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Abstract. There is a natural norm associated with a starting point of the homogeneous self-
dual (HSD) embedding model for conic convex optimization. In this norm two measures of the
HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes
of ε-optimal solutions, and (ii) the maximum distance of ε-optimal solutions to the boundary
of the cone of the HSD variables. This norm is also useful in developing a stopping-rule theory
for HSD-based interior-point solvers such as SeDuMi. Under mild assumptions, we show that
a standard stopping rule implicitly involves the sum of the sizes of the ε-optimal primal and
dual solutions, as well as the size of the initial primal and dual infeasibility residuals. This
theory suggests possible criteria for developing starting points for the homogeneous self-dual
model that might improve the resulting solution time in practice.
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1. Preliminaries

We consider the following convex optimization primal and dual pair:

P : VAL∗ := minx cT x
s.t. Ax = b

x ∈ C ,
(1)

and
D : VAL∗ := maxy,z bT y

s.t. AT y + z = c
z ∈ C∗ ,

(2)

where C ⊂ X is assumed to be a closed convex cone in the (finite) n-dimensional
linear vector space X, and b lies in the (finite) m-dimensional vector space Y .
Here C∗ is the dual cone:

C∗ := {z ∈ X∗ | zT x ≥ 0 for any x ∈ C} ,

where X∗ is the dual space of X (the space of linear functionals on X). We write
cT x for the action of c ∈ X∗ on x ∈ X and bT y for the action of y ∈ Y ∗ on b ∈ Y .
Similarly, AT denotes the adjoint operator to A. This notation corresponds to
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the usual transpose when X and Y are IRn and IRm respectively, with the usual
identification of (IRp)∗ with IRp.
We make the following assumption:
Assumption A: C is a regular cone, i.e., C is closed, convex, pointed, and has
nonempty interior. (It then follows that C∗ is also a regular cone.)
We say that P (D) is strictly feasible if there exists x̄ ∈ intC (ȳ and z̄ ∈ intC∗)
that is feasible for P (D).

Following [18] (also see [17]) we consider the following homogeneous self-
dual (HSD) embedding of P and D. Given initial values (x0, y0, z0) satisfying
x0 ∈ intC, z0 ∈ intC∗, as well as initial constants τ0 > 0, κ0 > 0, θ0 > 0, define
the problem H:

H : VALH := minx,y,z,τ,κ,θ ᾱθ

s.t. Ax −bτ +b̄θ = 0
−AT y +cτ +c̄θ −z = 0

bT y −cT x +ḡθ −κ = 0
−b̄T y −c̄T x −ḡτ = −ᾱ

x ∈ C τ ≥ 0 z ∈ C∗ κ ≥ 0,

where the parameters b̄, c̄, ḡ, and ᾱ are defined as follows:

b̄ = bτ0−Ax0

θ0

c̄ = AT y0+z0−cτ0

θ0

ḡ = cT x0−bT y0+κ0

θ0

ᾱ = (z0)T x0+τ0κ0

θ0 .

(3)

Note that the regular cone associated with H is:

KH := C × C∗ × IR+ × IR∗
+ , (4)

where we distinguish between IR+ and IR∗
+ only for notational consistency. The

self-dual embedding model H was originally developed for linear programming
in [18], [17], and was subsequently extended to semi-definite optimization in [13],
[8], and [5] along with an analysis of ill-behaved cases and their treatment via
H; see also [6], [7].

Because P (D) can be recast equivalently as the problem of minimizing a
linear function of a (regular) cone variable over the intersection of the regular
cone and an affine set (see [16], [10]), we will focus on the behavior of the regular
cone variables x and z and will effectively ignore the unrestricted variables y.



Behavior of Homogeneous Self-Dual Model 3

One measure of the behavior (i.e., the natural conditioning) of P/D is the size
of the largest ε-optimal solution. Define for ε > 0:

RP
ε := maxx ‖x‖ RD

ε := maxz ‖z‖∗
s.t. x is feasible for P s.t. (y, z) is feasible for D

cT x ≤ V AL∗ + ε bT y ≥ V AL∗ − ε ,
(5)

where ‖ · ‖ is any given norm, and the dual norm ‖ · ‖∗ of ‖ · ‖ is:

‖w‖∗ := max
v

{wT v : ‖v‖ ≤ 1} .

Then RP
ε is a measure of the behavior of P/D: RP

ε is large to the extent that
P is nearly unbounded in objective value (and to the extent that D is nearly
infeasible), with similar remarks about RD

ε . Indeed, Renegar’s data-perturbation
condition measure C(d) satisfies

C2(d) + C(d)
ε

‖c‖∗ ≥ RP
ε

for ε ≤ ‖c‖∗; this follows directly from Theorem 1.1 and Lemma 3.2 of [14].
A closely related measure of the behavior of P/D is the maximum distance

of ε-optimal solutions from the boundary of the regular cone:

rP
ε := maxx dist(x, ∂C) rD

ε := maxz dist∗(z, ∂C∗)
s.t. x is feasible for P s.t. (y, z) is feasible for D

cT x ≤ V AL∗ + ε bT y ≥ V AL∗ − ε ,
(6)

where dist(x, ∂C) denotes the minimal distance from x to ∂C in the norm ‖ · ‖
and dist∗(z, ∂C∗) denotes the minimal distance from x to ∂C∗ in the dual norm
‖ · ‖∗.
Note that rP

ε measures the largest distance to the boundary of C among all ε-
optimal solutions x of P . In the context of interior-point methods, rP

ε measures
the extent to which near optimal-solutions are nicely bounded away from ∂C.
Here Renegar’s condition measure C(d) satisfies

ετC

3‖c‖∗(C2(d) + C(d))
≤ rP

ε

for ε ≤ ‖c‖∗, where τC denotes the “min-width” constant of C:

τC := max
x

{dist(x, ∂C) : x ∈ C, ‖x‖ ≤ 1} ;

this follows directly from Theorem 1.1 of [14] and Theorem 17 of [4]. It is shown
in [3] that rP

ε and RD
ε obey the following inequalities and so are nearly inversely

proportional for fixed ε > 0:

τC · ε ≤ rP
ε · RD

ε ≤ 2 · ε ,

provided that rP
ε and RD

ε are both finite and positive; see Theorem 3.2 of [3].
Thus for a given ε > 0, it follows that rP

ε will be small if and only if RD
ε is
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large. These results can also be stated in dual forms, exchange the roles of the
primal and dual problems and using the appropriate norms for the appropriate
(regular) cone variables/spaces.

Herein we study the size of the largest ε-optimal solution R
(·)
ε and the max-

imum distance of ε-optimal solutions from the boundary of the cone r
(·)
ε , as ap-

plied to the HSD model H (which is also a conic optimization problem of similar
conic format as P and/or D, but with other very special structure). We denote
these measures for H by RH

ε and rH
ε , respectively. Let w0 := (x0, z0, τ0, κ0) de-

note the starting values of the (regular) cone variables of H. Our main result on
the behavior of H is that there is a natural norm ‖ · ‖w0

defined by w0 and its
regular cone KH (4), and in this norm the measures RH

ε and rH
ε are precisely

controlled independent of any particular characteristics of the problem instance,
as follows:

RH
ε = (x0)T z0 + κ0τ0 + ε

and
rH
ε =

ε

(x0)T z0 + κ0τ0

for all ε satisfying 0 ≤ ε ≤ (x0)T z0 + κ0τ0, see Theorem 1. Notice that RH
ε and

rH
ε do not depend on the behavior of P , the data for P , the null space of A,

etc., and only depend on the chosen starting values x0, z0, τ0, κ0. This indicates
that H is inherently well-behaved in the behavioral measures RH

ε and rH
ε in this

norm. Note also that RH
ε and rH

ε are linear in ε.
We also develop a stopping-rule theory for HSD-based interior-point solvers

such as SeDuMi [15]. Under mild assumptions, we show that a standard stopping
rule implicitly involves the sum of the norms of the ε-optimal primal and dual
solutions (where these norms are also defined by the starting points x0 and z0), as
well as the size of the initial primal and dual infeasibility residuals. This theory
suggests possible criteria for developing starting points for the homogeneous
self-dual model that might improve the resulting solution time in practice.

The paper is organized as follows. In Section 2 we review the construction
of a family of norms that are linear on a given regular cone. This construction
is then applied in Section 3 where we present and prove the main result about
the behavior of H discussed above. Section 4 contains the analysis of a standard
stopping rule for an HSD interior-point method and its connection to RP

ε and
RD

ε . Section 5 contains remarks and open questions.

2. A Family of Norms that are Linear on K

We review the construction of a family of norms that are linear on K. By way
of motivation, consider the simple problem of computing v ∈ IRn that satisfies:

Mv = 0
v ∈ IRn

+

‖v‖ = 1
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for some norm ‖ · ‖. The feasible region of this problem will generally be non-
convex unless ‖ · ‖ happens to be linear on IRn

+, as it is in the special case
when ‖v‖ = ‖(W 0)v‖1 for some w0 > 0 (here W 0 is the diagonal matrix whose
diagonal components are the corresponding components of w0), in which case
‖v‖ = (w0)T v for v ∈ IRn

+. Conversely, suppose we have a linear function f(v) =
(w0)T v that satisfies (w0)T v > 0 for v ∈ IRn

+\{0}. Then w0 ∈ IRn
++ in particular,

and the following norm agrees with the linear function f(v) for all v ∈ IRn
+:

‖v‖ := ‖v‖w0
:= minv1,v2 (w0)T (v1 + v2)

s.t. v1 − v2 = v
v1 ∈ IRn

+

v2 ∈ IRn
+ .

This norm is a linear function on IRn
+, and in fact is the norm with the smallest

unit ball that satisfies ‖v‖ = (w0)T v for v ∈ IRn
+. One can easily verify that

‖v‖w0
corresponds to ‖(W 0)v‖1.

The above construction easily generalizes to an arbitrary regular cone K.
For a regular cone K in the finite-dimensional linear space V , let w0 ∈ intK∗ be
given, and define the following norm on V :

‖v‖ := ‖v‖w0
:= minv1,v2 (w0)T (v1 + v2)

s.t. v1 − v2 = v
v1 ∈ K
v2 ∈ K .

(7)

It is straightforward to verify that ‖ · ‖ is indeed a norm. The following result
states that the restriction of ‖ · ‖ to K is a linear function.

Proposition 1. If v ∈ K, then ‖v‖w0
= (w0)T v.

Proof: For v ∈ K, the assignment (v1, v2) ← (v, 0) is feasible for (7) and so
‖v‖w0 ≤ (w0)T v. However, notice that for any (v1, v2) feasible for (7) we have
(w0)T (v1 + v2) = (w0)T (v + 2v2) ≥ (w0)T v, showing that ‖v‖w0 ≥ (w0)T v, and
hence ‖v‖w0

= (w0)T v. �	
The dual norm of ‖ · ‖ is readily derived as:

‖w‖∗ := ‖w‖w0

∗ := minα α
s.t. w + αw0 ∈ K∗

−w + αw0 ∈ K∗ .

(8)

This norm is referred to as “|w|w0” in Nesterov and Todd [12], where it was first
introduced and analyzed; therefore ‖ · ‖w0

is simply the dual of this previously-
studied norm.

We now show that the norms (7) and (8) specify to well-known norms in the
case of the three standard self-scaled cones IRn

+, Sn
+, and Qn.
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Nonnegative Orthant IRn
+. Let K = K∗ = IRn

+, and let w0 ∈ intK∗(= IRn
++)

be given. We have already seen that ‖v‖w0
works out to be ‖v‖w0

= ‖W 0v‖1,
and the dual norm works out to be:

‖w‖w0

∗ = ‖ (
W 0

)−1
w‖∞ .

Semi-Definite Cone Sn
+. Let K = K∗ = Sn

+ := {v ∈ Sn : v 
 0} where
Sn is the space of real symmetric n × n matrices and “
” denotes the Löwner
partial ordering, namely v 
 u if and only if v − u is positive semidefinite. Let
w0 ∈ intK∗(= Sn

++) be given. Then ‖v‖w0
and ‖w‖w0

∗ work out to be

‖v‖w0
=

∥∥∥λ
(
(w0)

1
2 v(w0)

1
2

)∥∥∥
1

and ‖w‖w0

∗ =
∥∥∥λ

(
(w0)−

1
2 w(w0)−

1
2

)∥∥∥
∞

,

where λ(x) is the vector of eigenvalues of the matrix x. A proof of this is shown
in detail in Appendix B. Note that ‖v‖w0

= trace(w0v) for v ∈ Sn
+.

Second-Order Cone Qn. Let K = K∗ = Qn := {v ∈ IRn : ‖(v2, . . . , vn)‖2 ≤
v1}. Let w0 = e1 := (1, 0, . . . , 0), and note that w0 ∈ intQn. Then ‖v‖w0

and
‖w‖w0

∗ work out to be

‖v‖w0
= max{|v1|, ‖(v2, . . . , vn)‖2} and ‖w‖w0

∗ = |w1| + ‖(w2, . . . , wn)‖2 .

Note that ‖v‖w0
= (e1)T v for v ∈ Qn. For general w0 ∈ intQn, we present the

following closed form expression for ‖v‖w0
and ‖w‖w0

∗ whose proof is rather labo-
rious; see Appendix B for details. Rewrite w0 = (w0

1, w̄) where w̄ = (w0
2, . . . , w

0
n)

and form the matrix M :

M =

(
w0

1 (w̄)T

w̄
(√

(w0
1)2 − w̄T w̄

)
I + w̄w̄T

w0
1+

√
(w0

1)2−w̄T w̄

)
. (9)

Then it is shown in Appendix B that

‖v‖w0
= max{|(Mv)1|, ‖((Mv)2, . . . , (Mv)n)‖2} .

It follows directly from norm duality that

‖w‖w0

∗ = |(M−1w)1| + ‖((M−1w)2, . . . , (M−1w)n)‖2 ,

where M−1 has the following direct formula:

M−1 = ((w0
1)

2 − w̄T w̄)−1

(
w0

1 −(w̄)T

−w̄
(√

(w0
1)2 − w̄T w̄

)
I + w̄w̄T

w0
1+

√
(w0

1)2−w̄T w̄

)
.

The simple formulas for ‖ · ‖w0

∗ for the nonnegative orthant and the semidef-
inite cone were previously developed in [12]. The formula for the second-order
cone presented above implicitly uses a Nesterov-Todd scaling point, as discussed
in Appendix B.

Returning to the case of a general regular cone K, we close this section with
the following result which will be useful in our analysis:
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Proposition 2. Suppose that K is a regular cone, w0 ∈ intK∗ is given, and ‖ ·‖
and ‖ · ‖∗ are given by (7) and (8), respectively. If w ∈ K∗, then

dist∗(w, ∂K∗) ≥ r ⇔ w − rw0 ∈ K∗ .

Proof: Suppose first that w − rw0 ∈ K∗, and let y ∈ ∂K∗ be given. Then there
exists x ∈ K \ {0} satisfying yT x = 0. Computing ‖w − y‖∗ via (8) we see that
any α that is feasible for (8) must satisfy y − w + αw0 ∈ K∗, and taking the
inner product with x yields xT (y −w + αw0) ≥ 0. Notice that xT (w − rw0) ≥ 0
and recalling that yT x = 0 yields (α − r)(w0)T x ≥ 0, which implies that α ≥ r
since (w0)T x > 0. Therefore ‖w − y‖∗ ≥ r, and so dist∗(w, ∂K∗) ≥ r.

Conversely, suppose that dist∗(w, ∂K∗) ≥ r, but assume that w− rw0 /∈ K∗.
Because w ∈ K∗ there exists α ∈ [0, r) for which w̄ := w − αw0 ∈ ∂K∗. Now
notice that w − w̄ + αw0 = 2αw0 ∈ K∗ and w̄ − w + αw0 = 0 ∈ K∗, whereby
from (8) it follows that ‖w̄ − w‖∗ ≤ α < r. And since w̄ ∈ ∂K∗ it follows that
dist∗(w, ∂K∗) < r, which is a contradiction. Therefore w−rw0 ∈ K∗, completing
the proof. �	

3. Behavior of the HSD Model

Recall the following properties of H:

Lemma 1. [18], [17]

– H is self-dual.
– (x, y, z, τ, κ, θ) = (x0, y0, z0, τ0, κ0, θ0) is a strictly feasible primal (and hence

dual) solution of H.
– VALH = 0 and H attains its optimum.
– Let (x∗, y∗, z∗, τ∗, κ∗, θ∗) be any optimal solution of H. Then (x∗)T z∗ = 0

and τ∗ · κ∗ = 0. If τ∗ > 0, then x∗/τ∗ is an optimal solution of P and
(y∗/τ∗, z∗/τ∗) is an optimal solution of D. If κ∗ > 0, then either cT x∗ < 0
or −bT y∗ < 0 or both. The former case implies that D is infeasible, and the
latter case implies that P is infeasible. �	

As originally developed in [18], pre-multiplying the four equation systems of H
by yT , xT , τ , and θ, respectively, and summing yields:

xT z + τκ = ᾱθ (10)

for any feasible solution (x, y, z, τ, κ, θ) of H. Pre-multiplying the four equation
systems of H by (y0)T , (x0)T , τ0, and θ0, respectively, summing, and using (3)
yields:

(z0)T x + (x0)T z + κ0τ + τ0κ = ᾱθ0 + ᾱθ (11)

for any feasible solution (x, y, z, τ, κ, θ) of H. We also have the following property
of H:

Proposition 3. For any ε ≥ 0, there exists a feasible solution of H with objec-
tive value equal to ε. �	
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One way to prove Proposition 3 is to set up ϑ-logarithmically-homogeneous
self-concordant barrier for H and appeal to the barrier calculus developed in
[10] and [9] to assert the existence of primal-dual solutions on the central path
with duality gap μϑ for μ = ε/ϑ. However, the proposition has a direct proof
using basic conic duality (and avoids the self-concordance machinery), which we
present at the end of this section.

Let v := (x, z, τ, κ) ∈ KH be the variables of H corresponding to the cone
KH (4). The dual cone of KH is:

K∗
H := C∗ × C × IR∗

+ × IR+ ,

and we write w := (z, x, κ, τ) ∈ K∗
H , where the order of the variables has been

amended so that variables that are dual to each other in the dual formulation
of H are aligned with their associated primal variables:

Primal variables : v = ( x , z , τ , κ )
   

Dual variables : w = ( z , x , κ , τ )

Given the initial values (x0, y0, z0, τ0, κ0, θ0) satisfying x0 ∈ intC, z0 ∈ intC∗, τ0 >
0, κ0 > 0, θ0 > 0 that are used to define H, notice that w0 := (z0, x0, κ0, τ0) ∈
intK∗

H , hence w0 can be used to define the norms ‖·‖w0
and ‖·‖w0

∗ on the spaces
of variables v and w using (7) and (8), respectively:

‖v‖w0
:= minv1,v2 (w0)T (v1 + v2) ‖w‖w0

∗ := minα α
s.t. v1 − v2 = v s.t. w + αw0 ∈ K∗

H

v1 ∈ KH −w + αw0 ∈ K∗
H

v2 ∈ KH .

(12)

Let us fix these norms on the spaces of variables v = (x, z, τ, κ) and w =
(z, x, κ, τ), respectively.

Remark 1. Under the norms (12), suppose that (x, y, z, τ, κ, θ) is a feasible solu-
tion of H. Then from Propositions 1 and 2 we obtain:

‖(x, z, τ, κ)‖w0
= (z0)T x + (x0)T z + κ0τ + τ0κ

and

dist∗((z, x, κ, τ), ∂K∗
H) ≥ r if and only if (z, x, κ, τ)− r(z0, x0, κ0, τ0) ∈ K∗

H .�	
For ε > 0 let RH

ε denote the size of the largest ε-optimal solution of H:

RH
ε := maxx,y,z,τ,κ,θ ‖(x, z, τ, κ)‖w0

s.t. (x, y, z, τ, κ, θ) is feasible for H
ᾱθ ≤ ε ,

(13)

and let rH
ε denote the maximal distance to ∂K∗

H over all ε-optimal solution of
H:
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rH
ε := maxx,y,z,τ,κ,θ dist∗((z, x, κ, τ), ∂K∗

H)

s.t. (x, y, z, τ, κ, θ) is feasible for H
ᾱθ ≤ ε .

(14)

Our main result on the behavior of H is:

Theorem 1. Under the norms (12),

RH
ε = (x0)T z0 + κ0τ0 + ε

for all ε ≥ 0, and
rH
ε =

ε

(x0)T z0 + κ0τ0

for all ε satisfying 0 ≤ ε ≤ (x0)T z0 + κ0τ0.

Proof: To prove the first assertion, let ε ≥ 0 be given, let ε̃ ∈ [0, ε], and let
(x, y, z, τ, κ, θ) be a feasible solution of H satisfying ᾱθ = ε̃ (which is guaranteed
to exist by Proposition 3). Then (x, z, τ, κ) ∈ KH , whereby

‖(x, z, τ, κ)‖w0
= (z0)T x + (x0)T z + κ0τ + τ0κ (from Remark 1)

= ᾱθ0 + ᾱθ (from (11))

= (x0)T z0 + κ0τ0 + ε̃ (from (3))

≤ (x0)T z0 + κ0τ0 + ε ,

(15)

whereby it follows that RH
ε ≤ (x0)T z0 +κ0τ0 + ε. However, simply setting ε̃ = ε

shows via (15) that RH
ε ≥ (x0)T z0 + κ0τ0 + ε, which then proves the equality of

the first assertion.
To prove the second assertion, let (x∗, y∗, z∗, τ∗, κ∗, θ∗) be an optimal solution

of H and recall from Lemma 1 that (x0, y0, z0, τ0, κ0, θ0) is feasible for H. Let
λ = ε/ᾱθ0, and notice that λ ∈ [0, 1] for 0 ≤ ε ≤ (x0)T z0 +κ0τ0 = ᾱθ0, whereby

(x, y, z, τ, κ, θ) := (1 − λ)(x∗, y∗, z∗, τ∗, κ∗, θ∗) + λ(x0, y0, z0, τ0, κ0, θ0)

is a feasible solution of H with objective value ᾱθ = ε. Then (z, x, κ, τ) −
λ(z0, x0, κ0, τ0) = (1−λ)(z∗, x∗, κ∗, τ∗) ∈ K∗

H , whereby from Remark 1 it follows
that

dist∗((z, x, κ, τ), ∂K∗
H) ≥ λ =

ε

ᾱθ0
=

ε

(x0)T z0 + κ0τ0
,

and so rH
ε ≥ ε

(x0)T z0+κ0τ0 . On the other hand, let (x, y, z, τ, κ, θ) be any feasible
solution of H with objective value ᾱθ ≤ ε, and suppose that dist∗((z, x, κ, τ), ∂K∗

H) =
r. It then follows from Remark 1 that

(z, x, κ, τ) − r(z0, x0, κ0, τ0) ∈ K∗
H .
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Therefore
ε ≥ ᾱθ = ᾱθ − VALH

= (x∗, z∗, τ∗, κ∗)T (z, x, κ, τ)

≥ (x∗, z∗, τ∗, κ∗)T (r(z0, x0, κ0, τ0))

= rᾱθ0 = r((x0)T z0 + κ0τ0) ,

which implies that dist∗((z, x, κ, τ), ∂K∗
H) ≤ ε

(x0)T z0+κ0τ0 and hence the reverse
inequality rH

ε ≤ ε
(x0)T z0+κ0τ0 , completing the proof. �	

Theorem 1 indicates that H is inherently well-behaved in the measures RH
ε

and rH
ε in the norms (12). Indeed, RH

ε and rH
ε do not depend on the problem

instance itself, but only on the chosen starting values x0, z0, τ0, κ0. Note that
RH

ε and rH
ε are linear in ε.

We close this section with the proof of Proposition 3, which follows as a
special case of the following more general proposition.

Proposition 4. Suppose that there exist strictly feasible solutions of the given
primal and dual conic optimization problems P and D. Then for any ε ≥ 0, there
exists a feasible solution x of P and (y, z) of D with duality gap cT x− bT y = ε.

Proof: It is well-known that the supposition of strictly feasible primal and dual
solutions guarantee that both P and D attain their optimal values with no
duality gap. It therefore remains to show that there exist feasible solutions to
the primal-dual pair with arbitrarily large objective value gap. By supposition,
there exists x̄ ∈ intC satisfying Ax̄ = b and there exists ȳ and z̄ ∈ intC∗

satisfying AT ȳ + z̄ = c. Let us first suppose that P has an unbounded feasible
region. Then there exists d ∈ C satisfying d �= 0 and Ad = 0, and it follows that
cT d = ȳT Ad + z̄T d = z̄T d > 0. Therefore x̄ + θd is feasible for arbitrarily large
θ ≥ 0 with arbitrarily large objective function value, proving the result in this
case. If the feasible region of P is bounded, it is straightforward to show that D
has an unbounded feasible region, and similar arguments apply. �	
Proof of Proposition 3: Consider H as a conic convex optimization problem
of the form P . From Lemma 1 it follows that H and its dual have strictly
feasible solutions, so from Proposition 4 it follows that H and its dual (also
H) have feasible solutions whose duality gap is 2ε. But since H is self-dual and
VALH = 0, one of these feasible solutions has objective function value at least
ε, and hence by convexity there is a solution with value exactly ε. �	

4. Stopping-Rule Theory for Interior-Point Methods

In this section we develop results related to a standard stopping rule used by
an interior-point method for solving P and D via the homogeneous self-dual
embedding model H (such as SeDuMi developed by Jos Sturm [15]). Here the
cone C is the Cartesian product of self-scaled cones:

C = Ss1
+ × . . . × S

sns
+ × Qq1 × . . . × Qqnq ×�nl

+ .
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(This cone notation was presented in Section 2.) We focus on norms induced by
the starting points and their connection to the algorithm’s stopping rule.

Consider the problems P and D. We presume that P and D are both feasible
and have a common optimal objective function value OPTVAL. In order to be
consistent with the norm ‖v‖w0

:= ‖(x, z, τ, κ)‖w0
on the cone variables of H

defined in (12), whose restriction to the cone KH takes the convenient functional
form

‖(x, z, τ, κ)‖w0
= (z0)T x + (x0)T z + κ0τ + τ0κ for (x, z, τ, κ) ∈ KH , (16)

we define the norms on x and z as follows:

‖x‖ := ‖x‖z0
(= (z0)T x for x ∈ C) and ‖z‖ := ‖z‖x0

(= (x0)T z for z ∈ C∗)
(17)

for the variables x and z in P and D, respectively. (Note that these norms are not
dual to one another. We have defined the norms so that they will be consistent
with (16) and in so doing we treat P and D and their cone variables x and z
somewhat independently.) Using these norms and their specification (17) on the
cones C,C∗, the sizes of the largest ε-optimal solutions for P and D are:

RP
ε := maxx (z0)T x RD

ε := maxy,z (x0)T z
s.t. Ax = b s.t. AT y + z = c

cT x ≤ OPTVAL + ε bT y ≥ OPTVAL − ε
x ∈ C z ∈ C∗ .

(18)

Let (x, y, z, τ, κ, θ) be an iterate generated by SeDuMi, hence (x, y, z, τ, κ, θ) is
feasible for H. In order to check whether to stop at this iterate, SeDuMi computes
trial primal and dual values (x̄, ȳ, z̄) := (x/τ, y/τ, z/τ), and their residuals:

rp := b − Ax̄
rd := AT ȳ + z̄ − c
rg := cT x̄ − bT ȳ .

(19)

According to SeDuMi’s code, the algorithm will stop at the current iterate if the
following inequality is satisfied:

2
‖rp‖∞

1 + ‖b‖∞ + 2
‖rd‖∞

1 + ‖c‖∞ +
(rg)+

max{|cT x̄|, |bT ȳ|, 0.001 × τ} ≤ rmax , (20)

where the default is rmax = 10−9. (A similar type of stopping rule was also
developed for the solver McIPM that also uses the homogeneous self-dual em-
bedding; see [19].) We will analyze the slightly modified and more convenient
(and perhaps more intuitive) stopping rule inequality instead:

2
‖rp‖∞

1 + ‖b‖∞ + 2
‖rd‖∞

1 + ‖c‖∞ +
(rg)+

max{|cT x̄|, |bT ȳ|, 1} ≤ rmax . (21)
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Define INITRESID (“initial residual”) to be the following combined primal, dual,
and gap residual of the starting point (x0, y0, z0, τ0, κ0, θ0):

INITRESID := 2‖b−Ax0/τ0‖∞
1+‖b‖∞

+ 2‖AT y0/τ0+z0/τ0−c‖∞
1+‖c‖∞

+ (cT x0/τ0−bT y0/τ0)+

max{|OPTVAL|,1} ,

(22)

and define the presumably similar quantity:

QUANT := 2‖b−Ax0/τ0‖∞
1+‖b‖∞

+ 2‖AT y0/τ0+z0/τ0−c‖∞
1+‖c‖∞

+
(
cT x0/τ0−bT y0/τ0+κ0/τ0− θ0

τ0 ( κ
θ )

)+

max{|cT x̄|,|bT ȳ|,1} .

(23)

Note that INITRESID depends only on the data (A, b, c), the starting val-
ues (x0, y0, z0, τ0, κ0, θ0), and the optimal value OPTVAL of P/D. QUANT
depends on the data (A, b, c), the starting values (x0, y0, z0, τ0, κ0, θ0), the ob-
jective values of the current primal and dual trial solution (x̄, ȳ, z̄) through the
denominator of the third term, and the current values of κ and θ through its
numerator.

Lemma 2. Assume that P and D are both feasible, (x0, y0, z0, τ0, κ0, θ0) is the
starting point, and (x, y, z, τ, κ, θ) is a feasible iterate of an interior-point method
for solving H. Let (x̄, ȳ, z̄) := (x/τ, y/τ, z/τ) be the trial solution of P and D.
Then the stopping rule inequality (21) is equivalent to:

θ

θ0
≤ rmax

(
θ0 + θ

θ0

) (
(x0)T z0 + τ0κ0

τ0

) (
‖x̄‖z0

+ ‖z̄‖x0
+ κ0 +

τ0κ

τ

)−1

(QUANT)−1
.

(24)

Proof: The equations of H together with (3) yield:

rp = b − Ax̄ = b̄(θ/τ) =
(
b − Ax0/τ0

) (
θτ0

τθ0

)
rd = AT ȳ + z̄ − c = c̄(θ/τ) =

(
AT y0/τ0 + z0/τ0 − c

) (
θτ0

τθ0

)
rg = cT x̄ − bT ȳ = (ḡ − κ/θ)(θ/τ) =

(
cT x0/τ0 − bT y0/τ0 + κ0

τ0 − κθ0

θτ0

) (
θτ0

τθ0

)
,

whereby (21) becomes: (
θτ0

τθ0

)
QUANT ≤ rmax . (25)

Next observe that

(z0)T x̄ + (x0)T z̄ + κ0 + τ0κ
τ = (z0)T x+(x0)T z+κ0τ+τ0κ

τ

= ᾱθ0+ᾱθ
τ , (from (11))
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which yields

1
τ

=
(z0)T x̄ + (x0)T z̄ + κ0 + τ0κ

τ

ᾱ(θ0 + θ)
=

θ0
(
‖x̄‖z0

+ ‖z̄‖x0
+ κ0 + τ0κ

τ

)
((z0)T x0 + τ0κ0)(θ0 + θ)

,

using (17) and the definition of ᾱ in (3). Substituting the above in (25) and
rearranging terms yields the result. �	

Let T denote the total number of iterations performed by an interior-point
method for solving H, and let β denote the (geometric) average decrease in the
duality gap of H over all iterations:

β := T

√
2ᾱθ

2ᾱθ0
= T

√
θ

θ0
. (26)

The following corollary follows by taking the logarithm of both sides of (24) and
using (26).

Corollary 1.

T =

⎡
⎢⎢⎢

ln
(

θ0

θ0+θ

)
+ ln

(
‖x̄‖z0

+ ‖z̄‖x0
+ κ0 + τ0κ

τ

)
+ ln (QUANT) + ln

(
τ0

(x0)T z0+τ0κ0

)
+ | ln(rmax)|

| ln(β)|

⎤
⎥⎥⎥ �	

(27)

We now try to simplify this expression by making a few reasonable presump-
tions. As the algorithm gets closer to stopping we have θ → 0 and κ → 0.
Furthermore, so long as P and D are not nearly-infeasible, τ will stay bounded
away from 0, i.e., there exists τ̃ > 0 such that τ ≥ τ̃ for all late iterates. Let
us also presume that as the algorithm gets closer to stopping that x̄ = (x/τ) is
sufficiently close to the set of primal ε-optimal solutions and (ȳ, z̄) = (y/τ, z/τ)
is sufficiently close to the set of dual ε-optimal solutions, and that these level sets
are not large (which will be the case if the primal and dual optima are unique
or are nearly so), whereby

‖x̄‖z0 ≈ RP
ε and ‖z̄‖x0 ≈ RD

ε . (28)

These presumptions allow us to simplify (27) to:

T ≈
ln

(
RP

ε + RD
ε + κ0

)
+ ln (QUANT) + ln

(
τ0

(x0)T z0+τ0κ0

)
+ | ln(rmax)|

| ln(β)| .

(29)
Finally, let us presume that INITRESID ≈ QUANT. Notice from (22) and

(23) that these two quantities differ only in their third term, and that the de-
nominators of the third terms of each are nearly identical so long as cT x̄ ≈
bT ȳ ≈ OPTVAL. Therefore INITRESID ≈ QUANT is valid to the extent that
the difference between the numerators of the third terms of INITRESID and
QUANT is dominated by the other numbers in their expressions. Notice that
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although the numerator of the third term of QUANT contains the fraction −κ/θ
and both κ and θ are typically close to zero for near-optimal solutions of H, the
effect on the overall expression is muted somewhat since the numerator of the
third term uses only the positive part of expression therein. In Appendix A we
present some computational evidence that indicates that the presumption that
INITRESID ≈ QUANT is probably reasonable. This final presumption allows
(29) to be rewritten as:

T ≈
ln

(
RP

ε + RD
ε + κ0

)
+ ln (INITRESID) + ln

(
τ0

(x0)T z0+τ0κ0

)
+ | ln(rmax)|

| ln(β)| .

(30)

Remark 2. Theoretical Algorithm with Constant Rate of Convergence.
If the interior-point method for solving H is implemented with a constant rate
of convergence as would be the case for a theoretical polynomial-time algorithm,
then β is pre-specified independent of the problem instance; for example one can
use β = 1 − 1

8
√

ϑ
where ϑ is the complexity parameter of the self-concordant

barrier of the cone KH ; see [10]. In this case (30) simplifies to

T ≈ 8
√

ϑ

(
ln

(
RP

ε + RD
ε + κ0

)
+ ln (INITRESID) + ln

(
τ0

(x0)T z0 + τ0κ0

)
+ | ln(rmax)|

)
.

(31)
Notice that the number of iterations is fairly precisely predicted by five quanti-
ties: (i) the complexity value ϑ of the self-concordant barrier for the cone KH ,
(ii) the initial feasibility and optimality gap measure INITRESID, (iii) the size
of the largest solutions measured in the norms induced by the starting point, (iv)
the initial optimality gap measure of H scaled by τ0, and (v) the pre-specified
tolerance rmax.

Remark 3. Factors Affecting the Average Convergence Rate. Not much
is known or understood about the actual factors that influence the average con-
vergence rate β. We computed β for 77 problem instances in the SDPLIB suite
solved via SeDuMi using the stopping rule inequality (21), obtaining the values
shown in Table 1. Notice that β is in the range 0.12-0.66 for these 77 instances.
Table 2 presents the computed values of β for a set of 144 second-order cone
problem instances that were generated specifically to have a wide range of con-
dition measure values C(d), in the range 102-109 (see [2] for details how these
problems were generated). Here we observed β in the range 0.06-0.55, with larger
values roughly corresponding to problems with larger values of RP

ε + RD
ε and

with larger condition measure C(d) (see [2] for details). This indicates that the
average convergence rate may itself be partially influenced by at least one other
quantity in (30).

Remark 4. Scale-Invariance. Note that the numerator of (30) is invariant un-
der positive scaling of the starting values (x0, y0, z0, τ0, κ0). To see this, suppose
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that these values are rescaled by some scalar α > 0. Then (RP
ε + RD

ε + κ0) ←
α

(
RP

ε + RD
ε + κ0

)
and τ0

(x0)T z0+τ0κ0 ← α−1 τ0

(x0)T z0+τ0κ0 , and the other quanti-
ties in the numerator of (30) are unchanged.

Remark 5. Strategies for Reducing IPM Iterations. While the numera-
tor of (30) is invariant under positive scalings, in general different choices of
(x0, y0, z0, τ0, κ0) can lead to different values of

(
RP

ε + RD
ε + κ0

)
, INITRESID,

and β, suggesting the possibility of developing heuristics to choose (x0, y0, z0, τ0, κ0)
based, perhaps, on solutions to related versions of the problem that might yield
smaller values of some of these quantities. One can easily compute an upper
bound on INITRESID (by setting the denominator of the third term of (22) to
1) and hence try to heuristically reduce its value. In fact, simply by choosing
τ0 = max

{‖Ax0‖∞, ‖AT y0 + z0‖∞, cT x0 − bT y0 + κ0
}
, one can guarantee that

INITRESID ≤ 5 (and QUANT ≤ 5). However, RP
ε , RD

ε and β are in general not
known a priori, so it is not such a simple matter to develop heuristics to reduce
their values. It is nevertheless an interesting line of research inquiry to try to
develop ways to reduce these values either in theory or in practice.

5. Conclusions and Open Questions

Theorem 1 shows that if one measures distance using using the primal/dual
norms (12) induced by the starting point of the HSD embedding, then the be-
havioral measures RH

ε and rH
ε are precisely controlled independent of any partic-

ular characteristics of the problem instance P/D, indicating that H is inherently
well-behaved in these measures in this norm.

Furthermore, the primal norm of (12) is implicitly involved in the standard
stopping criterion for an IPM for solving P/D via the HSD embedding model:
under mild assumptions, the stopping rule implicitly involves the sum of the
norms of the ε-optimal primal and dual solutions (where these norms are also
defined by the starting points x0 and z0), as well as the size of the initial primal
and dual infeasibility residuals. This theory suggests possible criteria for devel-
oping starting points for the homogeneous self-dual model that might improve
the resulting solution time in practice.

The analysis of the stopping criterion herein is valid for the case when P and
D both have solutions. It would be interesting to extend this line of analysis to
the case where P and/or D are infeasible, to answer the question: what are the
relevant behavioral measures and possibly associated norms that capture the
stopping criterion for an instance of P/D in which one or both problems are
infeasible?
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Appendix A: On the Presumption that INITRESID ≈ QUANT

We tested the presumption that INITRESID ≈ QUANT on two data sets of
conic problems: (i) the SDPLIB test set of semidefinite programming prob-
lems archived at http://www.nmt.edu/∼sdplib/, and (ii) a set of 144 second-
order-cone problems generated to have a wide range of condition measures
C(d) (see [2] for details). We used SeDuMi to solve these problems, modified
to use the amended stopping rule (21). Table 1 shows the values of the ratio
INITRESID/QUANT as well as the average decrease in the duality gap β (26)
for 77 problems in the SDPLIB test set (we did not compute these values for
the following 15 problems due to their size and/or infeasibility: equalG51, infd1
(dual infeasible), infd2 (dual infeasible), infp1 (primal infeasible), infp2 (primal
infeasible), maxG32, maxG51, maxG55, maxG60, qpG11, qpG51, theta5, theta6,
thetaG11, thetaG51). The computational results show that INITRESID/QUANT
is consistently close to 1.0 (to one decimal place) for these problems, except
for the problem qap5, for which the ratio is 0.9. We also solved a set of 144
second-order cone problems that were generated specifically to have a wide
range of condition measure values C(d), in the range 102 − 109 (see [2] for de-
tails how these problems were generated). Table 2 shows the values of the ratio
INITRESID/QUANT as well as the average decrease in the duality gap β (26) for
these 144 second-order cone problems. Here we observed INITRESID/QUANT
in the range 0.9 − 3.9, and between 0.9 and 1.0 in all but six instances. These
results indicate that the presumption that INITRESID ≈ QUANT is quite rea-
sonable.

Table 1: The quantities RATIO = INITRESID/QUANT and β for 77 Problems
in the SDPLIB Test Set.

Problem RATIO β Problem RATIO β Problem RATIO β

arch0 1.0 0.30 gpp500-2 1.0 0.57 mcp250-3 1.0 0.24
arch2 1.0 0.28 gpp500-3 1.0 0.59 mcp250-4 1.0 0.22
arch4 1.0 0.30 gpp500-4 1.0 0.54 mcp500-1 1.0 0.27
arch8 1.0 0.28 hinf1 1.0 0.30 mcp500-2 1.0 0.25
control1 1.0 0.21 hinf2 1.0 0.35 mcp500-3 1.0 0.25
control2 1.0 0.25 hinf3 1.0 0.38 mcp500-4 1.0 0.23
control3 1.0 0.28 hinf4 1.0 0.35 qap5 0.9 0.12
control4 1.0 0.30 hinf5 1.0 0.35 qap6 1.0 0.33
control5 1.0 0.31 hinf6 1.0 0.33 qap7 1.0 0.34
control6 1.0 0.34 hinf7 1.0 0.25 qap8 1.0 0.36
control7 1.0 0.34 hinf8 1.0 0.32 qap9 1.0 0.35
control8 1.0 0.33 hinf9 1.0 0.23 qap10 1.0 0.34
control9 1.0 0.31 hinf10 1.0 0.33 ss30 1.0 0.35
control10 1.0 0.36 hinf11 1.0 0.35 theta1 1.0 0.15
control11 1.0 0.39 hinf12 1.0 0.29 theta2 1.0 0.15
equalG11 1.0 0.25 hinf13 1.0 0.29 theta3 1.0 0.16
gpp100 1.0 0.66 hinf14 1.0 0.39 theta4 1.0 0.17
gpp124-1 1.0 0.63 hinf15 1.0 0.33 truss1 1.0 0.14
gpp124-2 1.0 0.64 maxG11 1.0 0.22 truss2 1.0 0.23
gpp124-3 1.0 0.64 mcp100 1.0 0.20 truss3 1.0 0.21
gpp124-4 1.0 0.65 mcp124-1 1.0 0.22 truss4 1.0 0.17
gpp250-1 1.0 0.66 mcp124-2 1.0 0.20 truss5 1.0 0.27
gpp250-2 1.0 0.56 mcp124-3 1.0 0.23 truss6 1.0 0.35
gpp250-3 1.0 0.57 mcp124-4 1.0 0.23 truss7 1.0 0.31
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Problem RATIO β Problem RATIO β Problem RATIO β

gpp250-4 1.0 0.56 mcp250-1 1.0 0.25 truss8 1.0 0.32
gpp500-1 1.0 0.60 mcp250-2 1.0 0.24

Table 2: The quantities RATIO = INITRESID/QUANT and β for 144 Second-
Order Cone Problems.

Problem RATIO β Problem RATIO β Problem RATIO β

sm 18 1.0 0.22 md 1 1.0 0.22 md 3 0.9 0.23
sm 18 1 1.0 0.21 md 1 1 1.0 0.24 md 3 1 0.9 0.22
sm 18 5 1.0 0.22 md 1 5 1.0 0.26 md 3 5 0.9 0.22
sm 18 75 1.0 0.23 md 1 75 1.0 0.24 md 3 75 0.9 0.24
sm 18 9 1.0 0.24 md 1 9 1.0 0.29 md 3 9 0.9 0.25
sm 18 95 1.0 0.27 md 1 95 1.0 0.28 md 3 95 0.9 0.25
sm 18 97 1.0 0.28 md 1 97 1.0 0.33 md 3 97 0.9 0.24
sm 18 99 1.0 0.29 md 1 99 1.0 0.32 md 3 99 0.9 0.27
sm 18 995 1.0 0.34 md 1 995 1.0 0.32 md 3 995 0.9 0.28
sm 18 999 1.0 0.37 md 1 999 1.0 0.35 md 3 999 1.0 0.31
sm 18 9995 1.0 0.37 md 1 9995 1.0 0.36 md 3 9995 1.0 0.34
sm 18 9999 1.0 0.39 md 1 9999 1.0 0.40 md 3 9999 1.0 0.36
sm 19 1.0 0.18 lg 1 0.9 0.14 md 5 0.9 0.23
sm 19 1 1.0 0.18 lg 1 1 0.9 0.14 md 5 1 0.9 0.22
sm 19 5 1.0 0.21 lg 1 5 0.9 0.16 md 5 5 0.9 0.22
sm 19 75 1.0 0.21 lg 1 75 0.9 0.16 md 5 75 0.9 0.24
sm 19 9 1.0 0.25 lg 1 9 1.0 0.17 md 5 9 0.9 0.25
sm 19 95 1.0 0.24 lg 1 95 1.0 0.17 md 5 95 0.9 0.25
sm 19 97 1.0 0.27 lg 1 97 0.9 0.19 md 5 97 0.9 0.25
sm 19 99 1.0 0.27 lg 1 99 1.0 0.17 md 5 99 0.9 0.28
sm 19 995 1.0 0.28 lg 1 995 1.0 0.19 md 5 995 0.9 0.28
sm 19 999 1.0 0.29 lg 1 999 1.5 0.23 md 5 999 0.9 0.31
sm 19 9995 1.0 0.30 lg 1 9995 1.6 0.25 md 5 9995 0.9 0.33
sm 19 9999 1.0 0.31 lg 1 9999 1.7 0.26 md 5 9999 1.0 0.37
sm2 3 0.9 0.06 md 2 1.0 0.23 md 4 1.0 0.27
sm2 3 1 0.9 0.06 md 2 1 1.0 0.22 md 4 1 1.0 0.26
sm2 3 5 0.9 0.10 md 2 5 1.0 0.23 md 4 5 1.0 0.27
sm2 3 75 0.9 0.14 md 2 75 1.0 0.27 md 4 75 1.0 0.28
sm2 3 9 0.9 0.19 md 2 9 1.0 0.28 md 4 9 1.0 0.25
sm2 3 95 0.9 0.19 md 2 95 1.0 0.26 md 4 95 1.0 0.29
sm2 3 97 0.9 0.24 md 2 97 1.0 0.26 md 4 97 1.0 0.30
sm2 3 99 1.0 0.22 md 2 99 1.0 0.28 md 4 99 1.0 0.35
sm2 3 995 1.0 0.21 md 2 995 1.0 0.30 md 4 995 1.0 0.37
sm2 3 999 1.3 0.26 md 2 999 1.0 0.39 md 4 999 1.0 0.42
sm2 3 9995 1.5 0.31 md 2 9995 1.0 0.41 md 4 9995 1.0 0.46
sm2 3 9999 3.9 0.35 md 2 9999 1.0 0.55 md 4 9999 1.0 0.46
sm 5 1.0 0.22 sm2 1 1.0 0.28 md 6 0.9 0.20
sm 5 1 1.0 0.21 sm2 1 1 1.0 0.25 md 6 1 0.9 0.20
sm 5 5 1.0 0.19 sm2 1 5 1.0 0.36 md 6 5 0.9 0.19
sm 5 75 1.0 0.23 sm2 1 75 1.0 0.27 md 6 75 0.9 0.19
sm 5 9 1.0 0.26 sm2 1 9 1.0 0.43 md 6 9 0.9 0.21
sm 5 95 1.0 0.26 sm2 1 95 1.0 0.44 md 6 95 0.9 0.21
sm 5 97 1.0 0.27 sm2 1 97 1.0 0.43 md 6 97 0.9 0.22
sm 5 99 1.0 0.29 sm2 1 99 1.0 0.45 md 6 99 0.9 0.24
sm 5 995 1.0 0.30 sm2 1 995 1.0 0.46 md 6 995 0.9 0.24
sm 5 999 1.0 0.34 sm2 1 999 1.0 0.49 md 6 999 0.9 0.29
sm 5 9995 1.0 0.35 sm2 1 9995 1.0 0.50 md 6 9995 0.9 0.29
sm 5 9999 1.0 0.38 sm2 1 9999 1.0 0.49 md 6 9999 0.9 0.32
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Appendix B: On Norms that are Linear on Sn
+ and Qn

The Positive Semi-definite Cone. We first prove that for w0 ∈ intSn
+ the

norm (7) has the form ‖v‖w0
=

∥∥∥λ
(
(w0)

1
2 v(w0)

1
2

)∥∥∥
1
. To show this, we convert to

the more standard matrix and trace notation used for semidefinite optimization
used in [1] for example. To avoid confusion with roots of semidefinite matrices,
let us instead use W̄ for the given positive definite matrix in intSn

+ and write
(7) and its conic dual as:

‖V ‖W̄ = minV 1,V 2 W̄ • (V 1 + V 2) (Dual) : maxX V • X
s.t. V 1 − V 2 = V s.t. W̄ + X ∈ Sn

+

V 1, V 2 ∈ Sn
+ W̄ − X ∈ Sn

+ .

For V ∈ Sn, consider the eigendecomposition of W̄
1
2 V W̄

1
2 = P (D−E)PT where

P is orthonormal, and D,E are nonnegative diagonal matrices corresponding
to the nonnegative and nonpositive eigenvalues of W̄

1
2 V W̄

1
2 , respectively. Let

S denote the diagonal matrix whose diagonal is composed of the sign of the
diagonal of D − E, and let V 1 = W̄− 1

2 PDPT W̄− 1
2 , V 2 = W̄− 1

2 PEPT W̄− 1
2 ,

and X = W̄
1
2 PSPT W̄

1
2 . Then it is relatively easy to check that V 1, V 2,X are

primal and dual feasible in the above conic programs with common objective
function value I • (D + E) =

∥∥∥λ
(
W̄ )

1
2 V W̄

1
2

)∥∥∥
1
, proving the result.

The Second-Order Cone. We now prove that for w0 ∈ intQn the norm (7) has
the closed-form ‖v‖w0

= max{|(Mv)1|, ‖(Mv)2, . . . , (Mv)n‖2} where v = (v1, v̄)
and M is given by (9). Suppose first that w0 = e1 := (1, 0, . . . , 0); in this case
M = I and we need to show that ‖v‖e1

= max{|v1|, ‖v̄‖2}. To show this, write
(7) and its conic dual as:

‖v‖w0
= minv1,v2 (e1)T (v1 + v2) (Dual) : maxx vT x

s.t. v1 − v2 = v s.t. e1 + x ∈ Qn

v1, v2 ∈ Qn e1 − x ∈ Qn ,

and consider three cases:
Case 1: v1 ≥ ‖v̄‖. Here v1 = v, v2 = 0, x = e1 are primal and dual feasible
in the above conic programs with common objective value v1 = max{|v1|, ‖v̄‖},
proving the result in this case.
Case 2: −v1 ≥ ‖v̄‖. Here v1 = 0, v2 = −v, x = −e1 are primal and dual feasible
in the above conic programs with common objective value −v1 = max{|v1|, ‖v̄‖},
proving the result in this case.
Case 3: −‖v̄‖ < v1 < ‖v̄‖. Let β := (v1 + ‖v̄‖)/(2‖v̄‖). Then β ∈ (0, 1) and
define v1 = (β‖v̄‖, βv̄), v2 = ((1−β)‖v̄‖, (β−1)v̄, ), x = (0, v̄/‖v̄‖). Then v1, v2, x
are primal and dual feasible in the above conic programs with common objective
function value ‖v̄‖ = max{|v1|, ‖v̄‖}, proving the result in this case.

Now consider an arbitrary given w0 ∈ intQn. Let v = (v1, v̄) ∈ Qn, and
consider the self-scaled (see [11]) barrier function

f(v) := − ln(v2
1 − v̄T v̄)
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for v ∈ intQn. The Hessian of f(·) is given by:

H(v) =
1

(v2
1 − v̄T v̄)2

(
2v2

1 + 2v̄T v̄ −4v1v̄
T

−4v1v̄ 2(v2
1 − v̄T v̄)I + 4v̄v̄T

)
,

and it follows from the definition of a self-scaled barrier [11] that H(v) maps Qn

onto Qn for v ∈ intQn.
Now let w0 = (w0

1, w̄) ∈ intQn be given, and define M as in (9). Then it is
laborious but straightforward to check that M = H(ṽ) for

ṽ =

(√
w0

1 + γ̃

γ̃
,

−w̄

γ̃
√

w0
1 + γ̃

)
,

where γ̃ =
√

(w0
1)2 − w̄T w̄, and so M maps Qn onto Qn, i.e., Mv ∈ Qn if and

only if v ∈ Qn. Then notice that:

‖v‖w0
= minv1,v2 (w0)T (v1 + v2) = minv1,v2 (e1)T M(v1 + v2)

s.t. v1 − v2 = v s.t. Mv1 − Mv2 = Mv
v1, v2 ∈ Qn Mv1,Mv2 ∈ Qn ,

since Me1 = w0, M is invertible, and Mv ∈ Qn if and only if v ∈ Qn. But
substituting y1 = Mv1, y2 = Mv2 the rightmost program above can be rewritten
as:

‖v‖w0
= miny1,y2 (e1)T (y1 + y2)

s.t. y1 − y2 = Mv
y1, y2 ∈ Qn ,

which we have already seen is just max{|(Mv)1|, ‖(Mv)2, . . . , (Mv)n‖}.
Notice in the above derivation that H(ṽ)e1 = Me1 = w0, and so one can

interpret ṽ as the Nesterov-Todd scaling point (see [11]) whose Hessian M =
H(ṽ) maps e1 to w0. This scaling-point interpretation can be used to give a
more general derivation of the specific form of ‖ · ‖w0

when K is a symmetric
cone.
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