IF Comp. Time/Avg. Regular FW Comp. Time - 0.02 0.02 0.06 0.22 0.68 0.06 0.77 6.31

Table 4: Table reporting the breakdown of types of iterations and other algorithmic diagnostics for different
methods applied to middle grouping of 25 small-scale examples of Table 1. Iteration counts might not add
up to totals due to independent rounding of the averages.

Summary Conclusions. In addition to its theoretical computational guarantees (Theorem 2,
Proposition 1), the In-Face Extended Frank-Wolfe Method (in different versions) shows significant
computational advantages in terms of delivering low rank and low run time to compute a target
optimality gap. Especially for larger instances, IF-(0,∞) delivers very low rank solutions with
reasonable run times. IF-Rank-Strategy delivers the best run times, beating existing methods
by a factor of 10 or more. And in the large-scale regime, IF-Optimization generally delivers both
low rank and low run times simultaneously, and is usually competitive with the best methods on
one or both of rank and run time.
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A Appendix - Remainder of the Proof of Theorem 1

Recall that it remains to prove the following inequality:

1

f(xk+1)−Bk+1
≥ 1

f(xk)−Bk
+

1

2L̄D2
for all k ≥ 0 . (28)
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Let us fix some simplifying notation. Let rk := f(xk)−Bk ≥ 0 and Gk := ∇f(xk)
T (xk − x̃k) ≥ 0,

and note that Bk ≥ Bw
k = f(xk)−Gk, so that Gk ≥ rk ≥ 0 for k ≥ 0. Also define Ck := L̄‖x̃k−xk‖2,

whereby Ck ≤ L̄D2 and ᾱk = min
{
Gk
Ck
, 1
}

for k ≥ 0. With this notation (28) can be written as

1/rk+1 ≥ 1/rk + 1/(2L̄D2). Substituting x = xk and y = xk+1 = xk + ᾱk(x̃k − xk) in (8) and using
L̄ ≥ L yields:

f(xk+1) ≤ f(xk) + ᾱk∇f(xk)
T (x̃k − xk) + L̄

2 ᾱ
2
k‖x̃k − xk‖2 = f(xk)− ᾱkGk + 1

2 ᾱ
2
kCk . (29)

Note that if we instead used an exact line-search to determine xk+1, then (29) also holds since in
that case we have f(xk+1) ≤ f(xk + ᾱk(x̃k − xk)). We now examine two cases depending on the
relative magnitudes of Gk and Ck. Case 1: Gk ≤ Ck. In this case ᾱk = Gk/Ck, and substituting

this value in the right side of (29) yields f(xk+1) ≤ f(xk)− (Gk)2

2Ck
, which shows that f(xk+1) ≤ f(xk)

as well as rk+1 ≤ rk, and also yields:

rk+1 = f(xk+1)−Bk+1 ≤ f(xk+1)−Bk ≤ f(xk)−
(Gk)

2

2Ck
−Bk = rk −

(Gk)
2

2Ck
≤ rk −

rkrk+1

2Ck
,

where the last inequality uses rk+1 ≤ rk ≤ Gk. Dividing the above inequality by rk+1rk and
rearranging yields

1

rk+1
≥ 1

rk
+

1

2Ck
≥ 1

rk
+

1

2L̄D2
,

where the second inequality above uses Ck ≤ L̄D2. This shows that (28) holds in this case.

Case 2: Gk > Ck. In this case ᾱk = 1. Substituting x = xk and y = xk+1 = xk + ᾱk(x̃k−xk) = x̃k
in (29) yields f(xk+1) ≤ f(xk)−Gk + 1

2Ck < f(xk)− Ck + 1
2Ck = f(xk)− 1

2Ck, which shows that
f(xk+1) < f(xk) as well as rk+1 < rk, and also yields:

rk+1 = f(xk+1)−Bk+1 ≤ f(xk+1)−Bk ≤ f(xk)−Gk + 1
2Ck −Bk = rk −Gk + 1

2Ck , (30)

from which we derive:

0 ≤ rk+1 ≤ rk −Gk + 1
2Ck < rk −Gk + 1

2Gk = rk − 1
2Gk , (31)

where the last inequality above uses Gk > Ck. We now consider two sub-cases, one for k = 0 and
another sub-case for k ≥ 1. Let us first consider when k = 0. Then

G0r0 +G0C0 = G0r0 + 1
2G0C0 + 1

2G0C0 ≥ (r0)2 + 1
2(C0)2 + 1

2r0C0 ,

since G0 ≥ C0 and G0 ≥ r0, and now add r0C0 to both sides and rearrange to yield:

r0C0 ≥ r0C0 + (r0)2 −G0r0 −G0C0 + 1
2(C0)2 + 1

2r0C0 = (r0 −G0 + 1
2C0)(r0 + C0) ≥ r1(r0 + C0) ,

where the second inequality uses (30) with k = 0. Therefore:

1

r1
≥ r0 + C0

r0C0
=

1

r0
+

1

C0
≥ 1

r0
+

1

L̄D2
,

which proves (28) for this case for k = 0. Last of all, we consider when k ≥ 1. Taking (31) and
dividing by rkrk+1 and rearranging yields:

1

rk+1
>

1

rk
+

Gk
2rkrk+1

≥ 1

rk
+

1

2rk+1
,
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where the second inequality follows since Gk ≥ rk. Now notice from (31) that rk+1 ≤ rk − Gk +
Ck/2 ≤ Ck/2 since Gk ≥ rk. Substituting this last inequality into the right-most term above yields:

1

rk+1
≥ 1

rk
+

1

Ck
≥ 1

rk
+

1

2Ck
≥ 1

rk
+

1

2L̄D2
,

which shows (28) for this case for k ≥ 1, and completes the proof.
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