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Abstract. We attempt a broad exploration of properties and connections between the symme-
try function of a convex set S ⊂ IRn and other arenas of convexity including convex functions,
convex geometry, probability theory on convex sets, and computational complexity. Given a
point x ∈ S, let sym(x, S) denote the symmetry value of x in S:

sym(x, S) := max{α ≥ 0 : x + α(x − y) ∈ S for every y ∈ S} ,

which essentially measures how symmetric S is about the point x, and define

sym(S) := max
x∈S

sym(x, S) ;

x∗ is called a symmetry point of S if x∗ achieves the above maximum. The set S is a symmetric
set if sym(S) = 1.

There are many important properties of symmetric convex sets; herein we explore how these
properties extend as a function of sym(S) and/or sym(x, S). By accounting for the role of
the symmetry function, we reduce the dependence of many mathematical results on the strong
assumption that S is symmetric, and we are able to capture and otherwise quantify many of
the ways that the symmetry function influences properties of convex sets and functions.

The results in this paper include functional properties of sym(x, S), relations with several
convex geometry quantities such as volume, distance, and cross-ratio distance, as well as set
approximation results, including a refinement of the Löwner-John rounding theorems, and
applications of symmetry to probability theory on convex sets. We provide a characterization
of symmetry points x∗ for general convex sets. Finally, in the polyhedral case, we show how to
efficiently compute sym(S) and a symmetry point x∗ using linear programming. The paper also
contains discussions of open questions as well as unproved conjectures regarding the symmetry
function and its connection to other areas of convexity theory.

1. Introduction

We attempt a broad exploration of properties and connections between the sym-
metry function of a convex set S ⊂ IRn and other areas of convexity including
convex functions, convex geometry, probability theory on convex sets, and com-
putational complexity. Given a closed convex set S and a point x ∈ S, define
the symmetry of S about x as follows:

sym(x, S) := max{α ≥ 0 : x + α(x − y) ∈ S for every y ∈ S} , (1)
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which intuitively states that sym(x, S) is the largest scalar α such that every
point y ∈ S can be reflected through x by the factor α and still lie in S. The
symmetry value of S then is:

sym(S) := max
x∈S

sym(x, S) , (2)

and x∗ is a symmetry point of S if x∗ achieves the above maximum (also called a
“critical point” in [12], [14] and [19]). S is symmetric if sym(S) = 1. There are
a variety of other measures of symmetry (or asymmetry) for a convex set that
have been studied over the years, see Grünbaum [12] for example; the symmetry
measure based on (2) is due to Minkowski [19], which in all likelihood was the
first and most useful such symmetry measure.

We explore fundamental properties of sym(x, S), and we present new results
in other areas of convexity theory that are connected to the symmetry func-
tion. In Section 2 we examine functional properties of sym(x, S). We show that
sym(x, S) is a quasiconcave function, and more importantly, that sym(x, S)
is a logconcave function and therefore inherits some of the strong results of
logconcave functions related to sampling on convex sets (Theorem 1). We also
show that sym(x, S) is the infimum of linear fractional functions related to the
supporting hyperplanes of S (Proposition 1). In Proposition 3 we explore the be-
havior of sym(x, S) under basic set operations such as intersection, Minkowski
sums, polarity, Cartesian product, and affine transformation. And in Proposition
2 we characterize sym(x, S) when S is symmetric.

In Section 3 we focus on connections between sym(x, S) and a wide variety of
geometric properties of convex bodies, including volume ratios, distance metrics,
set-approximation and rounding results, and probability theory on convex sets.
It is well-known that any half-space whose bounding hyperplane passes through
the center of mass zS of S will cut off at least 1/e and at most 1 − 1/e of the
volume of S, see Grünbaum [11]. In a similar vein, in Section 3.1 we present lower
and upper bounds on ratios of volumes of S to the intersection of S with a half-
space whose bounding hyperplane passes through x, as a function of sym(x, S)
(Theorem 2), as well as lower bounds on the (n − 1)-dimensional volume ratios
of slices of S defined by the intersection of S with a hyperplane passing through
x, as a function of sym(x, S) (Theorem 3).

If S is a symmetric convex body, then it is a straightforward exercise to show
that the symmetry point of S is unique. Furthermore, if S is nearly symmetric,
intuition suggests that two points in S with high symmetry values cannot be
too far apart. This intuition is quantified Section 3.2, where we present upper
bounds on the relative distance (in any norm) between two points x, y ∈ S as
a function of sym(x, S) and sym(y, S) (Theorem 4) and upper bounds on the
“cross-ratio distance” in Theorem 5.

Section 3.3 examines the approximation of the convex set S by another con-
vex set P . We say that P is a β-approximation of S if there exists a point x ∈ S
such that βP ⊂ S − x ⊂ P . In the case when P is an ellipsoid centered at the
origin, then the statement “P is a β-approximation of S” is equivalent to “βP
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provides a 1
β -rounding of S.” We examine the interrelationship between the sym-

metry function and bounds on β-approximations for S. We show that for any
x ∈ S there exists a

√
n/sym(x, S)-rounding of S centered at x (Theorem 7). A

classical example of β-approximation is given by the Löwner-John theorem [15],
which guarantees a 1/

√
n-approximation for a symmetric convex body and a

1/n-approximation for general convex body using ellipsoids. Unfortunately, the
theorem does not provide more precise bounds for case when S is nearly sym-
metric, i.e., sym(S) = 1− ε for ε small. This is partially rectified herein, where
we prove a slightly stronger rounding results using sym(x, S) (Theorem 9). We
also show that if two convex sets are nearly the same, then their symmetry must
be nearly the same (Theorem 8), and we show how to construct a norm based
on sym(S) that yields the optimal β-approximation of S among all symmetric
convex bodies (Lemma 1).

Subsection 3.4 is concerned with connections between symmetry and prob-
ability theory on convex sets. Let X be a random vector uniformly distributed
on S. We show that the expected value of sym(X,S) is nicely bounded from
below (by sym(S)/(2(n + 1))) and we present lower bounds on the probability
that sym(X,S) is within a constant M of sym(S). Furthermore, in the case
when S is symmetric, these quantities have closed-form expressions independent
of the specific set S (Theorem 10). We also present an extension of Anderson’s
Lemma [1] concerning the the integral of a nonnegative logconcave even function
on S, to the case of non-symmetric convex sets (Theorem 11), which has many
statistical applications.

Since symmetry points enjoy many interesting properties, it is natural to
explore methods for computing a symmetry point and for computing sym(S),
which is the subject of Section 5. As expected, the representation of S plays a
major role in any computational scheme. While the problem of simply evaluating
the sym(x, S) for a given x ∈ S is a hard problem in general, it turns out that
for polyhedra, whose most common representations are as the convex hull of
points and as the intersection of half-spaces, computing a symmetry point can
be accomplished via linear programming. When S is given as the convex hull
of m points, we show that determining a symmetry point can be computed by
solving a linear program in m2 nonnegative variables, or as non-differentiable
concave maximization problem where subgradients can be computed by solving
m decoupled linear programming subproblems with only m nonnegative variables
each. The more interesting case is when S is given as the intersection of m
half-spaces. Then a symmetry point and sym(S) can be computed by solving
m+1 linear programs with m nonnegative variables. We present an interior-point
algorithm that, given an approximate analytic center xa of S, will compute an
approximation of sym(S) to any given relative tolerance ε in no more than

⌈
10m1.5 ln

(
10m

ε

)⌉

iterations of Newton’s method.
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The paper also contains a variety of discussions of open questions as well
as unproved conjectures regarding the symmetry function and its connection to
other areas of convexity theory.

Notation. Let S ⊂ IRn denote a convex set and let 〈·, ·〉 denote the conven-
tional inner product in the appropriate Euclidean space. intS denotes the interior
of S. Using traditional convex analysis notation, we let aff(S) be the minimal
affine subspace that contains S and let S⊥ be its orthogonal subspace comple-
ment. The polar of S is defined as S◦ = {y ∈ IRn : 〈x, y〉 ≤ 1 for all x ∈ S}.
Given a convex function f(·), for x ∈ domf(·) the subdifferential of f(·) is de-
fined as ∂f(x) := {s ∈ IRn : f(y) ≥ f(x)+〈s, y−x〉 for all y ∈ domf(·)}. Let e =
(1, . . . , 1)T denote the vector of ones whose dimension is dictated by context, let
e denote the base of the natural logarithm, and let dist(x, T ) := miny∈T ‖y−x‖
be the distance from x to the set T in the norm ‖ · ‖ dictated by context.

2. Functional Properties of sym(x, S)

We make the following assumption:
Assumption A: S is a convex body, i.e., S is a nonempty closed bounded
convex set with a nonempty interior.

When S is a convex set but is either not closed or is unbounded, then certain
properties of sym(S) break down; we refer the interested reader to Appendix
A for a discussion of these general cases. We assume that S has an interior as
a matter of convenience, as one can always work with the affine hull of S or its
subspace translation with no loss of generality, but at considerable notational
and expositional expense.

There are other definitions of sym(x, S) equivalent to (1). In [22], sym(x, S)
is defined by considering the set L(x, S) of all chords of S that pass through x.
For L ∈ L(x, S), let r(L) denote the ratio of the length of the smaller to the
larger of the two intervals in L ∩ (S \ {x}), and define

sym(x, S) = inf
L∈L(x,S)

r(L) . (3)

Herein it will be convenient to also use the following set-containment definition
of sym(x, S):

sym(x, S) = max {α ≥ 0 : α(x − S) ⊆ (S − x)} . (4)

It turns out that this definition is particularly useful to motivate and prove many
of our results.

Intuition suggests that sym(x, S) inherits many nice properties from the
convexity of S, as our first result shows:

Theorem 1. Under Assumption A,
(i) sym(·, S) : S → [0, 1] is a continuous quasiconcave function,

(ii) h(x, S) :=
sym(x, S)

1 + sym(x, S)
is a concave function on S, and

(iii) sym(·, S) is a logconcave function on S.
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Regarding part (iii) of the theorem, note that logconcave functions play a
central role in the theory of probability and sampling on convex bodies, see [18].
The proof of this theorem will use the following proposition, which will also be
useful in the development of an algorithm for computing sym(S) in Section 5.

Proposition 1. Let S be a convex body, and consider the representation of S
as the intersection of halfspaces: S = {x ∈ IRn : aT

i x ≤ bi , i ∈ I} for some
(possibly unbounded) index set I, and let δ∗i := maxx∈S{−aT

i x} for i ∈ I. Then
for all x ∈ S,

sym(x, S) = inf
i∈I

{
bi − aT

i x

δ∗i + aT
i x

}
.

Proof. Let α = sym(x, S) and γ := min
i∈I

{
bi − aT

i x

δ∗i + aT
i x

}
. Then for all y ∈ S,

x + α(x − y) ∈ S, so

aT
i x + αaT

i x + α(−aT
i y) ≤ bi , i ∈ I .

This implies that
aT

i x + αaT
i x + αδ∗i ≤ bi , i ∈ I ,

whereby α ≤ γ. On the other hand, for all y ∈ S we have:

bi − aT
i x ≥ γ(δ∗i + aT

i x) ≥ γ(−aT
i y + aT

i x) .

Thus aT
i x + γaT

i x + γ(−aT
i y) ≤ bi, and therefore aT

i (x + γ(x − y)) ≤ bi which
implies that α ≥ γ. Thus α = γ.

Proof of Theorem 1. We first prove (ii). It follows from Proposition 1 that

h(x, S) =
mini∈I

{
bi−aT

i x

δ∗
i +aT

i x

}
1 + mini∈I

{
bi−aT

i x

δ∗
i +aT

i x

} = min
i∈I

⎧⎨
⎩

bi−aT
i x

δ∗
i +aT

i x

1 + bi−aT
i x

δ∗
i +aT

i x

⎫⎬
⎭ = min

i∈I

{
bi − aT

i x

bi + δ∗i

}
,

which is the minimum of linear functions and so is concave.
To prove (i), first observe that sym(x, S) is monotone in the concave func-

tion h(x, S), and so is quasiconcave. To prove the continuity of sym(x, S) it
suffices to prove the continuity of h(x, S). It follows from concavity that h(x, S)
is continuous on intS. For x̄ ∈ ∂S it follows from (1) that sym(x, S) = 0
and hence h(x, S) = 0. Because S is a convex body there exists a ball of
radius r > 0 that is contained in S. Now suppose that xj → x̄, whereby
dist(xj , ∂S) → 0. It follows from (4) that sym(xj , S) · r ≤ dist(xj , ∂S), whereby
sym(xj , S) → 0 = sym(x̄, S), showing continuity of h(x, S) and hence of
sym(x, S) on S.

To prove (iii) define the following functions:

f(t) =
t

1 + t
and g(t) = ln

(
t

1 − t

)
.
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For these functions, we have the following properties:
(i) f is monotone, concave and f(sym(x, S)) ∈ [0, 1/2] for any x ∈ S;
(ii) g is monotone for t ∈ (0, 1) and concave for t ∈ (0, 1/2];
(iii) g(f(t)) = ln t.

Now, for any α ∈ [0, 1], x, y ∈ S,

ln (sym(αx + (1 − α)y, S)) = g (f (sym(αx + (1 − α)y, S)))
≥ g (αf (sym(x, S)) + (1 − α)f (sym(y, S)))
≥ αg (f (sym(x, S))) + (1 − α)g (f (sym(y, S)))
= α ln sym(x, S) + (1 − α) ln sym(y, S) ,

where the first inequality follows from the concavity of h(·, S) = f(sym(·, S))
and the monotonicity of g, and the second inequality follows from the concavity
of g on [0, 1/2].

It is curious that sym(·, S) is not a concave function. To see this, consider S =
[0, 1] ⊂ IR; then a trivial computation yields sym(x, S) = min

{
x

(1−x) ;
(1−x)

x

}
,

which is not concave on S and is not differentiable at x = 1
2 . Part (ii) of Theorem

1 shows that a simple nonlinear transformation of the symmetry function is
concave.

For a symmetric convex body S, i.e., sym(S) = 1, it is possible to prove a
stronger statement and completely characterize the symmetry function using the
norm induced by S. Suppose S is a symmetric convex set centered at the origin.
Let ‖ · ‖S denote the norm induced by S, namely ‖x‖S := min{γ : x ∈ γS}.
Proposition 2. Under Assumption A, let S be symmetric and centered at the
origin. Then for every x ∈ S,

sym(x, S) =
1 − ‖x‖S

1 + ‖x‖S
.

Proof. We start by observing that for any y ∈ S, ‖y‖S ≤ 1. For any x ∈ S,
consider any chord of S that intersects x, and let p, q be the endpoints of this
chord. Notice that ‖p‖S = ‖q‖S = 1 and using the triangle inequality,

‖p − x‖S ≤ ‖x‖S + ‖p‖S and ‖q‖S ≤ ‖q − x‖S + ‖x‖S

Thus,
‖q − x‖S

‖p − x‖S
≥ ‖q‖S − ‖x‖S

‖x‖S + ‖p‖S
=

1 − ‖x‖S

1 + ‖x‖S
.

Finally, the lower bound is achieved by the chord that passes through x and the
origin.

The next proposition presents properties of the symmetry function under
basic set operations on S.

Proposition 3. Let S, T ⊂ IRn be convex bodies, and let x ∈ S and y ∈ T .
Then:
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1. (Superminimality under intersection) If x ∈ S ∩ T ,

sym(x, S ∩ T ) ≥ min{sym(x, S), sym(x, T )} (5)

2. (Superminimality under Minkowski sums)

sym(x + y, S + T ) ≥ min{sym(x, S), sym(y, T )} (6)

3. (Invariance under polarity)

sym(0, S − x) = sym(0, (S − x)◦) (7)

4. (Minimality under Cartesian product)

sym((x, y), S × T ) = min{sym(x, S), sym(y, T )} (8)

5. (Lower bound under affine transformation) Let A(·) be an affine transforma-
tion. Then

sym(A(x), A(S)) ≥ sym(x, S) (9)
with equality if A(·) is invertible.

Proof. To prove 5, without loss of generality, we can translate the sets and
suppose that x = 0. Let α = min{sym(0, S), sym(0, T )}. Then −αS ⊂ S,
−αT ⊂ T which implies

−α(S ∩ T ) = −αS ∩ −αT ⊂ S ∩ T,

and (5) is proved.
To prove (6), again, without loss of generality, we can translate both sets

and suppose that x = y = 0, and define α = sym(0, S) and β = sym(0, T ). By
definition, −αS ⊂ S and −βT ⊂ T . Then it follows trivially that

−αS − βT ⊂ (S + T )

Replacing α and β by the minimum between them, the result follows.

In order to prove (7), we can assume x = 0, then

sym(0, S) = α ⇒ −αS ⊆ S.

Assuming sym(0, S◦) < α, there exist ȳ ∈ S◦ such that − αȳ /∈ S◦.
Thus, there exists x ∈ S, −αȳT x > 1. However, since −αx ∈ −αS ⊆ S, then

−αȳT x = ȳT (−αx) ≤ 1 , since ȳ ∈ S◦,
which is a contradiction. Thus

sym(0, S) ≤ sym(0, S◦) ≤ sym(0, S◦◦) = sym(0, S).

Equality (8) is left as a simple exercise.
To prove inequality (9), we can assume that A(·) is a linear operator and

that x = 0 (since sym(x, S) is invariant under translation), and suppose that
α < sym(x, S). Then, −αS ⊆ S which implies that A(−αS) ⊆ A(S). Since A(·)
is a linear operator, A(−αS) = −αA(S) ⊆ A(S). It is straightforward to show
that equality holds in (9) when A(·) is invertible.
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Remark 1. Unlike the case of affine transformation, sym(x, S) is not invariant
under projective transformation. For instance, let S = [−1, 1] × [−1, 1] be unit
cube, for which sym(S) = 1, and consider the projective transformation that
maps x ∈ IR2 to x/(1 + x2/3) ∈ IR2. Then, the symmetric set S will be mapped
to the trapezoid

T := conv
{(

3
4
,
3
4

)
,

(
−3

4
,
3
4

)
,

(
−3

2
,−3

2

)
,

(
3
2
,−3

2

)}
,

for which sym(T ) < 1. This lack of invariance is used in [4] in the development
of a methodology designed to improve the symmetry of a point in a set using a
projective transformation.

3. Geometric Properties

Whereas there always exists an n-rounding of a convex body S ⊂ IRn, a sym-
metric convex body S possesses some even more powerful geometric properties,
for example there exists a

√
n-rounding of S when S is symmetric, see [15]. The

geometric flavor of the definition of the symmetry function in (4) suggests that
sym(·, S) is connected to extensions of these geometric properties and gives rise
to new properties as well; these properties are explored and developed in this
section. We examine volumes of intersections of S with halfspaces and halfplanes
that cut through x ∈ S in Section 3.1, notions of distance and symmetry in Sec-
tion 3.2, set approximation results in Section 3.3, and results on probability and
symmetry in Section 3.4.

3.1. Volumes and Symmetry

We start with two theorems that connect sym(x, S) to bounds on the n-dimensional
volume of the intersection of S with a halfspace cut through x, and with the
(n − 1)-dimensional volume of the intersection of S with a hyperplane passing
through S. Similar results have been extensively used in the literature. For ex-
ample, if S is symmetric around some point x∗, it is clear that the intersection
of S with a halfspace cut through x∗ contains exactly one half of the volume of
S. Moreover, it is well known that a halfspace cut through the center of mass
generates a set with at least 1/e of the original volume, and this fact has been
utilized in [5] to develop theoretically efficient probabilistic methods for solving
convex optimization problems.

Let v ∈ IRn, v �= 0 be given, and for all x ∈ S define H(x) := {z ∈ S : vT z =
vT x} and H+(x) := {z ∈ S : vT z ≤ vT x}. Also let Voln(·) denotes the volume
measure on IRn. We have:

Theorem 2. Under Assumption A, if x ∈ S, then

sym(x, S)n

1 + sym(x, S)n
≤ Voln(H+(x))

Voln(S)
≤ 1

1 + sym(x, S)n
. (10)
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Proof. Without loss of generality, assume that x is the origin and α =
sym(x, S). Define K1 = H+(x) and K2 = S\K1. Clearly, Voln(K1)+Voln(K2) =
Voln(S). Notice that −αK2 ⊂ K1 and −αK1 ⊂ K2. Therefore

Voln(S) ≥ Voln(K1) + Voln(−αK1) = Voln(K1)(1 + αn)

which proves the second inequality. The first inequality follows easily from

Voln(S) = Voln(K1) + Voln(K2) ≤ Voln(K1) +
Voln(K1)

αn
.

For the next theorem, define the function f(x) = Voln−1(H(x))1/(n−1) for all
x ∈ S.

Theorem 3. Under Assumption A, for every point x ∈ S,

f(x)
maxy∈S f(y)

≥ 2sym(x, S)
1 + sym(x, S)

. (11)

Proof. Let α = sym(x, S) and let y∗ satisfy y∗ ∈ arg maxy f(y). Note that

x + α(x − H(y∗)) ⊂ S ,

and the set on the left in this inclusion passes through x+α(x− y∗), and so x+
α(x−H(y∗)) ⊂ H(x+α(x−y∗)). Next, recall that the (n−1)-dimensional volume
of a set S is invariant under translations and Voln−1(aS) = an−1Voln−1(S) for
any set S and positive scalar a. Therefore

αf(y∗) = (Voln−1(x + α(x − H(y∗))))1/(n−1)

≤ (Voln−1(H(x + α(x − y∗))))1/(n−1)

= f(x + α(x − y∗)) .

(12)

Note that we can write

x =
α

1 + α
y∗ +

1
1 + α

(x + α(x − y∗)) .

where x + α(x − y∗) ∈ S.
Noting that f(·) is concave (this follows from the Brunn-Minkowski inequality

[10]), we have:

f(x) ≥ α

1 + α
f(y∗) +

1
1 + α

f(x + α(x − y∗))

≥ α

1 + α
f(y∗) +

α

1 + α
f(y∗)

=
2α

1 + α
f(y∗) ,

where the second inequality follows from (12).
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Remark 2. We conjecture that any symmetry point x∗ satisfies

f(x∗)
maxy∈S f(y)

≥ 2
3

.

3.2. Distance and Symmetry

If S is a symmetric convex body, then it is a straightforward exercise to show
that the symmetry point of S is unique. Furthermore, if S is nearly symmetric,
intuition suggests that two points in S with high symmetry values cannot be
too far apart. The two theorems in this subsection quantify this intuition. Given
x, y ∈ S with x �= y, let p(x, y), q(x, y) be the pair of endpoints of the chord in
S passing through x and y, namely:

p(x, y) = x + s(x − y) ∈ ∂S where s is a maximal scalar
q(x, y) = y + t(y − x) ∈ ∂S where t is a maximal scalar. (13)

Theorem 4. Under Assumption A, let ‖·‖ be any norm on IRn. For any x, y ∈ S
satisfying x �= y, let α = sym(x, S) and β = sym(y, S). Then:

‖x − y‖ ≤
(

1 − αβ

1 + α + β + αβ

)
‖p(x, y) − q(x, y)‖ .

Proof. For convenience let us denote the quantities p(x, y), q(x, y) by p, q, and
note that the chord from p to q contains, in order, the points p, x, y, and q. It
follows from the symmetry values of x, y that

‖p−x‖ ≥ α‖q−x‖ = α(‖y−x‖+‖q−y‖) and ‖q−y‖ ≥ β‖p−y‖ = β(‖y−x‖+‖p−x‖) .

Multiplying the first inequality by 1 + β, the second inequality by 1 + α, adding
the result and rearranging yields:

(1+α+β+αβ)‖x−y‖ ≤ (1−αβ)(‖p−x‖+‖x−y‖+‖q−y‖) = (1−αβ)‖p−q‖ ,

which yields the desired result.
Another relative measure of distance is the “cross-ratio distance” with respect

to S. Let x, y ∈ S, x �= y, be given and let s, t be as defined in (13); the cross-ratio
distance is given by:

dS(x, y) :=
(1 + t + s)

ts
.

Theorem 5. Under Assumption A, for any x, y ∈ S, x �= y, let s, t be as defined
in (13). Then

dS(x, y) ≤ 1
sym(x, S) · sym(y, S)

− 1 .
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Proof. Let α = sym(x, S) and β = sym(y, S). By definition of symmetry,
t ≥ β(1 + s) and s ≥ α(1 + t). Then

dS(x, y) =
(1 + t + s)

ts
≤ (1 + t + s)

α(1 + s)β(1 + t)

=
1

αβ

(1 + t + s)
(1 + s + t + st)

=
(

1
αβ

)
1

1 + 1
dS(x,y)

.
(14)

Thus dS(x, y) ≤ 1
αβ − 1.

We end this subsection with a comment on a question posed by Hammer in
[14]: what is the upper bound on the difference between sym(S) and sym(xc, S),
where xc is the centroid (center of mass) of S? It is well known that sym(xc, S) ≥
1/n, see [14], and it follows trivially from the Löwner-John theorem that sym(S) ≥
1/n as well. Now let S be the Euclidean half-ball: S := {x ∈ IRn : 〈x, x〉 ≤
1, x1 ≥ 0}. It is an easy exercise to show that the unique symmetry point of S is
x∗ = (

√
2−1)e1 and that sym(S) = 1√

2
, and so in this case sym(S) is a constant

independent of the dimension n. On the other hand, sym(xc, S) = Ω
(

1√
n

)
(see

[2]), and so for this class of instances the symmetry of the centroid is substan-
tially less than the symmetry of the set for large n. For an arbitrary convex
body S, note that in the extreme cases where sym(S) = 1 or sym(S) = 1/n
the difference between sym(S) and sym(xc, S) is zero; we conjecture that tight
bounds on this difference are only small when sym(S) is either very close to 1
or very close to 1/n.

3.3. Set-Approximation and Symmetry

In this subsection we examine the approximation of the convex set S by another
convex set P . We say that P is a β-approximation of S if there exists a point
x ∈ S such that βP ⊂ S − x ⊂ P . In the case when P is an ellipsoid centered
at the origin, then the statement “P is a β-approximation of S” is equivalent
to “βP provides a 1

β -rounding of S.” We examine the interrelationship between
the symmetry function and bounds on β-approximations for S in the following
three theorems.

A classical example of β-approximation is given by the Löwner-John theorem
[15], which guarantees a 1/

√
n-approximation for a symmetric convex body and

a 1/n-approximation for general convex body using ellipsoids. Unfortunately,
the theorem does not provide more precise bounds for case when S is nearly
symmetric, i.e., sym(S) = 1 − ε for ε small. This is partially rectified in the
fourth result of this subsection, Theorem 9.

Theorem 6. Under Assumption A, let P be a convex body that is a β-approximation
of S, and suppose that sym(0, P ) = α. Then, sym(S) ≥ βα.



12 Belloni and Freund

Proof. By definition we have βP ⊂ S−x ⊂ P for some x ∈ S. Since sym(·, ·)
is invariant under translations, we can assume that x = 0. Since sym(0, P ) is
invariant under nonzero scalings of P , we have

−αβS ⊂ −αβP ⊂ βP ⊂ S .

Theorem 7. Under Assumption A, suppose that x ∈ intS. Then there exists
an ellipsoid E centered at 0 such that

E ⊂ S − x ⊂
( √

n

sym(x, S)

)
E . (15)

Proof. Suppose without loss of generality that x = 0 (otherwise we translate
S), and let α = sym(0, S). Clearly, −αS ⊂ S, and αS ⊂ S. Consider a

√
n-

rounding E of S ∩ (−S). Then αS ⊂ S ∩ (−S) ⊂ √
nE ⊂ √

nS.

Theorem 8. Let ‖·‖ be any norm on IRn, and let B(x, r) denote the ball centered
at x with radius r. Under Assumption A, suppose that

B(x, r) ⊂ S ⊂ P ⊂ S + B(0, δ) (16)

for some r and δ with 0 < δ < r. Then(
1 − δ

r

)
≤ sym(x, S)

sym(x, P )
≤

(
1

1 − δ/r

)
.

Proof. Let α = sym(x, P ). Consider any chord of P that passes through x,
dividing the chord into two segments. Assume that the length of one segment is
Δ, then the length of the other segment must be at most Δ/α. It then follows
that the length of the first segment of this chord in S must be at least Δ − δ,
while the length of the second segment of this chord in S must be at most Δ/α.
Since these inequalities hold for any chord, it follows that

sym(x, S) ≥ Δ − δ

Δ/α
= α

(
1 − δ

Δ

)
≥ α

(
1 − δ

r

)
(17)

where the last inequality follows since Δ ≥ r, thereby showing that sym(x, S) ≥
sym(x, P )

(
1 − δ

r

)
. Note also that:

B(x, r) ⊂ P ⊂ S + B(0, δ) ⊂ P + B(0, δ) .

Letting P play the role of S in (16) and S + B(0, δ) play the role of P in (16),
it also follows from (17) that

sym(x, P ) ≥ sym(x, S + B(0, δ))
(

1 − δ

r

)
.
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However, using the superminimality of of sym(·, ·) under Minkowski sums (6)
of Theorem 3, we have

sym(x, S + B(0, δ)) ≥ min{sym(x, S), sym(0, B(0, δ))} = sym(x, S) ,

which when combined with the previous inequality completes the proof.
The center xL of the minimum-volume ellipsoid E containing S is called

the Löwner-John center of S, and John showed in [15] that E provides a
√

n-
rounding of S in the case when S is symmetric and an n-rounding of S when S
is not symmetric. The following theorem provides a sharpening of this result:

Theorem 9. Under Assumption A, let E be the minimum volume ellipsoid
containing S, and let xL be the Löwner-John center of S. Then E provides
a
√

n
sym(xL,S)

-rounding of S.

Remark 3. It follows from Theorem 9 that

sym(xL, S) ≥
√

sym(xL, S)
n

and hence sym(xL, S) ≥ 1/n. This in turn yields the Löwner-John result [13]
that the rounding in the theorem is an n-rounding, and hence sym(S) ≥ sym(xL, S) ≥
1/n. Noting that when S is symmetric the Löwner-John center must also be the
symmetry point of S, it also follows from Theorem 9 that S admits a

√
n-

rounding when sym(S) = 1.

Remark 4. Theorem 7 is valid for every point in S and Theorem 9 focuses on
the Löwner-John center. We conjecture that Theorem 9 can be strengthened to

prove the existence of a
(√

n
sym(S)

)
-rounding of S.

The proof of Theorem 9 is based in part on ideas communicated to the second
author by Earl Barnes [3] in 1998. We start with the following two elementary
propositions:

Proposition 4. Let w1, . . . , wk be scalars and define wmin, wmax to be the small-
est and largest values among these scalars. For any p ∈ IRk satisfying p ≥ 0 and
eT p = 1 define μ = pT w and σ2 =

∑k
i=1 pi(wi−μ)2. Then (wmax−μ)(μ−wmin) ≥

σ2.

Proof. Clearly,
∑k

i=1 pi(wmax−wi)(wi−wmin) ≥ 0. Therefore μwmax+μwmin−∑k
i=1 piw

2
i −wminwmax ≥ 0. It then follows that (wmax−μ)(μ−wmin) = μwmax+

μwmin − μ2 − wminwmax ≥ ∑k
i=1 piw

2
i − μ2 = σ2.

Proposition 5. Let y1, . . . yk ∈ IRn be given, let p ∈ IRk satisfy p ≥ 0 and
eT p = 1 , and suppose that

∑n
i=1 piy

i = 0 and
∑k

i=1 piy
i(yi)T = 1

nI. Then for
any b̄ ∈ IRn with ‖b̄‖2 = 1 it holds that

max
i=1,...,k

b̄T yi ≥
√

sym(0, conv({yi}k
i=1))

n
.
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Proof. Let b̄ ∈ IRn satisfying ‖b̄‖2 = 1 be given, and define wi = b̄T yi. Then

μ =
k∑

i=1

piwi =
k∑

i=1

pib̄
T yi = b̄T

(
k∑

i=1

piy
i

)
= 0

and

σ2 =
k∑

i=1

pi(wi − μ)2 =
k∑

i=1

piw
2
i =

k∑
i=1

pib̄
T yi(yi)T b̄ =

1
n

b̄T Ib̄ =
1
n

.

It then follows from Proposition 4 that (maxi wi)(−mini wi) = (maxi wi −
μ)(μ − mini wi) ≥ σ2 = 1

n . Let α := sym(0, conv({yi}k
i=1)), and notice that

−mini b̄T yi ≤ 1
α maxi b̄T yi. Therefore

1
n
≤ max

i
wi

(
−min

i
wi

)
≤ max

i
wi

(
1
α

max
i

wi

)
=

(maxi wi)
2

α

from which the result readily follows.
Proof of Theorem 9: We first suppose that S is the convex hull of finitely

many points, and we write S = conv({vi}k
i=1). The minimum volume ellipsoid

containing S is obtained using the solution of the following optimization problem:

minQ,c − ln detQ
s.t. (vi − c)T Q(vi − c) ≤ 1, i = 1, . . . , k

Q � 0 .
(18)

If Q, c solves (18) then EO := {x ∈ IRn : (x− c)T Q(x− c) ≤ 1} is the minimum
volume ellipsoid containing S and c is the Löwner-John center. Letting EI :=
{x ∈ IRn : (x − c)T Q(x − c) ≤ α

n} where α := sym(c, S), we need to show that
EI ⊂ S. Equivalently, for every b ∈ IRn we need to show that

max{bT x : x ∈ EI} ≤ max{bT x : x ∈ S} .

The KKT conditions for (18) are necessary and sufficient, see John [15], and
can be written as:

−Q−1 +
∑k

i=1 λi(vi − c)(vi − c)T = 0∑k
i=1 λiQ(vi − c) = 0

λi ≥ 0, i = 1, . . . , k
(vi − c)T Q(vi − c) ≤ 1, i = 1, . . . , k
λi(vi − c)T Q(vi − c) = λi, i = 1, . . . , k
Q � 0 .

Defining yi = Q1/2(vi − c) and pi = λi

n we have p ≥ 0, and using the KKT
conditions we obtain:

n = trace(I) = trace(Q1/2Q−1Q1/2)
=

∑k
i=1 λitrace

(
Q1/2(vi − c)(vi − c)T Q1/2

)
=

∑k
i=1 λitrace

(
(vi − c)T Q1/2Q1/2(vi − c)

)
=

∑k
i=1 λi(vi − c)T Q1/2Q1/2(vi − c)

=
∑k

i=1 λi = eT λ ,
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and it follows that eT p = eT λ
n = 1. Furthermore,

k∑
i=1

piy
i =

1
n

Q−1/2
k∑

i=1

λiQ(vi − c) = 0

and
k∑

i=1

piy
i(yi)T =

k∑
i=1

λi

n
Q1/2(vi − c)(vi − c)T Q1/2 =

1
n

I .

For any b ∈ IRn, b �= 0, define b̄ := Q−1/2b√
bT Q−1b

and note that ‖b̄‖2 = 1. Then

p, y1, . . . , yk, and b̄ satisfy the hypotheses of of Proposition 5, and so

max{bT x : x ∈ S} = maxi bT vi

= bT c +
√

bT Q−1b(maxi b̄T Q1/2(vi − c))
= bT c +

√
bT Q−1b(maxi b̄T yi)

≥ bT c +
√

α
n

√
bT Q−1b ,

where the inequality is from Proposition 5, and we use the fact that sym(0, conv({vi}k
i=1)) =

sym(0, conv({yi}k
i=1)) which follows from the invariance of sym(·, ·) under in-

vertible affine transformation, see (5.) of Theorem 2. On the other hand we
have:

max
{
bT x : x ∈ EI

}
= max

{
bT x : (x − c)T Q(x − c) ≤ α

n

}
= bT c+

√
α

n

√
bT Q−1b ,

which then yields max{bT x : x ∈ EI} ≤ max{bT x : x ∈ S}, proving the result
under the hypothesis that S is the convex hull of finitely many points.

Finally, suppose S is not the convex hull of finitely many points. For any
δ > 0 there is a polytope Pδ that approximates S in the sense that S ⊂ Pδ ⊂
S+B(0, δ), where B(0, δ) is the ball of radius δ centered at 0. Limiting arguments
can then be used to show the result by taking a limiting sequence of polytopes Pδ

as δ → 0 and noticing from Theorem 8 that limδ→0 sym(0, Pδ) = sym(0, S). ��
We close this subsection by discussing a norm closely related to the symmetry

function that was also used in [9]. Without loss of generality, assume that x∗ = 0
is a symmetry point of S and define the following norm associated with S:

‖x‖S = min
t
{t : x ∈ t(S ∩ −S)} , (19)

and let BS(c, r) denote the ball of radius r centered at c using the norm defined
in (19).

Lemma 1. Under Assumption A, suppose that x∗ = 0 is a symmetry point of
S. Then

BS(0, 1) ⊂ S ⊂ BS(0, 1/sym(S)).

Proof. By construction, BS(0, 1) = S ∩ −S ⊂ S. For the second inclusion,
observe that −sym(S)S ⊂ S, which then implies that S ⊂ − 1

sym(S)S. Therefore
S ⊂ 1

sym(S) (S ∩ −S).
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Remark 5. The norm defined by (19) induces the best β-approximation among
all norms in IRn. That is, (0, 1, 1/sym(S), ‖·‖S) solves the following optimization
problem

min
x,r,R,‖·‖

{
R

r
: B‖·‖(x, r) ⊂ S ⊂ B‖·‖(x,R)

}

Proof. Suppose that there exists a norm ‖ · ‖, r, R, and x, such that

B‖·‖(x, r) ⊂ S ⊂ B‖·‖(x,R)

and R
r < 1

sym(S) . Using Theorem 6, we have sym(x, S) ≥ r
R > sym(S), a

contradiction.

3.4. Probability and Symmetry

This subsection contains two results related to symmetry and probability. To
set the stage for the first result, suppose that X is a random vector uniformly
distributed on the given convex body S ⊂ IRn. Theorem 10 gives lower bounds
on the expected value of sym(X,S) and on the probability that sym(X,S) will
be larger than a constant fraction 1/M of sym(S). Roughly speaking, Theo-
rem 10 states that it is likely that sym(X,S) is relatively large. The second
result, Theorem 11, is an extension of Anderson’s Lemma [1] concerning the in-
tegral of a nonnegative logconcave even function on S, and has many statistical
applications.

Theorem 10. Under Assumption A, let X be a random vector uniformly dis-
tributed on S. Then

(i) E[sym(X,S)] ≥ sym(S)
2n + 1

(ii) For any M ≥ 1, Pr
(
sym(X,S) ≥ sym(S)

M

)
≥

(
1 − 2

M + 1

)n

(iii) Among symmetric sets S, E[sym(X,S)] and Pr
(
sym(X,S) ≥ 1

M

)
are func-

tions only of the dimension n and are independent of the specific set S, and
satisfy:

(iii.a) E[sym(X,S)] ≤ 1
2(n + 1)

+
1

(n + 1)(n + 2)

(iii.b) For any M ≥ 1, Pr
(
sym(X,S) ≥ 1

M

)
=

(
1 − 2

M + 1

)n

.

Proof. Without loss of generality we assume for convenience that x∗ = 0
is a symmetry point of S. Let t ∈ [0, 1]. For any x ∈ tS, consider any chord
of S that intersects x, and let p, q be the endpoints of this chord. Note that
‖p‖S ≤ 1/sym(S) and ‖x‖S ≤ t/sym(S), where ‖·‖S is the norm defined in (19).
Also, it follows from basic convexity that tS+(1−t)BS(0, 1) ⊂ tS+(1−t)S ⊂ S,



Symmetry Function of a Convex Set 17

where BS(0, 1) is the unit ball centered at the origin for the norm ‖ · ‖S . This
then implies that if x ∈ tS and q ∈ ∂S then ‖q − x‖S ≥ 1 − t. Therefore

‖q − x‖S

‖p − x‖S
≥ 1 − t

‖p‖S + ‖x‖S
≥ 1 − t

1/sym(S) + t/sym(S)
,

which implies that

sym(x, S) ≥ sym(S)
1 − t

1 + t
. (20)

Now suppose that X is a random vector uniformly distributed on S, and
consider the random variable t(X) defined uniquely by the inclusion X ∈ ∂(tS).
Then

P (t(X) ≤ t) = P (X ∈ tS) =
Vol(tS)
Vol(S)

= tn ,

which implies that the density of t(X) is given simply by f(t) = ntn−1. Therefore
using (20) we have:

E[sym(X,S)] ≥ E

[
sym(S)

1 − t(X)
1 + t(X)

]

=
∫ 1

0

sym(S)
1 − t

1 + t
ntn−1dt

= nsym(S)
∫ 1

0

1 − t

1 + t
tn−1dt

≥ nsym(S)
∫ 1

0

tn−1
(
1 −√

t
)

dt

= sym(S)
2n+1 ,

where the second inequality follows from the observation that 1−t
1+t ≥ 1 −√

t for
t ∈ [0, 1]. This proves (i).

To prove (ii), let M ≥ 1 be given and define t̄ := 1 − 2
M+1 and note the

relationship
1 − t̄

1 + t̄
=

1
M

.

Since {x ∈ S : x ∈ t̄S} ⊂
{

x ∈ S : sym(x, S) ≥ sym(S)
M

}
from (20), we have:

Pr
(
sym(X,S) ≥ sym(S)

M

)
≥ Pr(X ∈ t̄S) = (t̄)n ,

which establishes (ii). To prove (iii) notice from Proposition 2 that (20) holds
with equality in this case, whereby the above derivations yield E[sym(X,S)] =

n

∫ 1

0

1 − t

1 + t
tn−1dt and Pr

(
sym(X,S) ≥ 1

M

)
= (t̄)n, which are functions of n and

are independent of S, thus showing (iii) and (iii.b). Noting that 1−t
1+t ≤ 1− 3

2 t+ 1
2 t2

for t ∈ [0, 1], we obtain in the symmetric case that

E[sym(X,S)] ≤ n

∫ 1

0

(
1 − 3

2
t +

1
2
t2
)

tn−1dt =
1

2(n + 1)
+

1
(n + 1)(n + 2)

,

which shows (iii.a).
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Corollary 1. Let X be a random vector uniformly distributed on S ⊂ IRn for
n ≥ 2. Then

Pr
(
sym(X,S) ≥ sym(S)

n

)
≥

(
1 − 2

n + 1

)n

≥ 1/9 ,

and the lower bound goes to 1/(e)2 as n → ∞.

The following is an extension of Anderson’s Lemma [1], whose proof relies
on the Brunn-Minkowski inequality in the symmetric case.

Theorem 11. Let S ⊂ IRn be a compact convex set which contains the origin
in its interior, and let α = sym(0, S). Let f(·) be a nonnegative quasiconcave
even function that is Lebesgue integrable. Then for 0 ≤ β ≤ 1 and any y ∈ IRn,∫

S

f(x + βy)dx ≥ αn

∫
S

f
(
x +

y

α

)
dx . (21)

Proof. We refer to [7] for a proof in the symmetric case α = 1. Suppose
that f(·) is an indicator function of a set K. This implies that K is convex and
sym(0,K) = 1. Therefore:∫

S
f(x + βy)dx ≥ ∫

S∩−S
f(x + βy)dx

≥ ∫
S∩−S

f(x + y)dx

= Voln((S ∩ −S) ∩ (K − y)) = Voln((S ∩ −S) ∩ α(K−y
α ))

≥ Voln(αS ∩ α(K − y
α )) = αnVoln(S ∩ (K − y

α ))
(22)

where the second inequality follows from Anderson’s original theorem [1], and
the third inequality holds simply because αS ⊂ S ∩ −S and K ⊂ K

α . Thus
the result is true for simple quasiconcave even functions, and using standard
arguments of dominated and monotone convergence, the result also holds for all
nonnegative quasiconcave even Lebesgue-integrable functions.

The following corollary shows the potential usefulness of Theorem 11 in prob-
ability theory. We note that the density function of a uniformly distributed or an
n-dimensional Gaussian random vector with mean μ = 0 satisfies the functional
conditions of Theorem 11.

Corollary 2. Let X be a random variable in IRn whose density function f(·) is
an even quasiconcave function. In addition, let Y be an arbitrary random vector
independent of X, and let β ∈ [0, 1]. If S ⊂ IRn is a compact convex set which
contains the origin in its interior and α = sym(0, S), then

P (X + βY ∈ S) ≥ αnP

(
X +

Y

α
∈ S

)
. (23)

Proof. Noting that α does not depend on Y , we have:

P (X + βY ∈ S) =
∫ ∫

S−βy
f(x)dxdP (y) =

∫ ∫
S

f(x − βy)dxdP (y)
≥ αn

∫ ∫
S

f(x − y
α )dxdP (y) = αnP (X + Y

α ∈ S) .
(24)
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4. Characterization of Symmetry Points via the Normal Cone

Let Sopt(S) denote the set of symmetry points of the convex body S. In this
section we provide a characterization of Sopt(S). From (4) and (2) we see that
Sopt(S) is the x-part of the optimal solution of:

sym(S) = max
x,α

α

s.t. α(x − S) ⊆ (S − x)
α ≥ 0 .

(25)

For any given x ∈ S let α = sym(x, S). Motivated by the set-containment
definition of sym(x, S) in (4), let V (x) denote those points v ∈ ∂S that are also
elements of the set x + α(x − S). We call these points the “touching points” of
x in S, namely:

V (x) := ∂S ∩ (x + α(x − S)) where α = sym(x, S) . (26)

Let NS(y) denote the normal cone map for points y ∈ S. We assemble the union
of all normal cone vectors of all of the touching points of x and call the resulting
set the “support vectors” of x:

SV (x) = {s ∈ IRn : ‖s‖2 = 1 and s ∈ NS(v) for some v ∈ V (x)} . (27)

The following characterization theorem essentially states that x∗ ∈ S is a sym-
metry point of S if and only if the origin is in the convex hull of the support
vectors of x:

Theorem 12. Under Assumption A, let x∗ ∈ S. The following statements are
equivalent:

(i) x∗ ∈ Sopt(S)
(ii) 0 ∈ convSV (x∗) .

The proof of Theorem 12 we will rely on the following technical result:

Lemma 2. Suppose that S is a convex body in a Euclidean space and x ∈ intS
and α ≥ 0. Then α < sym(x, S) if and only if α(x − S) ⊆ int(S − x).

Proof. (⇒) The case α = 0 is trivial. For α > 0, since x ∈ intS and S is a
convex body, α < sym(x, S) implies that

α(x − S) ⊂ sym(x, S)int(x − S) ⊆ int(S − x) .

(⇐) For a fixed value of α, rearrange the subset system to be: C := x+α(x−
S) ⊂ intS. However, S is a compact set, whereby α can be increased to α+ε for
some small positive value of ε and still maintain x + (α + ε)(x−S) ⊂ intS ⊂ S,
which by (4) is equivalent to sym(x, S) ≥ α + ε.
The proof of Theorem 12 will also use the following construction:
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Lemma 3. Consider the function f(·) : IRn → IR defined as

f(x) = sup
y ∈ ∂S

s ∈ NS(y)
‖s‖2 = 1

〈s, x − y〉 . (28)

Then
(i) f(·) is convex,
(ii) f(x) = 0 for x ∈ ∂S,
(iii) f(x) > 0 for x /∈ S,
(iv) f(x) < 0 for x ∈ intS, and
(v) {s : ‖s‖2 = 1, s ∈ NS(x)} ⊂ conv∂f(x) for x ∈ ∂S .

Proof. As the supremum of affine functions, f(·) is convex, which shows (i).
For x ∈ ∂S, f(x) ≥ 0. For (y, s) feasible for (28), 〈s, x − y〉 ≤ 0 for all x ∈ S by
definition of the normal cone, whereby f(x) = 0, which shows (ii). For x ∈ intS,
there exists δ > 0 such that B2(x, δ) ⊂ S. Let (y, s) be feasible for (28), then
〈s, x − y〉 = 〈s, (x + δs − y) − δs〉 ≤ 〈s,−δs〉 = −δ, which then implies that
f(x) ≤ −δ and shows (iv).

For x /∈ S, there exists a hyperplane strictly separating x from S. That is,
there exists s̄ satisfying ‖s̄‖2 = 1 such that 〈s̄, x〉 > maxy{〈s̄, y〉 : y ∈ S}, and
let ȳ be an optimal solution of this problem. Then (ȳ, s̄) is feasible for (28)
and it follows that f(x) ≥ 〈s̄, x − ȳ〉 > 0, showing (iii). For x ∈ ∂S and any
s ∈ NS(x) satisfying ‖s‖2 = 1, it follows that for all w that f(w) ≥ 〈s, w − x〉 =
f(x) + 〈s, w − x〉, thereby showing (v).

Proof of Theorem 12. Suppose that x∗ ∈ Sopt(S). From (4) and Lemma 3
it follows that x∗ is a solution together with α∗ := sym(S) of the following
optimization problem:

sym(S) = max
x,α

α

s.t. f(x − α(y − x)) ≤ 0 for all y ∈ S .
(29)

The necessary optimality conditions for this problem imply that

0 ∈
∑

v∈V (x∗)

λvsv

where sv ∈ ∂f(v) for all v, for some λ satisfying λ ≥ 0, λ �= 0. Observe for
v ∈ ∂S and s ∈ ∂f(v) that 0 ≥ f(w) ≥ f(v) + 〈s, w − v〉 = 〈s, w − v〉 for all
w ∈ S, which implies that s ∈ NS(v), and so

0 ∈
∑

v∈V (x∗)

λvsv

where sv ∈ NS(v) for all v, which implies (ii).
Conversely, suppose that α∗ = sym(x∗, S), and note that for any v ∈ V (x∗),

0 /∈ ∂f(v) (otherwise f would be nonnegative which contradicts Assumption A
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and Lemma 3). Therefore 0 ∈ convSV (x∗) implies that coneSV (x∗) contains a
line. Let y ∈ S be given and define d := y−x∗. Since SV (x∗) contains a line, there
exists s ∈ SV (x∗) for which 〈s, d〉 ≥ 0. Let v be the touching point corresponding
to s, i.e., v ∈ V (x∗) and s ∈ NS(v); then v ∈ ∂S and v = x∗ − α∗(w − x∗) for
some w ∈ S (from (4)). From (v) of Lemma 3 we have s ∈ ∂f(v), whereby
s ∈ ∂f(v). Thus, using the subgradient inequality,

f(y − α∗(w − y)) = f(v + (y − α∗(w − y) − v))
≥ f(v) + 〈s, y − α∗(w − y) − v〉
= 〈s, d〉(1 + α∗) ≥ 0 ,

(30)

which shows that y − α∗(w − y) /∈ intS. This implies that

−α∗
(
S − y

)
� int

(
S − y

)
.

Then Lemma 2 implies sym(y, S) ≤ α∗ for all y ∈ S proving the optimality of
x∗.

We close this subsection with some properties of the set of symmetry points
Sopt(S). Note that Sopt(S) is not necessarily a singleton. To see how multiple
symmetry points can arise, consider S := {x ∈ IR3 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤
1, 0 ≤ x3 ≤ 1}, which is the cross product of a 2-dimensional simplex and a unit
interval. Therefore sym(S) = min{1

2 , 1} = 1
2 and Sopt(S) = {x ∈ IR3 : x1 =

x2 = 1
3 , x3 ∈ [ 13 , 2

3 ]}.
Proposition 6. Under Assumption A, Sopt(S) is a compact convex set with no
interior. If S is a strictly convex set, then Sopt(S) is a singleton.

Proof. The convexity of Sopt(S) follows directly from the quasiconcavity of
sym(·, S), see Theorem 1. Let α := sym(S), and suppose that there exists
x̂ ∈ intSopt(S). This implies that there exists δ > 0 such that sym(x, S) = α

for all x ∈ B(x̂, δ) ⊂ Sopt(S). Then for all d satisfying ‖d‖ ≤ 1 we have:

α(x̂ + δd − S) ⊆ S − (x̂ + δd)

which implies that

α(x̂ − S) + B(0, δ(1 + α)) ⊆ S − x̂ .

Using Lemma 2, this implies α < sym(x̂, S), which is a contradiction.
For last statement, suppose x1, x2 ∈ Sopt(S) and x1 �= x2. Since any strict

convex combination of elements of S must lie in the interior of S, for any γ ∈
(0, 1) it follows that

(γx1 + (1 − γ)x2) − α(S − (γx1 + (1 − γ)x2)) ⊆ intS .

Again using Lemma 2, it follows that sym(γx1 + (1 − γ)x2, S) > α, which is
also a contradiction.
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Remark 6. In [17], Klee proved the following notable relation between sym(S)
and the dimension of Sopt(S):

1
sym(S)

+ dim(Sopt(S)) ≤ n ,

which implies that multiple symmetry points can only exist in dimensions n ≥ 3.

5. Computing a Symmetry Point of S when S is Polyhedral

Our interest in this section lies in computing an ε-approximate symmetry point
of S, which is a point x ∈ S that satisfies:

sym(x, S) ≥ (1 − ε)sym(S) .

We focus on the polyhedral case; more specifically, we study the problem
in which the convex set of interest is given by the convex hull of finitely many
points or by the intersection of finitely many half-spaces.

Although the symmetry function is invariant under equivalent representa-
tions of the set S, the question of computing the symmetry of a point in a
general convex set is not, as the following example indicates.

Example 1. Let Cn = {x ∈ IRn : ‖x‖∞ ≤ 1} be the n−dimensional hypercube.
Let v be a vertex of Cn, and define H = {x ∈ IRn : 〈x, v〉 ≤ n − 1/2}, and
define S := Cn ∩ H. Then sym(0, S) = 1 − 1/2n is obtained by considering the
vertex −v. Assume that S is given only by a membership oracle and note that
H cuts off a pyramid from S that is completely contained in exactly one of the
2n orthants of IRn. Since we can arbitrarily choose the vertex v, in the worst
case any deterministic algorithm will need to verify every single orthant to show
that sym(0, S) < 1, leading to an exponential complexity in the dimension n.

This example suggests that more structure is needed for the representation of
S in order to compute an ε-approximate symmetry point of S. In the following
two subsections we consider the cases when S is given as the convex hull of
finitely many points (Section 5.1), and as the intersection of finitely many half-
spaces (Section 5.2).

5.1. S Represented by the Convex Hull of Points

In this subsection we assume that S is given as the convex hull of m given points
w1, . . . , wm ∈ IRn, i.e., S = conv

{
w1, . . . , wm

}
. Given x ∈ S and a nonnegative

scalar α, it follows from (4) that sym(x, S) ≥ α if and only if

(1 + α)x − αwi ∈ S = conv
{
wj : j = 1, . . . , m

}
for every i = 1, . . . , m,
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which can be checked by solving a system of linear inequalities. It follows that
sym(S) is the optimal value of the following optimization problem:

max
α,x,λ,ν

α

s.t. (1 + α)x − αwi =
m∑

k=1

λi
kwk, i = 1, . . . ,m

x =
m∑

k=1

νkwk

eT λi = 1, λi ≥ 0 , i = 1, . . . ,m
eT ν = 1, ν ≥ 0 ,

(31)

which is almost a linear program. Note that the constraints “x =
∑m

k=1 νkwk, eT ν =
1, ν ≥ 0” of (31) simply state that x must lie in the convex hull of the points
w1, . . . , wm. However, dividing the first set of constraints by (1+α) one obtains
for a given i:

x =

(
α

1 + α
wi +

1
1 + α

m∑
k=1

λi
kwk

)
,

which shows that these constraints themselves imply that x is in the convex hull
of w1, . . . , wm, and so the former set of constraints can be eliminated. Further-
more, setting y = (1 + α)x, it follows that sym(S) is the optimal value of the
linear program:

max
α,y,λ

α

s.t. y − αwi =
m∑

k=1

λi
kwk, i = 1, . . . ,m

eT λi = 1, λi ≥ 0, i = 1, . . . ,m ,

(32)

and that any optimal solution (α∗, y∗, λ∗) of (32) yields sym(S) = α∗ and
x∗ = y∗/(1 + α∗) is a symmetry point of S.

Formulation (32) has m2 nonnegative variables and mn + m equality con-
straints. Moreover, the analytic center for the slice of the feasible region on the
level set corresponding to α = 0 is readily available for this formulation by
setting

α = 0, y =
1
m

m∑
k=1

wk, λi =
1
m

e, i = 1, . . . , m ,

and therefore (32) lends itself to solution by interior-point methods so long as
m is not too large.

If m is large it might not be attractive to solve (32) directly, and in order
to develop a more attractive approach to computing sym(S) we proceed as
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follows. Based on (31) we can compute sym(x, S) by simply fixing x. Thus, for
each i = 1, . . . ,m define

fi(x) = max
αi,λi

αi

s.t. (1 + αi)x − αiw
i =

m∑
k=1

λi
kwk

eT λi = 1, λi ≥ 0 ,

(33)

and it follows that sym(x, S) = mini=1,...,m fi(x). Dividing the first constraint
by (1 + αi) and defining θi = αi

1+αi
and noting that maximizing θi is equivalent

to maximizing αi, it follows that (33) is equivalent to:

hi(x) = max
θi,λi

θi

s.t. θiw
i +

m∑
k=1

λi
kwk = x

eT λi = 1 − θi, λ
i ≥ 0 .

(34)

Now note that hi(x) is a concave function, whereby

h(x) := min
i=1,...,m

hi(x)

is also a concave function, and furthermore

sym(x, S)
1 + sym(x, S)

= min
i=1,...,m

hi(x) = h(x) .

Moreover, given a value of x, the computation of h(x) and the computation of a
subgradient of h(·) at x is easily accomplished by solving the m linear programs
(34) which each have m nonnegative variables and n + 1 equality constraints.
Therefore the problem of maximizing h(x) is suitable for classical nondifferen-
tiable optimization methods such as bundle methods, see [6] for example.

5.2. S Represented by Linear Inequalities

In this subsection we assume that S is given as the intersection of m inequalities,
i.e., S := {x ∈ IRn : Ax ≤ b} where A ∈ IRm×n and b ∈ IRm. We present
two methods for computing an ε-approximate symmetry point of S. The first
method is based on approximately solving a single linear program with m2 + m
inequalities. For such a method, an interior-point algorithm would require O(m6)
operations per Newton step, which is clearly unattractive. Our second method
involves solving m+1 linear programs each of which involves m linear inequalities
in n unrestricted variables. This method is more complicated to evaluate, but is
clearly more attractive should one want to compute an ε-approximate symmetry
point in practice.

Let x̄ ∈ S be given, and let α ≤ sym(x̄, S). Then from the definition of
sym(·, S) in (1) we have:
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A(x̄ + v) ≤ b ⇒ A(x̄ − αv) ≤ b ,

which we restate as:

Av ≤ b − Ax̄ ⇒ −αAi·v ≤ bi − Ai·x̄ , i = 1, . . . ,m . (35)

Now apply a theorem of the alternative to each of the i = 1, . . . , m implications
(35). Then (35) is true if and only if there exists an m×m matrix Λ of multipliers
that satisfies:

ΛA = −αA
Λ(b − Ax̄) ≤ b − Ax̄

Λ ≥ 0 .
(36)

Here “Λ ≥ 0” is componentwise for all m2 components of Λ. This means that
sym(x̄, S) ≥ α if and only if (36) has a feasible solution. This also implies that
sym(S) is the optimal objective value of the following optimization problem:

max
x,Λ,α

α

s.t. ΛA = −αA
Λ(b − Ax) ≤ b − Ax
Λ ≥ 0 ,

(37)

and any solution (x∗, Λ∗, α∗) of (37) satisfies sym(x∗, S) = α∗. Notice that (37)
is not a linear program. To convert it to a linear program, we make the following
change of variables:

γ =
1
α

, Π =
1
α

Λ , y =
1 + α

α
x ,

which can be used to transform (37) to the following linear program:

min
y,Π,γ

γ

s.t. ΠA = −A
Πb + Ay − bγ ≤ 0
Π ≥ 0 .

(38)

If (y∗,Π∗, γ∗) is a solution of (38), then α∗ := 1/γ∗ = sym(S) and x∗ :=
1

1+γ∗ y∗ ∈ Sopt(S). Notice that (38) has m2 + m inequalities and mn equations.
Suppose we know an approximate analytic center xa of S. Then it is possible
to develop an interior-point method approach to solving (38) using information
from xa, and one can prove that a suitable interior-point method will compute
an ε-approximate symmetry point of S in O

(
m ln

(
m
ε

))
iterations of Newton’s

method. However, due to the m2 + m inequalities, each Newton step requires
O(m6) operations, which is clearly unattractive.

In order to improve on the previous approach, we define the following scalar
quantities δ∗i , i = 1, . . . ,m:
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δ∗i := max
x

−Ai·x

s.t. Ax ≤ b ,
(39)

and notice that bi +δ∗i is the range of Ai·x over x ∈ S unless the ith constraint is
never active. We compute δ∗i , i = 1, . . . , m by solving m linear programs whose
feasible region is exactly S. It then follows directly from Proposition 1 that

sym(x, S) = min
i=1,...,m

{
bi − Ai·x
δ∗i + Ai·x

}
. (40)

We now use (40) to create another single linear program to compute sym(S) as
follows. Let δ∗ := (δ∗1 , . . . , δ∗m) and consider the following linear program that
uses δ∗ in the data:

max
x,θ̌

θ̌

s.t. Ax + θ̌(δ∗ + b) ≤ b .
(41)

Proposition 7. Let (x∗, θ̌∗) be an optimal solution of the linear program (41).
Then x∗ is a symmetry point of S and sym(S) = θ̌∗

1−θ̌∗ .

Proof. Suppose that (x, θ̌) is a feasible solution of (41). Then
1
θ̌
≥ δ∗i + bi

bi − Ai·x
,

whereby
1 − θ̌

θ̌
=

1
θ̌
− 1 ≥ δ∗i + Ai·x

bi − Ai·x
,

and so
bi − Ai·x
δ∗i + Ai·x

≥ θ̌

1 − θ̌
, i = 1, . . . ,m .

It then follows from Proposition 1 that sym(x, S) ≥ θ̌

1 − θ̌
, which implies that

sym(S) ≥ θ̌∗

1−θ̌∗ . The proof of the reverse inequality follows similarly.
This yields the following “exact” method for computing sym(S) and a sym-

metry point x∗:

Exact Method:

Step 1 For i = 1, . . . , m solve the linear program (39) for δ∗i .
Step 2 Let δ∗ := (δ∗1 , . . . , δ∗m). Solve the linear program (41) for an optimal

solution (x∗, θ̌∗). Then x∗ ∈ Sopt(S) and sym(S) = θ̌∗

1−θ̌∗ .

This method involves the exact solution of m + 1 linear programs. The first
m linear programs can actually be solved in parallel, and their optimal objective
values are used in the data for the (m + 1)st linear program. The first m linear
programs each have m inequalities in n unrestricted unknowns. The last linear
program has m inequalities and n + 1 unrestricted unknowns, and could be
reduced to n unknowns using variable elimination if so desired.



Symmetry Function of a Convex Set 27

Remark 7. Although sym(S) can be computed via linear programming when
S is represented either as a convex hull of points or as the intersection of half-
spaces, the latter case appears to be genuinely easier; indeed, the Exact Method
solves a sequence of m + 1 linear programs of size m × n when S is given by
half-spaces, instead of a single linear program with m2 inequalities when S is
represented as the convex hull of points. It is an open question whether there
is a more efficient scheme than solving (32) for computing sym(S) when S is
represented as the convex hull of points.

From a complexity perspective, it is desirable to consider solving the m + 1
linear programs of the Exact Method for a feasible and near-optimal solution.
Ordinarily, this would be easy to analyze. But in this case, the approximately
optimal solution to the m linear programs (39) will then yield imprecise input
data for the linear program (41). Nevertheless, one can construct an inexact
method with an appropriately good complexity bound. Below is a description of
such a method.

Inexact Method:

Step 1 For i = 1, . . . ,m, approximately solve the linear program (39), stopping
each linear program when a feasible solution x̄ is computed for which the
duality gap ḡ satisfies ḡ ≤ ε(bi−Ai·x̄)

4.1 . Set δ̄i ← −Ai·x̄.
Step 2 Let δ̄ := (δ̄1, . . . , δ̄m). Approximately solve the linear program

max
x,θ

θ

s.t. Ax + θ(δ̄ + b) ≤ b,
(42)

stopping when a feasible solution (x̄, θ̄) is computed for which the duality
gap ḡ satisfies θ̄ ≥ (θ̄ + ḡ)(1 − ε

4.1 ). Then x̄ is an ε-approximate symmetry
point of S and θ̄

1−θ̄
(1 − ε/2) ≤ sym(S) ≤ θ̄

1−θ̄
(1 + 2ε/3).

Notice that this method requires that the LP solver computes primal and
dual feasible points (or simply primal feasible points and the duality gap) at
each of its iterations; such a requirement is satisfied, for example, by a standard
feasible interior-point method, see Appendix B.

In order to prove a complexity bound for the Inexact Method, we will assume
that S is bounded and has an interior, and that an approximate analytic center
xa of the system Ax ≤ b has already been computed; for details also see Appendix
B.

Theorem 13. Let ε ∈ (0, 1/10) be given. Suppose that n ≥ 2 and xa is a β = 1
8 -

approximate analytic center of S. Then starting with xa and using a standard
feasible interior-point method to solve each of the linear programs in Steps 1 and
2, the Inexact Method will compute an ε-approximate symmetry point of S in no
more than ⌈

10m1.5 ln
(

10m

ε

)⌉
total iterations of Newton’s method.
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The following proposition validates the assertions made at the end of Step 2
of the Inexact Method.

Proposition 8. Let ε ∈ (0, 1/10) be given, set ε̃ := ε/4.1, and suppose that
Steps 1 and 2 of the Inexact Method are executed, with output (x̄, θ̄). Then

(i) δ̄ = (δ̄1, . . . , δ̄m) satisfies (1−ε̃)(bi+δ∗i ) ≤ (bi+δ̄i) ≤ (bi+δ∗i ) for i = 1, . . . ,m.
(ii) For any given x ∈ S, θ := mini

{
bi−Ai·x

δ̄i+bi

}
satisfies

sym(x, S) ∈
[

θ

1 − θ

(
1 − 2ε̃

1 − ε̃

)
,

θ

1 − θ

]
,

(iii) sym(x̄, S) ≥ (1 − ε)sym(S), and
(iv) θ̄

1−θ̄
(1 − ε/2) ≤ sym(S) ≤ θ̄

1−θ̄
(1 + 2ε/3).

Proof. For a given i = 1, . . . ,m let ḡ denote the duality gap computed in the
stopping criterion of Step 1 of the Inexact Method. Then δ∗i ≥ δ̄i ≥ δ∗i − ḡ ≥
δ∗i − ε̃(bi − Ai·x̄) ≥ δ∗i − ε̃(bi + δ∗i ), which implies

(1 − ε̃)(bi + δ∗i ) ≤ (bi + δ̄i) ≤ (bi + δ∗i ) ,

thus proving (i). To prove (ii), let x ∈ S be given and let α := sym(x, S) and
θ̌ := mini

{
bi−Ai·x
δ∗

i +bi

}
. Then from Proposition 1 we have

α = min
i

{
bi − Ai·x
δ∗i + Ai·x

}
=

θ̌

1 − θ̌
. (43)

Notice that δ̄i ≤ δ∗i for all i, whereby θ ≥ θ̌, which implies that α = θ̌
1−θ̌

≤ θ
1−θ .

We also see from (43) that θ̌ ≤ 1/2. Next notice that (i) implies that

1/2 ≥ θ̌ ≥ θ(1 − ε̃) . (44)

Therefore

α =
θ̌

1 − θ̌
≥ θ(1 − ε̃)

1 − θ̌
=

θ(1 − ε̃)
1 − θ

1 − θ

1 − θ̌

=
θ(1 − ε̃)
1 − θ

(
1 +

θ̌ − θ

1 − θ̌

)
≥ θ(1 − ε̃)

1 − θ

(
1 +

θ̌ − 1
1−ε̃ θ̌

1 − θ̌

)

=
θ(1 − ε̃)
1 − θ

(
1 +

θ̌( −ε̃
1−ε̃ )

1 − θ̌

)
≥ θ(1 − ε̃)

1 − θ

(
1 − ε̃

1 − ε̃

)

≥ θ

1 − θ

(
1 − 2ε̃

1 − ε̃

)
,

(45)

where the next-to-last inequality follows from θ̌ ∈ [0, 1/2], thereby showing (ii).
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Let θ∗ denote the optimal objective value of (42), and notice that δ̄ ≤ δ∗

implies that θ∗ ≥ θ̌∗. Now let ḡ be the duality gap computed when the stopping
criterion in Step 2 is met. Then

θ ≥ θ̄ ≥ (θ̄ + ḡ)(1 − ε̃) ≥ θ∗(1 − ε̃) ≥ θ̌∗(1 − ε̃) . (46)

From (ii) and (46) we have

sym(x̄, S) ≥ θ

1 − θ

(
1 − 2ε̃

1 − ε̃

)
≥ θ̌∗(1 − ε̃)

1 − θ̌∗(1 − ε̃)

(
1 − 2ε̃

1 − ε̃

)

=
θ̌∗(1 − ε̃)
1 − θ̌∗

(
1 − 2ε̃

1 − ε̃

)
1 − θ̌∗

1 − θ̌∗(1 − ε̃)

≥ sym(S)(1 − ε̃)
(

1 − 2ε̃

1 − ε̃

)(
1/2

1 − 1/2 + (1/2)ε̃

)

= sym(S)(1 − ε̃)
(

1 − 2ε̃

1 − ε̃

)(
1 − ε̃

1 + ε̃

)

≥ sym(S)
(
1 − 4ε̃

1−ε̃

)
≥ sym(S)(1 − ε) ,

(47)

where the middle inequality uses the fact that θ̌∗ ∈ [0, 1/2], and the final in-
equality uses the fact that ε ∈ (0, 1/10], thus showing (iii).

To prove (iv), note that

sym(S) ≥ sym(x̄, S) ≥ θ

1 − θ

(
1 − 2ε̃

1 − ε̃

)
≥ θ

1 − θ

(
1 − ε

2

)
≥ θ̄

1 − θ̄

(
1 − ε

2

)
where the second inequality follows from part (ii), the third inequality follows
since ε ≤ 1/10, and the fourth inequality uses θ̄ ≤ θ. Last of all, we have

sym(S) =
θ̌∗

1 − θ̌∗
≤

θ̄
1−ε̃

1 − θ̄
1−ε̃

=
θ̄

1 − θ̄ − ε̃
=

θ̄

1 − θ̄

(
1 − θ̄

1 − θ̄ − ε̃

)
≤ θ̄

1 − θ̄

(
1 +

2ε

3

)
,

where the first equality is from Proposition 7, the first inequality follows from
(46), and the last inequality follows since ε ≤ 1/10 and (44) implies that θ̄ ≤
θ ≤ 41/80.

It remains to prove the complexity bound of Theorem 13, which will be
accomplished with the help of the following two propositions.

Proposition 9. Let ε ∈ (0, 1/10) be given, and set ε̃ := ε/4.1. Suppose that xa

is a β = 1
8 -approximate analytic center of S. Then starting with xa, the stopping

criterion of each linear program in Step 1 will be reached in no more than⌈
(2 + 4

√
m) ln

(
42m

ε

)⌉

iterations of Newton’s method.
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Proof. Step 1 is used to approximately solve each of the linear programs (39)
for i = 1, . . . ,m. Let us fix a given i, and define λ := −ei where ei is the ith

unit vector in IRm. Then from Theorem 14 with (M,f, c) = (A, b,−Ai·) we can
bound the iterations used to solve (39) by⌈

(2 + 4
√

m) ln
(

10m‖Saλ‖
ḡ

)+
⌉

. (48)

Now notice that ‖Saλ‖ = sa
i . Let (x̄, s̄) denote the primal solution and slack

vector computed in Step 1 when the stopping criterion is met. Also, to keep the
analysis simple, we assume that the stopping criterion is met exactly. We have:

s̄i = bi − Ai·x̄ ≥ bi + δ∗i − ḡ ≥ bi + δ∗i − ε̃s̄i ≥ bi − Ai·xa − ε̃s̄i = sa
i − ε̃s̄i ,

whereby sa
i ≤ s̄i(1 + ε̃). Therefore

10m‖Saλ‖
ḡ

=
10msa

i

ε̃s̄i
≤ 10m(1 + ε̃)

ε̃
=

41m(1 + ε/4.1)
ε

≤ 42m

ε
,

since in particular ε ∈ (0, 1/10). Substituting this inequality into (48) completes
the proof.

Proposition 10. Let ε ∈ (0, 1/10) be given, m ≥ 3 and set ε̃ := ε/4.1. Suppose
that xa is a β = 1

8 -approximate analytic center of S. Then starting with xa, the
stopping criterion of the linear program in Step 2 will be reached in no more
than ⌈

(2 + 4
√

m) ln
(

6m

ε

)⌉

iterations of Newton’s method.

Proof. Let sa = b − Axa and let za denote the dual multipliers associated
with (52) for M = A and f = b. It follows from (52) and m ≥ 3 that

(sa)T za = eT (Saza − e + e) ≥ −1
8
√

m + m ≥ 9m

10
. (49)

Setting (M,f, d) = (A, b, (δ̄ + b)) we see that (42) is an instance of (53), and
from Theorem 15 we can bound the iterations used to solve (42) by⌈

(2 + 4
√

m) ln
(

1.25m

ḡ · (δ̄ + b)T za

)+
⌉

. (50)

We have

(δ̄ + b)T za ≥ (b + δ∗)T za(1 − ε̃) ≥ (sa)T za(1 − ε̃) ≥ 9m(1 − ε̃)
10

where the first inequality follows from part (i) of Proposition 8, the second
inequality follows from b + δ∗ ≥ b − Axa = sa, and the third inequality follows
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form (49). We next bound ḡ. To keep things simple we again assume that the
stopping criterion in Step 2 is satisfied exactly, whereby

1
ḡ

=
1 − ε̃

ε̃

1
θ̄
≤ 1

ε̃ · θ̌∗ =
4.1
ε

(
1 +

1
sym(S)

)
≤ 4.1

ε
(1 + n) ≤ 4.1m

ε
.

Here the first inequality follows from (46), the second equality follows from
Proposition 7, the second inequality follows from Remark 3, and the last in-
equality follows since S is assumed to be bounded and so m ≥ n+1. Combining
the bounds on (δ̄ + b)T za and ḡ we then bound the logarithm term in the state-
ment of the proposition as follows:

1.25m

ḡ · (δ̄ + b)T za
≤ 1.25m · 4.1m · 10

9mε(1 − ε̃)
≤ 6m

ε
,

since ε ∈ (0, 1/10) implies that ε̃ ≤ 1/41. This completes the proof.
Proof of complexity bound of Theorem 13: From Propositions 9 and 10 it

follows that the total number of Newton steps computed by the Inexact Method
is bounded from above by:

m

⌈
(2 + 4

√
m) ln

(
42m

ε

)⌉
+

⌈
(2 + 4

√
m) ln

(
6m

ε

)⌉
≤

⌈
10m1.5 ln

(
10m

ε

)⌉

since m ≥ n + 1 ≥ 3 and ε < 1/10.
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Appendix

A. sym(x, S) and sym(S) under Relaxed Assumptions

All of the results in this paper are based on Assumption A, namely that S is a
closed, bounded, convex set with an interior. Herein we discuss the implications
of relaxing this set of assumptions.

As mentioned earlier, the assumption that S has an interior is a matter of
convenience, as we could instead work with the relative interior of S on the affine
hull of S, at considerable notational and expository expense.

The assumption that S is closed is also a matter of convenience, as most of
the statements contained in the body of the paper would still remain valid by
replacing inf ← min and sup ← max and/or by working with the closure of S,
etc.

Suppose that we relax the assumption that S is bounded. If S is unbounded
then S has a non-empty recession cone. In the case when the recession cone of
S is not a subspace, then sym(S) = 0. However, the case when the recession is
a subspace is a bit more interesting:
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Lemma 4. Suppose that S = P +H, where H is a subspace and P is a bounded
convex set in H⊥, and x ∈ S; then sym(x, S) is completely defined by P , i.e.,
sym(x, S) = sym(w,P ) where x = w + h and (w, h) ∈ H⊥ × H.

Proof. Without loss of generality, we can assume that x = 0 since symmetry
is invariant under translation. Trivially, −αS ⊆ S if and only if −α(P + H) ⊆
(P + H). Since P and H lie in orthogonal spaces, for each x ∈ S, there exist a
unique (w, h) ∈ P × H such that x = w + h. Since −αH = H, −αx ∈ S if and
only if −αw ∈ P .

B. Standard Interior-Point Method for Linear Programming

Consider the following linear programming problem in “dual” form, where M is
an m × k matrix:

P : VAL := maxx,s cT x
s.t. Mx + s = f

s ≥ 0
x ∈ IRk, s ∈ IRm .

(51)

For β ∈ (0, 1), a β-approximate analytic center of the primal feasibility in-
equalities Mx ≤ f is a feasible solution xa of P (together with its slack vector
sa = f − Mxa) for which there exists dual multipliers za that satisfy:

Mxa + sa = f, sa > 0
MT za = 0
‖Saza − e‖ ≤ β ,

(52)

where S is the diagonal matrix whose diagonal entries correspond to the com-
ponents of s. Following [23] or [24], one can prove the following result about the
efficiency of a standard primal interior-point method for approximately solving
P .

Theorem 14. Suppose that β = 1/8 and that (xa, sa, za) is a given β-approximate
analytic center of the feasibility inequalities of P , and that c = MT λ for some
λ ∈ IRm. Then (xa, sa, za) can be used to start a standard interior-point method
that will compute a feasible solution of P with duality gap at most ḡ in at most⌈

(2 + 4
√

m) ln
(

10m‖Saλ‖
ḡ

)+
⌉

iterations of Newton method. ��
Now consider the following linear programming problem format:

P
′
: VAL := maxx,θ θ

s.t. Mx + dθ + s = f
s ≥ 0

x ∈ IRk, θ ∈ IR, s ∈ IRm .

(53)
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Again following [23] or [24], one can prove the following result about the efficiency
of a standard primal interior-point method for approximately solving P .

Theorem 15. Suppose that β = 1/8 and that (xa, sa, za) is a given β-approximate
analytic center of the feasibility inequalities of P , and that dT za > 0. Then
(xa, sa, za) can be used to start a standard interior-point method that will com-
pute a feasible solution of P

′
with duality gap at most ḡ in at most⌈

(2 + 4
√

m) ln
(

1.25m

ḡ · (dT za)

)+
⌉

iterations of Newton method. ��
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12. B. Grünbaum, Measures of Symmetry for Convex Sets, in Convexity, Proceedings of
Symposia in Pure Mathematics 7, American Mathematical Society, Providence, 1963, pp.
233-270.

13. M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, New York, 1994.

14. P. C. Hammer, The centroid of a convex body, Proc. Amer. Math. Soc. 5 (1951), 522-525.
15. F. John, Extremum problems with inequalities as subsidiary conditions, in Studies and

Essays, Presented to R. Courant on His 60th Birthday, Interscience, New York, 1948, pp.
187–204.

16. L. G. Khachiyan, A polynomial algorithm for linear programming, Soviet Math. Dokl.,
20 (1979), pp. 191-194.

17. V. Klee, The critical set of convex body, Amer. J. Math. 75 (1953), 178-188.
18. Lovász, L. and Vempala, S., Logconcave functions: Geometry and efficient sampling

algorithms, Proc. of the 44th IEEE Foundations of Computer Science, Boston, 2003.
19. H. Minkowski, Allegemeine Lehzätze über konvexe Polyeder, Ges. Abh., Vol.2, pp 103-121,

Leipzog-Berlin, 1911.
20. Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Pro-

gramming, SIAM, Philadelphia, 1994.
21. J. Renegar, Linear programming, complexity theory and elementary functional analysis,

Mathematical Programming, Volume 70 (1995) No. 3.



34 Alexandre Belloni, Robert M. Freund: On the Symmetry Function of a Convex Set

22. J. Renegar, A Mathematical View of Interior-Point Methods in Convex Optimization,
MPS-SIAM Series on Optimization, 2001.

23. C. Roos and T. Terlaky and J.-Ph. Vial, Theory and Algorithms for Linear Optimiza-
tion: An Interior Point Approach, Wiley, 1997.

24. P. Tseng, Complexity Analysis of a Linear Complementarity Algorithm Based on a Lya-
punov Function, Mathematical Programming 53 (1992), 297-306.




