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Optimizing Product Line Designs:   
Efficient Methods and Comparisons  

 
We compare a broad range of optimal product line design methods.  The comparisons 
take advantage of recent advances that make it possible to identify the optimal solution to 
problems that are too large for complete enumeration.  Several of the methods perform 
surprisingly well, including Simulated Annealing, Product-Swapping and Genetic 
Algorithms.  The Product-Swapping heuristic is remarkable for its simplicity.  The 
performance of this heuristic suggests that the optimal product line design problem may 
be far easier to solve in practice than indicated by complexity theory. 
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1. Introduction 
 
There is an extensive literature investigating how firms can use conjoint measures of 

customer preferences to optimize the design of their product lines.  The origins of this 

literature coincide with the first articles proposing the use of conjoint analysis.  In 

contrast to conjoint analysis, where there is a growing literature documenting its 

measurement value, there is relatively little evidence validating the effectiveness of 

product line optimization methods on realistic problems.  Previous validations have 

focused on small problems for which it is possible to identify the optimal design through 

complete enumeration.  For larger problems, optimal solutions have been unobtainable, 

making it impossible to evaluate whether the methods yield solutions that are close to 

optimal.  This limitation is important as the methods are designed for these larger 

problems in which complete enumeration is not possible.  As a result, it has not been 

possible to evaluate the methods on the problems for which they were designed.   

 

In this paper we compare the performance of a broad range of optimization methods on a 

more realistic product line design problem.  The comparisons use conjoint data collected 

from real customers describing their preferences for computer laptop bags.  We compare 

the quality of the solutions, together with the complexity of the methods and the cost of 

computation.  The comparison is made possible by recent advances in optimization 

methods and computer hardware.  Using a combination of sophisticated fine-tuned 

discrete optimization methods (Lagrangian relaxation with branch and bound), we can 

now guarantee optimality in realistic product line design problems that are too large for 

complete enumeration.   

 

Several of the methods we test consistently reach optimal solutions, although none of the 

methods guarantee the global optimality of their solutions.  Even when measurement 

errors are introduced, the most successful methods still generate solutions within 3% of 

the optimum.  These findings indicate that realistic product line design problems are 

easier to solve than previously thought.  Surprisingly, relatively simple methods are 

capable of computing near-optimal solutions with little computational burden.   

 



 Page 2

Problem Complexity  

Over time, increases in computing power have increased the size of the problems that can 

be solved by complete enumeration.  This trend is illustrated in Figure 1, where we plot 

the complexity of the problems evaluated in previous studies.  To measure complexity we 

use the log of the number of feasible product lines.  For example, consider a product line 

of three different products that can vary on seven attributes, each of which have two 

possible levels.  There are a total of 128 (27) different products and 341,376 unique 

combinations of three products.  Complete enumeration would require that we evaluate 

all 341,376 product lines, and so our complexity measure is 5.53 (the log of 341,376). 

 

Figure 1.  Size of Problems Solved in Previous Research
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The apparently linear increase in problem complexity between 1985 and 2003 

corresponds to an exponential increase in the size of the problems (recall that the 

complexity measure is logarithmic).  In all of these papers optimality is guaranteed by 

complete enumeration and so this increase can be attributed solely to increases in 
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computing power.  By using recently developed methods that can more efficiently 

guarantee optimality, we can solve much larger problems.  In particular, we focus on a 

problem that has over 147 billion feasible combinations.   

 

Although the problem that we study in this paper is a dramatic step up in size from 

problems that have previously been solved, it is still on the lower bound of the types of 

product line design problems that firms would like to solve in practice.  For example, the 

data that we use in this study was collected for a previously published study (Toubia, 

Simester, Hauser and Dahan 2003).  The data was designed to help solve an actual 

product line design problem faced by a real firm that is too large for even the 

sophisticated algorithms that we use in this paper.  Instead we solve a reduced form of the 

problem.    

 

The method that we use to guarantee optimality also identifies an optimal solution.   

Readers may wonder why we only use this method to provide an optimization 

benchmark, rather than interpreting it as a practical solution for solving product line 

design problems.  Unfortunately the method is extremely complex and involves 

considerable computational effort.  At this stage few firms would find the method 

practical to implement.   

 

Although almost all of the previous evaluations of product line design methods test 

problems that are small enough for complete enumeration, there are exceptions.  For 

example, Nair, Thakur, and Wen (1995) evaluate a problem that is too large for complete 

enumeration.  However, without knowing the global optimum, they cannot evaluate how 

close the methods get to this optimum.  In practice, without knowing whether the 

methods produce results that are close to optimal, managers will find it difficult to 

evaluate whether it is worthwhile continuing to search for more profitable designs. 

 

2.  Product Line Design Methods 

Product line design methods vary on a broad range of dimensions.  In this section we 

review these dimensions and characterize the methods that we evaluate in this study.  The 
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section is organized into several topics, beginning with a review of the distinction 

between multidimensional scaling and conjoint analysis.  This is followed by a 

comparison of the consumer choice rules and objective functions used in previous 

studies.   

 

Multidimensional Scaling (MDS) versus Conjoint Analysis 

MDS-based optimization methods assume that each consumer has an ideal point in 

attribute space and that the utility derived from a given product depends on its distance 

from that ideal point.  These methods allow each customer to place different importance 

weights on each attribute.  In contrast, conjoint-based methods assume that each 

consumer has a part-worth for each potential value of each product attribute, and that the 

utility derived from a product is the sum of the part-worths associated with the product’s 

attribute levels.   

 

In principle, both MDS and conjoint analysis could be applied to products with attributes 

that are either continuous or discrete and either horizontally differentiated (for which 

each individual has an ideal-point) or vertically differentiated (more is always better).  

However, in practice, optimization methods designed for use with MDS almost all 

assume that attributes are continuous and horizontally differentiated.  The methods would 

need to be adapted to work with vertically differentiated products, because there is no 

upper limit on attribute values or any cost associated with higher attribute values.  For 

example, Hauser and Simmie (1981) and Hauser (1988) work with attributes that are 

vertically differentiated and develop a perceptual map in which attribute levels are scaled 

by dividing by price. 

 

According to Huber and Fiedler (1996), MDS is typically used for “image products such 

as cigarettes and bourbon,” while conjoint analysis is more often used for “functional 

products such as computers or forklift trucks.”  They point out that the choice models 

underlying these methodologies are quite similar.  The main conceptual difference is that 

MDS assumes utilities are symmetric about an ideal point, while conjoint analysis does 

not impose any functional form on utilities.  Huber and Fiedler (1996) suggest applying 
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MDS to products that have continuous attributes that are highly correlated with one 

another, so that factor analysis can be used to reduce attributes to a small number of  

dimensions.  They recommend using conjoint analysis for problems in which flexibility 

of the part-worth function is likely to be important.  This is especially true for attributes 

such as brand name or style type, for which there is no clear way to assign the numerical 

values necessary for an MDS approach. 

 

Although both approaches have their advantages, because they rely on different data 

sources, MDS-based methods cannot easily be compared with conjoint-based methods.  

For this reason, we restrict attention to optimization methods designed for use with 

conjoint analysis. 

 

Consumer Choice Rules 

The most common choice rule used in the product line optimization literature is first 

choice, which assumes that customers purchase the products that provide the most utility.  

Another common choice rule is the logit model, which assumes that products that provide 

a higher level of utility have a higher chance of being purchased, but that all available 

products have some positive probability of being chosen by each consumer.  Sawtooth 

(2003) argues that both approaches have drawbacks.  First choice tends to exaggerate the 

market share of popular products, while underestimating the share of unpopular products.  

Logit corrects for this problem, but exaggerates the market share of similar products.  For 

example, if there are two products on the market that are exactly the same, the logit 

model would assign each of them the same probability of being purchased, so that their 

combined probability of purchase is nearly twice what it would be if there were only one 

product of the given type on the market. 

 

Sawtooth (2003) suggests a third method know as randomized first choice, which 

estimates market shares by running multiple iterations that add a random error term to 

each part-worth and a random error term to each overall product utility for each 

individual, and assuming that each consumer purchases the product that generates the 

highest utility after these random perturbations.  This method avoids the drawbacks of 
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both the first choice and logit models, but at the cost of significantly increased 

computation time. 

 

In this paper we use the more common first choice rule, but the methods we test could be 

modified to use a logit rule or randomized first choice rule. 

 

Objective Function 

Zufryden (1977) first formulated the conjoint-based optimization problem to maximize 

market share.  Green and Krieger (1985) introduced two other objective functions, known 

as the “buyer’s welfare problem,” which seeks to maximize the utility of consumers, and 

the “seller’s welfare problem,” which seeks to maximize profits for the firm.  Kohli and 

Sukumar (1990) provide mathematical formulations of all three problems and show that 

the buyer’s and seller’s welfare problems are both NP hard.  Kohli and Krishnamurti 

(1989) had previously shown that the share-of-choices problem is NP hard.   

 

It is generally recognized that the seller’s welfare (profit maximization) problem is, in 

some respects, the most difficult of the three to solve.  The share-of-choices problem is 

equivalent to a simplified version of the seller’s welfare problem in which all possible 

product types are equally profitable.  McBride and Zufryden (1988) claim that the 

buyer’s welfare problem is also equivalent to a simplified form of the seller’s welfare 

problem.  They find that integer programming can be used to solve the buyer’s problem 

(but not the seller’s problem).  Intuitively, the difficulty of solving the seller’s problem 

arises from the fundamentally opposite objectives of customers and the firm, since 

customers want products with more features and lower prices, while firms prefer to sell 

products with fewer features and higher prices.1 

 

In addition to being the most general and difficult to solve, the seller’s welfare problem is 

seemingly also the most relevant of the three criteria.  The optimization methods that we 

                                                 
1 This intuition can be translated into an interesting mathematical condition. The share-of-choices problem 
and the buyer’s welfare problem can be cast as a maximization of a submodular function while the seller’s 
welfare cannot. We refer to Nemhauser et al (1978) for properties of submodular functions.  
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compare were all designed to address the profit maximization problem for a firm 

developing a product line.  For this reason, we adopt this criterion in our comparisons. 

 

3. Description of the Methods 
We compare seven optimization methods, which can be grouped into three broad 

categories.  This section provides a brief description of each of these methods.  At the end 

of this section we also briefly describe other methods and explain why it was not 

appropriate to include them in this comparison.  

 

3.1. Methods That Operate In Attribute Space 

Methods in this category begin by choosing a random solution (or set of solutions) and 

measuring the earnings level associated with this initial solution.  The methods seek to 

improve the current solution by changing one or more product attributes, and then testing 

the impact that this change has on earnings.  The following methods are included in this 

category. 

 

Coordinate Ascent 

This is our name for the method described in Green, Krieger, and Zelnio (1989).  The 

coordinate ascent method begins by choosing a random product line and evaluating the 

profitability of this solution.  It then randomly selects one feature of one of the products 

in the current solution and changes that feature to a new randomly chosen value.  If this 

change results in an improvement in earnings, it is accepted and the current solution is 

updated to reflect this change.  If the feature change does not improve earnings, it is 

rejected.  Another random feature change is then tested, and this process continues until it 

is no longer possible to increase earnings by changing any single feature.   

 

The coordinate ascent method is guaranteed to find a local optimal solution, where the 

“neighborhood” of locality is defined to include all solutions that differ from the current 

solution by a single feature change in a single product.  However, the method is not 

guaranteed to find a global optimal solution.  In particular, there is no guarantee that 
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other solutions, which differ by more than a single feature on a single bag, cannot 

improve on the current solution. 

 

Genetic Algorithm 

The biological process of natural selection provided the original inspiration for genetic 

algorithms.  Genetic algorithms are well known in the operations research literature and 

were first applied to the optimal product design problem by Balakrishnan and Jacob 

(1996).  Alexouda and Paparizzos (2001) and Steiner and Hruschka (2003) also 

investigate their application to this problem.  Instead of beginning with a single random 

solution, genetic algorithms start with a population of random solutions.  The “fittest” 

members of this initial population survive and move on to produce the next generation of 

solutions.  New solutions enter the population through a process of reproduction (in 

which product lines “mate” to produce offspring) and mutation (in which product lines 

undergo random changes to individual product features).  This process continues until a 

given stopping condition is reached, which in our implementation occurs when the entire 

population is homogenous (all product lines in the population are the same).  Additional 

implementation details are provided in the Appendix. 

 

Genetic algorithms are not guaranteed to find the global optimum solution.  They are also 

not guaranteed to find a local optimum, but it is highly likely that they will, since the 

mutation process will usually identify any potential local improvements.  Balakrishnan 

and Jacob (1996) suggest that genetic algorithms might be expected to perform well 

because they search for solutions from a number of different points in the solution space, 

increasing the odds of finding good solutions. 

 

Simulated Annealing 

Simulated annealing is a popular “algorithm of last resort” for difficult discrete 

optimization problems.  The name of the method is derived from the physical process of 

annealing, in which a liquid is slowly cooled in a heat bath in order to form a solid in a 

low-energy state.  A detailed introduction to simulated annealing can be found in Aarts, 
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Korst, and van Laarhoven (1997).  As far as we know, simulated annealing has not 

previously been applied to the optimal product line design problem. 

 

Simulated annealing is similar to coordinate ascent in that it starts with a randomly 

chosen solution and proceeds to test random feature changes to the current solution.  The 

difference is that the simulated annealing algorithm sometimes accepts feature changes 

that reduce earnings.  The probability of accepting such a negative change depends on the 

magnitude of the drop in earnings and also decreases over time as the algorithm 

progresses through a pre-set “cooling schedule.”  See the Appendix for additional 

implementation details. 

 

Like coordinate ascent, simulated annealing guarantees a local optimum but not the 

global optimum.  Because simulated annealing sometimes accepts feature changes that 

reduce earnings, it has the ability to escape from a locally optimal solution in the hope of 

finding a better solution.  For this reason, the method might be expected to outperform 

coordinate ascent.   

 

3.2. Methods That Operate In Product Space 

Methods in this category differ from those in the previous category in one important 

respect: instead of searching for an optimal solution by changing product attributes, these 

methods work by changing entire products.  In order for these methods to work, it must 

be feasible to enumerate across the range of possible products, which represents the 

number of possible combinations of attributes in a single product.  For this reason, these 

methods are only practical when the number of different possible products is not 

unreasonably large.  The following methods are included in this category. 

 

Greedy Heuristic 

This method was first applied to the optimal product line design problem by Green and 

Krieger (1985), and has also been used (with some modifications) by Dobson and Kalish 

(1993) and Steiner and Hruschka (2003).  The greedy heuristic begins by creating a 

product line that includes only one product, selected as the single product that maximizes 
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earnings.  It then proceeds to add one product at a time to the product line, always 

choosing the product that maximizes earnings given the set of products that have already 

been selected.  The method stops when the desired number of products has been reached.  

This method is not guaranteed to find a local optimum, since, for example, the first 

product added to the product line might not be locally optimal given the set of products 

that are subsequently added. 

 

Product-Swapping Heuristic 

This is our name for a method that is similar to what Green and Krieger (1985) call the 

“interchange heuristic.”  The product-swapping heuristic begins by choosing a random 

product line and evaluating the earnings level produced by this solution.  It then tests 

each candidate product that is not part of the current solution to see if there is a product in 

the current solution whose replacement by the candidate product will increase earnings.  

If such a swap does improve earnings, then the candidate product is added, and the 

current product is removed from the current solution.  The choice of which product to 

remove is made to achieve the maximum possible increase in earnings.  This process 

continues until it is impossible to improve earnings by swapping in any single product.  

Green and Krieger (1985) suggest implementing the interchange heuristic by beginning 

with the solution from the greedy heuristic.  However, we have found that beginning with 

a random solution works just as well, and has the advantage of making it possible to find 

multiple local optima by starting with different solutions. 

 

The product-swapping heuristic is guaranteed to find a local optimal solution, with the 

local neighborhood defined to include all solutions that differ from the current solution 

by a single product.  This is a broader definition of the local neighborhood than in 

coordinate ascent, giving the product-swapping heuristic the ability to continue finding 

better solutions after reaching a point that would be considered a local optimum by the 

coordinate ascent algorithm.  For this reason, the product-swapping heuristic might be 

expected to outperform coordinate ascent.  Nevertheless, like coordinate ascent, the 

method is not guaranteed to find the global optimum. 
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3.3 Methods That Evaluate Partially-Formed Products 

Whereas methods in the first two categories evaluate products, methods in this third 

category initially consider only a subset of product features, evaluating “partially-

formed” products in order to eliminate certain combinations of features from 

consideration.  These methods are designed specifically for problems in which the 

number of possible product types is so large that their enumeration is computationally 

prohibitive.  For problems of this scale, it is not practical to implement methods that 

operate in product space.   Moreover, although methods that operate in attribute space 

could be implemented, their computational cost becomes significantly larger.   

We include these methods only for completeness.  In our comparison it is possible to 

enumerate the possible product types, so the problem setting does not favor these 

methods.  Focusing on more difficult problems would prevent us from evaluating several 

of the other methods.   

 

Dynamic Programming Heuristic 

Kohli and Krishnamurti (1987) developed a dynamic programming heuristic to solve the 

optimal product design problem for a single product, which was subsequently extended to 

handle multiple products by Kohli and Sukumar (1990).  This dynamic programming 

heuristic works by building the product line one attribute at a time.  For example, 

consider a problem in which the first product attribute has seven possible levels, and the 

second attribute has two possible levels.   The first stage of the heuristic evaluates each of 

the seven possible levels of the first attribute in terms of their impact both on consumer 

utilities and on marginal product profitability.  The second stage would consider all 

fourteen possible combinations of attributes one and two.  In order to prevent the number 

of attribute combinations from becoming too large, the heuristic occasionally eliminates 

certain combinations from consideration, maintaining those combinations that appear 

most likely to produce a profitable product line.  This process continues until the final 

attribute is reached and the number of attribute combinations that remains equals the 

number of desired products in the product line.  For implementation details, see Kohli 

and Sukumar (1990). 
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This heuristic is not guaranteed to reach a local optimal solution.  Note also that the 

outcome of this algorithm will depend on the order in which the attributes are added to 

the product line.  As suggested by Kohli and Sukumar (1990), we implement the heuristic 

for a number of different random attribute orderings.  Each “iteration” of the DP heuristic 

is actually the maximum of ten iterations with random attribute orderings. 

 

Beam Search Heuristic 

Beam search methods were originally developed for Artificial Intelligence search 

problems in speech and image recognition.  Nair, Thakur, and Wen (1995) were the first 

to apply these methods to the optimal product line design problem. The beam search 

heuristic is similar to the dynamic programming heuristic (described above) in that it 

evaluates various attribute combinations, retaining only those that seem likely to produce 

a profitable product line.  There are several major differences between beam search and 

the dynamic programming heuristic.  First, instead of proceeding one attribute at a time, 

beam search works by simultaneously combining different sets of attributes.  For 

example, in the first stage of the heuristic, it might combine attribute one with attribute 

two, attribute three with attribute four, and so on.  Second, instead of simultaneously 

creating an entire product line, beam search adds only one product to the product line at a 

time, in a manner similar to the greedy heuristic.  Third, beam search designs multiple 

distinct product lines and chooses the best alternative, while the dynamic programming 

heuristic designs only a single product line.  Fourth, the authors of the two techniques 

propose different criteria for deciding which attribute combinations to eliminate at each 

stage.  However, we have found that the beam search is more accurate when using the 

dynamic programming criterion proposed by Kohli and Sukumar (1990) (which we 

implement for both methods.) 

 

Like the dynamic programming heuristic, the beam search heuristic is not guaranteed to 

identify a locally optimal solution, and the outcome of beam search also depends on the 

system of pairing different attribute combinations at each stage.  Nair, Thakur, and Wen 

(1995) find that a “best-worst” pairing method works slightly better than random 

pairings, but for the problem we test it is not clear how to define the “best” attribute 
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combination, given that one of the combinations includes a price attribute.  As with the 

dynamic programming heuristic, we implement the beam search using different random 

orderings of attributes.  Each iteration involves a single run, from which we retain the 

best of fourteen product lines. 

 

3.4  Guaranteed Optimality Benchmark 

All methods discussed so far are heuristic methods that have been designed with the aim 

of generating good, perhaps locally optimal or even globally optimal, solutions without 

an excessive amount of computation.  However, despite their design intentions, none of 

the methods are guaranteed to compute the global optimal solution. In fact, some of the 

methods may find the global optimal solution but not recognize that it is optimal.  

Unfortunately, to prove that a given solution is optimal for the product line design 

problem is hard (the problem is “NP-hard” in the language of theoretical computer 

science, Kohli and Sukumar 1990).  Moreover, the problem is not just hard in theory, it is 

also very hard in practice, as suggested by the numerical results of McBride and 

Zufryden (1988).   

 

Until recently the only method available to guarantee optimality was complete 

enumeration.  However, we are now able to compute the global optimal solution to large 

product line design problems using Lagrangian relaxation combined with a “branch and 

bound” method.  We refer the curious reader to Bonnans et al. (2003) for Lagrangian 

relaxation and Martin (1999) for branch and bound.  Our implementation, though 

technically successfully, typically takes over 24 hours to solve the problem to guaranteed 

optimality.  While useful as a method to benchmark the performance of other solution 

methods, the complexity of the method and computational burden make it unlikely that 

this approach would be practical for most firms to implement. 

 

Our method is a two-step procedure that combines Lagrangian Relaxation and branch and 

bound. The first step consists of an application of a Lagrangian relaxation variant called 

relax-and-cut as in Lucena (1992). To efficiently deal with the huge cardinality of the 

constraints induced by the consumers’ preferences, we dualize only a dynamic subset of 
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the constraints at each outer iteration instead of dualizing all of the consumer preference 

constraints at once. This subset of constraints is enlarged or reduced heuristically in order 

to keep its size small enough to manage, but large enough to enforce the constraint 

inequalities that are likely to be active at an optimal solution.  

 

The second step is a branch and bound procedure. At any point in this procedure we have 

current upper and lower bounds on the value of the optimal solution.  We then branch the 

problem into two sub-problems where we fix one of the binary variables to be 1 in one 

sub-problem and 0 in the other.  We next obtain bounds for the sub-problems. We keep 

branching until the upper bound becomes less than or equal to the lower bound (and we 

then cut this branch), or there is no further variable that is non-integer.  The success of 

any branch and bound scheme relies on the quality of the bounds and on how fast such 

bounds are achieved. Due to the particular structure of the problem, the Lagrangian 

relaxation scheme is used to define the sub-problems on each node of the branch and 

bound tree. Also, the so-called root node is constructed based on the best solution found 

by the first step. For details of the implementation, we refer to Belloni (2004). Typically, 

the first step generates bounds within 3-5% of optimality in less than 30 minutes of 

computation; the second step computes and proves the optimality of the solution using 

approximately 24 additional hours of computational time.  

 

3.5  Other Methods  

Our review of the literature identified several additional methods for solving product line 

design problems.  As we will discuss below, it was either not appropriate or not possible 

to include these additional methods in our comparison.   

 

Dobson and Kalish (1988) develop a heuristic to design a near-optimal product line 

assuming that prices are continuous.  Although the assumption of continuous pricing 

makes the problem more realistic, it also makes computation time for finding solutions 

much longer.  To simplify computation Dobson and Kalish propose a two-stage 

optimization process, in which products designs are chosen first and optimal prices are 

then set. 
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McBride and Zufryden (1988) develop a linear programming method for finding a global 

optimal solution to the product line design problem, but they find that their method is 

computationally prohibitive for the types of problems that we investigate. 

 

Green and Krieger (1993) suggest applying a “divide and conquer” heuristic to the 

optimal product line design problem.  This method works by dividing the product line 

into two groups of attributes and completely enumerating all possible combinations for 

one group while holding the other group fixed, alternating the group for which feature 

values are enumerated, until no further improvement is possible.  For the problems we 

test, enumerating all possible values for one half of the attributes would require over five 

million evaluations.  It would, however, be possible to implement the divide and conquer 

heuristic more quickly by breaking the product line into more than two groups.  This is 

somewhat similar to the product-swapping heuristic. 

 

4. Design of Experiment 
The problem that we use to compare the different methods was an actual product line 

design problem faced by Timbuk2 (www.timbuk2.com), an innovative manufacturer of 

messenger bags and other lifestyle items.  Timbuk2 wanted to introduce a new laptop 

computer bag.  Although its products had traditionally been distributed through its own 

website, where customers could customize the design of their bags, the company planned 

to offer this new product for sale through traditional retailers. 

 

As part of its product development efforts, Timbuk2 worked with a research team at MIT 

to develop a conjoint study to evaluate customer preferences for different features of a 

laptop computer bag.  The conjoint study focused on price and nine other product 

features.  Each feature (including price) had two levels.  The subjects were first-year 

MBA students at the MIT Sloan School of Management.  An email invitation to 360 

students yielded a total of 324 complete responses, with each subject providing 16 paired-

comparison responses.  Additional details are reported in Toubia, Simester, Hauser and 

Dahan (2003). 
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The MIT research team used the conjoint study to validate an adaptive method of 

designing conjoint questions.  In the study customers were randomly assigned to one of 

four groups, in which the design of the conjoint questions varied.  In this study we pooled 

the raw data across the four groups and compared the optimization methods using data 

for 324 respondents.  For each respondent we estimated individual partworths for each 

product feature using OLS.  Because these design and estimation decisions are the same 

for each of the optimization methods, the results of our analyses should not be sensitive 

to these decisions. 

 

We assume that Timbuk2 wants to design a product line with five products.  For the price 

feature, we consider 7 different price levels ($70, $75, $80, $85, $90, $95, $100).  

Because the conjoint data only consider two price levels ($70 and $100) we interpolate to 

derive partworths for the intermediate levels.  The combination of nine features plus price 

yields a total of 3,584 unique bags.  There are almost five thousand trillion different five-

bag product lines that can be chosen from this set of 3,584 bags.  Even using the 

sophisticated algorithms that we adopt in this paper, it is not currently possible to 

guarantee optimality on a problem of this size.  Instead we solve a reduced form of the 

problem by limiting attention to six of the nine product features (the six features were 

chosen randomly).  The combination of six two-level product features and a seven-level 

price feature yields a total of 448 unique bags (26 × 7).  A total of 147,055,790,784 

different product lines containing five different products can be selected from these 448 

different bags.   

 

Timbuk2 provided estimates of the cost of each feature.  To make the problem more 

realistic we also included a selection of three competing bags.  These competing bags 

were arbitrarily designed to include: a “fully loaded” bag with all six features priced at 

$100, a bag with three of the features priced at $85, and a stripped down bag with no 

special features priced at $70.  We conservatively assumed that if the competing bags 

offered the same utility as one of the five bags in the Timbuk2 product line then the 

customer would purchase the competing bag.  Notice that this assumption, together with 
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the other elements of the experimental design, is common to all of the product line design 

methods that we evaluate.  We also assumed that the competitor could not respond to 

Timbuk2’s product line design.  We discuss this last issue further in our review of the 

limitations and opportunities for future research.    

 

5. Tournament Results 
Table 1 presents results for ten trials of each optimization method, using the original set 

of consumer part-worth data.  In this initial analysis we assume that the part-worths are 

measured without error and so interpret them as the “true” part-worths.  We later 

investigate what happens when we add errors to these part-worths. For each method, the 

table reports measures describing the accuracy, computational intensity and the 

complexity of the different methods.   

 

Accuracy is measured by the earnings under each of the ten trials (presented in 

descending order), together with the sample averages and standard deviations (where 

appropriate) for each method.  We also report whether each method guarantees that the 

solution from each trial is locally optimal.  In interpreting this guarantee, it is important 

to recall that the definition of local optimum varies across the methods.  For methods that 

operate in attribute space, the “neighborhood” of locality is defined to include all 

solutions that differ from the current solution by a single feature change in a single 

product.   In contrast, for methods that operate in product space, the local neighborhood is 

defined to include all solutions that differ from the current solution by a single product, 

which is a more rigorous standard of local optimality. 

 

Computational intensity is measured by both the running time for one trial and the 

number of product lines evaluated in each trial.  Running time was measured using an 

IBM Thinkpad laptop with a 1.7-GHz Pentium processor and 512 MB of RAM. 

   

The complexity of the methods is difficult to objectively measure.  We report our 

subjective assessment of relative complexity.  In general, the methods we label as having 
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a “medium” or “high” level of sophistication require some problem-specific fine-tuning 

of parameter values, while those we label as “low” sophistication do not.   

 

Accuracy  

There are several findings of interest.  First, the earnings level of $13,739 calculated 

using Lagrangian relaxation is the global optimum earnings of the problem.  This solution 

turns out to be unique (there is only one combination of bags that will yield this solution).  

Amongst the more practical methods, Simulated Annealing and Product Swapping 

perform best, reaching the optimal solution in all ten trials.  The Genetic Algorithm also 

performed very well, finding the optimal solution in seven of the ten trials.   

 

The Greedy Heuristic is the only method (other than Lagrangean Relaxation) for which 

performance does not vary across the trials.  Recall that this method begins by finding the 

single most profitable product.  Conditional on this choice, it then finds the next most 

profitable product, and so on.  Because each of these sub-tasks has a unique solution and 

does not vary due to any stochastic element, the outcome of repeated trials also does not 

vary.  This unique outcome was $13,401, which was just $338 (2.5%) less than the 

optimal outcome. 

 

Recall that neither Beam Search nor the DP Heuristic are well-suited to the problem that 

we are studying.  Both methods were designed for problems in which it is not possible to 

enumerate the combination of possible products.  In this setting enumeration is possible: 

the nine product features and price yield just 448 different combinations of bags.  

Nonetheless, both of the methods performed well, generally reaching a solution that was 

within 2-3% of the optimal design.  The Beam Search did find the optimal solution in one 

of the ten trials, but exhibited fairly high variance, with one trial yielding an outcome that 

was almost $1,300 (9.4%) less than the optimal outcome. 

 

Coordinate Ascent had the lowest average earnings and did not find the optimal outcome 

in any of the ten trials. The average earnings for this method were just over 3% less than 

the optimal solution.  While the differences in average earnings might appear small, it is 
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important to remember that these numbers do not account for fixed costs.  If profit 

margins net of fixed costs are low, then small differences in gross earnings could imply 

substantial differences in net earnings.  For example, if fixed costs are $12,000, then net 

earnings when using the Coordinate Ascent are on average 27% lower than the earnings 

under Simulated Annealing and Product Swapping. 

 
Table 1. Initial Comparison of Methods  

 

Attribute Space Methods 
Product Space 

Methods 
Partially Formed 

Products   Lagrangian 
Relaxation Coordinate 

Ascent 
Genetic 

Algorithm 
Simulated 
Annealing 

Greedy 
Heuristic 

Product-
Swapping  

DP 
Heuristic 

Beam 
Search 

Computed Earnings         
Trial 1  13,739 13,686 13,739 13,739 13,401 13,739 13,624 13,739 
Trial 2  13,515 13,739 13,739  13,739 13,624 13,701 
Trial 3  13,511 13,739 13,739  13,739 13,559 13,482 
Trial 4  13,478 13,739 13,739  13,739 13,539 13,482 
Trial 5  13,277 13,739 13,739  13,739 13,471 13,465 
Trial 6  13,243 13,739 13,739  13,739 13,380 13,337 
Trial 7  13,162 13,739 13,739  13,739 13,348 13,337 
Trial 8  13,096 13,607 13,739  13,739 13,311 13,204 
Trial 9  12,982 13,607 13,739  13,739 13,281 13,108 
Trial 10  12,792 13,435 13,739  13,739 13,211 12,452 

Average 
earnings 13,739 13,274 13,682 13,739 13,401 13,739 13,435 13,330 

Percentage   
of optimal  100.0% 96.6% 99.6% 100.0% 97.5% 100.0% 97.8% 97.0% 

Standard 
deviation  277 103 - - - 149 366 

Local Optima 
Guaranteed? Yes Yes No Yes No Yes No No 

Computational Intensity       

Average   
Run Time  0.4 sec 14.9 sec 166.3 sec 0.4 sec 2.0 sec 2.6 sec 1.0 sec 

Total 
Evaluations  1,000 41,000 290,000 2,240 7,788 7,367 12,221 

Evaluations 
per second  2,500 2,752 1,744 5,600 3,894 2,833 12,221 

Subjective 
Complexity Very High Low Medium Medium Low Low High High 
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There have been previous comparisons of selected pairs of these methods.  Reassuringly, 

the findings reported in Table 1 are consistent with these comparisons.  For example, 

Balakrishnan and Jacob (1996) present results comparing Genetic Algorithms and the DP 

Heuristic.  Their findings also favor the Genetic Algorithm. Similarly, Alexouda and 

Paparizzos (2001) find that Genetic Algorithms outperform Beam Search, while Steiner 

and Hruschka (2003) present evidence that Genetic Algorithms outperform the Greedy 

Heuristic.     

 

To help evaluate these findings, we also investigated two random strategies for choosing 

bags.  In the first random strategy we randomly chose five bags from the set of 448 

possible bags.  The average earnings level reached in one hundred random solutions was 

only $8,071 (58.7% of the optimum).  In the second random strategy we first chose three 

bags to undercut the competitors and then randomly selected the other two bags.  To 

undercut the competitors we either matched the features and undercut the price, or 

matched the price and added an additional feature.  One hundred repetitions of this 

strategy yielded average earnings of $9,458 (68.8% of the optimum).   

 

Computational Intensity 

There is wide variation in the computational intensiveness of the methods, with running 

times ranging from 0.4 seconds for the DP Heuristic to almost 3 minutes for Simulated 

Annealing.  In general, the more computationally intensive a method is, the better it 

performs.  We summarize this relationship in Figure 2, where we present a scatter plot of 

the average accuracy (earnings) and the average running time.  The outlier to this trend is 

Product Swapping, which quickly achieves the maximum possible earnings using a 

relatively small number of evaluations.  In general, the methods that operate in product 

space tend to outperform other methods with similar running times.  The Product-

Swapping Heuristic outperforms Beam Search and the DP Heuristic, while the Greedy 

Heuristic outperforms Coordinate Ascent.   
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Figure 2.  Accuracy versus Running Time 
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Complexity 

The moderately complex methods do not appear to offer major advantages over the 

simple ones.  Simulated Annealing consistently finds the global optimum but the running 

time for this method is more than ten times longer than that of any other method.  The 

other relatively complex methods include the Genetic Algorithm, the DP Heuristic, and 

Beam Search.  These methods all under-perform the relatively simple Product-Swapping 

Heuristic. 

 

These results should be interpreted with a number of caveats.  First, each of the complex 

methods requires some problem-specific fine-tuning of parameter values and other 

aspects of the algorithms.  While we have tuned each method to this problem, it is 

possible that alternative implementations would lead to superior performance.  Moreover, 

methods that perform poorly on average but exhibit a large standard deviation in earnings 

can do well if they are run a sufficiently large number of times and the best outcome is 

used.  This point is well illustrated by the performance of Beam Search, which has a 

relatively poor average performance, but reaches the optimal solution in one trial. 
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Robustness Testing 

We tested the robustness of our results by perturbing the original partworth estimates for 

the 324 respondents.  These perturbations were accomplished by adding normally 

distributed perturbation terms to the original partworths: 

 

, ,i j i j i ju u′ = + ε ,         (1) 

 

where u is the original partworth for respondent i on product feature j,ε  is a zero-

mean normally distributed perturbation term and is the perturbed partworth.  The 

standard deviation of the perturbations was obtained by using the standard errors for the 

respective terms.  These standard errors were provided by the regression equations 

used to estimate eachu .  We repeated this process 20 times, obtaining 20 sets of 

perturbed partworths for each respondent (in addition to the original partworths). 

,i j ,i j

,i ju′

,i ju

,i j

 

These perturbed partworths offer two approaches for evaluating the robustness of our 

findings.  Under the first approach, we can interpret the perturbed partworths as new 

values for the “true” partworths.  We can then use the 20 sets of perturbed partworths to 

evaluate how robust our findings in Table 1 are to changes in the true partworths. 

 

Under the second approach, we can treat the perturbation terms as measurement error 

introduced by the data collection and estimation procedures.  Under this interpretation, 

there is only one set of “true” partworths: the original partworths that we analyzed in 

Table 1.  However, we assume that the researcher does not observe these true partworths 

and instead observes a set of sample partworths that are subject to measurement error.  

We have 20 sets of these sample partworths for each respondent.  This approach allows 

us to evaluate how well each of the methods performs when the conjoint data on which 

they rely is subject to measurement error. 
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Approach 1: Perturbed Partworths Are The “True” Partworths 

In Table 2 we compare how well the methods performed on the 20 sets of new “true” 

partworths.  To calculate the results for Lagrangean Relaxation we implemented the 

Lagrangean Relaxation method separately on each of the 20 new sets of partworths.  

Each implementation took approximately 24 hours, and so this was a very lengthy 

procedure.  However, it provided the optimal outcome for all 20 new datasets.  Because 

the optimal earnings vary for each dataset, the “Percentage of Optimal” metric is 

calculated for each dataset and then averaged across the 20 datasets.  Similarly, the 

“Average Rank” ranks the earnings of the methods on each dataset (where the most 

profitable method receives a rank of “1”) and then averages this rank across datasets. 

 
 

Table 2.  First Robustness Check 
Perturbed Partworths Are The “True” Partworths  

 

Attribute Space Methods 
Product Space 

Methods 
Partially Formed 

Products   Lagrangian 
Relaxation Coordinate 

Ascent 
Genetic 

Algorithm 
Simulated 
Annealing 

Greedy 
Heuristic 

Product-
Swapping  

DP 
Heuristic 

Beam 
Search 

Average Earnings 13,520 12,752 13,485 13,520 13,148 13,456 13,044 13,259 

% of Optimal  100.0% 94.3% 99.7% 100.0% 97.3% 99.5% 96.5% 98.1% 

Average Rank  5.9 1.6 1.0 5.3 2.4 5.6 4.3 

Standard Deviation 203 605 210 203 223 184 303 358 

 

The average optimal earnings under the 20 perturbed datasets is $13,520.  This is lower 

than the earnings under the original partworths ($13,739), which is an interesting and 

unexpected result.   Our intuition for this outcome is that the perturbations increase the 

heterogeneity of the 324 respondents.  This is confirmed by calculating the variance of 

the partworths across the 324 respondents: the variance of the partworths is higher in the 

perturbed datasets than in the original dataset.  As the level of heterogeneity increases, it 

becomes more difficult to satisfy a large number of customers with a small product line.  

In particular, the optimal product line containing five bags yields lower expected utilities 

for the 324 respondents for the perturbed datasets.  At extreme levels of heterogeneity, 
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each respondent would prefer a unique bag.  At the other extreme, if all customers were 

homogeneous, then they would all prefer the same bag. 

 

Reassuringly, the other findings in Table 2 confirm the robustness of our earlier findings.  

The methods that performed well on the original dataset (Table 1) also perform well on 

the perturbed datasets.  Simulated Annealing, Product Swapping and the Genetic 

Algorithm have average earnings within 1% of the optimum, while the Greedy Heuristic, 

Coordinate Ascent, the DP Heuristic, and Beam Search do less well. 

 

Approach 2:  Perturbations Represent Measurement Error 

In this second approach, we assume that the original data are consumers’ true partworths, 

and that the 20 perturbed datasets represent measured partworths with measurement error 

equal to the perturbations.  The optimization methods are applied to the perturbed 

datasets, and so they optimize over data containing measurement error.  The “optimal” 

product lines computed using the perturbed data are then evaluated on the original data 

containing the “True” partworths.  In this manner, we can compare the sensitivity of the 

methods to measurement error.   

 

Our findings are reported in Table 3.  The “Average Earnings” and “Average Rank” are 

calculated in a similar manner as in Table 2.  However, in this case the earnings and rank 

are evaluated using the original (unperturbed) data.   

 

Once again, the methods that performed well on the original dataset (Table 1) also 

perform well in this robustness check.  Simulated Annealing, Product-Swapping and the 

genetic Algorithm have average earnings within 3% of the true optimum.  Most methods 

now perform 2% to 4% worse than they do when we assume the dataset is 100% 

accurate, reflecting the loss of information due to measurement error.  Because 

measurement errors affect most of the methods to a similar extent, there is little change in 

the relative performance of the methods.  Across the seven methods, the correlation 

coefficient in the Average Earnings between Tables 2 and 3 is 0.97.   
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Table 3. Second Robustness Check  
Perturbations Represent Measurement Errors 

 

Attribute Space Methods 
Product Space 

Methods 
Partially Formed 

Products   Lagrangian 
Relaxation Coordinate 

Ascent 
Genetic 

Algorithm 
Simulated 
Annealing 

Greedy 
Heuristic 

Product-
Swapping  

DP 
Heuristic 

Beam 
Search 

Average earnings 13,739 12,756 13,403 13,455 13,237 13,351 13,140 13,284 

% of optimal  100.0% 92.8% 97.6% 97.9% 96.3% 97.2% 95.6% 96.7% 

Average rank  5.6 2.5 1.8 4.7 2.8 5.0 3.8 

Standard deviation  632 139 147 137 253 277 240 

Note: Lagrangian Relaxation was run on the original dataset (with no assumed measurement error). 
 
 

6. Conclusions 
We have compared a broad range of optimal product line design methods on a realistic 

problem.  The comparisons take advantage of recent advances that make it possible to 

identify the optimal solution to problems that are too large for complete enumeration.  

Somewhat surprisingly, the findings suggest that it is relatively easy to generate near-

optimal solutions.  Three of the methods, Simulated Annealing, Product-Swapping and 

Genetic Algorithms perform particularly well, consistently reaching near optimal 

solutions even in the presence of measurement error.   

 

The Product-Swapping heuristic is remarkable for its simplicity, yet it is also extremely 

efficient at computing an excellent solution, thus defying the conventional wisdom that 

sophisticated algorithms outperform their simplistic counterparts.  The performance of 

this heuristic suggests that the optimal product line design problem may be far easier to 

solve in practice than indicated by complexity theory.  This fortunate gap between actual 

solvability and theoretical solvability has been observed for certain other “hard” 

combinatorial optimization problems, most notably the traveling salesman problem (see 

Gutin and Punnen 2002) and the knapsack problem (see Kellerer, Pferschy, and Pisinger 

2004).  Relatively simple heuristics have also proven successful at solving large versions 

of these theoretically hard combinatorial problems. 
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We caution that the findings are subject to several potential limitations.  The first 

limitation is that our measure of accuracy presumes that the partworths accurately 

describe actual customer behavior.  Although we were able to demonstrate that the results 

are robust to moderately large unbiased errors in the partworth estimates, they may not 

survive systematic biases in these estimates.  Of course this limitation relates not just to 

optimization, but to conjoint analysis itself.  If conjoint analysis provides inaccurate 

predictions of market share, then little information is learned from the analysis.  If these 

biases can be predicted, it may be possible to develop a model that does describe actual 

behavior.  For example, Kivetz, Netzer, and Srinivasan (2003) find that modifying 

conjoint analysis to incorporate a compromise effect significantly improves choice 

predictions.  Further research would then be required to investigate how such 

modifications to the objective function affect the relative performance of the different 

optimization methods.   

 

A related issue is whether cost predictions are accurate enough to make optimal product 

line design meaningful.  Srinivasan, Lovejoy, and Beach (1997) find that for some 

product types a simple linear cost model leaves much of the variance in product cost 

unexplained.  Again, if it were possible to develop a more realistic model of product cost, 

the optimization methods could be modified to use the improved predictions.  However, 

it is not clear how well the optimization methods would perform on the modified 

problem.     

 

A third concern is that none of the optimization methodologies consider the competitive 

response to new product introductions.  The optimal solutions all predict large market 

shares for the focal firm, which could reasonably be expected to provoke an aggressive 

competitive reaction.  Dobson and Kalish (1988) develop an optimization methodology 

that accounts for price response by competitors, but at the cost of significantly increased 

computation times.  Developing an optimization methodology that adequately accounts 

for competitive reaction and is tractable for large-scale design problems remains an 

important challenge for future research. 
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Finally, while we have been able to evaluate a product line design problem that is 

dramatically larger than those previously studied, the problem is still at the lower bound 

of problems that firms would like to solve in practice.  In time, as both the algorithms and 

computational power improve, we anticipate that the frontier of problems that can be 

evaluated will continue to extend.  
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Appendix.  Implementation Details  
 
Genetic Algorithms 
 
Our genetic algorithm implementation starts with a population of 500 randomly chosen 
product lines.  The earnings level associated with each of these initial solutions is tested, 
and the 250 with the highest earnings levels are chosen to move on and create the next 
generation of solutions.  Of these 250 survivors, 125 pairs are chosen at random (with 
replacement) to “mate” and produce a total of 250 offspring.  Although the literature 
suggests a number of different ways to create these offspring, in our implementation each 
attribute of each offspring has a fifty percent chance of taking on the value of each of its 
parents.  For example, if the second product in one of the parent product lines has a size 
attribute set to “large” and the second product in the other parent has a size attribute set to 
“small,” each of the offspring produced has a fifty percent chance of having a second 
product that is large and a fifty percent chance of having a second product that is small.  
After this process of reproduction takes place, each of the 500 current solutions (250 
original solutions plus 250 offspring) is copied to produce 500 new solutions.  These new 
solutions then undergo a process of mutation, in which each feature of each solution is 
changed with a random probability (we used a mutation rate of 5%).  Finally, of the 1,000 
total solutions now under consideration, the 500 with the highest earnings level move on 
to form the next generation.  This process continues until a defined stopping condition is 
met, which in our implementation occurs when the entire population is homogeneous, 
that is, all 500 product lines are the same. 
 
Simulated Annealing 
 
Our implementation of simulated annealing was done following the guidelines in Aarts, 
Korst, and van Laarhoven (1997).  Like the coordinate ascent algorithm, simulated 
annealing tests random feature changes and accepts all changes that increase earnings.  
The key feature of simulated annealing is that it also accepts some changes that reduce 
earnings.  If a feature change reduces earnings, then the probability of accepting the 
change is given by the following exponential function: 
 







 −=

C
sOldEarningsNewEarninggeAcceptChanP exp)(  

 
where C is a control parameter that is analogous to temperature in the physical annealing 
process.  Note that the greater the drop in earnings, the lower the probability that the 
feature change will be accepted.  Also, as the control parameter C (the “temperature”) 
drops, the probability of a given change being accepted drops as well. 
 
The term “cooling schedule” refers to the choice of a set of values of the control 
parameter C and the number of feature changes to test for each value.  Although Aarts, 
Korst, and van Laarhoven (1997) offer some general guidelines, setting the cooling 
schedule is partly a matter of trial-and-error and problem-specific experience.  We found 
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that it was best to start with a value large enough that almost all feature changes are 
accepted, calculate each subsequent value by multiplying the current value by 0.8, and 
end with a value small enough that very few negative changes are accepted.  We divided 
the problem into 29 time stages, and tested 10,000 feature changes in each stage, yielding 
a total of 290,000 tested feature changes.  The control parameter was set at each stage 
according to the following schedule:  1443, 1154, 923, 739, 591, 473, 378, 303, 242, 194, 
155, 124, 99, 79, 63, 51, 41, 32, 26, 21, 17, 13, 11, 9, 7, 5, 4, 3, 0.1. 
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