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Abstract We study four measures of problem instance behavior that might
account for the observed differences in interior-point method (IPM) itera-
tions when these methods are used to solve semidefinite programming (SDP)
problem instances: (i) an aggregate geometry measure related to the primal
and dual feasible regions (aspect ratios) and norms of the optimal solutions,
(ii) the (Renegar-) condition measure C(d) of the data instance, (iii) a mea-
sure of the near-absence of strict complementarity of the optimal solution,
and (iv) the level of degeneracy of the optimal solution. We compute these
measures for the SDPLIB suite problem instances and measure the sam-
ple correlation (CORR) between these measures and IPM iteration counts
(solved using the software SDPT3) when these measures have finite values.
Our conclusions are roughly as follows: the aggregate geometry measure is
highly correlated with IPM iterations (CORR = 0.901), and provides a very
good explanation of IPM iterations, particularly for problem instances with
solutions of small norm and aspect ratio. The condition measure C(d) is also
correlated with IPM iterations, but less so than the aggregate geometry mea-
sure (CORR = 0.630). The near-absence of strict complementarity is weakly
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correlated with IPM iterations (CORR = 0.423). The level of degeneracy of
the optimal solution is essentially uncorrelated with IPM iterations.
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1 Introduction

When applied to the solution of semidefinite programming (SDP) problems,
modern interior-point methods (IPMs) enjoy both excellent theoretical com-
plexity (see [24]) as well as practical performance. Computational experience
has shown that state-of-the-art IPM software significantly outperforms the
best theoretical worst-case complexity in terms of the number of Newton-
type iterations for such algorithms (see [17]); indeed, the software SDPT3
solves 85 problems in the SDPLIB suite using between 10 and 60 IPM it-
erations. For these problems, the number of IPM iterations is essentially
uncorellated with traditional measures of problem size such as the num-
ber of equality constraints m or the dimension of the space of variables
n̄ of a primal SDP in standard form. (For example, we computed sam-
ple correlations of IPM iterations and these dimension meausures for the
85 SDPLIB instances, and obtained CORR(m, IPM Iterations) = 0.060 and
CORR(n̄, IPM Iterations) = −0.107.)

Herein we study the extent to which certain measures of problem in-
stance behavior might be correlated with the computational performance
of IPMs on SDP problems. We examine four measures of problem instance
behavior that might account for the observed differences in interior-point
method (IPM) iterations. Two of these measures were previously studied in
connection to the theoretical complexity of interior-point methods, namely
an aggregate geometry measure related to the primal and dual feasible re-
gions (aspect ratios) and norms of the optimal solutions developed in [7],
and the (Renegar-) condition measure C(d) of the data instance studied in
[19]. In addition, we also develop and study a measure of the near-absence of
strict complementarity of the optimal solution, as well as a measure of the
level of degeneracy of the optimal solution. (These two measures have been
shown to be related to the superlinear convergence of some variants of the
interior point method, see [2].) We compute these measures for the SDPLIB
suite problem instances and measure the correlation between these measures
and IPM iteration counts when these instances are solved using the software
SDPT3.

Our conclusions are roughly as follows: the aggregate geometry measure is
highly correlated with IPM iterations (CORR = 0.901), and provides a very
good explanation of IPM iterations, particularly for problem instances with
solutions of small norm and aspect ratio. The condition measure C(d) is also
correlated with IPM iterations, but less so than the aggregate geometry mea-
sure (CORR = 0.630). The near-absence of strict complementarity is weakly
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correlated with IPM iterations (CORR = 0.423). The level of degeneracy of
the optimal solution is essentially uncorrelated with IPM iterations.

The rest of the paper is organized as follows. We present the SDP problem
format and notation used in this paper in the remainder of this introductory
section. In Section 2 we present our aggregate geometry measure and com-
putational results. We discuss the computation of the condition measure and
present associated computational results in Section 3. We present a mea-
sure of non-strict complementarity and associated computational results in
Section 4. We present our measure of degeneracy and associated computa-
tional results in Section 5. Summary conclusions and some further issues are
discussed in Section 6.

1.1 SDP Problem Format and Notation

We consider the standard form primal convex conic optimization problem:

(CP )
minx 〈c, x〉
s.t. A(x) = b

x ∈ K ,
(1)

where x, c ∈ <n, b ∈ <m, A(·) is a linear operator from <n to <m, 〈 , 〉 is
a dot product on <n, and K is a closed convex cone in <n. The (Lagrange)
conic dual problem of (CP ) is:

(CD)
maxy,z bT y

s.t. A∗(y) + z = c
z ∈ K∗ ,

(2)

where K∗ is the (positive) dual cone, i.e., K∗ := {z ∈ <n : 〈z, x〉 ≥
0 for all x ∈ K}, and A∗(·) is the adjoint operator of A(·), namely A∗(·)
satisfies yT A(x) = 〈A∗(y), x〉 for all x, y, and for the space <m we consider
the coordinate-wise dot-product 〈y, b〉 = yT b.

Let Sk denote the space of k×k symmetric matrices, and let Sk
+, Sk

++ ⊂
Sk denote the cones of positive semi-definite and positive definite symmetric
matrices, respectively. Let “�” and “�”denote the partial orderings induced
by Sk

+ and Sk
++, respectively. Similarly, let <k

+,<k
++ ⊂ <k denote the cones

of nonnegative k-vectors (the nonnegative orthant) and positive k-vectors,
respectively. The problem instances in the SDPLIB suite are conic optimiza-
tion problems of the form (1) where K is the cartesian product of one or more
semidefinite cones and the nonnegative orthant. A problem instance in the
SDPLIB can therefore be characterized as follows: let Ss denote the space of
symmetric block-diagonal matrices with ns blocks of dimensions s1, . . . , sns ,
and let Ss

+, Ss
++ ⊂ Ss denote the cones of positive semidefinite and positive

definite matrices in Ss, respectively. We also consider that matrices in Ss are
of size |s| × |s|, with |s| =

∑ns

j=1 sj . Each problem instance in the SDPLIB
suite can be written as:

(SDP )
min cs • xs + (cl)T xl

s.t. As
i • xs + (Al

i)
T xl = bi, i = 1, . . . ,m

xs ∈ Ss
+, xl ∈ <nl

+

(3)
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where the dot product in the product space is given by 〈(cs, cl), (xs, xl)〉 =
〈cs, xs〉+ 〈cl, xl〉 = cs • xs + (cl)T xl and “•” denotes the trace inner product
〈cs, xs〉 := trace((cs)T xs). Here, (Al

i)
T denotes the ith row of the matrix

Al ∈ <m×nl and we let As denote the linear operator that maps Ss to <m

by Asxs = (As
1 • xs, . . . , As

m • xs)T . Note that with

K := Ss
+ ×<

nl
+ (4)

we see that (SDP ) is an instance of (CP ). Note also that the linear operator
As is indexed by a triplet: As

ijf = (As
i )jf , so that As

ijf is the entry in row
j and column f of the matrix As

i , and that As
i ∈ Ss, i = 1, . . . ,m. We let

As
•jf represent the m-dimensional vector of the j, f entries of the matrices

As
1, . . . , A

s
m. The dual problem of (SDP ) is given by

(SDD)

max bT y
s.t.

∑m
i=1 As

i yi + zs = cs

(Al)T y + zl = cl

zs ∈ Ss
+, zl ∈ <nl

+ .

(5)

We let e = (1, . . . , 1) ∈ <nl , let ei denote the i-th canonical vector of appro-
priate dimension, and let I denote the identity matrix in appropriate spaces.
If x, z ∈ <k are vectors, let x◦z := (x1z1, . . . , xkzk)T , and for P , Q arbitrary
matrices, let P ⊗ Q denote the Kronecker matrix product of P and Q. If

x ∈ <k is a vector, let ‖x‖p :=
(∑k

j=1 |xj |p
)1/p

denote the usual Lp-norm.

If x ∈ Sk is a matrix, let λ(x) denote the k-vector of eigenvalues of x, and

let ‖x‖Ep :=
(∑k

j=1 |λj(x)|p
)1/p

denote the Lp-norm of the eigenvalues of x

(p = 1 is the Ky Fan norm, p = 2 is the Frobenius norm, see [3]). Given a
norm ‖ · ‖ on a vector space, let ‖ · ‖∗ denote the (dual) norm on the dual
vector space. Let B(x̄, r) denote the ball of radius r centered at the point x̄,
namely B(x̄, r) := {x | ‖x − x̄‖ ≤ r}, and let dist(x, T ) denote the distance
from a point x to the set T . Given a linear operator A mapping <k to <l with
norms on these spaces given by ‖ · ‖X and ‖ · ‖Y , respectively, the operator
norm of A is defined to be ‖A‖ := sup{‖Ax‖Y : ‖x‖X ≤ 1}.

2 Aggregate Geometry Measure

2.1 Motivation

In [7] two primal geometry measures were used to provide a theoretical com-
plexity bound for a particular primal-based IPM for convex optimization
problems in a format more general than the conic form (CP ). The two primal
geometry measures will be denoted here by Dε

p and gp and will be reviewed
shortly; essentially Dε

p measures the norm of the largest ε-optimal primal so-
lution and gp is an “aspect ratio” measure that is smaller to the extent that
there is a primal feasible solution of relatively small norm whose distance
from the boundary of the feasible region is relatively large. It is shown in
[7] that a theoretical bound on IPM iterations of the primal-based algorithm
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involves the term O(
√

ϑ(log(Dε
p) + log(gp))) (ϑ is the complexity parameter

of the barrier function used therein). Herein we test the practical relevance of
these geometry measures as applied to SDP problems solved using a standard
primal-dual IPM. However, because SDP problems are solved by primal-dual
algorithms (where the roles of the primal and dual are interchangeable), we
also consider dual versions Dε

d and gd of these geometry measures (defined
on the dual feasible region) and test the correlation of IPM iterations with
the logarithm of the simple aggregate measure:

gm :=
(
Dε

p × gp ×Dε
d × gd

) 1
4 ;

note that the geometric mean is appropriate since we are interested in study-
ing the correlation between IPM iterations and log(gm).

2.2 Primal Geometry Measures

For the primal conic problem (CP ), the first primal geometry measure, orig-
inally introduced in [7], is the maximum norm over all ε-optimal primal
solutions, which we denote by Dε

p. Given a norm ‖ · ‖ specified for the space
of variables x, Dε

p is defined as:

(PM) :

Dε
p := maximumx ‖x‖

s.t. A(x) = b
x ∈ K
〈c, x〉 ≤ VAL + ε ,

(6)

where VAL is the optimal objective function value of (CP ). At first glance it
may seem odd to maximize rather than minimize in defining Dε

p. However,
consider the ill-posed case when VAL is finite but the set of optimal solutions
is unbounded and hence Dε

p = +∞. Then the dual feasible region has no
interior, and we would expect it to be more difficult for an interior-point
method to compute an approximate solution of (CP ). Also, in [6] it is shown
that Dε

p is inversely proportional to the size of the largest ball contained in
the level sets of the dual problem, and so Dε

p contains specific information
about the interior of the dual feasible region in a neighborhood of the dual
optimal solution(s).

Note that (PM) is in general a non-convex optimization problem, which is
disconcerting. However, (PM) is a convex optimization problem if the norm
‖ · ‖ has the property that it is a linear function on K. Specifying (CP ) to
(SDP ) where K is given by (4), we define the following norm on the vector
space of variables:

‖x‖ = ‖(xs, xl)‖ := ‖xs‖E1 + ‖xl‖1 . (7)

Proposition 1 Suppose that K is given by (4), and that ‖x‖ = ‖(xs, xl)‖ is
defined using (7). Then ‖x‖ = I • xs + eT xl for all x ∈ K, and

PM :

Dε
p = maximumx I • xs + eT xl

s.t. Asxs + Alxl = b
xs ∈ Ss

+, xl ∈ <nl
+

cs • xs + (cl)T xl ≤ VAL + ε .

(8)
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Proof From (4) and (7) we have that ‖x‖ =
∑s

j=1 |λj(xs)| +
∑nl

i=1 |xl
i| =

eT λ(xs)+eT xl, which implies the equivalent objective function since eT λ(xs) =
trace(xs) = I •xs. We complete the proof by replacing the definitions in (6).

ut
The second primal geometry measure we consider (also originally intro-

duced in [7]) is defined for problem (CP ) to be the optimal objective function
value of the optimization problem:

Pgp
:

gp := minimumx max
{
‖x‖, ‖x‖

dist(x, ∂K)
,

1
dist(x, ∂K)

}
s.t. A(x) = b

x ∈ K .

(9)

Note that gp will be smaller to the extent that the feasible region of (CP )
contains a point x whose norm is not too large and whose distance from ∂K
is not too small. (For a further discussion of gp see [7].) We can compute the
value of gp by instead working with the following convex problem:

Pt∗p :

t∗p := maximumw,θ,t t
s.t. A(w)− bθ = 0

B(w, t) ⊂ K
‖w‖ ≤ 1
t ≤ θ ≤ 1 .

(10)

(Recall that B(w, t) denotes the ball centered at w with radius t.) It is easy
to show that gp = 1

t∗p
under the transformations:

x← w

θ
and (w, θ, t)←

(
x

max{‖x‖, 1}
,

1
max{‖x‖, 1}

,
min{dist(x, ∂K), 1}

max{‖x‖, 1}

)
.

While Pt∗p is a convex program, it is not clear if the constraint “B(w, t) ⊂ K”
can be conveyed efficiently. Specifying (CP ) to (SDP ) where K is given by
(4), we see that this can be done for our particular choice of norm:

Proposition 2 Suppose that K is given by (4), and that ‖x‖ = ‖(xs, xl)‖ is
defined using (7), and let r ≥ 0 be given. Then

B(x, r) = B((xs, xl), r) ⊂ K if and only if xs − rI ∈ Ss
+, xl − re ≥ 0 ,

whereby

Pt∗p :

t∗p := maximumw,θ,t t
s.t. Asws + Alwl − bθ = 0

ws − tI ∈ Ss
+

wl − te ≥ 0
I • ws + eT wl ≤ 1
t ≤ θ ≤ 1 .

(11)
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Proof By Proposition 1, we have ‖w‖ = I • ws + eT wl for (w, θ, t) fea-
sible for (11) with t ≥ 0. We only need to prove the characterization of
the inclusion constraint, since Problem (11) follows immediately from (10)
with that characterization. Assume first that B(x, r) ⊂ K. Let v be a
unit eigenvector corresponding to the smallest eigenvalue λmin(xs) of xs.
Then y := (xs − rvvT , xl) ∈ B(x, r), which implies that λmin(xs) − r ≥
λmin(xs − rvvT ) ≥ 0, and therefore xs − rI ∈ Ss

+. Likewise, for any j ∈
{1, . . . , nl}, yj = (xs, xl − rej) ∈ B(x, r), which means that xl

j − r ≥ 0
and therefore xl − re ≥ 0. For the converse, assume that xl − re ≥ 0 and
xs− rI ∈ Ss

+, which is equivalent to λi(xs) ≥ r. Let y ∈ B(x, r), this implies
that |yl

j − xl
j | ≤ r for all j ∈ {1, . . . , nl}, which gives yl

j ≥ xl
j − r ≥ 0. Since

y ∈ B(x, r) we also have that |λi(ys − xs)| ≤ r for all i ∈ {1, . . . , |s|}. Let-
ting w1, . . . , ws and z1, . . . , zs be the orthonormal bases of eigenvectors for
xs and ys − xs, we have for any vector v, vT ysv = vT xsv + vT (ys − xs)v =∑s

i=1 λi(xs)
(
vT wi

)2 +
∑s

i=1 λi(ys − xs)
(
vT zi

)2 ≥ r‖v‖22 − r‖v‖22 = 0. Thus
we have that y ∈ K. ut

Taken together, Propositions 1 and 2 demonstrate that if we use the spec-
ified norm (7), then Dε

p and gp can each be computed by solving an associated
convex optimization problem whose size and structure is compatible with the
original problem instance (SDP ).

2.3 Dual Geometry Measures and Aggregate Measure gm

Given a norm ‖ · ‖ on the space of dual cone variables z, we define Dε
d and

gd as the following obvious analogs of Dε
p and gp for the dual problem (CD):

(DM) :

Dε
d := maximumy,z ‖z‖

s.t. A∗(y) + z = c
z ∈ K∗

bT y ≥ VAL− ε

(12)

and

Pgd
:

gd := minimumy,z max
{
‖z‖, ‖z‖

dist(z, ∂K∗)
,

1
dist(z, ∂K∗)

}
s.t. A∗(y) + z = c

z ∈ K∗ .

(13)

Here selecting the proper norm is again crucial to obtain tractable formula-
tions of these problems. Similar to the results in Propositions 1 and 2, if we
use the specified norm (7) for the dual cone variables z = (zs, zl), we can
compute Dε

d and gd by solving the problems:

(DM) :

Dε
d := maximumy,z I • zs + eT zl

s.t.
∑m

i=1 As
i yi + zs = cs

(Al)T y + zl = cl

zs ∈ Ss
+, zl ∈ <nl

+

bT y ≥ VAL− ε

(14)
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and

Pt∗
d

:

t∗d := maximumv,u,θ,t t
s.t.

∑m
i=1 As

i vi + us − csθ = 0
(Al)T v + ul − clθ = 0
us − tI ∈ Ss

+

ul − te ≥ 0
I • us + eT ul ≤ 1
t ≤ θ ≤ 1 ,

(15)

and setting gd = 1
t∗
d
.

We aggregate the four geometry measures Dε
p, gp, Dε

d, and gd into the
following single aggregate measure using their geometric mean:

gm :=
(
Dε

p × gp ×Dε
d × gd

) 1
4 .

Roughly speaking, gm is smaller to the extent that the primal and dual
problems have near-optimal solutions with small norm, and whose feasible
regions have points of small norm that are far from the boundary of the
respective cones.

2.4 Computation of Geometry Measures for the SDPLIB Suite

We computed the aggregate geometry measure gm (by computing Dp, gp, Dd,
and gd) for the SDPLIB suite of 92 semidefinite optimization problems, which
are available on the worldwide web at http://www.nmt.edu/∼sdplib/. Of
the 92 problems that make up the SDPLIB suite, we removed four instances
that are infeasible (infd1, infd2, infp1, infp2) and three large prob-
lems for which even computing a solution was excessively difficult (maxG55
(5000×5000), maxG60 (7000×7000), thetaG51 (6910×1001)), yielding a work-
ing set of 85 problem instances that formed the basis of our computational
experiments. All computation was performed using the software SDPT3-3.1,
see [23,22].

We used the following methodology to specify the value of ε for the formu-
lation and computation of Dε

p and Dε
d. Let xk and (yk, zk) be the approximate

optimal solutions returned by a solver to the original conic problem (SDP ).
These are approximate optimal solutions: they satisfy feasibility and comple-
mentary slackness within a given tolerance. Because setting very small values
of ε can result in formulating a nearly-infeasible problem to determine either
Dε

p or Dε
d, we used the following rule for assigning the value of ε for each

problem instance:

ε =
1
2

max
{
zT
k xk, (cT xk − bT yk), 10−3

}
,

which was designed to set ε to be one half of the computed duality gap. To
ensure that (PM) and (DM) are feasible we replace the objective function
constraints by 〈c, x〉 ≤ 〈c, xk〉+ε for (PM) and by bT y ≥ bT yk−ε for (DM).
We denote the values obtained from these modified versions of (PM) and
(DM) as Dp and Dd, respectively.
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Table 5 in the Appendix contains the resulting values of gm as well as Dp,
gp, Dd, and gd for the 85 SDPLIB problems under consideration. Notice from
Table 5 that gp =∞ ⇐⇒ Dd =∞ and gd =∞ ⇐⇒ Dp =∞. This follows
since for a primal and dual feasible conic problem, the objective function
level sets of the primal problem are unbounded (Dp = ∞) if and only if
the dual problem contains no slack vector in the interior of the dual cone
(gd =∞), and similarly for the dual. Table 1 presents summary statistics for
the four geometry measures: 32 of the 85 SDPLIB problem instances have no
primal interior solution within software tolerance; however, all 85 instances
have dual interior solutions.

Table 1 Summary Statistics of Geometry Measures for 85 Problems in the SD-
PLIB Suite

Status Dp Dd gp gd

Finite 85 53 53 85
Infinite - 32 32 -

Total 85 85 85 85

In order to assess any relationship between the aggregate geometry mea-
sure gm and IPM iterations for the SDPLIB suite, we first solved and recorded
the IPM iterations taken by SDPT3 version 3.1 with default settings for the
85 SDPLIB suite problems considered herein. Algorithm SDPT3-3.1 exits
with an approximate solution if either (i) it achieves a small relative error
“err” (defined below), (ii) it identifies the problem as primal or dual infea-
sible, or (iii) it perceives slow progress or encounters numerical difficulties.
Regardless of the exiting condition, we recorded the iteration count as a mea-
sure of the difficulty faced by the solver to reach termination on each problem
under the same default settings. Table 5 in the Appendix presents the IPM
iterations obtained by SDPT3-3.1 with default settings as well as the relative
error, which SDPT3-3.1 defines as:

err := max
{

〈x, z〉
max{1, (|〈c, x〉|+ |bT y|)/2}

,
‖A(x)− b‖
max{1, ‖b‖}

,
‖A∗(y) + z − c‖

max{1, ‖c‖}

}
,(16)

for instances in which the final iterate has err > 10−6. Figure 1 shows a his-
togram of IPM iterations for SDPT3-3.1 for the 85 problems in the SDPLIB
suite.

Figure 2 shows a scatter plot of the number of IPM iterations taken by
SDPT3 and log(gm) (all logarithms herein are base 10). In this and other
relevant figures, non-finite values of the measure are shown on the far right.
Figure 2 indicates that finite values of gm are highly linearly related to
IPM iterations. We also computed the sample correlation of log(gm) ver-
sus IPM iterations for the 53 finitely-valued instances, obtaining a value of
CORR (log(gm), IPM Iterations) = 0.901. These results indicate a signifi-
cant linear relationship between IPM iterations and log(gm). In particular,
note from Figure 2 and Table 5 that log(gm) explains particularly well the
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Fig. 1 Histogram of IPM Iterations taken by SDPT3-3.1 for 85 Problems in the
SDPLIB Suite

number of IPM iterations for problem instances where gm is relatively small
(say, ≤ 5000).

We also analyzed some different aggregate geometry measures based on
the four individual measures Dp, gp, Dd, gd, obtaining similar results. For
example, the aggregate measure GM := max{Dp, gp, Dd, gd} yields a cor-
relation of CORR

(
log(GM ), IPM Iterations

)
= 0.883, which is not appre-

ciably different from the corresponding value for gm.

3 Condition Number

Considering the cone K in the problem (CP ) to be fixed, a problem instance
is characterized by its data d = (A(·), b, c). Given a norm ‖ · ‖X for the
x variables and a norm ‖ · ‖Y for the space <m of the image of A(·), we
define the norm on the space of data d by ‖d‖ := max{‖A(·)‖, ‖b‖Y , ‖c‖X∗ }
where ‖A(·)‖ is the operator norm. Renegar’s theory of condition numbers for
(CP ) focuses on three quantities – ρP (d), ρD(d), and C(d), to bound various
behavioral and computational quantities pertaining to (CP ). The quantity
ρP (d) is called the “distance to primal infeasibility” and is defined as:

ρP (d) := inf{‖∆d‖ | Xd+∆d = ∅} ,

where Xd denotes the feasible region of (CP ):

Xd := {x ∈ <n | A(x) = b, x ∈ K} .
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Fig. 2 Scatter Plot of IPM iterations and log(gm) for 85 problems in the SDPLIB
Suite.

The quantity ρD(d) is called the “distance to dual infeasibility” for the dual
problem (CD) and is defined similarly to ρP (d) but using the dual problem
instead. The quantity C(d) is called the “condition number” of the problem
instance d and is a (positively) scale-invariant reciprocal of the smallest data
perturbation ∆d that will render the perturbed data instance either primal
or dual infeasible:

C(d) :=
‖d‖

min{ρP (d), ρD(d)}
. (17)

A problem is called “ill-posed” if min{ρP (d), ρD(d)} = 0, equivalently C(d) =
∞. These three condition measure quantities have been shown in theory to
be connected to a wide variety of bounds on behavioral characteristics of
(CP ) as well as the complexity of interior-point algorithms for (CP ), see the
literature review in [14].

In particular, it is shown in [19] that a theoretical bound on the num-
ber of iterations of a suitable IPM involves the term O(

√
ϑ log(C(d))) (ϑ

is the complexity parameter of the barrier function used therein). Further-
more, log(C(d)) is shown to have some explanatory value for IPM iteration
counts for the NETLIB suite of linear programming problems, see [14] as
well. Herein, just as we did with the aggregate geometry measure gm, we
test the correlation between log(C(d)) and IPM iteration counts for SDP
problems in the SDPLIB suite.
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3.1 Distances to infeasibility and norm of data

In order to estimate C(d) efficiently we need to compute and/or estimate the
three quantities ρP (d), ρD(d), and ‖d‖. The computation of these quantities
is hard or easy depending on the choice of norms, see [9]. Specifying to the
case of (SDP ) where K is defined by (4), we use the following choice of
norms:

‖x‖X = ‖(xs, xl)‖X := ‖xs‖E1 + ‖xl‖1 and ‖v‖Y := ‖v‖1 . (18)

We discuss the computation of ρP (d), ρD(d), and ‖d‖ below.

3.1.1 Computation of ρP (d)

With the choice of norms (18), it follows directly from Remark 6 of [8] that

ρP (d) = min
k=1,...,2m

ρk
P (d)

where

ρk
P (d) = miny,z,u max{‖A∗(y) + z‖X∗ , | − bT y + u|}

s.t. yd k
2 e

= (−1)k

z ∈ K∗, y ∈ <m, u ≥ 0 ,

(19)

for k = 1, . . . , 2m. However, noting from (18) that

‖z‖X∗ = ‖(zs, zl)‖X∗ = max{‖zs‖E∞, ‖zl‖∞} ,

problem (19) is equivalently:

ρk
P (d) = miny,z,u,γ γ

s.t.
∑n

i=1 As
i yi + zs = γI

(Al)T y + zl = γe

−bT y + u ≤ γ

yd k
2 e

= (−1)k

zs ∈ Ss
+, zl ∈ <nl , y ∈ <m, γ ∈ <, u ≥ 0 ,

(20)

for k = 1, . . . , 2m, which is a conic convex problem of size and structure com-
patible with the original dual problem instance (SDD). Therefore ρP (d) can
be computed by solving 2m SDP instances of compatible size and structure
as the original dual problem instance.
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3.1.2 Computation of ρD(d)

Using Theorem 2 of [8] and exchanging the roles of the primal and dual, it
follows that

ρD(d) = minx,g max
{
‖A(x)‖Y , |〈c, x〉+ g|

}
‖x‖X = 1
x ∈ K
g ≥ 0 ,

(21)

which is generally a non-convex problem due to the norm constraint “‖x‖X =
1.” However, under the choice of norms (18) ‖x‖X is a linear function on K
from Proposition 1, whereby (21) is equivalently:

ρD(d) = min γ
s.t. ‖Asxs + Alxl‖1 ≤ γ
|cs • xs + (cl)T xl + g| ≤ γ
I • xs + eT xl = 1
xs ∈ Ss

+, xl ∈ <nl
+ , g ≥ 0 ,

(22)

which can easily be converted to a conic convex optimization problem whose
size and structure is compatible with the original problem instance (SDP ).

3.1.3 Estimation of ‖d‖

Recalling that ‖d‖ := max{‖A(·)‖, ‖b‖Y , ‖c‖X∗ }, with the choice of norms
given by (18) we have ‖b‖Y = ‖b‖1 and ‖c‖X∗ = max{‖cs‖E∞, ‖cl‖∞}, whose
computation are straightforward. However, under this choice of norms we
have

‖A(·)‖ = max {‖Asxs + Alxl‖1 : ‖xs‖E1 + ‖xl‖1 ≤ 1}
= max

{
max‖xs‖E1≤1 ‖Asxs‖1,max‖xl‖1≤1 ‖Alxl‖1

}
= max

{
‖As‖E1,1, ‖Al‖1,1

}
= max

{
‖As‖E1,1, ‖Al

•1‖1, . . . , ‖Al
•nl
‖1

}
,

where Al
•j denotes the jth column of Al, and so the only difficulty in esti-

mating ‖d‖ lies in estimating ‖As‖E1,1. We use standard norm inequalities
to bound this quantity as follows:

Proposition 3 Let λmax
i denote the eigenvalue of As

i of largest absolute
value, let vi be the corresponding eigenvector normalized to ‖vi‖2 = 1, and
define x̂i := vi(vi)T . Then

L ≤ ‖As‖E1,1 ≤ U ,

where

U = min


s∑

j=1

s∑
f=1

‖As
•jf‖1,

√
m‖As‖E2,2, ‖(λmax

1 , . . . , λmax
m )‖1

 ,
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and

L = max

{
‖As‖E2,2√
|s|

, ‖Asx̂1‖1, . . . , ‖Asx̂m‖1

}
.

Proof From their definition we have that ‖x̂i‖E1 = 1, therefore ‖Asx̂i‖1 ≤
‖As‖E1,1 for all i = 1, . . . ,m. Using the well known relationship between
norms ‖y‖2 ≤ ‖y‖1 ≤

√
k‖y‖2 for y ∈ <k, we can show that 1√

|s|
‖As‖E2,2 ≤

‖As‖E1,1 ≤
√

m‖As‖E2,2. Now we have that ‖Asxs‖1 =
∑m

i=1 |As
i • xs| ≤∑m

i=1

∑s
j,f=1 |As

ijf ||xs
jf | ≤

∑s
j,f=1 ‖As

•,jf‖1, where we used the fact that
|xs

jf | ≤ ‖xs‖E1 ≤ 1. Finally, we use the eigenvalue-eigenvector decomposition
of As

i =
∑n

j=1(λi)jv
i
j(v

i
j)

T to show that |As
i •xs| ≤ |λmax

i |
∑s

j=1 |(vi
j)

T xsvi
j | ≤

|λmax
i |. The last inequality is because

∑s
j=1 |(vi

j)
T xsvi

j | ≤ 1 for any ‖xs‖E1 ≤
1. Therefore ‖As‖E1,1 ≤ ‖(λmax

1 , . . . , λmax
m )‖1. ut

Note that it can be readily shown that ‖As‖E2,2 = ‖[svec(As
1), . . . , svec(As

m)]‖2,2,
where svec(·) denotes the standard linear isometry between Ss and the vec-
tor space <n̄, where n̄ =

∑ns

j=1 sj(sj + 1)/2. Thus the quantity ‖As‖E2,2

in Proposition 3 can be computed easily by using variants of the Lanczos
method to compute the spectral-norm of the matrix [svec(As

1), . . . , svec(As
m)].

Therefore using Proposition 3 we can bound ‖d‖ as follows:

max
{
L, ‖Al

•1‖1, . . . , ‖Al
•nl
‖1, ‖b‖1, ‖cs‖E∞, ‖cl‖∞

}
≤ ‖d‖

and
‖d‖ ≤ max

{
U, ‖Al

•1‖1, . . . , ‖Al
•nl
‖1, ‖b‖1, ‖cs‖E∞, ‖cl‖∞

}
.

3.2 Computation of Condition Number Estimates for the SDPLIB Suite

The previous subsection shows that ρP (d) can be computed by solving 2m
SDP problems, ρD(d) can be computed by solving a single SDP problem, and
that lower and upper bounds on ‖d‖ can be computed using straightforward
matrix norms and maximum eigenvalue computations. This enables us to
then compute lower and upper bounds on C(d) using (17).

Table 6 in the Appendix contains the resulting computation of upper and
lower bounds on C(d) for the 85 problems in the SDPLIB suite. Blank en-
tries in the table indicate that we were unable to compute the corresponding
measure. We were able to estimate ‖d‖ and to compute ρD(d) for all 85 SD-
PLIB problems under consideration. However, we were not able to compute
ρP (d) for five problems, namely control11, equalG51, maxG32, theta6,
and thetaG11. These five problems have large values of m (1596, 1001, 2000,
4375, and 2401, respectively), rendering the computation of the 2m problems
needed for determining ρP (d) excessive.

Some summary statistics from Table 6 are presented in Table 2. These
statistics show that 48 out of 80 problems are well-posed, and the 32 prob-
lems that are ill-posed have primal distance to infeasibility equal to zero and
positive dual distance to infeasibility. For the 48 problems with finite C(d),
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the ratios between the upper and lower bounds on C(d) are less than 20.4,
see in Table 2. Therefore the logarithm of the geometric mean of the upper
and lower bounds on C(d) can differ from the true value of log(C(d)) by no
more 0.65 = log10(

√
20.4), and so these estimates are fairly good.

Table 2 Summary Statistics of Distances to ill-posedness for SDPLIB Suite

ρD(d)
Status 0 Positive Total

0 0 32 32
ρP (d) Positive 0 48 48

Total 0 80 80

Figure 3 shows a scatter plot of the number of IPM iterations taken by
SDPT3 and log(C(d)), using the average of logarithm of the lower and upper
bounds on C(d) from Table 6. Similar to the aggregate geometric measures,
non-finite values of C(d) are shown on the far right. The figure indicates
that finite values are related to IPM iterations. We computed the sample
correlation of log(C(d)) versus IPM iterations for the 48 problems with finite
C(d), obtaining a value of CORR(log(C(d)), IPM Iterations) = 0.630. These
results indicate a somewhat linear relationship between IPM iterations and
log(C(d)) that is not much different from that found on the NETLIB suite
of linear programming problems [14], but that is less significant than for the
aggregate geometry measure gm. We also considered other simple expressions
involving C(d) which are suggested by theory, such as

√
n log(C(d)) where

n := |s| + nl, but none showed a stronger correlation with IPM iterations
than log(C(d)).

Comparing Tables 5 and 6, one observes connections between values of the
geometry measures and values of C(d), for example, C(d) =∞ precisely for
those problem instances when gp =∞, etc. This is of course not a coincidence.
The literature on condition numbers and related problems contains implicit
connections between these measures, which we summarize as follows:

Proposition 4 If A(·) has full row rank (which is the case by design for all
problems in the SDPLIB suite), then:

1. gp =∞ ⇐⇒ ρP (d) = 0
2. gd =∞ ⇐⇒ ρD(d) = 0
3. gp ≤ 3(|s|+ nl)C(d)
4. gd ≤ 3(|s|+ nl)C(d)
5. Dε

p ≤ C(d)2 + C(d) ε
‖c‖∗

6. Dε
d ≤ C(d)2 + C(d) ε

‖b‖

Proof Item (1.) follows from Theorem 17 of [8] and Robinson [20], (2.) follows
from Theorem 19 of [8] and Robinson [20], (3.) and (4.) follow from Theorems
17 and 19 of [8], and (5.) and (6.) follow from Theorem 1.1 and Lemma 3.2
of [18]. ut
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Fig. 3 IPM iterations versus log (C(d)).

4 Non-Strict Complementarity

Consider the following definition of strict complementarity, which is adapted
from [1] and which considers an SDP instance with A(·) having full row rank
(as is the case for SDPLIB instances).

Definition 1 Let x = (xs, xl) be primal feasible, and y and z = (zs, zl) be
a dual feasible pair such that 〈x, z〉 = 0. Then strict complementarity is said
to hold for x and z if xs + zs � 0 and xl + zl > 0.

Strict complementarity is a desirable property of an SDP instance; in fact
the strict complementarity of an optimal solution is a necessary condition
for superlinear convergence of interior-point methods that take Newton-like
steps, see [17], and much recent research has explored what conditions in ad-
dition to strict complementarity are needed to guarantee superlinear conver-
gence for different interior-point algorithms [10–13,16]. However, even for lin-
ear programming (which must have a strictly complementary solution), there
are instances for which the optimal solutions are nearly non-strictly comple-
mentary, and can be made arbitrarily badly so. Furthermore, in interior-point
methods for either linear or semidefinite programming, we terminate the al-
gorithm with a primal-dual solution that is almost optimal but not actually
optimal. Hence there are genuine conceptual difficulties in trying to quan-
tify and compute the extent of near-non-strict-complementarity for an SDP
instance (and for LP instances as well).

Consider a point (x, y, z) = (x(µ), y(µ), z(µ)) on the primal-dual central
path of (SDP ), then there exists an orthonormal matrix Q and diagonal
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matrices Λx, Λz corresponding to the vectors of eigenvalues λx, λz of xs, zs

satisfying xs = QΛxQT , zs = QΛzQ
T , and

ΛxΛz = µI and xl(µ) ◦ zl(µ) = µe . (23)

The duality gap of this solution is ε := nµ where n = |s|+nl. Considering the
jth matrix equation of (23), we know that the two scalar quantities π := (λx)j

and γ := (λz)j must satisfy π, γ ≥ 0 and π · γ = µ. However, noticing that
π +γ ≥ minπ,γ≥0{π +γ : π ·γ = µ} = 2

√
µ, this implies more generally that:

Λx + Λz � 2
√

µI and xl + zl ≥ 2
√

µe . (24)

When a problem instance is non-strictly-complementary (NSC), then at least
one index j must satisfy (λx)j → 0 and (λz)j → 0 (or xl

j → 0 and zl
j → 0) as

µ → 0. In addition, (24) shows that (λx)j + (λz)j (or xl
j + zl

j) must remain
greater than 2

√
µ, which indicates that its slope must become unboundedly

large near µ = 0.
The above analysis, which is based on points being on the central path,

suggests the following more general approach to measure the extent to which
a computed approximate solution (x, y, z) is non-strictly complementary. Let
w = (x + z)/(2

√
µ), where µ = 〈x, z〉/n. We partition w into w = (ws, wl)

and let λw denote the vector of eigenvalues of ws. We consider (x, y, z) to
be nearly non-strictly complementary if λw and/or wl have small positive
components. This is quantified by choosing a tolerance value T and defining
the following index sets:

T s := {j : (λw)j ≤ T} and T l := {j : wl
j ≤ T} ,

and then using the following measure:

κ :=

−

 ∑
j∈T s

ln((λw)j) +
∑
j∈T l

ln(wj)


|T s|+ |T l|

.

Note that a larger value of κ indicates that the problem is closer to having a
non-strict complementary optimal solution.

4.1 Computation of the non-strict complementarity measure κ for the
SDPLIB Suite

As the notion of non-strict complementarity (and also the notion of degen-
eracy that we study in the next section) concerns an optimal primal-dual
solution, the approximate optimal solution (xk, yk, zk) we use must have high
accuracy in order for its associated κ value to be of relevance. The approx-
imate solutions delivered by SDPT3-3.1, however, are usually not accurate
enough for the purpose of measuring non-strict complementarity and degen-
eracy of a primal-dual optimal solution. We therefore use a slightly different
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version of SDPT3-3.1 to compute more accurate approximate optimal solu-
tions in this section as well as in Section 5. For ease of reference, we refer
to that version as SDPT3-aug. The interior-point algorithms implemented
in both versions are the same, except in the ways the search directions at
each iteration are computed. For SDPT3-3.1, the search direction is com-
puted from the Schur complement equation, which is a symmetric positive
definite m×m linear system, whereas the search direction in SDPT3-aug is
computed from a reduced augmented equation described in [21]. The reduced
augmented equation is a symmetric indefinite linear system that has a larger
dimension than the Schur complement equation. Because of the higher com-
putational cost required to solve the reduced augment equation compared to
the Schur complement equation, this alternative method of computing the
search direction is not implemented in SDPT3-3.1. The reduced augmented
equation, however, has empirically proven to have better stability properties
than the Schur complement equation, thereby allowing SDPT3-aug to com-
pute more accurate optimal approximate solutions than SDPT3-3.1 before
numerical difficulties are encountered in the course of the IPM iterations.

Table 7 in the Appendix contains the IPM iterations obtained by SDPT3-
aug for the 85 problems in the SDPLIB suite. The relative error (described in
(16)) of the approximate optimal solution obtained for each problem is shown
in the third column of the table. Note that in this case, we let the algorithm
run until it cannot improve the accuracy of the approximate optimal solution
or when numerical difficulties are encountered.

Using the tolerance value T = max{100, λmin(ws)} for finding T s and
the value T = max{100,minj(wl

j)} for finding T l, we computed κ for all 85
problems in the SDPLIB suite; these values are reported in the fourth col-
umn of Table 7. Note that by the choice of value for T , both T s and T l have
at least one element. Figure 4 shows a scatter plot of the number of IPM
iterations taken by SDPT3 and κ in the SDPLIB suite. We computed the
sample correlation of κ versus IPM iterations for the 85 problems, obtaining
CORR(κ, IPM Iterations) = 0.423. Thus the near absence of strict comple-
mentarity (as measured by κ) is correlated with the IPM iteration counts,
but less so than either log(C(d)) or log(gm).

We also constructed and tested a variety of other continuous and discrete
measures of near-non-strict complementarity, but none of our other measures
showed a stronger correlation with IPM iteration counts than κ. The smaller
correlation between κ and overall IPM iteration counts is understandable
given that the strict complementarity of the optimal solution is a local prop-
erty, which has been shown to be related to the rate of local convergence. If
we define β to be the geometric mean of the rate of convergence of the last

5 iterations of an IPM algorithm, i.e., β = 5

√(
µk

µk−5

)
, then β is a proxy for

the rate of local convergence. For the same 85 SDPLIB suite problems, it
turns out that the correlation between κ and β is CORR(κ, β) = 0.458. This
result shows that κ is modestly correlated with the local rate of convergence
on the SDPLIB problems. A more detailed study exploring the behavior of
local rates of convergence is beyond the scope of the current paper.
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Fig. 4 IPM iterations versus non-strict complementarity measure κ.

We note that non-strict complementarity is not theoretically related to
either C(d) or to any of the four geometry measures, as it is straightforward to
construct small examples with and without strict complementarity and with
and without interiors of primal and/or dual feasible regions, for example.

5 Degeneracy

It is shown in [2] that if in addition to a strictly complementary solution,
the optimal solution is primal and dual non-degenerate, then some IPM vari-
ants exhibit local Q-quadratic convergence. This suggests that IPM iteration
counts might be related to the extent of primal and/or dual degeneracy at
the optimal solution. We use the standard definitions of degeneracy for SDP
adapted from [1].

Definition 2 Let x = (xs, xl) be a primal optimal solution of (SDP ) with
rank(xs) = r and J := {j : xl

j > 0}. Let Q1 ∈ <|s|×r and Q2 ∈ <|s|×(|s|−r)

be matrices whose columns form orthonormal bases of eigenvectors for the
range space and null space of xs, respectively. The point x is said to be primal
non-degenerate if and only if the matrix

B(x) :=
[
mat(As)(Q1 ⊗Q1), mat(As)(Q1 ⊗Q2), Al

J

]
has full row rank.
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In this definition mat(As) denotes the matrix representation of the linear map
As, Al

J denotes the sub-matrix obtained from Al whose columns correspond
to the index set J , and Qi⊗Qj denotes the Kronecker matrix product of Qi,
Qj .

Definition 3 Let y and z = (zs, zl) be a dual optimal solution with rank(zs) =
r̃ and J̃ := {j : zl

j = 0}. Let Q̃1 ∈ <|s|×(|s|−r̃) and Q̃2 ∈ <|s|×r̃ be matri-
ces whose columns form orthonormal bases of eigenvectors for the null space
and range space of zs, respectively. The pair (y, z) is said to be dual non-
degenerate if and only if the matrix

B̃(y, z) :=
[
mat(As)(Q̃1 ⊗ Q̃1), Al

J̃

]
has full column rank.

As we already noted in the previous section, in interior-point methods for
either LP or SDP we terminate the algorithm with a primal-dual solution
(xk, yk, zk) that is almost optimal but not actually optimal. Thus strictly
speaking, the rank of xs

k is |s|. But since we know that xk is converging to
an optimal primal solution xs

∗ that has rank r, we can estimate r from the
eigenvalues of xs

k by counting the number of eigenvalues that are significantly
larger than µk := 〈xk, zk〉/n. The rank r̃ can similarly be estimated. In order
to determine r, r̃, J , and J̃ unambiguously, we need (xk, yk, zk) to be a
highly accurate approximate optimal solution. One of the main difficulties we
encounter in trying to determine the degeneracy of a primal-dual approximate
optimal solution is in the numerical determination of r, r̃, J , and J̃ . Unless
there is a clear separation of the eigenvalues of xs

k to indicate clearly those
that correspond to the range space of xs

∗, it is hard to determine r without
ambiguity; these remarks also pertain to r̃, J and J̃ .

Besides having to determine r, r̃, J and J̃ numerically from an approxi-
mate optimal solution, the ranks of the matrices in Definitions 2 and 3 must
also be determined numerically from B(xk) and B̃(yk, zk). One of the most
commonly used method to determine the rank of a matrix is to compute
its singular value decomposition and to count those singular values that are
significantly larger than machine precision. We adopt this method here by
considering as zero singular values that are computed to be smaller than
10−13 times the largest computed singular value.

5.1 Computation of measure of degeneracy for the SDPLIB Suite

Out of the 85 problems in the SDPLIB suite, we are able to compute ap-
proximate optimal solutions that are accurate enough to determine r, r̃, J
and J̃ unambiguously for 68 problems. A summary of the degeneracy status
of these 68 problems is shown in Table 3. Note that 25 of the 68 problems
are degenerate, the rest are nondegenerate. Table 7 in the Appendix contains
more specific degeneracy information for the 85 SDPLIB problems. The col-
umn labeled “pd” contains the fraction whose numerator is the rank of B(xk)
and whose denominator is m. The column labeled “dd” contains the fraction
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whose numerator and denominator are the column rank and the number of
columns of B̃(yk, zk), respectively. Blank entries in these two columns in-
dicate that that we were not able to determine the degeneracies without
ambiguity. We measure the degeneracy of the primal/dual solution triplet
(xk, yk, zk) by the following quantity:

γ := max

{
1− row rank(B(xk))

m
, 1− col rank(B̃(yk, zk))

N

}
,

where N denotes the number of columns of B̃(yk, zk). Note that γ will be
larger to the extent that the matrices B(xk) and B̃(yk, zk) are far from full
rank. The values of γ for the 68 problems whose degeneracies are unambigu-
ous are shown in the fifth column of Table 7.

Table 3 Degeneracy Status for 68 Problems in the SDPLIB Suite.

Dual Problem
Status Degenerate Nondegenerate Total

Degenerate 8 2 10
Primal Problem Nondegenerate 15 43 58

Total 23 45 68

Figure 5 shows a scatter plot of the number of IPM iterations taken by
SDPT3-aug and γ for 68 problems in the SDPLIB suite. The figure seems
to reveal little in the way of a pattern/relationship between the extent of
degeneracy and IPM iterations. For completeness, we computed the sample
correlation of γ versus IPM iterations for the 68 problems in the SDPLIB,
obtaining CORR(γ, IPM Iterations) = 0.100. This finding is consistent with
the theoretical result in [13] showing that local superlinear convergence of
interior-point methods can be achieved even for degenerate problems.

Because only 25 problems exhibited degeneracy, we tried to construct
measures of “closeness to degeneracy” for nondegenerate problems, such as
the ratios of the largest to the smallest singular values of matrices B(xk) and
B̃(yk, zk). However, we found no evidence (using the SDPLIB suite) that such
measures showed any noticeable relation to IPM iteration counts. Finally, we
mention that degeneracy of the optimal solution, like strict-complementarity,
is a local property, which has been shown to be related to the rate of local
convergence. However, unlike strict complementarity, we found no evidence
of correlation between the degeneracy measure γ and the local convergence
measure β defined at the end of Section 4.

6 Summary Conclusions and Further Issues

6.1 Summary Conclusions

We observe that 53 of 85 SDPLIB problem instances have finite geometry
measure gm, and these 53 instances yield CORR(log (gm) , IPM Iterations) =
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Fig. 5 IPM iterations versus degeneracy measure γ.

0.901, indicating a significant linear relationship between IPM iterations and
log(gm) among these problem instances.

Regarding the condition measure C(d), we observe that 32 of 80 SD-
PLIB problem instances are almost primal infeasible, i.e., C(d) = +∞.
Among the 48 SDPLIB instances with finite condition measure, we have
CORR(log (C(d)) , IPM Iterations) = 0.630, which indicates a somewhat lin-
ear relationship between IPM iterations and log(C(d)), that is less significant
than for log(gm).

The near absence of strict-complementarity, measured with the quantity κ
developed in Section 4 and applied to the 85 SDPLIB problems under consid-
eration, is weakly correlated with IPM iterations: CORR(κ, IPM Iterations) =
0.423.

Incidentally, traditional dimensional measures such as m, n̄, n := |s|+nl,
or
√

n are not well correlated with IPM iterations on the SDPLIB suite.
For example, we observed the following: CORR(m, IPM Iterations) = 0.060,
CORR(n̄, IPM Iterations) = −0.107, CORR(n, IPM Iterations) = −0.008,
and CORR(

√
n, IPM Iterations) = 0.043.

We were able to determine the degeneracy status for 68 problems out of
the 85 in the SDPLIB suite. Among these 68 problems, 25 are degenerate, and
the degeneracy parameter γ developed in Section 5 is essentially uncorrelated
with IPM iterations.

Table 4 shows more extensive correlation values among the finite values
of the four behavioral measures we have studied. Comparisons between the
correlation values in the table must be done with caution, since problem
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instances used to compute each correlation varied, and were limited to those
problems with finite values for both measures in the pair.

Table 4 Summary Correlation Values for all Measures (with Number of Problem
Instances in Boldface)

Iterations κ log(gm) log(C(d)) γ

Iterations 1.000
κ 0.423 (85) 1.000

log(gm) 0.901 (53) 0.711 (53) 1.000
log(C(d)) 0.630 (48) 0.631 (48) 0.827 (48) 1.000

γ 0.100 (68) -0.256 (68) -0.007 (42) 0.030 (38) 1.000

Notice the high correlation between κ and log(gm) (and less significantly
to log(C(d))). This is not indicated by any theory, since one can easily con-
struct examples with high values of κ and low values of log(gm) or log(C(d))
and vice versa. Therefore the high correlation is specific to the 53 data in-
stances in the SDPLIB suite, and suggests that the SDPLIB suite has some
systematic behavioral patterns. Of course, this is not too surprising, since
the SDPLIB suite contains large numbers of instances of a relatively few
application domains of SDP.

In addition to being the most correlated with IPM iteration counts, the
aggregate geometry measure gm also poses the least computational challenge.
In computing C(d), in particular for determining ρP (d), we must solve 2m
SDP problems of size and structure comparable to the original SDP, as con-
trasted to solving just four such problems in order to determine gm. In the
case of the problem instance control11 this translates to a few minutes to
compute gm versus over five days to compute C(d). (Had we instead used
Peña’s method [15] for estimating C(d), we still would face significant chal-
lenges in order to compute smallest eigenvalues of large dense positive definite
matrices, see [5], which is why we did not adopt that approach.) As discussed
in Section 4.1 the computation of κ (or γ) is made challenging by the need to
compute an approximate solution with sufficiently high accuracy to identify
which variables and eigenvalues are positive versus zero. Such high accuracy
is not a prerequisite for reliable computation of gm (or C(d)).

6.2 Further Issues

We chose to test the correlation of the behavioral measures on IPM itera-
tions of a particular interior-point method, namely a “standard” primal-dual
infeasible interior-point method that uses the HKM direction. Our intuition
suggests that our conclusions would not change appreciably if we instead
used the NT direction or the AHO direction, but might change if we used a
homogeneous self-dual embedding model, see [4] for example.

Our agenda in this study was not to try to better predict IPM itera-
tions, but rather to test the extent to which certain theoretically-motivated
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complexity measure and/or convergence measures might or might not be rel-
evant to computational practice. Therefore we have not explored the extent
to which the four behavioral measures (or others) might jointly better ac-
count for differences in IPM iteration counts. Nevertheless, presuming for
the moment that the SDPLIB is a representative data set of the universe of
relevant SDP instances, it would be interesting to see if certain combinations
of different measures can do a better job of accounting for differences in IPM
iterations. For example, might there be a systematic correlation between IPM
iterations and, say, κ on those SDPLIB instances for which C(d) =∞?

The high correlation between κ and log(gm) shown in Table 4 clarifies the
intuition that the SDPLIB suite has some systematic behavioral patterns. An
overarching question is to construct or otherwise identify a reasonably-sized
set of SDP problem instances that might be better suited to empirically
examine issues related to the computational behavior of algorithms for SDP.

The measures of near absence of strict-complementarity κ and degeneracy
γ considered in this paper are local properties of the optimal solution, shown
in theory to be related to the local rate of convergence. We found preliminary
computational results that suggest that κ is modestly correlated with the
rate of local convergence, whereas γ is not. A detailed study of explanatory
measures of local convergence rates of IPMs would hopefully shed further
light on this issue.

References

1. Alizadeh, F., Haeberly, J.P.A., Overton, M.L.: Complementarity and nondegen-
eracy in semidefinite programming. Mathematical Programming 77, 111–128
(1997)

2. Alizadeh, F., Haeberly, J.P.A., Overton, M.L.: Primal-udal interior-point meth-
ods for semidefinite programming: convergence rates, stability and numerical
results. SIAM J. Optim. 8(3), 746–768 (1998)

3. Bhatia, R.: Matrix Analysis. Springer-Verlag, New York (1997)
4. Cai, Z., Freund, R.M.: On two measures of problem complexity and their ex-

planatory value for the performance of SeDuMi on second-order cone problems.
to appear, Computational Optimization and Applications (2005)

5. Chai, J., Toh, K.: Computation of condition numbers for linear programming
problems using Peña’s method. Preprint, Department of Mathematics, Na-
tional University of Singapore (2005)

6. Freund, R.M.: On the primal-dual geometry of level sets in linear and conic
optimization. SIAM Journal on Optimization 13(4) (2003)

7. Freund, R.M.: Complexity of convex optimization using geometry-based mea-
sures and a reference point. Mathematical Programming 99, 197–221 (2004)

8. Freund, R.M., Vera, J.R.: Some characterizations and properties of the “dis-
tance to ill-posedness” and the condition measure of a conic linear system.
Mathematical Programming 86(2), 225–260 (1999)

9. Freund, R.M., Vera, J.R.: On the complexity of computing estimates of condi-
tion measures of a conic linear system. Mathematics of Operations Research
28(4), 625–648 (2003)

10. Ji, J., Potra, F., Sheng, R.: On the local convergence of a predictor-corrector
method for semidefinite programming. SIAM Journal on Optimization 10(1),
195–210 (1999)

11. Kojima, M., Shida, M., Shindoh, S.: Local convergence of predictor-corrector
infeasible-interior-point algorithms for sdps and sdlcps. Mathematical Pro-
gramming 80(2), 129–160 (1998)



Behavioral Measures and their Correlation with IPM Iterations on SDP 25

12. Lu, Z., Monteiro, R.: Error bounds and limiting behavior of weighted paths
associated with the sdp map X1/2SX1/2. SIAM Journal on Optimization
15(2), 348–374 (2005)

13. Luo, Z.Q., Sturm, J., Zhang, S.: Superlinear convergence of a symmetric primal-
dual path following algorithm for semidefinite programming. SIAM Journal on
Optimization 8(1), 59–81 (1998)
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Appendix: Computation on the SDPLIB Suite

In this appendix we present tables with all computed measures for the SD-
PLIB suite. In these tables, floating point numbers are shown in scientific
notation; for example we see from Table 5 below that Dd for problem arch0
is 3.5× 103, etc.

Table 5: Aggregate Geometry Measure gm and IPM iteration counts
obtained by SDPT3-3.1 for the SDPLIB Suite

Problem Iterations err Dp gp Dd gd gm

arch0 24 1.0 2 2.0 4 3.5 3 2.0 6 1.1 4
arch2 23 7.8 1 2.0 4 4.1 3 2.0 6 1.1 4
arch4 21 9.0 1 2.0 4 6.1 3 2.0 6 1.2 4
arch8 21 2.5 2 2.0 4 3.2 4 1.8 6 2.3 4
control1 17 1.9 1 9.3 4 8.7 5 5.0 3 9.4 3
control2 20 9.3 0 3.0 5 1.3 6 1.5 4 1.5 4
control3 20 1.5 1 7.7 5 5.7 6 3.2 4 3.8 4
control4 21 2.1 1 1.3 6 1.1 7 4.9 4 6.2 4
control5 22 1.8 1 2.0 6 1.7 7 6.2 4 7.8 4
control6 22 2.0 -6 3.8 1 3.1 6 5.2 7 9.2 4 1.5 5
control7 24 2.2 1 4.1 6 5.0 7 1.1 5 1.5 5
control8 24 2.1 1 5.5 6 5.8 7 1.4 5 1.7 5
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Problem Iterations err Dp gp Dd gd gm

control9 25 1.6 1 7.0 6 5.7 7 1.7 5 1.8 5
control10 24 1.1 -5 4.0 1 8.3 6 1.8 8 2.0 5 3.3 5
control11 26 1.1 -6 3.3 1 1.0 7 1.7 8 2.3 5 3.4 5
equalG11 16 2.0 -6 8.0 2 1.6 3 6.4 5 2.2 3 6.5 3
equalG51 17 1.0 3 2.0 3 1.0 6 3.1 3 8.9 3
gpp100 18 1.0 2 ∞ ∞ 1.9 2 ∞
gpp124-1 18 9.0 -6 1.2 2 ∞ ∞ 1.9 2 ∞
gpp124-2 17 1.2 2 ∞ ∞ 2.4 2 ∞
gpp124-3 15 1.2 2 ∞ ∞ 2.8 2 ∞
gpp124-4 17 5.0 -6 1.2 2 ∞ ∞ 3.5 2 ∞
gpp250-1 16 6.0 -5 2.5 2 ∞ ∞ 4.0 2 ∞
gpp250-2 17 7.0 -6 2.5 2 ∞ ∞ 4.8 2 ∞
gpp250-3 16 7.0 -6 2.5 2 ∞ ∞ 5.9 2 ∞
gpp250-4 19 2.5 2 ∞ ∞ 7.2 2 ∞
gpp500-1 24 5.0 2 ∞ ∞ 7.9 2 ∞
gpp500-2 15 5.0 -6 5.0 2 ∞ ∞ 9.6 2 ∞
gpp500-3 17 5.0 2 ∞ ∞ 1.2 3 ∞
gpp500-4 17 5.0 2 ∞ ∞ 1.5 3 ∞
hinf1 23 6.2 0 ∞ ∞ 7.6 1 ∞
hinf2 17 4.1 2 1.5 5 3.8 5 5.0 3 1.8 4
hinf3 19 5.0 -6 1.1 3 ∞ ∞ 1.5 4 ∞
hinf4 23 6.6 1 ∞ ∞ 1.8 3 ∞
hinf5 18 1.1 -4 2.7 3 ∞ ∞ 1.0 5 ∞
hinf6 24 9.0 -6 5.7 3 ∞ ∞ 6.8 4 ∞
hinf7 17 5.0 -6 3.8 4 ∞ ∞ 3.5 5 ∞
hinf8 21 6.0 -6 1.0 3 ∞ ∞ 1.6 4 ∞
hinf9 19 1.2 -5 1.1 5 3.1 2 1.8 4 1.0 6 2.8 4
hinf10 37 2.2 1 ∞ ∞ 1.6 3 ∞
hinf11 32 1.3 1 ∞ ∞ 1.3 3 ∞
hinf12 60 1.1 -5 1.0 0 ∞ ∞ 1.4 3 ∞
hinf13 23 6.8 -2 7.4 3 ∞ ∞ 9.4 4 ∞
hinf14 26 2.3 -4 3.2 2 ∞ ∞ 3.3 3 ∞
hinf15 24 1.1 -1 2.0 4 ∞ ∞ 1.8 5 ∞
maxG11 15 8.0 2 8.0 2 6.1 2 1.4 3 8.6 2
maxG32 16 2.0 3 2.0 3 1.6 3 3.6 3 2.2 3
maxG51 17 1.0 3 1.0 3 1.1 3 2.1 3 1.2 3
mcp100 12 1.0 2 1.0 2 9.2 1 1.9 2 1.1 2
mcp124-1 13 1.2 2 1.2 2 6.7 1 1.9 2 1.2 2
mcp124-2 13 1.2 2 1.2 2 1.1 2 2.3 2 1.4 2
mcp124-3 13 1.2 2 1.2 2 1.6 2 2.8 2 1.6 2
mcp124-4 13 1.2 2 1.2 2 2.3 2 3.5 2 1.8 2
mcp250-1 14 2.5 2 2.5 2 1.5 2 4.0 2 2.5 2
mcp250-2 13 2.5 2 2.5 2 2.3 2 4.8 2 2.9 2
mcp250-3 13 2.5 2 2.5 2 3.4 2 5.9 2 3.3 2
mcp250-4 13 2.5 2 2.5 2 4.7 2 7.2 2 3.8 2
mcp500-1 15 5.0 2 5.0 2 2.9 2 7.9 2 4.9 2
mcp500-2 16 5.0 2 5.0 2 4.6 2 9.6 2 5.8 2
mcp500-3 15 5.0 2 5.0 2 6.7 2 1.2 3 6.7 2
mcp500-4 14 5.0 2 5.0 2 1.0 3 1.5 3 7.8 2
qap5 11 6.0 0 ∞ ∞ 1.3 3 ∞
qap6 18 7.0 0 ∞ ∞ 3.3 3 ∞
qap7 21 8.0 0 ∞ ∞ 4.1 3 ∞
qap8 20 9.0 0 ∞ ∞ 7.1 3 ∞
qap9 17 1.0 1 ∞ ∞ 1.1 4 ∞
qap10 17 1.1 1 ∞ ∞ 1.5 4 ∞
qpG11 16 8.0 2 1.6 3 4.9 3 6.5 3 2.5 3
qpG51 17 1.0 3 2.0 3 2.4 4 2.6 4 5.9 3
ss30 19 2.2 2 1.0 3 1.8 4 2.4 5 5.6 3
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Problem Iterations err Dp gp Dd gd gm

theta1 12 1.0 0 5.0 1 1.1 3 1.1 3 8.8 1
theta2 14 1.0 0 1.0 2 3.2 3 3.3 3 1.8 2
theta3 15 1.0 0 1.5 2 6.2 3 6.3 3 2.8 2
theta4 15 1.0 0 2.0 2 9.9 3 1.0 4 3.8 2
theta5 15 1.0 0 2.5 2 1.4 4 1.4 4 4.7 2
theta6 14 1.0 0 3.0 2 1.9 4 1.9 4 5.7 2
thetaG11 19 8.0 2 2.4 3 2.0 2 9.5 2 7.8 2
truss1 10 1.9 1 4.6 2 6.1 1 1.3 1 5.1 1
truss2 17 4.9 2 6.5 4 4.1 3 1.3 2 2.0 3
truss3 12 4.7 1 1.1 3 6.2 1 3.1 1 1.0 2
truss4 11 2.8 1 6.8 2 6.1 1 1.9 1 6.9 1
truss5 17 1.3 3 1.8 5 4.4 3 3.3 2 4.3 3
truss6 27 2.7 3 1.6 6 1.4 5 4.5 2 2.3 4
truss7 26 1.8 3 1.1 6 1.4 5 3.0 2 1.7 4
truss8 16 2.5 3 3.3 5 4.4 3 6.3 2 6.9 3

Table 6: Condition Measure C(d) Computation for the SDPLIB Suite

‖d‖ log C(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) Bound Bound Bound Bound

arch0 9.9 -1 1.0 0 3.3 4 3.1 5 3.3 4 3.1 5
arch2 9.9 -1 1.0 0 3.4 4 3.1 5 3.4 4 3.1 5
arch4 9.8 -1 1.0 0 3.6 4 3.1 5 3.7 4 3.1 5
arch8 9.5 -1 1.0 0 3.9 4 3.1 5 4.1 4 3.3 5
control1 3.9 -1 5.3 -2 4.4 4 9.7 4 8.3 5 1.8 6
control2 2.5 -2 1.0 -1 9.9 4 3.2 5 3.9 6 1.3 7
control3 2.9 -1 6.8 -2 1.4 5 8.1 5 2.0 6 1.2 7
control4 1.7 -1 4.6 -2 1.8 5 1.4 6 3.9 6 3.1 7
control5 1.3 -1 5.6 -2 2.1 5 2.2 6 3.8 6 3.9 7
control6 1.9 -1 2.6 -2 2.9 5 3.4 6 1.1 7 1.3 8
control7 3.2 -1 4.6 -2 3.6 5 4.5 6 7.9 6 9.8 7
control8 2.8 -1 4.7 -2 3.7 5 6.1 6 7.8 6 1.3 8
control9 9.5 -2 6.3 -2 4.2 5 7.8 6 6.7 6 1.2 8
control10 1.5 -1 2.5 -2 4.5 5 9.1 6 1.8 7 3.6 8
control11 3.0 -2 5.5 5 1.1 7
equalG11 1.3 -3 1.0 -0 8.0 2 1.6 3 6.4 5 1.3 6
equalG51 9.6 -1 1.0 3 2.0 3
gpp100 0.0 0 1.0 0 1.0 2 2.0 2 ∞ ∞
gpp124-1 0.0 0 1.0 0 1.2 2 2.5 2 ∞ ∞
gpp124-2 0.0 0 1.0 0 1.2 2 2.5 2 ∞ ∞
gpp124-3 0.0 0 1.0 0 1.2 2 2.5 2 ∞ ∞
gpp124-4 0.0 0 2.5 0 1.2 2 2.5 2 ∞ ∞
gpp250-1 0.0 0 1.0 0 2.5 2 5.0 2 ∞ ∞
gpp250-2 0.0 0 1.0 0 2.5 2 5.0 2 ∞ ∞
gpp250-3 0.0 0 1.0 0 2.5 2 5.0 2 ∞ ∞
gpp250-4 0.0 0 2.1 0 2.5 2 5.0 2 ∞ ∞
gpp500-1 0.0 0 1.0 0 5.0 2 1.0 3 ∞ ∞
gpp500-2 0.0 0 1.0 0 5.0 2 1.0 3 ∞ ∞
gpp500-3 0.0 0 1.0 0 5.0 2 1.0 3 ∞ ∞
gpp500-4 0.0 0 1.6 0 5.0 2 1.0 3 ∞ ∞
hinf1 0.0 0 8.3 -2 2.4 0 5.1 0 ∞ ∞
hinf2 1.0 -5 1.1 -3 3.5 0 5.6 0 3.5 5 5.6 5
hinf3 0.0 0 4.5 -4 2.2 1 3.4 1 ∞ ∞
hinf4 0.0 0 7.7 -3 6.4 1 1.0 2 ∞ ∞
hinf5 0.0 0 5.0 -5 1.2 2 1.8 2 ∞ ∞
hinf6 0.0 0 9.0 -5 3.3 1 5.8 1 ∞ ∞
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‖d‖ C(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) Bound Bound Bound Bound

hinf7 0.0 0 1.0 -5 1.7 2 2.7 2 ∞ ∞
hinf8 0.0 0 3.7 -4 6.4 1 1.3 2 ∞ ∞
hinf9 1.2 -2 4.7 -6 9.3 1 1.7 2 2.0 7 3.6 7
hinf10 0.0 0 1.2 -2 1.9 2 3.3 2 ∞ ∞
hinf11 0.0 0 2.8 -2 3.4 2 6.0 2 ∞ ∞
hinf12 0.0 0 9.1 -3 1.1 2 2.3 2 ∞ ∞
hinf13 0.0 0 8.0 -5 2.8 1 7.4 1 ∞ ∞
hinf14 0.0 0 1.6 -3 2.1 1 7.1 1 ∞ ∞
hinf15 0.0 0 4.0 -5 3.8 1 1.2 2 ∞ ∞
maxG11 1.3 -3 1.0 0 8.0 2 8.0 2 6.4 5 6.4 5
maxG32 1.0 0 2.0 3 2.0 3
maxG51 1.0 -3 1.0 0 1.0 3 1.0 3 1.0 6 1.0 6
mcp100 1.0 -2 1.0 0 1.0 2 1.0 2 1.0 4 1.0 4
mcp124-1 8.1 -3 1.0 0 1.2 2 1.2 2 1.5 4 1.5 4
mcp124-2 8.1 -3 1.0 0 1.2 2 1.2 2 1.5 4 1.5 4
mcp124-3 8.1 -3 1.0 0 1.2 2 1.2 2 1.5 4 1.5 4
mcp124-4 8.1 -3 1.0 0 1.2 2 1.2 2 1.5 4 1.5 4
mcp250-1 4.0 -3 1.0 0 2.5 2 2.5 2 6.2 4 6.2 4
mcp250-2 4.0 -3 1.0 0 2.5 2 2.5 2 6.2 4 6.2 4
mcp250-3 4.0 -3 1.0 0 2.5 2 2.5 2 6.2 4 6.2 4
mcp250-4 4.0 -3 1.0 0 2.5 2 2.5 2 6.2 4 6.2 4
mcp500-1 2.0 -3 1.0 0 5.0 2 5.0 2 2.5 5 2.5 5
mcp500-2 2.0 -3 1.0 0 5.0 2 5.0 2 2.5 5 2.5 5
mcp500-3 2.0 -3 1.0 0 5.0 2 5.0 2 2.5 5 2.5 5
mcp500-4 2.0 -3 1.0 0 5.0 2 5.0 2 2.5 5 2.5 5
qap5 0.0 0 1.0 0 4.3 2 4.3 2 ∞ ∞
qap6 0.0 0 1.0 0 5.4 2 5.4 2 ∞ ∞
qap7 0.0 0 1.0 0 6.1 2 6.1 2 ∞ ∞
qap8 0.0 0 1.0 0 1.0 3 1.0 3 ∞ ∞
qap9 0.0 0 1.0 0 1.7 3 1.7 3 ∞ ∞
qap10 0.0 0 1.0 0 1.6 3 1.6 3 ∞ ∞
qpG11 1.3 -3 1.0 0 8.0 2 8.0 2 6.4 5 6.4 5
qpG51 1.0 -3 1.0 0 1.0 3 1.0 3 1.0 6 1.0 6
ss30 1.9 0 1.0 0 1.7 3 1.9 4 1.7 3 1.9 4
theta1 2.5 -1 1.0 0 5.0 1 5.2 1 2.0 2 2.1 2
theta2 2.5 -1 1.0 0 1.0 2 2.2 2 4.0 2 8.9 2
theta3 2.5 -1 1.0 0 1.5 2 4.1 2 6.0 2 1.6 3
theta4 2.5 -1 1.0 0 2.0 2 6.2 2 8.0 2 2.5 3
theta5 2.5 -1 1.0 0 2.5 2 8.7 2 1.0 3 3.5 3
theta6 1.0 0 3.0 2 1.1 3
thetaG11 1.0 0 2.4 3 2.4 3
truss1 1.3 -2 3.3 -1 3.0 0 4.0 0 2.2 2 3.0 2
truss2 5.1 -4 2.0 -1 8.5 0 1.3 1 1.7 4 2.6 4
truss3 5.4 -3 1.7 -1 4.0 0 1.0 1 7.4 2 1.9 3
truss4 9.0 -3 2.5 -1 3.2 0 6.9 0 3.6 2 7.7 2
truss5 1.9 -4 9.1 -2 1.1 1 3.3 1 5.9 4 1.8 5
truss6 9.0 -5 2.5 -1 3.2 0 6.4 0 3.6 4 7.1 4
truss7 1.4 -4 3.3 -1 3.0 0 3.2 0 2.1 4 2.3 4
truss8 1.0 -4 5.0 -2 1.9 1 5.1 1 1.9 5 5.1 5
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Table 7: IPM Iterations, Non-Strict Complementarity Measure κ, De-
generacy Measure γ, and Solution Properties Obtained by SDPT3-aug
on 85 Problems in the SDPLIB Suite

IPM Solution Properties
Problem Iterations err κ γ pd dd

arch0 29 1.5 -10 -2.76 0.00 174/174 75/75
arch2 28 4.9 -11 -2.04 0.00 174/174 57/57
arch4 27 3.6 -11 -3.92 0.00 174/174 61/61
arch8 21 3.7 -8 -2.17 0.05 174/174 107/113
control1 22 5.6 -11 -2.88 0.24 21/21 16/21
control2 25 2.4 -11 -2.14 0.27 66/66 48/66
control3 26 8.0 -11 -1.71 0.35 136/136 88/136
control4 25 1.5 -10 -1.66
control5 28 2.1 -10 -1.48
control6 28 5.6 -10 -2.14
control7 31 4.8 -10 -1.92
control8 28 5.0 -10 -2.38
control9 33 5.2 -10 -2.28
control10 32 1.4 -9 -2.40
control11 33 1.5 -9 -2.28
equalG11 16 1.1 -6 -2.94 0.00 801/801 28/28
equalG51 17 9.0 -7 -3.69 0.00 1001/1001 105/105
gpp100 18 6.9 -7 -3.65 0.00 101/101 15/15
gpp124-1 15 1.4 -6 -3.79 0.00 125/125 10/10
gpp124-2 20 7.1 -8 -3.18 0.00 125/125 10/10
gpp124-3 17 2.8 -8 -4.17 0.00 125/125 21/21
gpp124-4 26 4.2 -7 -3.41 0.00 125/125 21/21
gpp250-1 17 3.2 -6 -3.42 0.00 251/251 15/15
gpp250-2 19 3.6 -6 -3.76 0.00 251/251 28/28
gpp250-3 16 6.8 -6 -3.77 0.00 251/251 36/36
gpp250-4 20 7.6 -10 -5.44 0.00 251/251 36/36
gpp500-1 24 2.8 -8 -3.15 0.00 501/501 21/21
gpp500-2 15 5.3 -6 -3.69 0.00 501/501 36/36
gpp500-3 21 2.5 -10 -3.29 0.00 501/501 55/55
gpp500-4 17 2.4 -8 -3.45 0.00 501/501 55/55
hinf1 29 1.8 -8 -8.62 0.50 12/13 5/10
hinf2 23 1.5 -7 -2.50 0.52 13/13 10/21
hinf3 31 9.1 -8 -0.69
hinf4 27 9.8 -10 -4.61 0.47 12/13 8/15
hinf5 26 2.9 -6 -1.68
hinf6 34 1.5 -9 -2.35 0.47 12/13 8/15
hinf7 23 1.7 -7 -2.61
hinf8 37 1.5 -8 -2.85
hinf9 21 3.3 -6 -2.04
hinf10 41 5.4 -8 -8.98 0.43 12/21 2/ 3
hinf11 36 1.7 -7 -4.18 0.42 18/31 4/ 6
hinf12 55 1.3 -5 -1.68
hinf13 41 1.4 -5 -1.77
hinf14 31 4.7 -7 -2.85 0.47 39/73 11/15
hinf15 44 2.2 -5 -3.26 0.51 45/91 11/15
maxG11 19 1.5 -11 -3.05 0.00 800/800 21/21
maxG32 21 4.6 -11 -2.93 0.00 2000/2000 45/45
maxG51 19 9.6 -13 -5.35 0.00 1000/1000 105/105
mcp100 16 1.2 -13 -9.44 0.00 100/100 15/15
mcp124-1 17 6.9 -14 -7.98 0.84 124/124 22/136
mcp124-2 17 5.6 -14 -10.30 0.00 124/124 21/21
mcp124-3 16 2.7 -13 -8.69 0.00 124/124 21/21
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IPM Solution Properties
Problem Iterations err κ γ pd dd

mcp124-4 16 2.0 -13 -9.23 0.00 124/124 15/15
mcp250-1 18 1.7 -13 -9.21 0.89 250/250 35/325
mcp250-2 17 3.9 -13 -8.90 0.33 250/250 30/45
mcp250-3 17 1.0 -13 -8.80 0.00 250/250 36/36
mcp250-4 16 8.9 -13 -6.47 0.00 250/250 36/36
mcp500-1 19 7.5 -9 -4.12 0.96 500/500 75/1830
mcp500-2 19 1.3 -13 -5.41 0.64 500/500 43/120
mcp500-3 17 7.0 -13 -5.97 0.00 500/500 45/45
mcp500-4 17 3.7 -13 -8.36 0.00 500/500 66/66
qap5 14 4.9 -13 -11.89 0.81 26/136 1/ 1
qap6 31 2.9 -9 -1.75 0.00 229/229 78/78
qap7 24 1.1 -8 -3.40 0.00 358/358 105/105
qap8 22 3.8 -8 -3.77 0.00 529/529 136/136
qap9 22 5.7 -8 -3.67 0.00 748/748 210/210
qap10 24 2.2 -8 -3.94 0.00 1021/1021 325/325
qpG11 18 7.6 -11 -3.02 0.00 800/800 21/21
qpG51 29 5.4 -12 -12.42 0.00 1000/1000 1/ 1
ss30 22 2.3 -10 -3.55 0.00 132/132 7/ 7
theta1 16 5.9 -14 -10.27 0.00 104/104 28/28
theta2 16 5.1 -13 -8.27 0.00 498/498 136/136
theta3 17 5.8 -14 -9.36 0.00 1106/1106 300/300
theta4 17 1.6 -13 -7.84 0.00 1949/1949 528/528
theta5 17 2.0 -13 -7.42 0.00 3028/3028 861/861
theta6 17 9.0 -12 -2.03 0.00 4375/4375 1225/1225
thetaG11 23 7.9 -13 -5.35 0.33 1600/2401 3/ 3
truss1 12 1.2 -13 -14.79 0.33 4/ 6 3/ 4
truss2 16 1.9 -12 -3.92
truss3 13 9.9 -9 -4.65 0.85 27/27 20/137
truss4 11 8.0 -9 -9.91 0.76 12/12 9/37
truss5 18 4.3 -10 -11.50 0.99 208/208 208/25426
truss6 16 8.1 -8 -2.22 0.99 172/172 126/13204
truss7 27 1.1 -12 -2.45
truss8 19 6.8 -10 -11.70 1.00 496/496 496/136504


