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Abstract

The purpose of this paper is to extend, as much as possible, the modern theory
of condition numbers for conic convex optimization:

z* := minz ctx
s.t. Ax - b Cy

C Cx ,

to the more general non-conic format:

z* := minx ctx
(GPd) s.t. Ax-b E Cy

X P,

where P is any closed convex set, not necessarily a cone, which we call the ground-
set. Although any convex problem can be transformed to conic form, such trans-
formations are neither unique nor natural given the natural description of many
problems, thereby diminishing the relevance of data-based condition number the-
ory. Herein we extend the modern theory of condition numbers to the problem
format (GPd). As a byproduct, we are able to state and prove natural extensions of
many theorems from the conic-based theory of condition numbers to this broader
problem format.
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1 Introduction

The modern theory of condition numbers for convex optimization problems was devel-
oped by Renegar in [16] and [17] for convex optimization problems in the following conic
format:

z, := minx ctx
(CPd) s.t. Ax-bE C (1)

x C x,

where Cx C X and Cy C 3 are closed convex cones, A is a linear operator from the
n-dimensional vector space X to the m-dimensional vector space Y, b CE , and c C X*
(the space of linear functionals on X). The data d for (CPd) is defined as d := (A, b, c).

The theory of condition numbers for (CPd) focuses on three measures - pp(d), pD(d),
and C(d), to bound various behavioral and computational quantities pertaining to
(CPd). The quantity pp(d) is called the "distance to primal infeasibility" and is the
smallest data perturbation Ad for which (CPd+Ad) is infeasible. The quantity pD(d) is
called the "distance to dual infeasibility" for the conic dual (CDd) of (CPd):

Z* := maxy bty
(CDd) s.t. c - A ty C Cy (2)

y C C ,

and is defined similarly to pp(d) but using the conic dual problem instead (which conve-
niently is of the same general conic format as the primal problem). The quantity C(d)
is called the "condition measure" or the "condition number" of the problem instance d
and is a (positively) scale-invariant reciprocal of the smallest data perturbation Ad that
will render the perturbed data instance either primal or dual infeasible:

0(d) min{pp~d),pD(d)} ' (3)
minipp(d),pD(d) '

for a suitably defined norm I1 ] l on the space of data instances d. A problem is called
"ill-posed" if min{pp(d), pD(d)} = 0, equivalently C(d) = oo. These three condition
measure quantities have been shown in theory to be connected to a wide variety of
bounds on behavioral characteristics of (CPd) and its dual, including bounds on sizes
of feasible solutions, bounds on sizes of optimal solutions, bounds on optimal objective
values, bounds on the sizes and aspect ratios of inscribed balls in the feasible region,
bounds on the rate of deformation of the feasible region under perturbation, bounds on
changes in optimal objective values under perturbation, and numerical bounds related
to the linear algebra computations of certain algorithms, see [16], [5], [4], [6], [7], [8],
[21], [19], [22], [20], [14], [15]. In the context of interior-point methods for linear and
semidefinite optimization, these same three condition measures have also been shown to
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be connected to various quantities of interest regarding the central trajectory, see [10]
and [11]. The connection of these condition measures to the complexity of algorithms
has been shown in [6], [7], [17], [2], and [3], and some of the references contained therein.

The conic format (CPd) covers a very general class of convex problems; indeed any
convex optimization problem can be transformed to an equivalent instance of (CPd).
However, such transformations are not necessarily unique and are sometimes rather
unnatural given the "natural" description and the natural data for the problem. The
condition number theory developed in the aforementioned literature pertains only to
convex optimization problems in conic form, and the relevance of this theory is dimin-
ished to the extent that many practical convex optimization problems are not conveyed
in conic format. Furthermore, the transformation of a problem to conic form can result
in dramatically different condition numbers depending on the choice of transformation,
see the example in Section 2 of [13].

Motivated to overcome these shortcomings, herein we extend the condition number
theory to non-conic convex optimization problems. We consider the more general format
for convex optimization:

z,(d)= min ctx
(GPd) s.t. Ax - b Cy (4)

x E P,

where P is allowed to be any closed convex set, possibly unbounded, and possibly without
interior. For example, P could be the solution set of box constraints of the form 1 < x < u
where some components of 1 and/or u might be unbounded, or P might be the solution
of network flow constraints of the form Nx = g, x > O. And of course, P might also be a
closed convex cone. We call P the ground-set and we refer to (GPd) as the "ground-set
model" (GSM) format.

We present the definition of the condition number for problem instances of the more
general GSM format in Section 2, where we also demonstrate some basic properties. A
number of results from condition number theory are extended to the GSM format in
the subsequent sections of the paper. In Section 3 we prove that a problem instance
with a finite condition number has primal and dual Slater points, which in turn implies
that strong duality holds for the problem instance and its dual. In Section 4 we provide
characterizations of the condition number as the solution to associated optimization
problems. In Section 5 we show that if the condition number of a problem instance
is finite, then there exist primal and dual interior solutions that have good geometric
properties. In Section 6 we show that the rate of deformation of primal and dual feasible
regions and optimal objective function values due to changes in the data are bounded
by functions of the condition number. Section 7 contains concluding remarks.

We now present the notation and general assumptions that we will use throughout
the paper.
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Notation and General Assumptions. We denote the variable space X by lRn and
the constraint space Y by Rm. Therefore, P C Rn , Cy C Rm, A is an m by n real
matrix, b E Rm, and c E Rn. The spaces X* and Y* of linear functionals on ]R and
Rm can be identified with Rn and Rm, respectively. For v, w E R' or R", we write vtw
for the standard inner product. We denote by D the vector space of all data instances
d = (A, b, c). A particular data instance is denoted equivalently by d or (A, b, c). We
define the norm for a data instance d by dll := max{flAll, lbl, cIIl*}, where the norms

xII and IIyl on Rn and Rm are given, IIAJl denotes the usual operator norm, and
11· II denotes the dual norm associated with the norm 1I 11 on lR or R-m, respectively.
Let B(v, r) denote the ball centered at v with radius r, using the norm for the space
of variables v. For a convex cone S, let S* denote the (positive) dual cone, namely
S* := {s stx > O for all x E S}. Given a set Q C n, we denote the closure and
relative interior of Q by cl Q and relint Q, respectively. We use the convention that if Q
is the singleton Q = {q}, then relint Q = Q. We adopt the standard conventions = x
and 1 = 0.

o00

We also make the following two general assumptions:

Assumption 1 P 0 and Cy 7 0.

Assumption 2 Either Cy Rm or P is not bounded (or both).

Clearly if either P = 0 or Cy = 0 problem (GPd) is infeasible regardless of A, b, and
c. Therefore Assumption 1 avoids settings wherein all problem instances are trivially
inherently infeasible. Assumption 2 is needed to avoid settings where (GPd) is feasible
for every d = (A, b, c) C D. This will be explained further in Section 2.

2 Condition Numbers for (GPd) and its Dual

2.1 Distance to Primal Infeasibility

We denote the feasible region of (GPd) by:

Xd:= E En Ax-b Cy, P) . (5)

Let Fp := {d E D I Xd # 0}, i.e., Fp is the set of data instances for which (GPd) has a
feasible solution. Similar to the conic case, the primal distance to infeasibility, denoted
by pp(d), is defined as:

pp(d) := inf {lIAdlI I Xd+Ad = 0} = inf { AdII I d + Ad E pc} . (6)

4



2.2 The Dual Problem and Distance to Dual Infeasibility

In the case when P is a cone, the conic dual problem (2) is of the same basic format as
the primal problem. However, when P is not a cone, we must first develop a suitable
dual problem, which we do in this subsection. Before doing so we introduce a dual
pair of cones associated with the ground-set P.
homogenizing P to one higher dimension:

Define the closed convex cone C by

(7)

and note that C = {(x, t) C Rn x R z C tP, t > O}U (R x {0}) where R is the reces-
sion cone of P, namely

R := {v E Rn I there exists x C P for which x + Ov E P for all 0 > 0} (8)

It is straightforward to show that the (positive) dual cone C* of C is

C* := {(s,u) GE n X i St x + u x t > 0 for all (x, t) C C}
{(s, u) C Rn x I St + u > 0, for all x P}
{(s, ) C n x a infxep st + u > 0} .

(9)

The standard Lagrangian dual of (GPd) can be constructed as:

max inf {Ctx + (b - Ax) t y}
yEC; EP

which we re-write as:
max in f{bty + (c - Aty)tx} .
yEC zXEP

With the help of (9) we re-write (10) as:

(GDd)

(10)

(11)

z*(d) = maxy,U bty -
s.t. (c - Aty, u) C C*

y C C 

We consider the formulation (11) to be the dual problem of (4). The feasible region of
(GDd) is:

Yd:= (y,u) C R x fR i (c-A t y, u) E C*,y C. (12)

Let YFD := {d E ZD I Yd 7 0}, i.e., FD is the set of data instances for which (GDd) has a
feasible solution. The dual distance to infeasibility, denoted by pD(d), is defined as:

pD(d) := inf Ad I Yd+d = = inf { lAd I d + Ad E FDC} (13)

5
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We also present an alternate form of (11), which does not use the auxiliary variable
u, based on the function u(.) defined by

u(s) : - inf s'xt (14)
xEP

It follows from Theorem 5.5 in [18] that u(.), the support function of the set P, is a
convex function. The epigraph of u(.) is:

epi u(.) := (s,v) C Rn x | v > u(s)) ,

and the projection of the epigraph onto the space of the variables s is the effective
domain of u(-):

effdom u(C) := s C IRn u(s) < oo) .

It then follows from (9) that

C* = epi u(),

and so (GDd) can alternatively be written as:

z*(d)= maxy bty - u(c - Aty)
s.t. c - Aty C effdom u(.) (15)

Y E C 

Evaluating the inclusion (y, u) C Yd is not necessarily an easy task, as it involves
checking the inclusion (c - Aty, u) C*, and C* is an implicitly defined cone. A very
useful tool for evaluating the inclusion (y, u) C Yd is given in the following proposition,
where recall from (8) that R is the recession cone of P.

Proposition 1 If y satisfies y C C and c - Aty C relintR*, then u(c - Aty) is finite,
and for all u > u(c - Aty) it holds that (y, u) is feasible for (GDd).

Proof: Note from Proposition 11 of the Appendix that cl effdom u(.) = R* and
from Proposition 12 of the Appendix that c - Aty relintR* = relint cl effdom u(.) =
relint effdom u(.) C effdom u(.). This shows that u(c-Aty) is finite and (c-Aty, u(c-
Aty)) C C*. Therefore (y, u) is feasible for (GDd) for all u > u(c - Aty). ·

2.3 Condition Number

A data instance d = (A, b, c) is consistent if both the primal and dual problems have
feasible solutions. Let F denote the set of consistent data instances, namely :=
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Fp n 7D = {d C D Xd 0 and Yd # }. For d F, the distance to infeasibility is
defined as:

p(d) := min{pp(d),pD(d)}
= inf {lAdjl I Xd+Ad = 0 or Yd+Zd = 0} ,

the interpretation being that p(d) is the size of the smallest perturbation of d which will
render the perturbed problem instance either primal or dual infeasible. The condition
number of the instance d is defined as

C(d) = p(d) p (

oo p(d) = ,

which is a (positive) scale-invariant reciprocal of the distance to infeasibility. This def-
inition of condition number for convex optimization problems was first introduced by
Renegar for problems in conic form in [16] and [17].

2.4 Basic Properties of pp(d),pD(d), and C(d), and Alternative
Duality Results

The need for Assumptions 1 and 2 is demonstrated by the following:

Proposition 2 For any data instance d E D,

1. pp(d) = o if and only if Cy = E m.

2. pD(d) = oc if and only if P is bounded.

The proof of this proposition relies on Lemmas 1 and 2, which are versions of "theo-
rems of the alternative" for primal and dual feasibility of (GPd) and (GDd). These two
lemmas are stated and proved at the end of this section.

Proof of Proposition 2: Clearly Cy = Rm implies that pp(d) = o. Also, if P is
bounded, then R = {O} and R* = WR~, whereby from Proposition 1 we have that (GDd)
is feasible for any d, and so pD(d) = oc. Therefore for both items it only remains to
prove the converse implication. Recall that we denote d = (A, b, c).

Assume that pp(d) = oc, and suppose that Cy Rm . Then C 7 {O}, and consider
a point y C , # 0. Define the perturbation Ad = (AA, Ab, Ac) = (-A, -b + i, -c)
and d= d + Ad. Then the point (y, u) = (, ') satisfies the alternative system (A2j)
of Lemma 1 for the data d= (0, , 0), whereby Xd = 0. Therefore lid-dll pp(d) = oo,
a contradiction, and so Cy = ffm.
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Now assume that pD(d) = oo, and suppose that P is not bounded, and so R · ({0}.
Consider CG R, x 4 0, and define the perturbation Ad = (-A, -b, -c -). Then the
point satisfies the alternative system (B2d) of Lemma 2 for the data d = d + Ad =
(0, 0, -), whereby Yd = 0. Therefore ld- d > pD(d) = oo, a contradiction, and so P
is bounded. D

Remark 1 If d EC , then C(d) > 1.

Proof: Consider the data instance do = (0,0,0). Note that Xdo = P 0 and
Ydo = C x R+ 0, therefore do E F. If Cy # Rt , consider b EC "R \ Cy, b # 0, and
for any E > 0 define the instance d = (0, -Eb, 0). This instance is such that for any
E > 0, Xd, = 0, which means that d, C T7C and therefore pp(d) < inf,>o lId-dll < Id .
If Cy = Rm, then Assumption 2 implies that P is unbounded. This means that there
exists a ray r C R, r 7 0. For any E > 0 the instance d = (0, 0, -r) is such that
Yd = 0, which means that d, E C and therefore pD(d) < inf,>o d - d, I I< ldl .

In each case we have p(d) = min{pp(d), pp(d)} < ldlI, which implies the result. U

The following two lemmas present weak and strong alternative results for (GPd) and
(GDd), and are used in the proofs of Proposition 2 and elsewhere.

Lemma 1 Consider the following systems with data d = (A, b, c):

Ax- b E Cy (ty , u) C (-Aty, u)CE C*
(Xd) A b E C (Al) (A2d) bty > xEyP Yy0

If system (Xd) is infeasible, then system (Ald) is feasible. Conversely, if system
(A2d) is feasible, then system (Xd) is infeasible.

Proof: Assume that system (Xd) is infeasible. This implies that

b S:={Ax-v x P, v Cy} ,

which is a nonempty convex set. Using Proposition 10 we can separate b from S and
therefore there exists y #7 0 such that

yt(Ax - v) < ytb for all x C P, v Cy

Set u := ytb, then the inequality implies that y C and that (-Aty)tx + u > 0 for any
x C P. Therefore (-Aty, u) C C* and (y, u) satisfies system (Ald).

Conversely, if both (A2d) and (Xd) are feasible then

0 < y t (Ax-b) = (A t y)t x- b t y< - ((-Aty)t + u) < .
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Lemma 2 Consider the following systems with data d = (A, b, c):

Ax Cy AxCy
(C - Aty, ) C* Ct < 

(Yd) y c (Bld) 0 (B2d) ct < O
xR xERR

If system (Yd) is infeasible, then system (Bld) is feasible. Conversely, if system (B2d)
is feasible, then system (Yd) is infeasible.

Proof: Assume that system (Yd) is infeasible, this implies that

(0,0,0) X S := {(s,v,q) 3 y,u s.t. (c - Aty, u) + (s,) E C*,y+q CC} ,

which is a nonempty convex set. Using Proposition 10 we separate the point (0, 0, 0) from
S and therefore there exists (x, 6, z) 0 such that xts + 6v + ztq > 0 for all (s, v, q) E S.
For any (y, u), (, v) C*, and E C, define s = -(c - Aty) + , v = -u + v, and
q = -y + Q. By construction (s, v, q) C S and therefore for any y, u, (, v) C C*, q C.
we have

-xtc + (Ax - z)ty + xts - 6u + + ztq > 0

The above inequality implies that = 0, Ax = z Cy, x C R, and ctx < O. In addition
x # 0, because otherwise (x, , z) = (, 0, Ax) = 0. Therefore (Bld) is feasible.

Conversely, if both (B2d) and (Yd) are feasible then

o < xt(c - Aty) = ct - ytAx < -ytAx < .

3 Slater Points, Distance to Infeasibility, and Strong
Duality

In this section we prove that the existence of a Slater point in either (GPd) or (GDd) is
sufficient to guarantee that strong duality holds for these problems. We then show that
a positive distance to infeasibility implies the existence of Slater points, and use these
results to show that strong duality holds whenever pp(d) > 0 or pD(d) > 0. We first
state a weak duality result.

Proposition 3 Weak duality holds between (GPd) and (GDd), that is, z*(d) < z*(d)

Proof: Consider x and (y, u) feasible for (GPd) and (GDd), respectively. Then

0< (- Aty)t x + u= ctx - ytA + u < ctx - ty + u,
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where the last inequality follows from yt(Ax - b) > O. Therefore z,(d) > z*(d).

A classic constraint qualification in the history of constrained optimization is the
existence of a Slater point in the feasible region, see for example Theorem 30.4 of [18]
or Chapter 5 of [1]. We now define a Slater point for problems in the GSM format.

Definition 1 A point x is a Slater point for problem (GPd) if

x c relintP and Ax - b E relintCy

A point (y, u) is a Slater point for problem (GDd) if

y C relintC and (c - Aty, u) C relintC*

We now present the statements of the main results of this section, deferring the
proofs to the end of the section. The following two theorems show that the existence of
a Slater point in the primal or dual is sufficient to guarantee strong duality as well as
attainment in the dual or the primal problem, respectively.

Theorem 1 If x' is a Slater point for problem (GPd), then z*(d) = z*(d). If in addition
z*(d) > -oo, then Yd 7 0 and problem (GDd) attains its optimum.

Theorem 2 If (y', u') is a Slater point for problem (GDd), then z*(d) = z*(d). If in
addition z*(d) < oo, then Xd # 0 and problem (GPd) attains its optimum.

The next three results show that a positive distance to infeasibility is sufficient to
guarantee the existence of Slater point for the primal and the dual problems, respectively,
and hence is sufficient to ensure that strong duality holds. The fact that a positive
distance to infeasibility implies the existence of an interior point in the feasible region
is shown for the conic case in Theorems 15, 17, and 19 in [8] and Theorem 3.1 in [17].

Theorem 3 Suppose that pp(d) > O. Then there exists a Slater point for (GPd).

Theorem 4 Suppose that pD(d) > O. Then there exists a Slater point for (GDd).

Corollary 1 (Strong Duality) If pp(d) > 0 or pD(d) > 0, then z(d) = z*(d). If
p(d) > O, then both the primal and the dual attain their respective optimal values.

Proof: The proof of this result is a straightforward consequence of Theorems 1, 2,
3, and 4. U
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Note that the contrapositive of Corollary 1 says that if d E F and z,(d) > z*(d),
then pp(d) = pD(d) = 0 and so p(d) = O. In other words, if a data instance d is primal
and dual feasible but has a positive optimal duality gap, then d must necessarily be
arbitrarily close to being both primal infeasible and dual infeasible.

Proof of Theorem 1: For simplicity, let z, and z* denote the primal and dual
optimal objective values, respectively. The interesting case is when z, > -oc, otherwise
weak duality implies that (GDd) is infeasible and z = z* = -oc. If z, > -oo the point
(0, 0, 0) does not belong to the non-empty convex set

S:= {(p,q, a) 3x s.t.x +p P,Ax-b+ q Cy,ctx - < Z*}.

We use Proposition 10 to properly separate (0, 0, 0) from S, which implies that there
exists (y, y, 7r) 0 such that 7tp + ytq + 7a > 0 for all (p, q, a) C S. Note that 7r > 0
because c is not upper bounded in the definition of S.

If r > 0, re-scale (y,y, T) such that r = 1. For any x C E', E P, q E Cy, and
E > 0 define p = -x + , q =-Ax + b + , and oa = ctx - z + E. By construction the
point (p, q, ac) C S and the proper separation implies that for all x, p E P, q E Cy, and
E>0

0 < t(-x+p)+yt(-Ax+b+)+ctx - z, +E

= (-Aty + c - )tx + tp + ytq4 + ytb - z* + E

This expression implies that c - Aty = , y C C, and (c - Aty, u) C C* for u
ytb-z*. Therefore (y, u) is feasible for (GDd) and z* > bty-u = bty - ytb+z* = z > *,
which implies that z* = z, and the dual feasible point (y, u) attains the dual optimum.

If r = 0, the same construction used above and proper separation gives the following
inequality for all x, p E P, and q E Cy

0 < t (- + ) + y(-Ax + b + q)
= (-Aty - )tx + yt p + ytq + ytb.

This implies that -Aty = y and y C C, which implies that -ytAp + ytq + ytb > 0 for
any P C P, q E Cy. Proper separation also guarantees that there exists ( c, , &) S
such that -typ + ytq + 7& = -ytAp + yt > 0.

Let x' be the Slater point of (GPd) and x such that i f+ C P, Ax- b + Cy, and
ct - < z, For all JI sufficiently small, x' Q( + - x') C P and Ax' - b + ((Ax -
b + q - (Ax' - b)) E Cy. Therefore

0 < -ytA (' + ( + - ')) + yt (A' - b + (A - b + - (A' - b))) + yb

= (-ytA - ytAp + ytAx' +ytA- ytb + yt ytAx +ytb)

= (_ytAp + ytq)I
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a contradiction, since can be negative and -ytAp + ytq > 0. Therefore r - 0,

completing the proof. ·

Proof of Theorem 2: For simplicity, let z, and z* denote the primal and dual

optimal objective values respectively. The interesting case is when z* < o, otherwise

weak duality implies that (GPd) is infeasible and z, = z* = oc. If z* < oc the point

(0, 0, 0, 0) does not belong to the non-empty convex set

S:= {(s,v,q, a) y, us.t. (c-Aty,u)+(s,v) E C*,y+q C, bty-u+ >z*} z

We use Proposition 10 to properly separate (0, 0, 0, 0) from S, which implies that there

exists (x, /, -, 5) #4 0 such that xts + /v + rtq + oa > 0 for all (s, v, q, a) C S. Note that

6 > 0 because a is not upper bounded in the definition of S.

If d > 0, re-scale (x,/3, 7, ) such that = 1. For any y C ff m , u C R, (, ) E C*,

q C>, and E > 0, define s = -c+Aty+g, v = -u+i, q = -y+q, and a = z*-bty+u+E.

By construction the point (s, v, q, oa) C S and proper separation implies that for all y, u,

(, V) E C*, 4 E C>, and E > 0

< xt(-c + Aty + s+ (-u+ ) + 7(-y + z* - bty + + 

(A - b - +)t y + (, O)t(§ V) ( - )U + 7yq -C * E.

This implies that Ax- b = yC Cy, /3 = 1, ctx < z*, and (x, 1) E C, which means that

x E P. Therefore x is feasible for (GPd) and z* > ctx > z, > z*, which implies that

z* = z and the primal feasible point x attains the optimum.

If d = 0, the same construction used above and proper separation gives the following

inequality for all y, u, (s, I) E C*, q E C>

0 < xt(-c+Aty+s) +(-u+,)+7t(-q-)

= (Ax - -y)t y + (x, O)t(s, ) - Ou + yt4 - ctx

This implies that Ax = CE Cy, = O0, which means that xts + xtAtq - ctx > 0 for

any (, f) C* and C . The proper separation also guarantees that there exists

(S, V, , &) E S such that xtS + T3 + ryt = xt± + xtAtc > 0.

Let (y', u') be the Slater point of (GDd) and (y, ) such that (c-At,+ ,, ,+i) C*,

+ ^ C C-, and bty - i2 + & > z*. Then for all 11 sufficiently small, we have that

y'+ (+ - y') C C; and

C- Aty'+ (c - At + c + Aty'),'+ (f +-u')) C C*

Therefore

x (c - Aty' + (c - At + -c + Atyl)) + xtAt (y' + ( + ^ - y/)) - ctx > 0

12



Simplifying and canceling, we obtain

< (-xtAty + xt' + xtAty' + xtAt- + xtAt - xtAty ' )

= (xts + xtAt) 

a contradiction, since ~ can be negative and xts+xtAtq > O. Therefore d 7 0, completing
the proof. ·

Proof of Theorem 3: Equation (6) and pp(d) > 0 imply that Xd z7 0. Assume that Xd
contains no Slater point, then relintCy n {Ax - b I x C relintP} = 0 and these nonempty
convex sets can be separated using Proposition 10. Therefore there exists y 7 0 such
that for any s E Cy, x C P we have

yts > t (Ax - b)

Let u - ytb; from the inequality above we have that y CY and -ytAx + u > 0 for
any x E P, which implies that (-Aty, u) C C*. Define b = b + Ti-?, with y given by
Proposition 9 such that III = 1 and ty = Ily. Then the point (y, u) is feasible for
Problem (A2d,) of Lemma 1 with data d = (A, b6, c) for any E > 0. This implies that
Xd = 0 and therefore pp(d) < inf,,o d - d, = inf>0o II- = 0, a contradiction. ·

Proof of Theorem 4: Equation (13) and pD(d) > 0 imply that Yd -# 0. Assume that
Yd contains no Slater point. Consider the nonempty convex set S defined by:

S :={ (c-Aty, u) I y relintC, u }

No Slater point in the dual implies that relintC* n S = 0. Therefore we can properly
separate these two nonempty convex sets using Proposition 10, whereby there exists
(x, t) 7 0 such that for any (s, v) C*, y C , u E 1? we have

x's + tv > xt (c - Aty) + t .

The above inequality implies that Ax Cy, ctx < 0, (x, t) C, and t = . This last
fact implies that x 7 0 and x R. Let x be such that jljx* = 1 and tx = lxj (see
Proposition 9). For any E > 0, define c, = - -ii. Then the point x is feasible for

Problem (B2dE) of Lemma 2 with data d, = (A, b, c,). This implies then that Yd, = 0
and consequently pD(d) < inf> 0o d - d,ll = inf,>0 ii 0, a contradiction. ·

The contrapositives of Theorems 3 and 4 are not true. Consider for example the data

A = 0 0 , and c 0

and the sets Cy = + x {0} and P = Cx = + x E. Problem (GPd) for this example
has a Slater point at (1, 0), and pp(d) = 0 (perturbing by Ab = (0, e) makes the problem
infeasible for any .) Problem (GDd) for the same example has a Slater point at (1, 0)
and pD(d) = 0 (perturbing by Ac = (0, c) makes the problem infeasible for any ).
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4 Characterization of pp(d) and pD(d) via Associated
Optimization Problems

Equation (16) shows that to characterize p(d) for consistent data instances d C F, it

is sufficient to express pp(d) and pD(d) in a convenient form. Below we show that

these distances to infeasibility can be obtained as the solutions of certain associated

optimization problems. These results can be viewed as an extension to problems not in

conic form of Theorem 3.5 of [17], and Theorems 1 and 2 of [8].

Theorem 5 Suppose that Xd # 0. Then pp(d) = jp(d) = rp(d), where

jp(d)= min max{llAty+ sll, Ibty- u}

IyI) = 
y E Cy

(s, ) C*

(17)

and

rp(d)= min

llvl < 1
v E <1

max 0
Ax - bt - vO C Cy

+ t < 
(x,t) C C .

(18)

Theorem 6 Suppose that Yd # 0. Then pD(d) = jD(d) rD(d), where

joD(d) = min max{l Ax
x R: 1

p C Cy
g)O

- P11, Ictx + 91}

(19)

rD(d) = min

HIIvl* < 1
V C En

max 0
-Aty + c6 - Ov E R*

IIYII* + 11 < 1
y E c;·

> .

Proof of Theorem 5: Assume that jp(d) > pp(d), then there exists a data instance

d = (A,b,c) that is primal infeasible and IA - All < jp(d), lb - bIl < jp(d), and

14
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|C - *, < jp(d). From Lemma 1 there is a point (, u) that satisfies the following:

(-Aty, ) C*
bt > u
Y o

YE C.

Scale 9 such that III = 1, then (y, s, u) = (, -Aty, btj) is feasible for (17) and

IIAt y + sll* = IIAt - AII* < IIA - Al I9II* < jp(d)

Ibty UI = Ibty- b < lb - blIIII < p(d).

In the first inequality above we used the fact that IAtll* = AIl. Therefore jp(d) <
max { Aty + s *, Ibty - u I} < jp(d), a contradiction.

Let us now assume that jp(d) < 7y < pp(d) for some y. This means that there exists
(y, s, u) such that y E C, IIYII* = 1, (, U) C*, and that

IIAt j + s-l1 < -y, Ibt- Ul < .

From Proposition 9, consider y such that III = 1 and ~ty = 11YII* = 1, and define, for
E > 0,

A A - ((A ty) t + t)
= b - (bt y - -).

We have that y C ,-Aty = , by = i + E > u, and (-Aty, uL) C C*. This implies
that for any e > 0, the problem (A2jd) in Lemma 1 is feasible with data d, = (A, b~, c).
Lemma 1 then implies that Xdj = 0 and therefore pp(d) < d-d . To finish the proof
we compute the size of the perturbation:

|A - AI = II ((AtY)t + St) 11 < IlAt + < Y

Ilb-bII = Ibt y - - E1 < Ibty - +e <7y+ ,

which implies, pp(d) < ld-dII = max{ A - All, b- b-l,} < 7y+s < pp(d), for small
enough. This is a contradiction, whereby jp(d) = pp(d).

To prove the other characterization, we note that 0 > 0 in Problem (18) and invoke
Lemma 6 to rewrite it as

rp(d) = min min max{lAty+s *, I-bty+ul}
lv < 1 ytv > 1
V C R y C C

(S, U) C*.

15



The above problem can be written as the following equivalent optimization problem:

rp(d)= min max{ A ty+sI*,I -bty +uI}
IYlil > 1
y Cy

(s, U) c C*.

The equivalence of these problems is verified by combining the minimization operations
in the first problem and using the Cauchy-Schwartz inequality. The converse makes use
of Proposition 9. To finish the proof, we note that if (y, s, u) is optimal for this last
problem then it also satisfies IIYII = 1, whereby making it equivalent to (17). Therefore

rp(d)= min max {A t y + s, -b t y + u = jp(d)

Y E Cy
(s, u) C* ·

Proof of Theorem 6: Assume that jD(d) > pD(d), then there exists a data instance
d = (A, b, c) that is dual infeasible and A-Al < jD(d), Ib-bll < jD(d), and lc-}l* <
jD(d). From Lemma 2 there exists Ce R such that x #~ 0, Ai E Cy, and t5 < 0. We
can scale x such that II: = 1. Then (x,p,g) = (,At, -t) is feasible for (19), and

fIAx - p = Ax - Axll < IIA - All lx < jD(d)
lctx + g = Ictx - iCtxl < Ic - C11*xflII < jD(d) .

Therefore, jD(d) < max {f IAx - pIl, ctx + gf} < jD(d), which is a contradiction.

Assume now that jD(d) < y < pD(d) for some ?. Then there exists (, ,g) such
that Ce R, IlI = 1, p E Cy, and g > 0, and that JA. -pl 7Y and Ictx +f < .
From Proposition 9, consider x such that lll.* = 1 and t = l:f = 1, and define:
A = A- (Ai - p) t and c = c - (ctg +. + ), for > 0. By construction Ax = p C Cy
and = - - < 0, for any E > 0. Therefore Problem (B2&) in Lemma 2 is feasible
for data dE = (A, b, c-), which implies that Y = 0. We can then bound pD(d) as follows:

PD(d) < Ild-dl = max 11 (Ax-p) xtll, lx(ct + g + 0)11*
< max<y,y+E} = y+ < pD(d)

for E small enough, which is a contradiction. Therefore pD(d) = jD(d).

To prove the other characterization, we note that 0 > 0 in Problem (20) and invoke
Lemma 6 to rewrite it as

rD(d)= min m in max{fl-Ax+pl, Ict x + g}
IlvII* < 1 Xt > 1
vC. Rn xC R

P Cy

16



The above problem can be written as the following equivalent optimization problem:

rD(d)= min max {-Ax +pll, Ictx +gl

ll > 1
xER
p c Cy

The equivalence of these problems is verified by combining the minimization operations
in the first problem and using the Cauchy-Schwartz inequality. The converse makes use
of Proposition 9. To finish the proof, we note that if (x,p,g) is optimal for this last
problem then it also satisfies lxll = 1, whereby making it equivalent to (19). Therefore

rD(d) = min max {11-Ax +pll, c tx +gl} jD (d)

11xl = 1
xER
pC Cy
g 

5 Geometric Properties of the Primal and Dual Fea-
sible Regions

In Section 3 we showed that a positive primal and/or dual distance to infeasibility implies
the existence of a primal and/or dual Slater point, respectively. We now show that a
positive distance to infeasibility also implies that the corresponding feasible region has a
reliable solution. We consider a solution in the relative interior of the feasible region to
be a reliable solution if it has good geometric properties: it is not too far from a given
reference point, its distance to the relative boundary of the feasible region is not too
small, and the ratio of these two quantities is not too large, where these quantities are
bounded by appropriate condition numbers.

5.1 Distance to Relative Boundary, Minimum Width of Cone

An affine set T is the translation of a vector subspace L, i.e., T = a + L for some a.
The minimal affine set that contains a given set S is known as the affine hull of S. We
denote the affine hull of S by Ls; it is characterized as:

Ls = { aixi I aiCR, i CS, Zai = 1, I a finite set}
iEI iEI

17



see Section 1 in [18]. We denote by Ls the vector subspace obtained when the affine
hull Ls is translated to contain the origin; i.e. for any x E S, Ls = Ls - x. Note that
if 0 E S then Ls is a subspace.

Many results in this section involve the distance of a point x E S to the relative
boundary of the set S, denoted by dist(x, reldS), defined as follows:

Definition 2 Given a non-empty set S and a point x E S, the distance from x to the
relative boundary of S is

dist(x, relOS):= inft x - 21
s.t. c Ls\S (1)

Note that if S is an affine set (and in particular if S is the singleton S = {s}), then
dist(x, rel0S) = oo for each x C S.

We use the following definition of the min-width of a convex cone:

Definition 3 For a convex cone K, the min-width of K is defined by

K =s=up{ dist(y, relOK) I C K y 0

for K #~ {0}, and K := oo00 if K = {O}.

The measure 7K maximizes the ratio of the radius of a ball contained in the relative
interior of K and the norm of its center, and so it intuitively corresponds to half of the
vertex angle of the widest cylindrical cone contained in K. The quantity K was called
the "inner measure" of K for Euclidean norms in Goffin [9], and has been used more
recently for general norms in analyzing condition measures for conic convex optimization,
see [6]. Note that if K is not a subspace, then T K (0, 1], and K is attained for some
y0 C relintK satisfying IIY0II = 1, as well as along the ray ay ° for all oZ > 0; and TK takes
on larger values to the extent that K has larger minimum width. If K is a subspace,
then TK = o00.

5.2 Geometric Properties of the Feasible Region of GPd

In this subsection we present results concerning geometric properties of the feasible
region Xd of (GPd). We defer all proofs to the end of the subsection.

The following proposition is an extension of Lemma 3.2 of [16] to the ground-set
model format.

18



Proposition 4 Consider any x = + r feasible for (GPd) such that x C P and r C R.
If pD(d) > 0 then

lr PD(d)max{,r} .

The following result is an extension of Assertion 1 of Theorem 1.1 of [16] to the
ground-set model format of (GPd):

Proposition 5 Consider any x ° C P. If pp(d) > 0 then there exists X C Xd satisfying

l' - x0 <dist(Ax °-b, C y) 
Pp (d) II° ll } .

The following is the main result of this subsection, and can be viewed as an extension
of Theorems 15, 17, and 19 of [8] to the ground-set model format of (GPd). In Theorem
7 we assume for expository convenience that P is not an affine set and Cy is not a
subspace. These assumptions are relaxed in Theorem 8.

Theorem 7 Suppose that P is not an affine set, Cy is not a subspace, and consider
any x ° C P. If pp(d) > O0 then there exists X C Xd satisfying:

1. (a) 1I-x°l < Ax°-bl + IIAII max{l, x ° }
pp(d)

(b) < +IIAx - bl + IIAI
pp(d)

dist(, relOP) dist(x°, rel&P) (
IAx° - bll + [IAII

pp(d)

(b) i1 1 +
dist(f, relXd)- min{dist(x,reldP), Tcy} k 

x ° ll < 1 IlAx 0
3. (a) it x 0 <IIx

dist(x, relOP) - dist(xO, relP)

lAxz - blI + IIAII 
pp(d)

-bll + maxll,
pp(d) IO °})

K(b) -- X0(b) dist(x, relOXd)
< IAxO - bll + IIA
- min {dist(x°, relOP), T-y} A pp(d)

max{1, Ix11})

51 < 1
(c) dist(x° , relP)

distQT, reloP) dist(x 0, rel&P)
(' IAxz - blI + IIAII )

p (d)

19
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(d) d ist(_ _ < 1relI Axo - b<l + AI
dist(T ,relOXd) - min{dist(x° ,relOP), c, } pp(d)

The statement of Theorem 8 below relaxes the assumptions on P and Cy not being
affine and/or linear spaces:

Theorem 8 Consider any x ° E P. If pp(d) > 0 then there exists E Xd with the
following properties:

* If P is not an affine set, satisfies all items of Theorem 7.

* If P is an affine set and Cy is not a subspace, satisfies all items of Theorem
7, where items 2.(a), 3.(a), and 3.(c) are vacuously valid as both sides of these
inequalities are zero.

* If P is an affine set and Cy is a subspace, xt satisfies all items of Theorem 7, where
items 2.(a), 2.(b), 3.(a), 3.(b), 3.(c), and 3.(d) are vacuously valid as both sides of
these inequalities are zero.

We conclude this subsection by presenting a result which captures the thrust of
Theorems 7 and 8, emphasizing how the distance to infeasibility pp(d) and the geometric
properties of a given point x° C P bound various geometric properties of the feasible
region Xd. For x° C P, define the following measure:

9PXO) max{ x° l 1}
gpC c(x ° ) = amin{l, dist(x0, reldP), Tcy }

Also define the following geometric measure of the feasible region Xd:

:= minmax x ____ 1}
gxd= miEn max ' dist(x, relXd) ' dist(x, relOXd) 

The following is an immediate consequence of Theorems 7 and 8.

Corollary 2 Consider any x° C P. If pp(d) > 0 then

gXd < gaPcY(xO) -+ -bpp(d)
( Ax ° - b + A)
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We now proceed with proofs of these results.

Proof of Proposition 4: If r = 0 the result is true. If r 7 0, then Proposition 9 shows
that there exists r such that I[?[[, = 1 and tr = Jlr. For any E > 0 define the following
perturbed problem instance:

A=A- (A - b)P, b b, c+ (ctr)-

Note that, for the data d = (A, b, c), the point r satisfies (B2d) in Lemma 2, and therefore
(GDd) is infeasible. We conclude that pD(d) < lid - dl, which implies

(d) max {llA - bll, (c tr)+ + )}
pu(d) _<

and so

pD(d) < max { A -bl, ·cr}

The following technical lemma, which concerns the optimization problem (PP) be-
low, is used in the subsequent proofs. Problem (PP) is parametrized by given points
x° C P and w° C Cy, and is defined by

(PP) maxx,t,~, 0
s.t. Ax - bt - w = 0 (b - Ax ° + w ° )

I1 + itl < 1 (22)
(x,t) cC
w Cy.

Lemma 3 Consider any x ° C P and w ° E C C such that Ax °O - w ° b. If pp(d) > 0,
then there exists a point (x, t, w, 0) feasible for problem (PP) that satisfies

pp(d)
> P ) > 0. (23)-1b - AO + wOj

Proof: Note that problem (PP) is feasible for any x° and w° since (x,t, w, 0)
(0, 0, 0, 0) is always feasible, therefore it can either be unbounded or have a finite optimal
objective value. If (PP) is unbounded, we can find feasible points with an objective
function large enough such that (23) holds. If (PP) has a finite optimal value, say
0*, then it follows from elementary arguments that it attains its optimal value. Since
pp(d) > 0 implies Xd 0, Theorem 5 implies that the optimal solution (x*, t*, w*, 0*)
for (PP) satisfies (23). ·

Proof of Proposition 5: Assume Ax °- b Cy, otherwise = x satisfies the
proposition. We consider problem (PP), defined by (22), with x° and w ° C Cy such
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that IAx - b - w = dist(Ax °- b, Cy). From Lemma 3 we have that there exists a
point (x, t, w, 0) feasible for (PP) that satisfies

pp(d) pp(d)
Ž b - Ax ° + w °ll dist(Ax °- b, Cy)

Define
x 80x° w + w °

= -- and w =-

By construction we have x C P, Ax - b = w E Cy, therefore CE Xd, and

1 - 1 lx - t 0° < ( llxl + t) max{1, x°ll} < dist(Ax °- b, Cy ) ma{ lx }
t+0 0 pp(d)

Proof of Theorem 7: Note that pp(d) > 0 implies Xd #: 0; note also that pp(d) is finite,
otherwise Proposition 2 shows that Cy = m which is a subspace. Set w° E Cy such
that w° = All and Tc = dist(w0 °,reOlCI') We also assume that Ax °- b 7 w °, otherwise

we can show that x = x° satisfies the theorem. Let ro = dist(w °, relOCy) = lA Tc
and let also rxo = dist(x°, rel0P). We invoke Lemma 3 with x° and w ° above to obtain
a point (x, t, w, 0), feasible for (PP) and that from inequality (23) satisfies

1 < lAx ° - b + A (24)

0 - pp(d)

Define the following:

x + x ° w + Ow° Orxo OTcy
t+ w t+ r t+ ' t + '

By construction dist(t, rel0P) > rt, dist(w, rel0Cy) > rw AH, and Ax-b = C Cy.
Therefore the point x G Xd. We now bound its distance to the relative boundary of the
feasible region.

Consider any v C Lp n {y Ay E Lcy} such that lv I < 1, then

x + ov C P, for any al < r,

and
A( + oav)- b = w+ a(Av) E Cy, for any lI < r .

Therefore ( + av) C Xd for any lal < min {r, rc}, and the distance to the relative
boundary of Xd is then dist(x,relOXd) > alcvII > aoal, for any aIcl < min{rt,r}.
Therefore dist(x, relaXd) > min {r,r} > Ominf,°'mt+

To finish the proof, we just have to bound the different expressions from the statement
of the theorem; here we make use of inequality (24):
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1. (a) -x = x txl
t+O

< -max{1,
-<

X°11} < IIAx °- b + IHA
pp(d)

max{1, llx ° }21 

(b) t1Il < -Hxfl + lx0l
- 0

1
50

± x X IIAxO - b| | + IIAII
pp(d)

2. (a) (
distQT reldP)

(

1 t+O

-rj O?%o

(b) - < - I <
dist(x, relOXd) min{rxo, Tcy} 0

- min{rxo, Tc} 1+

1 t+O

min{rzo, c.} ( +)

Ax - bl + AI)
pp(d)

3. (a) x- 0

.(a) dist(:, relaP)

(b) 11-t- x o l
dist(x, relOXd)

< lix - tl °

OTo

111 1
< - max{1, IIxI)
- Tx 0

1 lAx °- b III max{l, 0x°l}
- ro pp(d)

< llx-txfl < 1 - max{1, gx° }
- 0 min{rxo, TCy - min{rxo, c-o } 0

1 IIAx° -bll + IAII max{l, Ilx° }.
:~ f-- - I m {1A\

(c)
dist(, relOP)

ii111 'VO, TCy I ppLa)

< II + Ox°0

OrTo

< (I ,oII Ax - b + IIAII
-rxo pp(d)

(d) dist(, relX)distQz, relaxd)
< Ix + Ox0 <

- 0 min{rxo, rcy } -

1

min{ ro, Tc, }

< 1 IIAxo - b + AI)
min{rxo,Tc} I x ° +pp(d)

.

Finally, we note that Theorem 8 can be proved using almost identical arguments as
in the proof of Theorem 7, but with a careful analysis to handle the special cases when
P is an affine set or Cy is a subspace, see [12] for exact details.

5.3 Solutions in the relative interior of Yd

In this subsection we present results concerning geometric properties of the dual feasible
region Yd of (GDd). We defer all proofs to the end of the subsection. Before proceeding,
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we first discuss norms that arise when studying the dual problem. Motivated quite
naturally by (18), we define the norm II(x,t)ll := IzIll+ltl for points (x,t) CC C Rn xR.
This then leads to the following dual norm for points (s, u) C C* c n X R:

1(s,u)ll*, := max{llsll,, lull (25)

Consistent with the characterization of pD(d) given by (20) in Theorem 6, we define
the following dual norm for points (y, 6) C Rm x f?:

II(y, 6)1[* := IIyII* + 161 (26)

It is clear that the above defines a norm on the vector space Rm x R which contains Yd.

The following proposition bounds the norm of the y component of the dual feasible
solution (y, u) in terms of the objective function value bty - u; it corresponds to Lemma
3.1 of [16] for the ground-set model format.

Proposition 6 Consider any (y, u) feasible for (GDd). If pp(d) > 0 then

max {cll, -(b t y - u)}

pp(d)

The following result corresponds to Assertion 1 of
set model format dual problem (GDd):

Proposition 7 Consider any yo E C;. If pD(d) >
(?J, u) E Yd satisfying

11_ - yolldist(c - At y, R*) + e
IIY - Y 11 (d)po()

Theorem 1.1 of [16] for the ground-

0 then for any E > O, there exists

max 1, lly }

The following is the main result of this subsection, and can be viewed as an extension
of Theorems 15, 17, and 19 of [8] to the dual problem (GDd). In Theorem 9 we assume
for expository convenience that Cy is not a subspace and that R (the recession cone of
P) is not a subspace. These assumptions are relaxed in Theorem 10.

Theorem 9 Suppose that R and Cy are not subspaces and consider any y C . If
pD(d) > 0 then for any E > O, there exists (, ii) Yd satisfying:

1. (a) -y°ll < IIC-A Atyll. + All
po(d)

max{1, Ily°oll)

24



(b) 111 < 11Y °11 + lic-Aty + A
PD(d)

2. (a) 1 1 I1 IcAY(j) + IAI
dist(y,relOC) - dist(yO,relOC ) 1 (d)

(b) I < (1 + ) max{1, IAI} ( + Ic - AtyI* + JlAjl j
(b)dist((y, ), rel0Yd) - min {dist(y, relC), TR*} A. PD (d) J

3l - Y119 1 ( lc - A1 II* + IIAjj maxH 1 Y 11 }
dist(q, relC) - dist(y, rel1C) pD(d)

I(b) - YOl
dist((y, ), rel0Yd)

(1+E)max{1, lA } ( c-Aty°O* + max {1 yO }

min {dist(y reldC),T 7} - PD (d) ' Y* j

(C) <IYII* < 1 ( 1 + - AtyII + IIAII
dist(y, relOC>) - dist(y°,relOC>) PD (d)

(d) IYI <
dist((y, ), rel0Yd)

(l + E) max{l, All} (I c-A ty ° .+ -IAI 
min {dist(yO, reldC>), TR*} \ PD(d) 

The statement of Theorem 10 below relaxes the assumptions on R and Cy not being
linear subspaces:

Theorem 10 Consider any yO E C. If pD(d) > 0 then for any E > O, there exists
(y, u) C Yd with the following properties:

* If Cy is not a subspace, (, u) satisfies all items of Theorem 9.

* If CyZ is a subspace and R is not a subspace, (, u) satisfies all items of Theorem
9, where items 2.(a), 3.(a), and 3.(c) are vacuously valid as both sides of these
inequalities are zero.

* If Cy and R are subspaces, (9, u) satisfies items 1.(a), 1.(b), 2.(a), 3.(a), and 3.(c)
of Theorem 9, where items 2.(a), 3.(a), and 3.(c) are vacuously valid as both sides
of these inequalities are zero. The point (, i) also satisfies

1
2 '. (b) I <6

3'.(b) dist((9, ii),relOYd) -
dist((y, u), relOYd)
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3 (d ) II11* < 

dist((q, ), rel0Yd) 

We conclude this subsection by presenting a result which captures the thrust of
Theorems 9 and 10, emphasizing how the distance to dual infeasibility pD(d) and the
geometric properties of a given point y0 E C C bound various geometric properties of the
dual feasible region Yd. For y C relintC, define:

gc4,R-(Yo) :=
max{ yllyl, 1}

min{1, dist(y °0, rel0Cy*.), R* }'

We now define a geometric measure for the dual feasible region. We do not consider
the whole set Yd; instead we consider only the projection onto the variables y. Let IYd
denote the projection of Yd onto the space of the y variables:

IIYd := {y E Rm I there exists u CE for which (y, u) C Yd} (27)

Note that the set IIYd corresponds exactly to the feasible region in the alternate formu-
lation of the dual problem (15). We define the following geometric measure of the set
HYd:

gy := inf
(y,u)EYd max{ y,

iy II* 1 
dist(y, relOIIYd)' dist(y, reldIlYd) 

Corollary 3 Consider any yO C C . If pD(d) > 0 then

gYd < max{l, A }gc ,R.(Y) (1+
C - AtyO°l, +

PD(d)

Proof: We show in Lemma 4, item 4, that for any (, ) Yd, dist(, rel09IYd) >
dist((y, ii), relYd). If either Cy or R is not a subspace, use items 1.(b), 2.(b), and 3.(d)
from Theorem 9 and apply the definition of gd to obtain

gYd < ( + -) max{l, IIAll}gc;.,R(y ° ) (1 + c - At yol + IJA )
PD (d) I

Since now the left side is independent of c, take the limit as E - 0. If both Cy and R
are subspaces we obtain the stronger bound

gyd < g; ,R (y ) ( +
- AtyO . +

PD (d)

by using item 1. (b) from Theorem 9, items 2'. (b) and 3'. (d) from Theorem 10, and the
definition of gYd. ·
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We now state Lemma 4, we start by defining the following set:

Yd := (y, u) C Rt x R I (c-A t y,u) C*) . (28)

Note that the dual feasible region Yd is recovered from Yd as Yd Y= d (C x R). The
following lemma, whose proof is deferred to the Appendix, relates a variety of distances
to relative boundaries of sets arising in the dual problem:

Lemma 4 Given a dual feasible point (y, u) C Yd, let s =c - Aty C effdom u(.). Then:

1. dist ((y, u), relO(C x R)) = dist (y, relaC) .

2I dist ((s u), read) i i dist((s , relOC*)

3. dist ((y, u), rel0Yd) > Imax{1,~il} min {dist ((s, u), reldC*) , dist (y, rel0C))

4. dist(y, relnIYd) > dist((y, u), relOYd)

We now proceed with the proofs of the results of this subsection.

Proof of Proposition 6: If y = 0 the result is true. If y y~ 0, then Proposition 9
shows that there exists such that III = 1 and )ty = jjy ,. For any > 0, define the
following perturbed problem instance:

A -1 c, - =b+((-bty + u)+ + E)
A A - bc= +y, C =C.

We note that, for the data d = (A, b, c), the point (y, u) satisfies (A2) in Lemma 1, and
therefore (GPd) is infeasible. We conclude that pp(d) < id - dl, which implies

pp(d) < max { lc *, (-bty + u)+ + )}

and so
pp (d) < max { Hcl *,-(bty - u)}

The following technical lemma, which concerns the optimization problem (DP) be-
low, is used in the subsequent proofs. Problem (DP) is parameterized by given points
y0 c C> and s C R*, and is defined by

(DP) maxy,s,,o 0
s.t. -Aty + c - s = 0 (Aty °- c + s° )

110*/ -~ + •I1 C(29)y C C>
5>0
s E R*.
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Lemma 5 Consider any y E C> and s E R* such that Aty ° + s 7 c. If pD(d) > 0,
then there exists a point (y, , s, 0) feasible for problem (DP) that satisfies

> -Aty ° - sd > 0 (30)
- c - AtyO - sl*

Proof: Note that problem (DP) is feasible for any y0 and so since (y, , s, 0) = (0, 0, 0, 0)
is always feasible. Therefore it can either be unbounded or have a finite optimal objective
value. If (DP) is unbounded, we can find feasible points with an objective function large
enough such that (30) holds. If (DP) has a finite optimal value, say 0*, then it follows
from elementary arguments that it attains this value. Since pD(d) > 0 implies Yd 7 0,
Theorem 6 implies that the optimal solution (y*, *, s*, 0*) for (DP) satisfies (30). ·

Proof of Proposition 7: Assume c - AtyO° relintR*, otherwise from Proposition 1,
the point (, ei) = (yo, u(c - Aty°)) satisfies the assertion of the proposition. We consider
problem (DP), defined by (29), with y and s E relintR* such that Ice - Aty ° - s°ll <
dist(c-AtyO, R*) +E. From Lemma 5 we have that there exists a point (y, , s, 0) feasible
for (DP) that satisfies

> D (d) > PD (d)
c - AtyO - sll - dist(c - AtyO, R*) + E

Define
y + y 0 s + Oso

-y- and S =
3+0 +0

By construction we have y E C , c - Aty = s E relintR*. Therefore from Proposition 1
(Y, u(c - At)) E Yd, and letting = max{1, Iy°I0 *} we have

- °11ly - 6y01 ° < ( YI* + ) < dist(c-A ty° ,R*) + E
6 + 0 0 p(d)

Proof of Theorem 9: Note that pD(d) > 0 implies Yd f 0; note also that pD(d) is
finite, otherwise Proposition 2 shows that R {0} which is a subspace. Set s C R*
such that llsoll* = IAli and TR* = dist(sO11*r . We also assume for now that c - Aty f

s° . We show later in the proof how to handle the case when c - Aty ° = s° . Denote
ry0 = dist(y0 , relDC>), and ro = dist(s°, relOR*) = R* lAll > 0.

With the points y and s, use Lemma 5 to obtain a point (y, , s, 0) feasible for (DP)
such that from inequality (30) satisfies

1 IIc - At yol, + AII 

0 ~PD (d)

28



Define the following:

y + y ° s + s° O'ro Orso
+0 ' +- 0 �' '- ' '

By construction dist (, rel0C) > ry, dist(s, rel0R*) > r, and c- At- = . There-
fore, from Proposition 1 the point (9, u(s)) C Yd. We now choose u so that (, u) C Yd
and bound its distance to the relative boundary. Since relint R* C effdom u(.), from

Proposition 11 and Proposition 12, we have that for any E > 0, the ball B (s, 1+E)nLR C

relint effdom u(-). Define the function (, -) by

K(S, ) := 1iT K + sup, U(S)

IIS - S-._ < /n
s CR*

Note that u(, .) is finite for every C relint effdom u(.) and r C [0, dist(s, reldR*)),
because it is defined as the supremum of the continuous function u(-) over a closed and
bounded subset contained in the relative interior of its effective domain, see Theorem
10.1 of [18]. We define u = ( 1+ and since > AI) + u(-) > u(s) the

point (y, ) E Yd. Let us now bound dist((9 ,u),reldYd). Consider any vector v C

Lc n {Y - Aty E LR*} such that ljv* < 1, then

y + av C for any la < r,

and

c-At( + v) = + a(-A'v) B s, ) n LR* for any a < A (l '
( I +E -~n iolann IAIV1 E)

This last inclusion implies that (c - At(y + ov), u + ) = (g + o(-Atv), u + /) c C*
for any al, 11 < IAI(S+) We have shown that dist(y,relCj*) > r and dist((c -

Aty, u), rel1C*) > rAs. Therefore item 3 of Lemma 4 implies-- IIIlg(1+E) '

dist((, ), red) max{l, E A } m{ , A ' (1 + z)}

(1 + E) max{1, Aj} 8 in+ 0m Y IAI I
0 min{rYo, TR* }

(I + ) max{1, JIA |}(6 + )

To finish the proof, we bound the different expressions in the statement of the theo-
rem; let E = max{1, IIAII} to simplify notation. Here we use inequality (31):
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1. (a) 1- L yl y - y < max{1, ly0 I *}< IIC - Ay 0 II+ A max {1, 1y0 }.

(b) IYI <III*IY°I= < + < Y + Ic-AY + IAII+ - 0 - po(d)
1 I b • ± + 1 •+1y 1o - A tY ° jJ ,+ IA 

() sy,_<l y+ -_<e ro , _ -ro ,+0)r po(d)

2. (a) < 1 -- < +
dist(y, relrC ) - rT OVo yO 0 pD(d)

1
- min{ryo,TR} 0 min{ryo, R* }

< min(1 + ) (1 + |c- A ty°II + IIA )
- min{ro, TR*} pD(d) 

3. (a) < < max{1, Iyo l*}
dist(, relC 1 ) - Oryo - ryo0

1 Ic-A tyl* + AI max{1, IyOI }
ryo PD (d)

(1 + )(| - 4y4 < (1 + )( 1 o< (1+)y-y°. < (.,e) max{1, yIIO .}
- Omin{ryo, R*) R - min{ryo, TR*. 0

< (1+) c-Ay + jCm-At* mx{1, yo ,}
- min{ryo, TR ) pD(d)

(C) IIYII < y 0 < 1O1 
dist(, relOC~) - Oryo Yryo * 

< 1 (yo I + Ic- A tY ° * L + I AI)

dist((, u), rel0Yd) - Omin{ryo, TR.} - min{ryo, TR .}

< (1+ c) (Iy + c- At yj°I * +I AII)
min{ryo R } PD (d)

0 = 0 TRIIA IIFor the case c - Aty ° = s, define = yO and (s, 1+E ). The proof then

proceeds exactly as above, except that now we show that dist((c - Aty, u), rel&C*) >
*, which implies that dist((y, u), rel0Yd) > max,IAII(1+E) minR*, ro from item 3 of

Lemma 4. This inequality is then used to prove each item in the theorem. U

Finally, we note that Theorem 10 can be proved using almost identical arguments as
in the proof of Theorem 9, but with a careful analysis to handle the special cases when
R or Cy are subspaces, see [12] for the exact details.
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6 Sensitivity under Perturbation

In this section we present several results that bound the deformation of primal and dual
feasible regions and objective function values under data perturbation. All proofs are
deferred to the end of the section.

The following two theorems bound the deformation of the primal and dual feasible
regions under data perturbation. These results are essentially extensions of Assertion 2
of Theorem 1.1 of [16] to the primal and dual problems in the GSM format.

Theorem 11 Suppose that pp(d) > O. Let Ad = (AA, Ab, Ac) be such that Xd+Ad 7 0
and consider any x' C Xd+ad. Then there exists Z C Xd satisfying

1.T-x'IJ < (Abll + 11AAJI Hx2l max{1, lx'11}
pp(d)

Theorem 12 Suppose that pD(d) > O. Let Ad = (AA, Ab, Ac) be such that Yd+ad # 0
and consider any (y', u') e Yd+ad. Then for any E > O, there exists (, u) C Yd satisfying

IIy- y'll, < ( Acli* + 1/AAil Iy'll + E) max 1, y11*}
pD(d)

The next two results bound changes in optimal objective function values under data
perturbation. Proposition 8 and Theorem 13 below respectively extend to the ground-set
model format Lemma 3.9 and Assertion 5 of Theorem 1.1 in [16].

Proposition 8 Suppose that d C F and p(d) > O. Let Ad = (0, Ab, 0) be such that

Xd+ad 7 0. Then,

max{11~, -z, (d)}
z,(d + Ad) - z,(d) > - ab -z(d)

p.(d)

Theorem 13 Suppose that d C F and p(d) > O. Let Ad = (AA, Ab, Ac) satisfy IIAdll <
p(d). Then, if x* and x are optimal solutions for (GPd) and (GPd+Ad) respectively,

z*(d + Ad) - z*(d) < lAbI max(llcl* + lacli*, -z*(d)}
pp(d) - IJAdJ +
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± I Allmaxc{llc * + Acl, -z*(d)}) max{fI1x*l, IL-}-
Pd) - jAd

Proof of Theorem 11: We consider problem (PP), defined by (22), with x ° = x' and
w° such that (A + AA)x' - (b + Ab) = w ° E Cy. From Lemma 3 we have that there
exists a point (x, t, w, 0) feasible for (PP) that satisfies

pp(d) pp(d) pp(d)
>- lb-Ax + wll AlAAx'- bl - lAA llx'll + Ab'

We define
x + Ox' w + w °

t+0 ' t+O

By construction we have that z E P, A: - b = w E Cy, therefore x C Xd, and

I-x'lix - tx' < (fIxfI + t) max1{1, lIx'1}. ·
t+ 0 - 0 pp(d)

Proof of Theorem 12: From Proposition 11 we have that for any E > 0 there exists
/ AAt'y'-Ac such that 1111,, < E and c+Ac+ - (A+AA)ty' C relintR*. We consider
problem (DP) defined by (29), with y = y' and so := c+Ac+J-(A+AA)t y' C relintR*.
From Lemma 5 we have that there exists a point (y, 6, s, 0) feasible for (DP) that satisfies

pD(d) PD (d) PD (d)

0> c- A ty °- s0 , AA ty' - Ac - 1 * - Aci* + flAAE 'Jj +

We define
y + Oy' s + s°

6+0 6+0

By construction we have that y E C> and c- At = E relintR* C effdom u(.), from
Proposition 11 and Proposition 12. Therefore from Proposition 1, (y, u(c - Aty)) G Yd
and

)-,~- ,= lY - 6y'll, (I yl,* + S) max{1, ly' II} Acl* + AA IIIy'II + max{1 y'
6 + 0 < 0 < pD(d) max

Proof of Proposition 8: The hypothesis that p(d) > 0 implies that the GSM format
problem with data d has zero duality gap and (GPd) and (GDd) attain their optimal
values, see Corollary 1. Also, since Yd+Ad = Yd 0 has a Slater point (since pD(d) > 0),
and Xd+Ad 4 0, then (GPd+Ad) and (GDd+Ad) have no duality gap and (GPd+d) attains

32



its optimal value, see Theorem 2. Let (y, u) Yd be an optimal solution of (GDd), due
to the form of the perturbation, point (y, u) C Yd+xd, and therefore

z*(d + d) > (b f+ b)y - u = z*(d) + bty > z*(d)- IlAblj jy ,.

The result now follows using the bound on the norm of dual feasible solutions from
Proposition 6 and the strong duality for data instances d and d + Ad. ·

Proof of Theorem 13: The hypothesis that p(d) > 0 and p(d + Ad) > 0 imply that
the GSM format problems with data d and d + Ad both have zero duality gap and all
problems attain their optimal values, see Corollary 1.

Let Ec Xd+Ad be an optimal solution for (GPd+Ad). Define the perturbation Ad =
(0, Ab - AAx, 0). Then by construction the point EC Xd+Ad. Therefore

z*(d + Ad) = (c + Ac)t X > - ACIj*jXj + Ct% > -Ac*IIWll + z(d + Ad).

Invoking Proposition 8, we bound the optimal objective function value for the problem
instance d + Ad:

z,(d + Ad) + JjAcj, 4j± > z*(d + Ad) > z (d) - HAb - AAll max{ c*, -*(d)}pp (d)

Therefore

z,(d + dAd) - z,(d) > -Ac l*l - ( Zb + A I I) max{c, -Z*(d)}pp(d)

Changing the roles of d and d + Ad we can construct the following upper bound:

z*(d + A/d) - z*(d) < |cX*,x* 1 + ( /b + AJ 1x*fll max{lC + Acll*, -z*(d + Ad)}
p.(d + d)

where x* C Xd is an optimal solution for (GP,). The value -z*(d + Ad) can be replaced
by -z*(d) on the right side of the previous bound. To see this consider two cases. If
-z*(d + Ad) < -z*(d), then we can do the replacement since it yields a larger bound. If
-z*(d + Ad) > -z*(d), the inequality above has a negative left side and a positive right
side after the replacement. Note also that because of the hypothesis JjAdll < p(d), the
distance to infeasibility satisfies pp(d + Ad) > pp(d) - Adl > 0. We finish the proof
combining the previous two bounds, incorporating the lower bound on pp(d + Ad), and
using strong duality of the data instances d and d + Ad. ·

7 Concluding Remarks

We have shown herein that most of the essential results regarding condition numbers for
conic convex optimization problems can be extended to the non-conic ground-set model
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format (GPd). We have attempted herein to highlight the most important and/or useful
extensions; for other results see [12].

It is interesting to note the absence of results that directly bound z,(d) or the norms
of optimal solutions IX* II, I* I of (GPd) and (GDd) as in Assertions 3 and 4 of Theorem
1.1 of [16]. Such bounds are very important in relating the condition number theory
to the complexity of algorithms. However, we do not believe that such bounds can
be demonstrated for (GPd) without further assumptions. The reason for this is subtle
yet simple. Observe from Theorem 6 that pD(d) depends only on d = (A,b,c), Cy,
and the recession cone R of P. That is, P only affects pD(d) through its recession
cone, and so information about the "bounded" portion of P is irrelevant to the value of

pD(d). For this reason it is not possible to bound the norm of primal optimal solutions x
directly, and hence one cannot bound z, (d) directly either. Under rather mild additional
assumptions, it is possible to analyze the complexity of algorithms for solving (GPd),
see [12] as well as a forthcoming paper on this topic.

Note that the characterization results for pp(d) and pD(d) presented herein in Theo-
rems 5 and 6 pertain only to the case when d C F. A characterization of p(d) for d ~ F
is the subject of future research.

8 Appendix

This appendix contains supporting mathematical results that are used in the proofs of
the results of this paper. We point the reader to existing proofs for the most well known
results.

Proposition 9 (Proposition 2 of [8]) Let X be an n-dimensional normed vector space
with dual space X*. For every x C X, there exists x C X* with the property that IIII* = 1
and x51 x ·

Proposition 10 (Theorems 11.1 and 11.3 of [18]) Given two non-empty convex sets
S and T in Rn, then relint S n relint T = 0 if and only if S and T can be properly
separated, i.e., there exists y 0 such that

inf ytx > sup ytz
S - zET

supytx > infytz . ·
xCS zcET
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The following is a restatement of Corollary 14.2.1 of [18], which relates the effective
domain of u(.) of (14) to the recession cone of P, where recall that R* denotes the dual
of the recession cone R defined in (8).

Proposition 11 (Corollary 14.2.1 of [18]) Let R denote the recession cone of the nonempty
convex set P, and define u(.) by (14). Then cl effdom u(.) R*. ·

Proposition 12 (Theorem 6.3 of [18]) For any convex set Q C R, cl relint Q = cl Q,
and relint cl Q = relint Q. ·

The following lemma is central in relating the two alternative characterizations of
the distance to infeasibility and is used in the proofs in Section 4.

Lemma 6 Consider two closed convex cones C C R: and Cy C lR"m , and data (M, v) C
R"rxn x ".Rm Strong duality holds between

(P): z= min IlMty+q ll and (D): z*= max 0
s.t. ytv 1 s.t. Mx- Ov E Cy

y C xj _< 1
q C* 0>0

xC

Proof: The proof that weak duality holds between (P) and (D) is straightforward,
therefore z* < z. Assume z* < z, and set E > 0 such that 0 < z* < z - e. Consider
the following nonempty convex set S:

S := (u,, o) I y, qs.t. y+u CC, q+ C C*,y tv > 1-oa, Mty+qll* < z*-} .

Then (0, 0, 0) S, and from Proposition 10 there exists (z, x, 0) # 0 such that ztu +
xt + Ooa > O for any (u, , ao) E S. For any y E m , U C C, E C*, > 0 and such
that 11411* < z -E, define q =-Mty + q, u =-y + ii, 6 =--q + , and a = 1 - ytv + r.
This construction implies that the point (u, , ) S, and that for all y, E C,
a c C*, 7r > 0, and i11 * < z* - E it holds that:

0 < zt(-y + ) + xt(Mty - + ) + 0(1 - ytv + )

= yt (M - v - )+Zt +xtS - t +0 

This implies that Mx - Ov = z Cy, x C, 0> 0, and 0 > xtc for lll* < z*-e. If
x f 0, re-scale (z, x, 0) such that x = 1 and then (x, 0) is feasible for (D). Set q

(z* -E) , where is given by Proposition 9 and is such that I * = 1 and tx = x = 1.
It then follows that z* > 0 > xt = z - > z*, which is a contradiction.
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If x = 0, the above expression implies -Ov = z C Cy, and 0 > 0. If 0 > 0 then
-v C Cy, which means that the point (0, /3) is feasible for (D) for any > O, implying
that z* = oo, a contradiction since z* < z. If 0 = O, then z = O, which is a contradiction
since (z, x, 0) O. ·

The next two lemmas concern properties of the distance to the relative boundary of
a convex set.

Lemma 7 Given convex sets A and B, and a point x c A n B, then

dist(x, relO(A n B)) > min {dist(x, relOA), dist(x, reldB)}

Proof: The proof of this lemma is based in showing that LAnB \ (A n B) C (LA \ A) U
(LB \ B). If this inclusion is true then

dist(x, rel9(A n B)) = inf x -
2ELAnB\(AB)

> inf lx-TH
-E(LA\A)U(LB\B)

= min inf LB\B-i }-x
XELAA L B \ B

= min {dist(x, relOA), dist(x, relOB)} ,

which proves the lemma. Therefore we now prove the inclusion. Consider some C
LAnB, this means that there exists ai C R, xi C AnB, i C I a finite set, and ZicI i = 1,
such that = EIC aiXi. Since xi C A and xi C B, we have that x C LA and x C LB.
Therefore LAnB C LA n LB. The desired inclusion is then obtained with a little algebra:

LAnB\(AnB) LAnLBn(AnB)C

= LAn LB n (AC BC)

= (LA n LB n AC)U (LAn LBnBC)

C (LA n AC) U (LB n BC)

(LA \ A) U (LB\ B) . ·

Last of all, we have:

Proof of Lemma 4: Equality (1.) is a consequence of the fact that (y, u) E L.xR \
(C x ?) if and only if y c Lg* \ C , and that 11y, u) - (, u) II,*= Ily - ll + IU - =

To prove inequality (2.), we first show that if (, u) C Ld \ Yd, then (c - Aty, u) C

L. \ C*. First note that if (y, u) , Yd then, by the definition of Yd, (c - Aty, u) , C*;
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therefore we only need to show that if (, iu) E L then (c - Aty, 'u) G Lc.. Let

(y, fu) E L . Then there exists ai C , (yi, ui) Yd, i C I a finite set, and YEi C i 1,
such that (, u) = Eil i(yi, ui). Consider

(c - Aty, ) = (c - At aiYi, > aiui) = ai(c - At y i , u i) .
iEI iEI iEI

Since (yi, ui) c Yd then (c - Atyi, ui) C C* and therefore (c - Aty, u) Lc*.

The inclusion above means that

dist((s, u), reldC*) inf
(,u)ELc* \C*

1 (s, u)- ( , ) *

< inf _ I(s, u) - (c - Aty, u)
(,-)CLr \Yd

inf
(9,u)ELy \Yd

= infinf
(y,t)GL \Yd

Yd

< inf
(9,U)GLd\Pd

< inf
(Y,U)EL- \Yd

< max{flAl,

= max{lAll,

max{Ills - (c- A9)I., lu - ul}

max{IlAt - Atyll*, Iu - UI}

max{llAlllly - yl, u - 1L}

max{IIAII, l} maxl Iy - ll *, IU - UI)

1} inf (Ily- * + u- Ui)
(yu)EL: \Yd

1} inf

(y,u)ELj. \Yd
d

(y, U) - (9, )lI*

= max{ll All, 1 }dist((y, u), relOYd)

Inequality (3.) follows from the observation that Yd =d d n (C; x f?), Lemma 7, and
the bounds obtained in (1.) and (2.).

The proof of item (4.) uses the fact (soon to be proved) that if y C Lnyd \ IIYd then
for any u, (, i) Lyd \ Yd. Then from the definition of the relative distance to the
boundary we have

dist ((y, u), relOYd) = inf
(, )ELyd \Yd

< inf
'cELnyd \HYd,

1 (y, ) - (, ) 11*

(Y, ) - (, ) *UX

= inf I -
EcLn-d \HYd,U

= inf - Y - a
cLnyd\Y, dn

= dist (y, relIUYd) 
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which proves inequality (4.). To finish the proof we now show that if y C Lnyd \ IYd
then for any , (y,u ) C Lyd \ Yd. The fact that II Yd implies that for any u,
(y, ) Yd. Now since y C Lnyd, there exists c C , (yi, u) C Yd, i C I a finite set
such that = icEI OijYi and EiEI eIi = 1. Since for any (y, u) C Yd and 3 > 0 the point
(y, u + 3) Yd, we can express the point (, u) by the following sum of points in Yd

(,u)= (ZeaiYi+y - y, iui+u+- 1 u--32)
iEI iEI

where for any u, 31 = ( - ZiEI aCiui)+ and 32 = (U - EiI cii)-. This shows that for
any , (, u) c Lyd, completing the proof. ·

References

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming, Theory
and Algorithms. John Wiley & Sons, Inc, New York, second edition, 1993.

[2] F. Cucker and J. Pefia. A primal-dual algorithm for solving polyhedral conic systems
with a finite-precision machine. Technical report, GSIA, Carnegie Mellon University,
2001.

[3] M. Epelman and R. M. Freund. A new condition measure, preconditioners, and
relations between different measures of conditioning for conic linear systems. SIAM
Journal on Optimization, 12(3):627-655, 2002.

[4] S. Filipowski. On the complexity of solving sparse symmetric linear programs spec-
ified with approximate data. Mathematics of Operations Research, 22(4):769-792,
1997.

[5] S. Filipowski. On the complexity of solving feasible linear programs specified with
approximate data. SIAM Journal on Optimization, 9(4):1010-1040, 1999.

[6] R. M. Freund and J. R. Vera. Condition-based complexity of convex optimization
in conic linear form via the ellipsoid algorithm. SIAM Journal on Optimization,
10(1):155-176, 1999.

[7] R. M. Freund and J. R. Vera. On the complexity of computing estimates of condition
measures of a conic linear system. Technical Report, Operations Research Center,
MIT, August 1999.

[8] R. M. Freund and J. R. Vera. Some characterizations and properties of the "distance
to ill-posedness" and the condition measure of a conic linear system. Mathematical
Programming, 86(2):225-260, 1999.

38



[9] J. L. Goffin. The relaxation method for solving systems of linear inequalities. Math-
ematics of Operations Research, 5(3):388-414, 1980.

[10] M. A. Nunez and R. M. Freund. Condition measures and properties of the central
trajectory of a linear program. Mathematical Programming, 83(1):1-28, 1998.

[11] M. A. Nunez and R. M. Freund. Condition-measure bounds on the behavior of
the central trajectory of a semi-definite program. SIAM Journal on Optimization,
11(3):818-836, 2001.

[12] F. Ord6fiez. On the Explanatory Value of Condition Numbers for Convex Optimiza-
tion: Theoretical Issues and Computational Experience. PhD thesis, Massachusetts
Institute of Technology, 2002.

[13] F. Ord6fiez and R. M. Freund. Computational experience and the explanatory
value of condition measures for linear optimization. Working Paper OR361-02,
MIT, Operations Research Center, 2002.

[14] J. Pefia. Computing the distance to infeasibility: theoretical and practical issues.
Technical report, Center for Applied Mathematics, Cornell University, 1998.

[15] J. Pefia and J. Renegar. Computing approximate solutions for convex conic systems
of constraints. Mathematical Programming, 87(3):351-383, 2000.

[16] J. Renegar. Some perturbation theory for linear programming. Mathematical Pro-
gramming, 65(1):73-91, 1994.

[17] J. Renegar. Linear programming, complexity theory, and elementary functional
analysis. Mathematical Programming, 70(3):279-351, 1995.

[18] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New
Jersey, 1997.

[19] J. R. Vera. Ill-posedness and the computation of solutions to linear programs with
approximate data. Technical Report, Cornell University, May 1992.

[20] J. R. Vera. Ill-Posedness in Mathematical Programming and Problem Solving with
Approximate Data. PhD thesis, Cornell University, 1992.

[21] J. R. Vera. Ill-posedness and the complexity of deciding existence of solutions to
linear programs. SIAM Journal on Optimization, 6(3):549-569, 1996.

[22] J. R. Vera. On the complexity of linear programming under finite precision arith-
metic. Mathematical Programming, 80(1):91-123, 1998.

39


