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Abstract. In recent years, a body of research into “condition numbers” for convex optimization
has been developed, aimed at capturing the intuitive notion of problem behavior. This research has
been shown to be relevant in studying the efficiency of algorithms (including interior-point algorithms)
for convex optimization as well as other behavioral characteristics of these problems such as problem
geometry, deformation under data perturbation, etc. This paper studies measures of conditioning
for a conic linear system of the form (FPd): Ax = b, x ∈ CX , whose data is d = (A, b). We present a
new measure of conditioning, denoted µd, and we show implications of µd for problem geometry and
algorithm complexity and demonstrate that the value of µ = µd is independent of the specific data
representation of (FPd). We then prove certain relations among a variety of condition measures for
(FPd), including µd, σd, χ̄d, and C(d). We discuss some drawbacks of using the condition number
C(d) as the sole measure of conditioning of a conic linear system, and we introduce the notion of a
“preconditioner” for (FPd), which results in an equivalent formulation (FPd̃) of (FPd) with a better

condition number C(d̃). We characterize the best such preconditioner and provide an algorithm and
complexity analysis for constructing an equivalent data instance d̃ whose condition number C(d̃) is
within a known factor of the best possible.
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1. Introduction. The subject of this paper is the further study and development
of a new measure of conditioning for the convex feasibility problem in conic linear form:

(FPd) : Ax = b, x ∈ CX ,(1)

where A ∈ L(X,Y ) is a linear operator between n- and m-dimensional spaces X and
Y , b ∈ Y , and CX ⊂ X is a closed convex cone, CX �= X. We denote the data for the
problem (FPd) by d = (A, b) (the cone CX is regarded as fixed and given) and the set
of solutions of (FPd) by

Xd
�
= {x ∈ X : Ax = b, x ∈ CX}.

The problem (FPd) is an important tool in mathematical programming. It provides
a very general format for studying the feasible regions of convex optimization prob-
lems (in fact, any convex feasibility problem can be modeled as a conic linear system)
and includes linear programming and semidefinite programming feasibility problems
as special cases. Over the last decade many important developments in linear pro-
gramming, most notably the theory of interior-point methods, have been extended
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628 M. EPELMAN AND R. M. FREUND

to convex problems in this form. In recent years, largely prompted by these devel-
opments, researchers have developed new and powerful theories of condition numbers
for convex optimization, aimed at capturing the intuitive notion of problem behavior;
this body of research has been shown to be important in studying the efficiency of al-
gorithms, including interior-point algorithms, for convex optimization as well as other
behavioral characteristics of these problems such as problem geometry, deformation
under data perturbation, etc.

In this paper, we (i) develop a new measure of conditioning µd for (FPd) that
is invariant under equivalent data representations of the problem, (ii) establish the
connection of the condition numbers µd and C(d) to some of the measures of condi-
tioning arising in recent linear programming literature, and (iii) develop a theory of
“preconditioners” for improving the condition number of (FPd). We begin by briefly
reviewing developments in the theory of measures of conditioning in recent literature
as well as by providing an overview of the issues addressed in this paper.

The study of the computational complexity of linear programming originated with
the analysis of the simplex algorithm, which, while extremely efficient in practice,
was shown by Klee and Minty [15] to have worst-case complexity exponential in the
number of variables. Khachiyan [14] demonstrated that linear programming problems
were in fact polynomially solvable via the ellipsoid algorithm. Under the assumption
that the problem data is rational, the ellipsoid algorithm requires at most O(n2L)
iterations, where n is the number of variables and L is the problem size, which is
roughly equal to the number of bits required to represent the problem data. The
development of interior-point methods gave rise to algorithms that are efficient in
theory as well as in practice (unlike the ellipsoid algorithm). The first such algorithm,
developed by Karmarkar [13], has a complexity bound of O(nL) iterations, and the
algorithm introduced by Renegar [23] has a complexity bound of O(

√
nL) iterations,

which is currently the best known bound for linear programming. Many interior-point
algorithms have also proven to be extremely efficient computationally and are often
superior to the simplex algorithm.

Despite the importance of the above results, there are several serious drawbacks in
analyzing algorithm performance in the bit-complexity framework. One such draw-
back is the fact that computers use floating point arithmetic, rather than integer
arithmetic, in performing computations. As a result, two problems can have data
that are extremely close but have drastically different values of L. The analysis of the
performance of algorithms for solving these problems will yield different performance
estimates, yet actual performance of the algorithms will likely be similar due to their
similar numerical properties. See Wright [39] for a detailed discussion. A second
drawback is that the complexity analysis of linear programming algorithms in terms
of L largely relies on the combinatorial structure of the linear program; in particular,
it relies on the fact that the set of feasible solutions is a polyhedron and the solution
is attained at one of the extreme points of this polyhedron.

A relevant way to measure the intuitive notion of conditioning of a convex op-
timization (or feasibility) problem via the so-called distance to ill-posedness and the
closely related condition number was developed by Renegar in [24] in a more specific
setting, but then generalized more fully in [25] and in [26] to convex optimization
and feasibility problems in conic linear form. Recall that d = (A, b) is the data for
the problem (FPd) of (1). The condition number C(d) of (FPd) is essentially a scale-
invariant reciprocal of the smallest data perturbation ∆d = (∆A,∆b) for which the
system (FPd+∆d) changes its feasibility status. The problem (FPd) is well-conditioned

D
ow

nl
oa

de
d 

11
/2

4/
15

 to
 1

8.
18

9.
82

.1
76

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



MEASURES OF CONDITIONING AND PRECONDITIONERS 629

to the extent that C(d) is small; when the problem (FPd) is “ill-posed” (i.e., arbitrar-
ily small perturbations of the data can yield both feasible and infeasible problem
instances), then C(d) = +∞.

One of the important issues addressed by researchers is the relationship between
the condition number C(d) and the geometry of the feasible region of (FPd). Rene-
gar [24] demonstrated that when a feasible instance of (FPd) is well-posed (C(d) <∞),
there exists a point x feasible for (FPd) which satisfies ‖x‖ ≤ C(d). Furthermore, it
is shown in [8] that under the above assumption the set of feasible solutions contains
a so-called “reliable” solution: A solution x̂ of (FPd) is reliable if, roughly speak-
ing, (i) the distance from x̂ to the boundary of the cone CX , dist(x̂, ∂CX), is not
excessively small; (ii) the norm of the solution ‖x̂‖ is not excessively large; and (iii)

the ratio ‖x̂‖
dist(x̂,∂CX) is not excessively large. The importance of reliable solutions is

motivated in part by considerations of finite-precision computations. The results in
[8] also demonstrate that when the system (FPd) is feasible, there exists a feasible
point x̂ such that

‖x̂‖
dist(x̂, ∂CX)

≤ c1C(d), dist(x̂, ∂CX) ≥ c2
1

C(d) , ‖x̂‖ ≤ c3C(d),(2)

where the constants c1, c2, and c3 depend only on the “width” of the cone CX (to
be formally defined shortly) and are independent of the data d of the problem (FPd)
(but may depend on n).

The condition number C(d) was also shown to be crucial for analyzing the com-
plexity of algorithms for solving (FPd). Renegar [26] presented an interior-point al-
gorithm for solving (FPd) with the complexity bound of O(

√
ϑ ln(ϑ C(d))) iterations,

where ϑ is the complexity parameter of a self-concordant barrier for the cone CX .
In [9] it was shown that a suitably modified version of the ellipsoid algorithm will
solve (FPd) in O(n2 ln(C(d))) iterations. (The constants in both complexity bounds
depend on the width of CX .) In [4], a generalization of a row-action algorithm is
shown to compute a reliable solution of (FPd) in the sense of (2). The complexity of
this algorithm is also closely tied to C(d).

The recent literature has explored many other important properties of the prob-
lem (FPd) tied to the distance to ill-posedness and the condition number C(d). Rene-
gar [24] studied the relation of C(d) to sensitivity of solutions of (FPd) under per-
turbations in the problem data. (This issue was also investigated earlier by Robin-
son [28].) Peña and Renegar [22] discussed the role of C(d) in the complexity of
computing approximate solutions of (FPd). Freund and Vera [7] and Peña [20] ad-
dressed the theoretical complexity and practical aspects of computing the distance
to ill-posedness. Vera [38] considered the numerical properties of an interior-point
method for solving (FPd) (and, in fact, a more general problem of optimizing a lin-
ear function over the feasible region of (FPd)) in the case when (FPd) is a linear
programming problem. He considered the algorithm in the floating point arithmetic
model, and demonstrated that the algorithm will approximately solve the optimiza-
tion problem in polynomial time, while requiring roughly O(ln(C(d))) significant digits
of precision for computation. For additional discussion of ill-posedness and the condi-
tion number, see Filipowski [6, 5], Nunez and Freund [19], Nunez [18], Peña [21, 20],
and Vera [35, 36, 37].

As we hope the above discussion conveys, the condition number C(d) is a rele-
vant and important measure of conditioning of the problem (FPd). Note that when
(FPd) is in fact a linear programming feasibility problem, C(d) provides a measure of

D
ow

nl
oa

de
d 

11
/2

4/
15

 to
 1

8.
18

9.
82

.1
76

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



630 M. EPELMAN AND R. M. FREUND

conditioning that, unlike L, does not rely on the assumption that the problem data
is rational, and is relevant in the floating point model of computation.

Nevertheless, there are some potential drawbacks in using C(d) as a sole measure
of conditioning of the problem (FPd). To illustrate this point, note that problem
(FPd) of (1) can be interpreted as the problem of finding a point x in the intersection
of the cone CX with an affine subspace A ⊂ X, defined as

A �
= {x : Ax = b} = {x : x = x0 + xN , xN ∈ Null(A)},

where x0 ∈ X is an arbitrary point satisfying Ax0 = b, and Null(A) is the null space of
A. Notice that the description of the affine subspace A by the data instance d = (A, b)
is not unique. It easy to find an equivalent data instance d̃ = (Ã, b̃) such that

{x : Ãx = b̃} = {x : Ax = b} = A

(take, for example, b̃ = Bb and Ã = BA, where B is any nonsingular linear operator
B : Y → Y ). Then the problem

(FPd̃) : Ãx = b̃, x ∈ CX
is equivalent to problem (FPd) in the sense that their feasible regions are identical;
we can think of the systems (FPd) and (FPd̃) as different but equivalent formulations
of the same feasibility problem

(FP): find x ∈ A ∩ CX .

Since the condition number C(d) is, in general, different from C(d̃), analyzing many
of the properties of the problem (FP) above in terms of the condition number will
lead to different results, depending on which formulation, (FPd) or (FPd̃), is being
used. This observation is somewhat disconcerting, since many of these properties are
of purely geometric nature. For example, the existence of a solution of small norm
and the existence of a reliable solution depend only on the geometry of the feasible
region, i.e., of the set A ∩ CX , and do not depend on a specific data instance d used
to “represent” the affine space A.

An interesting research direction, therefore, is the development of relevant mea-
sures of conditioning of the problem (FPd) that depend on the affine space A rather
than on a particular data instance d used to represent it and that allow us to analyze
some of the properties of the problem independently of the data used to represent
the problem. The recent literature contains some results on developing such measures
when (FPd) is a linear programming feasibility problem. In particular, two condition
measures, χ̄d and σd, were used in the analysis of interior-point algorithms for linear
programming (Vavasis and Ye [32, 33, 34]). These measures, discussed in detail in sec-
tion 4, provide a new perspective on the analysis of linear programming problems; for
example, like the condition number C(d), they do not require the data for the problem
to be rational. Also, they have the desired property that they are independent of the
specific data instance d used to describe the problem and can be defined considering
only the affine subspace A. Further analysis of these measures in the setting of linear
programming feasibility problems can be found in Ho [11], Todd, Tunçel, and Ye [29],
and Tunçel [30].

In this paper we define a new measure of conditioning, µd, for feasible instances
of the problem (FPd) of (1), which is independent of the specific data representation
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MEASURES OF CONDITIONING AND PRECONDITIONERS 631

of the problem. We explore the relationship between µd and measures χ̄d, σd, and
C(d). (In particular, we demonstrate that the measure σd is directly related to µd
in the special case of linear programming.) We show that µd ≤ C(d), i.e., µd is
less conservative, and that for any data instance d̃ equivalent to d, µd ≤ C(d̃). We
also demonstrate that many important properties of the system (FPd) previously
analyzed in terms of C(d) can be analyzed through µd (independently of the data
representation).

On the other hand, some properties of (FPd) are not purely geometric and depend
on the data d. Therefore, it might be beneficial, given a data instance d, to construct
a data instance d̃ which is equivalent to d but is better conditioned in the sense
that C(d̃) < C(d). We develop a characterization of all equivalent data instances d̃
by introducing the concept of a preconditioner and provide an upper bound on the
condition number C(d̃) of the “best” equivalent data instance d̃. We also analyze
the complexity of computing an equivalent data instance whose resulting condition
number is within a known factor of this bound. To this end, we construct an algorithm
for computing such a data instance and analyze its complexity.

An outline of the paper is as follows. Section 2 contains notation, definitions,
assumptions, and preliminary results. In section 3 we introduce the new measure of
conditioning µd for (FPd), establish several results relating µd to geometric properties
of the feasible region of (FPd), and analyze the performance of several algorithms for
solving (FPd) in terms of µd. In section 4 we study the relationship between µd and
other measures of conditioning, completely characterizing the relationship between
C(d) and µd, as well as σd and χ̄d, in the linear programming setting. In section 5,
we develop the notion of a preconditioner for the problem (FPd), establish an upper
bound on the condition number C(d̃) of the best equivalent data instance d̃, and
construct and analyze an algorithm for computing an equivalent data instance whose
condition number is within a known factor of this bound. Section 6 contains some
final conclusions and indicates potential topics of future research.

2. Preliminaries. We work in the setup of finite-dimensional normed linear
vector spaces. Both X and Y are normed linear spaces of finite dimension n and m,
respectively, endowed with norms ‖x‖ for x ∈ X and ‖y‖ for y ∈ Y . For x̄ ∈ X, let
B(x̄, r) denote the ball centered at x̄ with radius r, i.e., B(x̄, r) = {x ∈ X : ‖x− x̄‖ ≤
r}, and define B(ȳ, r) analogously for ȳ ∈ Y . We denote the set of real numbers by
� and the set of nonnegative real numbers by �+. The set of real k-by-k symmetric
matrices is denoted by Sk×k. The set Sk×k is a closed linear space of dimension

n = k(k+1)
2 . We denote the set of symmetric positive semidefinite k-by-k matrices

by Sk×k+ . Sk×k+ is a closed convex cone in Sk×k. The interior of the cone Sk×k+ is

precisely the set of k-by-k positive definite matrices, and is denoted by Sk×k++ .
We associate with X and Y the dual spaces X∗ and Y ∗ of linear functionals

defined on X and Y , respectively. Let c ∈ X∗. In order to maintain consistency with
standard linear algebra notation in mathematical programming, we will denote the
linear function c(x) by ctx. Similarly, for f ∈ Y ∗ we denote f(y) by f ty. We denote
A(x) by Ax, and we denote the dual operator of A by At : Y ∗ → X∗.

The dual norm induced on c ∈ X∗ is defined as

‖c‖∗ �
= max{ctx : x ∈ X, ‖x‖ ≤ 1},(3)

and the Hölder inequality ctx ≤ ‖c‖∗‖x‖ follows easily from this definition. The dual
norm induced on f ∈ Y ∗ is defined similarly.
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632 M. EPELMAN AND R. M. FREUND

We now present the development of the concepts of condition numbers and data
perturbation for (FPd) in detail. Recall that d = (A, b) is the data for the problem
(FPd). Let

D = {d = (A, b) : A ∈ L(X,Y ), b ∈ Y }

denote the space of all data d = (A, b) for (FPd). For d = (A, b) ∈ D we define the
norm on the Cartesian product L(X,Y )× Y to be

‖d‖ = ‖(A, b)‖ = max{‖A‖, ‖b‖},

where ‖b‖ is the norm specified for Y and ‖A‖ is the operator norm, namely

‖A‖ = max{‖Ax‖ : ‖x‖ ≤ 1}.

We define

F = {(A, b) ∈ D : there exists x satisfying Ax = b, x ∈ CX}

to be the set of data instances d for which (FPd) is feasible. Its complement is denoted
by FC , the set of data instances for which (FPd) is infeasible. The boundary of F
and of FC is precisely the set B = ∂F = ∂FC = cl(F)∩ cl(FC), where ∂S denotes the
boundary and cl(S) denotes the closure of a set S. Note that if d = (A, b) ∈ B, then
(FPd) is ill-posed in the sense that arbitrarily small changes in the data d = (A, b)
can yield instances of (FPd) that are feasible as well as instances of (FPd) that are
infeasible. Also, note that B �= ∅, since d = 0 ∈ B.

For a data instance d = (A, b) ∈ D, the distance to ill-posedness is defined to be

ρ(d)
�
= inf{‖∆d‖ : d+ ∆d ∈ B} =

{
inf{‖d− d̄‖ : d̄ ∈ FC} if d ∈ F ,
inf{‖d− d̄‖ : d̄ ∈ F} if d ∈ FC ;

(4)

see Renegar [24, 25, 26]. The condition number C(d) of the data instance d is defined
to be

C(d) =
‖d‖
ρ(d)

(5)

when ρ(d) > 0, and C(d) = ∞ when ρ(d) = 0. The condition number C(d) is a
measure of the relative conditioning of the data instance d and can be viewed as a
scale-invariant reciprocal of ρ(d), as it is elementary to demonstrate that C(d) = C(αd)
for any positive scalar α. It is easy to show that ρ(0) = 0, and hence C(d) ≥ 1.

If C is a convex cone in X, then the dual cone of C, denoted by C∗, is defined by

C∗ = {z ∈ X∗ : ztx ≥ 0 for any x ∈ C}.(6)

We will say that a cone C is regular if C is a closed convex cone, has a nonempty
interior, and is pointed (i.e., contains no line). If C is a closed convex cone, then C is
regular if and only if C∗ is regular.

We will use the following definition of the width of a regular cone C.
Definition 1. If C is a regular cone in X, the width of C is given by

τC
�
= maxx,r

{
r

‖x‖ : B(x, r) ⊂ C

}
.
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MEASURES OF CONDITIONING AND PRECONDITIONERS 633

Note that τC ∈ (0, 1], since C is pointed and has a nonempty interior, and τC is
attained for some (x̄, r̄) as well as along the ray (αx̄, αr̄) for all α > 0. By choosing
the value of α appropriately, we can find u ∈ C such that

‖u‖ = 1 and τC is attained for (x, r) = (u, τC).(7)

Definition 2. If C is a regular cone in X, define the norm approximation
coefficient by

δC
�
= dist(0, ∂conv(C(1),−C(1)),(8)

where C(1)
�
= {x ∈ C : ‖x‖ ≤ 1}, and ∂conv(C(1),−C(1)) is the boundary of the

convex hull of the set C(1) ∪ (−C(1)).
The norm approximation coefficient δC measures the extent to which the unit ball

B(0, 1) ⊂ X can be approximated by the set conv(C(1),−C(1)). As a consequence,
it measures the extent to which the norm of a linear operator can be approximated
over the set C(1).

Proposition 3. Suppose A ∈ L(X,Y ). Then ‖A‖ ≤ 1
δC

max{‖Ax‖ : x ∈ C(1)}.
Lemma 4. Suppose C is a regular cone with width τC . Then

δC ≥ τC
1 + τC

≥ τC
2
.(9)

Proof. Let x̄ ∈ X be an arbitrary vector satisfying ‖x̄‖ ≤ τC
1+τC

. To establish the
lemma we need to show that x̄ ∈ conv(C(1),−C(1)).

Let x = x̄(1+τC)
τC

. If u is as in (7), then u+τCx ∈ C and u−τCx ∈ C. Furthermore,

u+ τCx

1 + τC
∈ C(1) and

−u+ τCx

1 + τC
∈ −C(1),

and so

x̄ =
τC

1 + τC
x =

1

2

(
u+ τCx

1 + τC

)
+

1

2

(−u+ τCx

1 + τC

)
∈ conv(C(1),−C(1)).

We will assume throughout this paper that the system (FPd) of (1) is feasible.
At this point we make no further assumptions on the cone CX and the norms on the
spaces X and Y unless stated otherwise. (We will make some additional assumptions
in sections 4 and 5.)

When (FPd) is feasible, ρ(d) can be expressed via the following characterization:

ρ(d) = max{r : B(0, r) ⊆ Hd},(10)

where

Hd �
= {bθ −Ax : θ ≥ 0, x ∈ CX , |θ|+ ‖x‖ ≤ 1} ⊂ Y.(11)

Note that 0 ∈ Hd whenever (FPd) is feasible, and ρ(d) > 0 precisely when 0 ∈ intHd.
This interpretation, presented by Renegar in [26], will serve as an important tool in
developing further understanding of the properties of the system (FPd).

The next result follows from the definition of Hd and Proposition 3.
Corollary 5. Suppose that d = (A, b) ∈ D and CX is regular. Then ‖d‖ ≤

1
δCX

max{‖h‖ : h ∈ Hd}.
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634 M. EPELMAN AND R. M. FREUND

3. The symmetry measure µd. In this section we define a new measure of
conditioning of (FPd), µd, which we refer to as the “symmetry measure,” and we
establish some of its properties relevant in the analysis of (FPd). We begin by recalling
the symmetry of a set with respect to a point, in the following definition.

Definition 6. Let D ⊂ Y be a bounded convex set. For y ∈ intD we define
sym(D, y) to be the symmetry of D about y, i.e.,

sym(D, y)
�
= sup{t | y + v ∈ D ⇒ y − tv ∈ D}.

If y ∈ ∂D, we define sym(D, y) = 0.

This definition of symmetry is equivalent to that given in [26]. Observe that
sym(D, y) ∈ [0, 1], with sym(D, y) = 1 if D is perfectly symmetric about y, and
sym(D, y) = 0 precisely when y ∈ ∂D. Moreover, the definition of sym(D, y) is
independent of the norm on the space Y .

Lemma 7. Suppose that D is a compact convex set with a nonempty interior,
and let y ∈ intD. Then there exists an extreme point w of D such that sym(D, y) =

symw(D, y)
�
= sup{t | y − t(w − y) ∈ D}.

Proof. Define f(w) = symw(D, y) = sup{t | y − t(w − y) ∈ D}. It follows that
f(w) is a quasi-concave function on D. This implies that the minimum of f(w) is
attained at an extreme point of D; see, for example, section 3.5.3 of [1].

To define the symmetry measure of the problem (FPd) recall that if (FPd) is
feasible, then 0 ∈ Hd, where Hd is defined in (11). Hence, the following quantity is
well-defined.

Definition 8. Suppose the system (FPd) is feasible. We define

µd
�
=

1

sym(Hd, 0)
(12)

when sym(Hd, 0) > 0, and µd = +∞ when sym(Hd, 0) = 0.

From the above definition, µd ≥ 1 and µd = +∞ precisely when 0 ∈ ∂Hd, i.e.,
precisely when (FPd) is ill-posed.

3.1. The symmetry measure and geometric properties of solutions of
(FPd). We now establish two results that characterize geometric properties of the
feasible region Xd of the system (FPd) in terms of µd. Theorem 9 establishes a bound
on the size of a solution of (FPd) in terms of µd; this result is similar to the bound in
terms of the condition number C(d) in [24]. Theorem 10 demonstrates existence of a
reliable solution of (FPd). This is similar to the result (2) presented in [8]; however,
here the bounds on the size of the solution, its distance to the boundary of the cone
CX , and the ratio of the above quantities are established in terms of µd rather than
C(d). Also, unlike for the condition number C(d), we can establish a converse result
for µd; namely, if the feasible region possesses nice geometry, i.e., contains a reliable
solution, then µd can be nicely bounded by a function of the parameters associated
with the reliable solution. This result is proven in Theorem 11.

Theorem 9. Suppose µd <∞. Then there exists x ∈ Xd such that ‖x‖ ≤ µd.

Proof. By the definition of µd, − 1
µd
b = −sym(Hd, 0)b ∈ Hd, since b ∈ Hd.

Therefore there exists (θ, x) satisfying θ ≥ 0, x ∈ CX , |θ|+ ‖x‖ ≤ 1, and bθ − Ax =
− 1
µd
b. Let x̂ = x/(θ + 1

µd
). Then x̂ ∈ Xd and ‖x̂‖ = ‖x‖/(θ + 1

µd
) ≤ µd.
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MEASURES OF CONDITIONING AND PRECONDITIONERS 635

Theorem 10. Suppose CX is a regular cone with width τ , and that µd < ∞.
Then there exist x̂ and r > 0 such that

1. x̂ ∈ Xd,
2. ‖x̂‖ ≤ 2µd + 1,
3. dist(x̂, ∂CX) ≥ r ≥ τ

2µd+1 ,

4. ‖x̂‖
r ≤ 2µd+1

τ .
Proof. Let u be as in (7). Then 1

2b − 1
2Au ∈ Hd. From the definition of µd

we conclude that − 1
µd

(
1
2b− 1

2Au
) ∈ Hd, whereby there exists (θ̄, x̄) ∈ �+ × CX ,

|θ̄|+ ‖x̄‖ ≤ 1, satisfying bθ̄ −Ax̄ = − 1
µd

( 1
2b− 1

2Au).

Let x̂ = 2µdx̄+u
2µdθ̄+1

. It is easy to verify that x̂ ∈ Xd, so that condition 1 of the

theorem is satisfied. Moreover, ‖x̂‖ = ‖2µdx̄+u‖
2µdθ̄+1

≤ 2µd + 1, establishing condition 2.

Next, let r = τ
2µdθ̄+1

. Since B(u, τ) ⊂ CX and x̄ ∈ CX , we conclude that

B (u+ 2µdx̄, τ) ⊂ CX , and therefore B(u+2µdx̄
2µdθ̄+1

, τ
2µdθ̄+1

) = B (x̂, r) ⊂ CX . Also, since

θ̄ ≤ 1, r ≥ τ
2µd+1 , establishing condition 3. Finally,

‖x̂‖
r

=
‖2µdx̄+ u‖
2µdθ̄ + 1

· 2µdθ̄ + 1

τ
≤ 2µd + 1

τ
,

implying condition 4 and concluding the proof of the theorem.
We conclude from Theorems 9 and 10 that, much like for the condition number

C(d), if the symmetry measure µd is small, then the feasible region Xd possesses nice
geometry. We now establish a converse result.

Theorem 11. Suppose CX is a regular cone and there exists x̂ ∈ Xd and r > 0

such that dist(x̂, ∂CX) ≥ r. Let γ = max{‖x̂‖, 1
r ,

‖x̂‖
r }. Then µd ≤ 1 + 2γ.

Proof. Let δ = ‖x̂‖+ 1 and π = min{r, 1}. We first show that sym(Hd, 0) ≥ π
δ+π .

Let y ∈ Hd. From the definition of Hd, y = bθ̄ − Ax̄ for some (θ̄, x̄) ∈ �+ × CX ,
|θ̄|+ ‖x̄‖ ≤ 1. Therefore

π

δ + π
(−y) =

π

δ + π
(−bθ̄ +Ax̄) +

1

δ + π
(b−Ax̂) = b

(−πθ̄ + 1

δ + π

)
−A

(−πx̄+ x̂

δ + π

)
.

Let θ̌ = −πθ̄+1
δ+π and x̌ = −πx̄+x̂

δ+π . Since π ≤ 1 and θ̄ ≤ 1, we have θ̌ ≥ 0. Moreover, since

π ≤ r and ‖x̄‖ ≤ 1, we have x̌ ∈ CX . Finally, |θ̌|+ ‖x̌‖ ≤ 1
δ+π (1 + π‖x̄‖+ ‖x̂‖) ≤ 1,

and therefore − π
δ+πy ∈ Hd for an arbitrary y ∈ Hd, establishing that sym(Hd, 0) ≥

π
δ+π . Hence,

µd =
1

sym(Hd, 0)
≤ δ + π

π
= 1+

1

min{r, 1} +
‖x̂‖

min{r, 1} ≤ 1+max{γ, 1}+γ ≤ 1+2γ.

The last inequality follows from the observation that r ≤ ‖x̂‖ (since CX is pointed

and thus ‖x̂‖ ≥ dist(x̂, ∂CX) ≥ r) and thus γ ≥ ‖x̂‖
r ≥ 1.

The result in Theorem 11 is quite specific to µd; no such result is possible for the
condition number C(d). In fact, the example following Remark 19 in section 4 shows
that C(d) can be arbitrarily large even when γ is fixed.

3.2. The symmetry measure and the complexity of computing a solu-
tion of (FPd). In this subsection we present complexity bounds for solving (FPd)
via an interior-point algorithm and via the ellipsoid algorithm, and we show that the
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636 M. EPELMAN AND R. M. FREUND

complexity of solving (FPd) depends on ln(µd) as well as on other naturally appear-
ing quantities. For this subsection, we assume that the space X is an n-dimensional
Euclidean space with Euclidean norm ‖x‖ = ‖x‖2 =

√
xtx for x ∈ X. We also assume

that CX is a regular cone with width τ and that the vector u of (7) is known.
When the cone CX is represented as the closure of the domain of a self-concordant

barrier function, a solution of (FPd) can be found using the barrier method devel-
oped by Renegar, based on the theory of self-concordant functions of Nesterov and
Nemirovskii [17]. Below we briefly review the barrier method as articulated in [27]
and then state the main complexity result.

The version of the barrier method that we will use is designed to approximately
solve a problem of the form

z∗ = inf{ctω : ω ∈ S ∩ L},(13)

where S is a bounded set whose interior is convex and is the domain of a self-
concordant barrier function f(ω) with complexity parameter ϑf (see [17] and [27]
for details), and L is a closed subspace (or a translate of a closed subspace). The
barrier method takes as input a point ω′ ∈ intS ∩ L, and proceeds by approximately
following the central path, i.e., the sequence of solutions of the problems

z(η) = inf
ω∈L

η · ctω + f(ω),

where η > 0 is the barrier parameter. In particular, after the initialization stage, the
method generates an increasing sequence of barrier parameters ηk > 0 and iterates
ωk ∈ intS ∩ L that satisfy

ctωk − 6ϑf
5ηk
≤ z∗ ≤ ctωk, k = 0, 1, 2, . . . .(14)

It follows from the analysis in [27] that if the barrier method is initialized at the point
ω′ ∈ intS ∩ L, then it will take at most

O

(√
ϑf ln

(
ϑf (z

∗ − z∗)
sym(S ∩ L, ω′)

· η̄
))

(15)

iterations to bring the value of the barrier parameter η above the threshold of η̄ ≥ η0

while maintaining (14). (Here, z∗ = sup{ctω : ω ∈ S ∩ L}.) This implies the main
convergence result for the barrier method, which follows.

Theorem 12 (see [27, Theorem 2.4.10]). Assume that S is a bounded set whose
interior is convex and is the domain of a self-concordant barrier function f(ω) with
complexity parameter ϑf , and that L is a closed subspace (or a translate of a closed
subspace). Assume that the barrier method is initialized at a point ω′ ∈ intS ∩ L. If
0 < ε < 1, then within

O

(√
ϑf ln

(
ϑf

ε sym(S ∩ L, ω′)

))

iterations of the method, all points ω computed thereafter satisfy ω ∈ intS ∩ L and

ctω − z∗
z∗ − z∗

≤ ε.

In order to find a solution of (FPd) we will construct a closely related problem of
the form (13) and apply the barrier method to this problem. This construction was
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MEASURES OF CONDITIONING AND PRECONDITIONERS 637

carried out in [26], where the complexity of solving (FPd) was analyzed in terms of
C(d). The optimization problem we consider is

z∗ = infθ,x,t t
subject to (s.t.) bθ −Ax = t( 1

2b− 1
2Au),

x ∈ intCX ,
‖x‖ < 1,
0 < θ < 1,
−1 < t < 2,

(16)

where u is chosen as in (7). We will use the barrier method to find a feasible solution

(θ̂, x̂, t̂) of (16) such that t̂ ≤ 0, and use the transformation x = x̂− 1
2 t̂u/(θ̂ − 1

2 t̂) to
obtain a solution of (FPd).

Let z∗ be the optimal value of the problem obtained from (16) by replacing
“inf” with “sup”. Let f̃(x) be the self-concordant barrier function defined on intCX

and let ϑf̃ be the complexity parameter of f̃(x). Then the set S
�
= {(θ, x, t) : x ∈

intCX , ‖x‖ < 1, 0 < θ < 1, −1 < t < 2} is convex and bounded, and is the domain
of the self-concordant barrier function

f(ω) = f(θ, x, t) = f̃(x)− ln(1− ‖x‖2)− ln θ − ln(1− θ)− ln(t+ 1)− ln(2− t)

with complexity parameter ϑf ≤ ϑf̃ + 5. (See, for example, [26] or [27] for de-

tails.) If we define L
�
= {(θ, x, t) : bθ − Ax = t( 1

2b − 1
2Au)}, then problem (16)

is of the form (13), and we can apply the barrier method initialized at the point
ω′ = (θ′, x′, t′) = ( 1

2 ,
1
2u, 1). The following proposition provides bounds on all of

the parameters necessary in the analysis of the complexity of the barrier method via
Theorem 12.

Proposition 13. z∗ ≤ 2, −1 ≤ z∗ ≤ − 1
µd
, sym(S ∩ L, ω′) ≥ 1

12τ .
Proof. The upper bound on z∗ and the lower bound on z∗ follow from the last

constraint of (16).
Let y = 1

2b− 1
2Au ∈ Hd. From the definition of µd we conclude that − y

µd
∈ Hd, so

there exists (θ, x) such that θ ≥ 0, x ∈ CX , |θ|+‖x‖ ≤ 1, bθ−Ax = − 1
µd

( 1
2b− 1

2Au).

Therefore (θ, x,−1/µd) is in the closure of the feasible set of (16), and so z∗ ≤ − 1
µd

.
To establish the last statement of the proposition, we appeal to Proposition 3.3

of Renegar [26], where it is shown that ω′ defined above satisfies

sym(S ∩ L, ω′) ≥ 1

4
sym

(
CX(1),

1

2
u

)
, where CX(1) = {x : x ∈ CX , ‖x‖ ≤ 1}.

Since B
(

1
2u,

1
2τ
) ⊂ CX(1), it is easy to verify that sym

(
CX(1), 1

2u
) ≥ τ

3 , establishing
the proposition.

Theorem 14. Suppose that the barrier method for problem (16) is initialized at
the point ( 1

2 ,
1
2u, 1). Then within

O

(√
ϑf̃ ln

(
ϑf̃µd

τ

))

iterations, any iterate (θ̂, x̂, t̂) of the algorithm will satisfy t̂ ≤ 0, and therefore x =

x̂− 1
2 t̂u/(θ̂ − 1

2 t̂) is a solution of (FPd).
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638 M. EPELMAN AND R. M. FREUND

Proof. First note that for any iterate (θ̂, x̂, t̂) of the algorithm, θ̂ > 0 and x̂ ∈
intCX . Therefore, it is easy to check that when t̂ ≤ 0, x is well-defined and is a
solution of (FPd).

It remains to verify the number of iterations needed to generate an iterate such
that t̂ ≤ 0. Let ε = 1

3µd
. Applying Theorem 12 and substituting the bounds of

Proposition 13 into the complexity bound, we conclude that after at most

O

(√
ϑf ln

(
ϑf

ε sym(S ∩ L, ω′)

))
= O

(√
ϑf̃ ln

(
ϑf̃µd

τ

))

iterations of the barrier method, any iterate (θ̂, x̂, t̂) will satisfy

t̂ ≤ ε(z∗ − z∗) + z∗ ≤ 1

3µd
(2− (−1))− 1

µd
= 0,

from which the theorem follows.
When the cone CX is represented via a separation oracle, a solution of (FPd) can

be found using a version of the ellipsoid algorithm. (See, for example, [2] and [10].)
Below is a generic theorem for analyzing the ellipsoid algorithm for finding a point ω
in a convex set S ⊂ �k given by a separation oracle.

Theorem 15. Suppose that a convex set S ⊂ �k given by a separation oracle
contains a Euclidean ball of radius r centered at some point ω̂, and that an upper bound
R on the quantity (‖ω̂‖2 + r) is known. Then if the ellipsoid algorithm is initiated
with a Euclidean ball of radius R centered at ω0 = 0, the algorithm will compute a
point in S in at most

�2k(k + 1) ln(R/r)�
iterations, where each iteration must perform a feasibility cut on S.

The main problem with trying to apply Theorem 15 directly to (FPd) is that
one needs to know the upper bound R in advance. Because such an upper bound is
generically unknown in advance for (FPd), we approach solving (FPd) by considering
finding a point in the following set:

S
�
= {(θ, x) : θ > 0, x ∈ CX , bθ −Ax = 0},(17)

which is a convex set in the linear subspace T
�
= {(θ, x) : bθ − Ax = 0} of dimension

k = n + 1 −m. Observe that it is easy to construct a separation oracle for S in the
linear subspace T , provided that one has a separation oracle for CX . We will use the
ellipsoid algorithm to find a point (θ̂, x̂) ∈ S (working in the linear subspace T ), and
we use the obvious transformation x = x̂

θ̂
to transform the output of the algorithm

into a solution of (FPd).

Proposition 16. Let S be as in (17). Then there exists a point (θ̂, x̂) ∈ S and
r̂ > 0 such that

B((θ̂, x̂), r̂) ∩ {(θ, x) : bθ −Ax = 0} ⊂ S, ‖(θ̂, x̂)‖+ r̂ ≤ 3, and r̂ ≥ τ

2µd
.

Proof. Let y = 1
2b − 1

2Au ∈ Hd. From the definition of µd we conclude that
− y
µd
∈ Hd, whereby there exists (θ̄, x̄) such that

|θ̄|+ ‖x̄‖ ≤ 1, θ̄ ≥ 0, x̄ ∈ CX , bθ̄ −Ax̄ = − 1

µd

(
1

2
b− 1

2
Au

)
.
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MEASURES OF CONDITIONING AND PRECONDITIONERS 639

Let ω̂ = (θ̂, x̂)
�
= (θ̄ + 1

2µd
, x̄ + 1

2µd
u) and r̂ = τ

2µd
. Then ω̂ ∈ S, B(ω̂, r̂) ∩ {(θ, x) :

bθ −Ax = 0} ⊂ S and

‖ω̂‖2+r̂ =

√
(θ̄ +

1

2µd
)2 + ‖x̄+

1

2µd
u‖2+ τ

2µd
≤ |θ̂|+‖x̂‖+ 1

2µd
+
‖u‖
2µd

+
τ

2µd
≤ 3.

The following theorem is an immediate consequence of Theorem 15 and Proposi-
tion 16.

Theorem 17. Suppose that the ellipsoid algorithm is applied in the linear sub-
space T to find a point in the set S, initialized with the Euclidean ball (in the space
T ) of radius R = 3 centered at (θ0, x0) = (0, 0). Then the ellipsoid algorithm will find
a point in S (and hence, by transformation, a solution of (FPd)) in at most⌈

2(n−m+ 1)(n−m+ 2) ln

(
6µd
τ

)⌉

iterations.

4. Symmetry measure and other measures of conditioning for (FPd).

4.1. Symmetry measure and the condition number. In this subsection we
establish a relationship between µd and C(d). As demonstrated in Theorem 18, if
an instance of (FPd) is “well-conditioned” in the sense that C(d) is small, then µd
is also small. This relationship, however, is one-sided, since µd may carry no upper-
bound information about C(d). In particular, in Remark 19 we exhibit a sequence of
instances of (FPd) with C(d) becoming arbitrarily large while µd remains fixed.

Theorem 18. µd ≤ C(d).
Proof. If ρ(d) = 0, then C(d) = ∞, and the statement of the theorem holds

trivially. Suppose ρ(d) > 0. Since B(0, ρ(d)) ⊆ Hd, we conclude that for any v ∈ Hd,
−ρ(d)‖v‖ v ∈ Hd. Therefore

1

µd
= sym(Hd, 0) ≥ inf

v∈Hd

ρ(d)

‖v‖ ≥
ρ(d)

‖d‖ =
1

C(d) ,

proving the theorem.
Remark 19. µd may carry no upper-bound information about C(d).
To see why this is true, consider the parametric family of problems (FPdε), where

dε = (Aε, b):

b =

[
0
0

]
and Aε =

[
1 1 −1 −1
ε −ε ε −ε

]
,

CX = �4
+ and ‖x‖ �

= ‖x‖1 for x ∈ X, and ‖y‖ = ‖y‖2 for y ∈ Y . Consider the values
of the parameter ε ∈ (0, 1]. The set Hdε is symmetric about 0, so µdε = 1 for any
value of ε. On the other hand, ρ(dε) = ε and ‖dε‖ =

√
1 + ε2. Therefore,

C(dε) =

√
1 + ε2

ε
≥ 1

ε
,

and so C(d) can be arbitrarily large while µd remains constant. Furthermore, letting
x̂ = (1, 1, 1, 1) and r = 1, we see that γ in Theorem 11 has fixed value γ = 4 for any
ε ∈ (0, 1].
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640 M. EPELMAN AND R. M. FREUND

So far, we have made no assumptions on the norm on the space Y ; in fact, it
can be easily seen that µd is invariant under changes in the norm on Y . (This is not
true for C(d).) We conclude this section by providing another interpretation of the
relationship between the measures µd and C(d). As Theorem 20 indicates, when the
space Y is endowed with the appropriate norm, µd and C(d) are within a constant
factor of each other. To see this, define

Td �
= −Hd ∩Hd.(18)

Then Td is a convex set that is symmetric about 0, and 0 ∈ int Td when µd < ∞.
Therefore we can define the norm ‖ · ‖ on Y to be the norm induced by considering
Td to be the unit ball, namely:

‖y‖ �
= min {α : y ∈ αTd} .(19)

Theorem 20. Suppose CX is regular and µd <∞. If the norm on Y is given by
(19), then ρ(d) = 1 and C(d) ≤ µd

δ , where δ is the norm approximation coefficient of
the cone CX .

Proof. The characterization of ρ(d) in (10) easily implies that ρ(d) = 1. It remains
to establish the bound on the condition number C(d). We have

C(d) =
‖d‖
ρ(d)

= ‖d‖ ≤ 1

δ
max{‖y‖ : y ∈ Hd} ≤ µd

δ
.

The first inequality above follows from Corollary 5. To verify the second inequality
above, suppose that y ∈ Hd. Then 1

µd
y ∈ Hd because µd ≥ 1, and − 1

µd
y ∈ Hd by

the definition of µd. Therefore, 1
µd
y ∈ Td, and so ‖ 1

µd
y‖ ≤ 1, which implies that

max{‖y‖ : y ∈ Hd} ≤ µd. This inequality is sufficient to prove the theorem; one can,
however, show that max{‖y‖ : y ∈ Hd} = µd.

4.2. Relationships between the symmetry measure and other measures
of conditioning for linear programming. In the special case when CX = �n+, the
problem (FPd) becomes a linear feasibility problem and can be written as follows:

(FPd) : Ax = b, x ≥ 0,(20)

where x ∈ �n, b ∈ �m, and A ∈ �m×n. We assume in this subsection that (FPd)
has a strictly positive solution x0, i.e., Ax0 = b and x0 > 0, that the norm on X is

‖x‖ �
= ‖x‖1, and that the norm on Y is ‖y‖ �

= ‖y‖2.
Complexity analysis of linear programming sometimes relies on the complexity

measures σ(·) and χ̄(·). These measures are quite specific to the special case of linear
programming, as opposed to C(d) and µd, which apply to more general conic problems.
In this subsection we state both previously known as well as new results relating all
of these condition measures, which in total provide a complete characterization of the
relationship between these four measures of conditioning.

For simplicity of notation, we define an “expanded” matrix Ã
�
= [b;−A] ∈ �m×(n+1).

Notice that ‖Ã‖ �
= max{‖bθ −Ax‖ : ‖(θ, x)‖1 ≤ 1} = ‖d‖.

We first review a slight variant on σ(·) called σd, which was introduced and used
in the complexity analysis of an interior-point algorithm for solving (FPd) by Vavasis
and Ye [32]:

σd
�
= min
j=1,...,n+1

max
w
{etjw : Ãw = 0, etw = 1, w ≥ 0},
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MEASURES OF CONDITIONING AND PRECONDITIONERS 641

where ej , j = 1, . . . , n+ 1, denotes the jth unit vector and e ∈ �n+1 is the vector of
all ones. Note that while the above does not coincide with the usual definition of σ,
it does under our assumption that (FPd) has a strictly positive solution.

We also review a slight variant on χ̄(·) called χ̄d, which has been used by Vavasis
and Ye [33, 34] and Megiddo, Mizuno, and Tsuchiya [16] in the complexity analysis
of another interior-point algorithm:

χ̄d
�
= sup{‖Ãt(ÃDÃt)−1ÃD‖ : D ∈ S(n+1)×(n+1)

++ , D diagonal}.
An alternative characterization of χ̄d is

χ̄d = max{‖B−1Ã‖ : B ∈ B(Ã)},(21)

where B(Ã) is the set of all bases (i.e., m ×m nonsingular submatrices) of Ã. (See
[29] for the proof of the equivalence of these characterizations.)

It has been established by Vavasis and Ye [32] that σd and χ̄d are related by the
inequality

σd ≥ 1

χ̄d + 1
.

On the other hand, Tunçel in [31] established that, in general, σd may carry no upper-
bound information about χ̄d. Specifically, he provided a family of data instances dε
such that for any ε > 0, σdε = 1

2 , but χ̄dε ≥ 1
ε , and so χ̄dε can be arbitrarily large.

Theorem 18 and Remark 19 established a relationship between µd and C(d). Below
we establish relationships between the other pairs of measures µd, C(d), χ̄d, and σd,
or provide examples that show that no such relationship exists, in the spirit of [31].

Remark 21. C(d) and χ̄d may carry no upper-bound or lower-bound information
about each other.

To establish the above result, we provide two parametric families of matrices Ãε
such that by varying the value of the parameter ε > 0 we can make one of the above
measures arbitrarily bad while keeping the other measure constant or bounded.

First consider the family of matrices Ãε = [ ε0
0
1

−ε
−1 ]. For ε > 0 and sufficiently

small, ρ(dε) = ε√
ε2+4

. Furthermore, ‖dε‖ =
√

1 + ε2, and so

C(dε) =

√
ε2 + 1

ε2 + 4
· 1
ε
→ +∞ as ε→ 0.

On the other hand, it is easy to establish using (21) that χ̄(dε) =
√

2 for any ε > 0.
To establish the second claim of the remark, consider the family Ãε = [1 ε − 1]

with 0 < ε < 1. We have ‖dε‖ = 1, ρ(dε) = 1, and so C(dε) = 1 for any ε as
above. On the other hand it is easy to establish using (21) that for any ε ∈ (0, 1),
χ̄dε = 1

ε → +∞ as ε→ 0.
Proposition 22. Suppose the system (FPd) of (20) has a positive solution. Then

σd = 1
1+µd

.
Proof. Observe that we can redefine σd as follows:

σd = min
j=1,...,n+1

σj , where σj
�
= max{etjw : Ãw = 0, etw = 1, w ≥ 0}.

From Lemma 7, there exists an extreme point w̄ of

Hd = {bθ −Ax : (θ, x) ≥ 0, ‖(θ, x)‖1 ≤ 1} = {Ãw : w ≥ 0, etw ≤ 1}

D
ow

nl
oa

de
d 

11
/2

4/
15

 to
 1

8.
18

9.
82

.1
76

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



642 M. EPELMAN AND R. M. FREUND

such that 1
µd

= symw̄(Hd, 0) = sup{t : −tw̄ ∈ Hd}. Since the set of extreme points of

the set Hd is contained in the set {Ã1, . . . , Ãn+1}, where Ãj ∈ �m is the jth column

of the matrix Ã, we can characterize µd as

1

µd
= min
j=1,...,n+1

1

µj
, where

1

µj

�
= sup{t : −tÃj ∈ Hd}.

We will now show that for any j

σj =
1

1 + µj
.(22)

Without loss of generality we can consider j = 1 and the corresponding column Ã1 of
Ã. If Ã1 = 0, then σ1 = 1, 1

µ1
= +∞, and (22) holds as a limiting relationship.

Suppose that A1 �= 0, and therefore µ1 > 0 and σ1 < 1. By definition of µ1,
− 1
µ1
Ã1 ∈ Hd, i.e., there exists a point p ≥ 0, etp = 1 such that − 1

µ1
Ã1 = Ãp. Define

w
�
= µ1p+e1

1+µ1
. Then w ≥ 0, etw = 1, and Ãw = 0. Therefore, σ1 ≥ w1 ≥ 1

1+µ1
.

Suppose now that w is a solution of the linear program defining σ1. Then w1 = σ1.

Let p = 1
1−σ1

(w−σ1e1). Then p ≥ 0, etp = 1, and Ãp = −Ã1σ1

1−σ1
. Therefore, 1

µ1
≥ σ1

1−σ1
,

and so σ1 ≤ 1
µ1+1 . Combining this with the bound in the previous paragraph, we

conclude that σ1 = 1
µ1+1 , and by similar argument, σj = 1

µj+1 , j = 1, . . . , n+ 1.

Suppose now that σd = σj for some j. That means that σj ≤ σi for any index i,
or, equivalently, 1

µj+1 ≤ 1
µi+1 and hence µj ≥ µi for any index i. Therefore, µd = µj

and hence σd = 1
1+µd

.
The following two remarks, which are easy consequences of Proposition 22, estab-

lish the remaining relationships between the four measures of conditioning.
Remark 23. µd ≤ χ̄d. However, µd may carry no upper-bound information

about χ̄d.
Remark 24. σd ≥ 1

C(d)+1 . However, σd may carry no upper-bound information

about C(d).
In light of Proposition 22, µd can in fact be viewed as a generalization of the

Vavasis–Ye measure σd to a general conic linear system. Related to this, Ho in [11]
provides an argument indicating that extending χ̄d to general conic systems is not
possible.

5. Preconditioners for conic linear systems. In this section we present a
characterization of all data instances d̃ equivalent to d (in the sense that Xd = Xd̃),
by introducing the concept of a preconditioner, and we provide an upper bound on
the condition number C(d̃) of the “best” equivalent data instance d̃. We conclude by
analyzing the complexity of computing an equivalent data instance whose condition
number is within a known factor of this bound, by constructing an algorithm for
computing such an instance and analyzing its complexity.

Consider the data instance d = (A, b) ∈ D defining the system (FPd). Let B ∈
�m×m be a given nonsingular matrix and consider the data instance Bd

�
= B · d =

(BA,Bb), which gives rise to the system

(FPBd) : BAx = Bb, x ∈ CX .(23)

The systems (FPd) and (FPBd) are equivalent; for this reason we say that the data
instances d and Bd are equivalent as well. We can view the systems (FPd) and (FPBd)
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MEASURES OF CONDITIONING AND PRECONDITIONERS 643

as different formulations of the same feasibility problem (FP): find x ∈ A∩CX , where
A is the affine subspace

A �
= {x : Ax = b} = {x : BAx = Bb}.(24)

However the condition numbers of the two systems, C(d) and C(Bd), are, in general,
not equal.

On the other hand, consider the symmetry measures of the two systems, µd and
µBd. Observe that

HBd �
= {Bbθ −BAx : θ ≥ 0, x ∈ CX , |θ|+ ‖x‖ ≤ 1} = B(Hd);

i.e., the set HBd is the image of the set Hd under the linear transformation defined
by B. Therefore, sym(HBd, 0) = sym(Hd, 0), and µd = µBd, since the symmetry of a
set is preserved under nonsingular linear transformation, and so we can think of µd
as depending on the affine space A defined in (24) but not on the specific data d. To
highlight the independence of µd of the particular data d, we sometimes write µA in
place of µd. We record this formally in the following proposition.

Proposition 25. Let d = (A, b) ∈ D, let B ∈ �m×m be a nonsingular matrix,

and define A �
= {x : Ax = b}. Then µd = µBd = µA.

We leave to the reader the proof of the next proposition.
Proposition 26. Suppose CX is a regular cone. Let d = (A, b) ∈ D and

d̃ = (Ã, b̃) ∈ D be such that Xd = Xd̃. If C(d) < ∞, then there exists a nonsingular
matrix B ∈ �m×m such that d̃ = Bd.

Suppose that a feasibility problem can be represented via two equivalent data
instances d and d̃, and suppose that C(d) C(d̃). If one were to predict, for example,
the performance of the interior-point algorithm from section 3 for solving (FPd) by
analyzing its complexity in terms of the condition number, the bounds would be
overly conservative if the problem were described by the data instance d̃. However, our
analysis of the performance of the algorithm in terms of µA yields a bound independent
of the data instance used.

On the other hand, as detailed in the introduction, the condition number C(d) is a
crucial parameter for analyzing properties of (FPd) that depend on the representation
of the problem (FP(·)) by a specific data instance d, such as sensitivity of the feasible
region to data perturbations, numerical properties of computations in algorithms for
solving (FPd), etc. Therefore, it might be beneficial to precondition the system (FPd),
i.e., to find another data instance d̃ = Bd for which C(d̃) < C(d), and work with the
corresponding system (FPd̃), which is better-behaved. In this light, we can view the
matrix B above as a preconditioner for the system (FPd), yielding the preconditioned
system (FPd̃) with d̃ = Bd, and Proposition 26 implies that any data instance d̃ for
which Xd̃ = Xd can be obtained by preconditioning d with an appropriate B.

In the remainder of this section, we characterize a so-called best preconditioner,
which is a preconditioner that gives rise to a condition number that is within a constant
factor of the best possible, and we construct and analyze an algorithm for computing
a preconditioner that yields a condition number that is within a known factor of
this bound. For the remainder of this section, we assume that the space Y is the
m-dimensional Euclidean space �m with Euclidean norm ‖y‖ = ‖y‖2 =

√
yty. We

assume that the cone CX is a regular cone with width τ and norm approximation
coefficient δ. We also assume that m ≥ 2. (In fact, the case m = 1 is trivial since
in this case µA and C(d) are within a factor of δ of each other, and thus the issue of
preconditioning is essentially irrelevant.)
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644 M. EPELMAN AND R. M. FREUND

5.1. Best preconditioners and α-roundings. The main result of this subsec-
tion, Theorem 30, demonstrates the existence of a preconditioner B̄ such that C(B̄d)
is within the factor

√
m
δ of µA. We begin by developing the tools to prove this result.

For any matrix Q ∈ Sm×m
++ we define EQ to be the ellipsoid EQ

�
= {y ∈ Y :

ytQ−1y ≤ 1}.
Definition 27. Let S ⊂ Y be a bounded set with a nonempty convex interior.

For α ∈ (0, 1], an ellipsoid EQ is called an α-rounding of S if

αEQ ⊆ S ⊆ EQ.

We refer to the parameter α as the tightness of the rounding EQ.
If the set S above satisfies S = −S (i.e., is symmetric about 0), then S possesses

a 1√
m

-rounding, i.e., there exists an ellipsoid EQ such that 1√
m
EQ ⊆ S ⊆ EQ (see

John [12]). In particular, the ellipsoid of minimum volume containing S (often referred
to as the Löwner–John ellipsoid of S) is a 1√

m
-rounding of S.

The following lemma allows us to interpret preconditioning of the system (FPd)
by B as constructing a 1

C(Bd) -rounding of the set Hd.
Lemma 28. Let B ∈ �m×m be a (nonsingular) preconditioner for the system

(FPd). Let Q = ‖Bd‖2(BtB)−1. Then

1

C(Bd)EQ ⊆ Hd ⊆ EQ.

Proof. First, observe that Q ∈ Sm×m
++ , since B is nonsingular. To prove the first

inclusion, let h ∈ 1
C(Bd)EQ, i.e., htQ−1h ≤ 1

C(Bd)2 . Using the definition of Q, we have

ht(BtB)h ≤ ‖Bd‖2

C(Bd)2 = ρ(Bd)2, that is, ‖Bh‖ ≤ ρ(Bd). This implies Bh ∈ HBd, and

hence, h ∈ Hd.
Next, suppose h ∈ Hd, and so Bh ∈ HBd. Then ‖Bh‖ ≤ ‖Bd‖, and therefore

htQ−1h = ht
(‖Bd‖2(BtB)−1

)−1
h =

‖Bh‖2
‖Bd‖2 ≤ 1,

i.e., h ∈ EQ.
Lemma 29. Let Q ∈ Sm×m

++ be such that EQ is an α-rounding of the set Td of
(18). Let B = Q− 1

2 . Then B is a preconditioner for the system (FPd) such that

C(Bd) ≤ µA
αδ
≤ 2µA

ατ
.

Proof. We establish the result by providing bounds on the distance to infeasibility
ρ(Bd) and the size of the data ‖Bd‖ of the system (FPBd). First, we will show that
ρ(Bd) ≥ α. Let v ∈ Y satisfy ‖v‖ ≤ α. Then

(B−1v)tQ−1B−1v = (B−1v)t(B ·B)(B−1v) = ‖v‖2 ≤ α2,

and therefore B−1v ∈ αEQ ⊆ Td ⊆ Hd. Thus, v ∈ HBd, and so ρ(Bd) ≥ α.
Next, recall from Corollary 5 that ‖Bd‖ ≤ 1

δ max{‖v‖ : v ∈ HBd}. Let v ∈ HBd.
Then y = B−1v ∈ Hd, and 1

µA
y ∈ −Hd ∩ Hd = Td ⊆ EQ. Hence ‖v‖2 = ytBtBy =

ytQ−1y ≤ µ2
A, whereby ‖Bd‖ ≤ µA

δ .

Combining the obtained results, C(Bd) = ‖Bd‖
ρ(Bd) ≤ µA

δα ≤ 2µA
τα .
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MEASURES OF CONDITIONING AND PRECONDITIONERS 645

Theorem 30. Suppose that (FPd) is feasible and C(d) < +∞. Then there exists
a preconditioner B̄ such that

µA ≤ C(B̄d) ≤
√
m

δ
· µA.(25)

Proof. By definition, Td is a bounded convex set symmetric about 0. Since
C(d) < ∞, Td has a nonempty interior. Therefore, there exists Q ∈ Sm×m

++ such that
EQ is a 1√

m
-rounding of Td. Applying Lemma 29 with α = 1√

m
, we obtain (25).

Remark 31. In general, the upper bound in (25) is tight for any m.
We verify this remark by example. Consider the system (FPd) with n = 2m,

CX = �2m
+ , ‖x‖ = ‖x‖1 (so that δ = 1), and the data d = (A, b) as follows:

b = 0 and A = [e1, −e1, . . . , em, −em] ,

where ei is the ith unit vector in �m. Then Hd = Td = conv{±ei, i = 1, . . . ,m},
and it can be easily verified that µA = 1, ρ(d) = 1√

m
, and ‖d‖ = 1, and therefore

C(d) =
√
m. Suppose B is an arbitrary preconditioner. Using Lemma 28, we can

construct a 1
C(Bd) -rounding of the set Td. However, it is impossible to construct an

α-rounding of the set conv{±ei, i = 1, . . . ,m} with α > 1√
m

; see, for example, [10].

Therefore, C(Bd) ≥ √m for any preconditioner B.

5.2. On the complexity of computing a good preconditioner. We present
an algorithm that computes a preconditioner B̃ for which

C(B̃d) ≤ 4mµA
δ

.(26)

Recall that in Lemma 29 it was shown that a tight rounding of the set Td gives
rise to a good preconditioner for the system (FPd). In Theorem 30 we relied on the
existence of a 1√

m
-rounding of the set Td to establish the existence of a preconditioner

B̄ such that µA ≤ C(B̄d) ≤
√
m
δ µA, i.e., C(B̄d) is within the factor of

√
m
δ of the

lower bound. In general, we are not able to efficiently compute a 1√
m

-rounding of

the set Td. (See [10] for commentary on the difficulty of computing an approximate
1√
m

-rounding of a set S that does not have an efficient half-space representation.)

However, the algorithm presented in this subsection will compute an ellipsoid which
is a 1

4m -rounding of Td (also called a weak Löwner–John ellipsoid for Td). In particular,

the algorithm of this subsection will compute a matrix Q̃ ∈ Sm×m
++ such that

1

4m
EQ̃ ⊆ Td ⊆ EQ̃,(27)

which can be used to obtain a preconditioner B̃ satisfying (26) via Lemma 29. We
denote this algorithm as Algorithm WLJ for “Weak Löwner–John.”

In order to be able to efficiently implement the algorithm described in this section,
we restrict the norm ‖x‖ for x ∈ X to the Euclidean norm ‖x‖ = ‖x‖2 (as well as
maintain the assumption that ‖y‖ = ‖y‖2 for y ∈ Y ). We further assume that the
interior of the cone C∗

X is the domain of a self-concordant barrier f∗(·) with complexity
parameter ϑ∗. The width of the cone C∗

X is denoted by τ∗. We assume that we know
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646 M. EPELMAN AND R. M. FREUND

and are given the vector u∗ ∈ C∗
X for which ‖u∗‖ = 1 and B(u∗, τ∗) ⊂ C∗

X as in (7).
Finally, we assume that an upper bound d̄ on ‖d‖ is known and given or is easily
computable. One could, for example, take

d̄ =
√
nmax{‖b‖2, ‖A1‖2, . . . , ‖Am‖2},

where Aj is the jth column of the matrix A. Then d̄ approximates ‖d‖ within the
factor of

√
n, i.e., 1√

n
d̄ ≤ ‖d‖ ≤ d̄.

The algorithm WLJ is a version of the parallel-cut ellipsoid algorithm; see [10].
A generic iteration of this algorithm can be described as follows. At the start of each
iteration, we have a matrix Q ∈ Sm×m

++ such that Td ⊆ EQ. We compute the eigenvalue
decomposition of the matrix Q. In particular, we compute the eigenvalues 0 < λ1 ≤
λ2 ≤ · · · ≤ λm of the matrix Q and their corresponding (orthonormal) eigenvectors
a1, . . . , am. Then the axes of the ellipsoid EQ are vi =

√
λiai, i = 1, . . . ,m. We

denote V
�
= [v1, . . . , vm] ∈ �m×m. It is elementary to verify that Q = V V t.

The algorithm then checks if the scaled axes ± 1
4
√
m
vi are elements of Td for

i = 1, . . . ,m. If so, the algorithm correctly asserts that

1

4m
EQ =

1√
m
· 1

4
√
m
EQ ⊂ conv

{
± 1

4
√
m
vi, i = 1, . . . ,m

}
⊆ Td ⊆ EQ,(28)

and the algorithm terminates. On the other hand, if the algorithm finds an axis
v = ±vj for some j for which 1

4
√
m
vj /∈ Td, then it finds a parallel cut separating the

two points ± 1
2
√
m
vj from the set Td, i.e., it produces a vector s such that

stvj = 1 for some vj , and Td ⊆
[
EQ ∩

{
y : − 1

2
√
m
≤ sty ≤ 1

2
√
m

}]
.(29)

This cut is then used to find an ellipsoid EQ̂ which satisfies

EQ̂ ⊃
[
EQ ∩

{
y : − 1

2
√
m
≤ sty ≤ 1

2
√
m

}]
⊇ Td,

and for which

vol(EQ̂)

vol(EQ)
≤ 1

2
e

3
8 .(30)

The formula for Q̂ is

Q̂ =
m

m− 1

(
1− 1

4mξ

)(
Q− m(4ξ − 1)

4mξ − 1
· Qss

tQ

ξ

)
,(31)

where

ξ = stQs = ‖V ts‖2 ≥ stvj = 1;(32)

see formula (3.1.20) of [10], for example.
In order to implement this algorithm, it is necessary to be able to check whether

the rescaled axes ± 1
4
√
m
vi are elements of Td, for i = 1, . . . ,m, and if not, it is then

necessary to produce the vector s describing the parallel cut of (29). These two tasks
are accomplished in a subroutine called Weak Check, which is outlined as follows, and
for which a more complete description is furnished in the appendix.
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MEASURES OF CONDITIONING AND PRECONDITIONERS 647

Subroutine Weak Check.
Given the axes v1, . . . , vm of an ellipsoid EQ ⊇ Td, either

(i) verify that ± 1
4
√
m
vi ∈ Td for all i = 1, . . . ,m, or

(ii) find a vector s such that

stvj = 1 for some vj , and Td ⊆
[
EQ ∩

{
y : − 1

2
√
m
≤ sty ≤ 1

2
√
m

}]
.(33)

The formal description of algorithm WLJ is as follows.
Algorithm WLJ (Weak Löwner–John).
• Initialization: The algorithm is initialized with the matrix Q0 = d̄2I.
• Iteration k ≥ 1.
Step 1 Let Q = Qk. Compute the eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λm of

Q and the corresponding (orthonormal) eigenvectors a1, . . . , am. Define
the axes of EQ by vi =

√
λiai, i = 1, . . . ,m.

Step 2 Call subroutine Weak Check with the input (v1, . . . , vm). If the sub-

routine verifies that ± 1
4
√
m
vi ∈ Td, i = 1, . . . ,m, then return B̃ = Q− 1

2

and terminate. Otherwise, subroutine Weak Check returns a vector s.
Define Q̂ by (31).

Step 3 Let Qk+1 = Q̂, k ← k + 1; go to Step 1.
To complete the description of Algorithm WLJ, one must specify the details of

subroutine Weak Check. The purpose of subroutine Weak Check is to verify whether
the rescaled axes ± 1

4
√
m
vi, i = 1, . . . ,m, are contained in Td, or to produce a parallel

cut otherwise. This is accomplished by examining the following 2m optimization
problems (Pφv ), where v = ±vi, i = 1, . . . ,m:

(Pφv ) φv = maxφ φ
s.t. φv ∈ Hd.(34)

It is easy to verify that ± 1
4
√
m
vi ∈ Td for all i = 1, . . . ,m precisely when

φQ
�
= min±vi

φv ≥ 1

4
√
m
.(35)

(Here min±vi φv stands for min{φv1 ,−φv1 , . . . , φvm ,−φvm} in order to shorten the
notation.) We will therefore implement subroutine Weak Check by means of ap-
proximately solving the 2m optimization problems (34) and checking whether con-
dition (35) is satisfied. To solve the optimization problems (34) for every value of
v = ±vi, i = 1, . . . ,m, we will apply the barrier method of [27] to a version of the
Lagrangian dual of (Pφv ). The formal description of this implementation is presented
in the appendix, where the following complexity bound is proved.

Lemma 32. Subroutine Weak Check will terminate in at most

O

(
m
√
ϑ∗ ln

(
mϑ∗

τ∗
· d̄√

λ1

·
√
λm
λ1

))
(36)

iterations of the barrier method. Upon termination, it will either correctly verify that
± 1

4
√
m
vi ∈ Td for all i = 1, . . . ,m, or will return a vector s such that

stvj = 1 for some vj, and Td ⊆
[
EQ ∩

{
y : − 1

2
√
m
≤ sty ≤ 1

2
√
m

}]
.(37)
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648 M. EPELMAN AND R. M. FREUND

Note that the skewness of the ellipsoid EQ, which is square root of the ratio of
the largest to the smallest eigenvalue of Q, comes to play in the complexity bound of
subroutine Weak Check.

We now proceed to analyze the complexity of Algorithm WLJ. We first prove the
volume reduction bound of (30) in Lemma 33. We then prove the main complexity
of Algorithm WLJ in Theorem 34.

Lemma 33. Let Q be an iterate of Algorithm WLJ, and let Q̂ be defined by (31).
Then

vol(EQ̂)

vol(EQ)
≤ 1

2
e

3
8 .

Proof. Let R ∈ �m×m be an orthonormal matrix such that RQ
1
2 s = ‖Q 1

2 s‖e1 =√
ξe1. Then Q̂ can be expressed as

Q̂ =
m

m− 1

(
1− 1

4mξ

)
Q

1
2Rt

(
I − m(4ξ − 1)

4mξ − 1
e1e

t
1

)
RQ

1
2 .(38)

Therefore,

det(Q̂) = det

(
m

m− 1

(
1− 1

4mξ

)
Q

1
2Rt

(
I − m(4ξ − 1)

4mξ − 1
e1e

t
1

)
RQ

1
2

)

=

(
m

m− 1

(
1− 1

4mξ

))m(
1− m(4ξ − 1)

4mξ − 1

)
det(Q).

We conclude that

det(Q̂)

det(Q)
=

(
m

m− 1

(
1− 1

4mξ

))m(
1− m(4ξ − 1)

4mξ − 1

)

=
mm(4mξ − 1)m−1

(m− 1)m−1(4mξ)m
=

1

4ξ

(
4mξ − 1

4mξ − 4ξ

)m−1

=
1

4ξ

(
1 +

4ξ − 1

4ξ(m− 1)

)m−1

≤ 1

4ξ
e1−

1
4ξ ≤ 1

4
e

3
4 .

The last inequality follows since the function te1−t is an increasing function for t ∈
[0, 1], and from (32) we have 0 < 1

4ξ ≤ 1
4 . Finally,

vol(EQ̂)

vol(EQ)
=

√
det(Q̂)√
det(Q)

≤ 1

2
e

3
8 .

Theorem 34. Suppose C(d) < ∞. Then Algorithm WLJ will terminate in at
most

O

(
m2
√
ϑ∗ ln2

(
d̄

ρ(d)

)
ln

(
mϑ∗

τ∗

))
(39)

iterations of the barrier method. It will return upon termination a preconditioner B̃
such that

µA ≤ C(B̃d) ≤ 4mµA
δ

.
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MEASURES OF CONDITIONING AND PRECONDITIONERS 649

Proof. First observe that the matrix Q0 = d̄2I used to initialize the algorithm is
a valid iterate, since for any point y ∈ Td, ‖y‖ ≤ ‖d‖ ≤ d̄, and so Td ⊆ EQ0 .

Suppose Algorithm WLJ has performed k iterations, and let Qk be the current
iterate. Since Td ⊆ EQk , we conclude that

vol(Td) ≤ vol(EQk) ≤
(

1

2
e

3
8

)k
vol(EQ0) =

(
1

2
e

3
8

)k
d̄m vol(B(0, 1)).

On the other hand, since B(0, ρ(d)) ⊆ Td, we have vol(Td) ≥ vol(B(0, ρ(d)) =

ρ(d)m vol(B(0, 1)). Therefore, ρ(d)m vol(B(0, 1)) ≤ d̄m( 1
2e

3
8 )k vol(B(0, 1)), and Al-

gorithm WLJ will perform at most

K ≤ m ln

(
d̄

ρ(d)

)
· 1

ln 2− .375
≤ 10

3
m ln

(
d̄

ρ(d)

)
(40)

iterations.
To bound the skewness of the ellipsoids generated by Algorithm WLJ, note that

all such ellipsoids contain the set Td and therefore contain B(0, ρ(d)). This implies
that for any ellipsoid encountered by the algorithm, λ1 ≥ ρ(d)2.

We now estimate the change in the largest eigenvalue of the ellipsoid matrix Qk

from one iteration of the algorithm to the next. Suppose Q and Q̂ are two consecutive
iterates of the algorithm. Then from (38) we conclude that

λ̂m = ‖Q̂‖ ≤ ‖Q‖ m

m− 1

(
1− 1

4mξ

)
= λm

m

m− 1

(
1− 1

4mξ

)
≤ λm

m

m− 1
≤ λme

1
m−1 .

Hence, at any iteration k,

λkm ≤ λ0
me

k
m−1 = d̄2e

k
m−1 ≤

(
d̄

ρ(d)

) 10m
3(m−1)

d̄2,

the last inequality following from (40). Therefore, throughout the algorithm, the
skewness of all ellipsoids generated by the algorithm is bounded above by

√
λm
λ1
≤
√(

d̄

ρ(d)

) 10m
3(m−1)

+2

≤
(

d̄

ρ(d)

)5

.(41)

Using (41) we conclude from Lemma 32 that any call to subroutine Weak Check

will perform at most O(m
√
ϑ∗ ln(mϑ

∗
τ∗ · d̄

ρ(d) )) iterations of the barrier method. Com-

bining this with (40), we can bound the total number of iterations of the barrier
method performed by Algorithm WLJ by

O

(
m2
√
ϑ∗ ln2

(
d̄

ρ(d)

)
ln

(
mϑ∗

τ∗

))
.

Finally, the inequalities µA ≤ C(B̃d) ≤ 4mµA
δ follow from Theorem 18, (28), and

Lemma 29.
Remark 35. Note that the skewness of the ellipsoids does not necessarily degrade

at every iteration. In fact, the last ellipsoid of the algorithm has the nice property that√
λm

λ1
≤ 4
√
mC(d).
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650 M. EPELMAN AND R. M. FREUND

To see why this remark is true, notice that the axes of any ellipsoid of the algo-
rithm will satisfy ‖vi‖ ≥ ρ(d) for all i, and so

√
λ1 ≥ ρ(d). Also, the last ellipsoid

of the algorithm satisfies 1
4
√
m
vi ∈ Td ⊂ B(0, ‖d‖) for all i, and so ‖vi‖ ≤ 4

√
m‖d‖,

whereby
√
λm ≤

√
m‖d‖.

To further interpret the complexity result of Theorem 34, suppose for simplicity
that d̄ = ‖d‖, i.e., the size of the data ‖d‖ is known. Then Algorithm WLJ will
perform at most

O

(
m2
√
ϑ∗ ln2 (C(d)) ln

(
mϑ∗

τ∗

))

iterations. We see that the condition number C(d) of the initial data instance d plays
a crucial role in the complexity of Algorithm WLJ, which aims to find an equivalent
data instance whose condition number is within a given factor of the best possible.
In particular, if the original data instance d is badly conditioned, i.e., C(d) is large,
it might take a large number of iterations to find a “good” preconditioner as above.
Another interesting observation is that the complexity of Algorithm WLJ depends on
C(d) rather then µA. This result, which may seem counterintuitive at first, is actually
explained by the fact that in order to obtain a preconditioner, Algorithm WLJ has to
work with the set Td, rather then Hd, which is symmetric about 0 regardless of the
geometry of Hd.

6. Conclusions. In this paper we have addressed several issues related to mea-
sures of conditioning for convex feasibility problems. We have discussed some potential
drawbacks of using the condition number C(d) as the sole measure of conditioning of
a conic linear system, motivating the study of data-independent measures. We have
introduced the symmetry measure µA for feasible conic linear systems as one such
data-independent measure, and we have studied many of its implications for problem
geometry, conditioning, and algorithm complexity.

One research topic that is not addressed in this paper concerns the existence of
data-independent measures of conditioning for (FPd) that are useful when (FPd) is
infeasible and/or whether any such measures can be adapted to analyze the linear
optimization version of (FPd). Such measures might or might not be an extension of
the symmetry measure discussed in this paper.

Another potential topic of research stems from the importance of the inherent
conditioning of the problem data for certain properties of (FPd) such as sensitivity
to data perturbations and numerical precision required for accurate computation in
algorithms. The complexity bound for computing the good preconditioner in Al-
gorithm WLJ is only reassuring in theory, as it would be unthinkable to use this
algorithm in practice. Instead, much as in the case for linear optimization, it would
be interesting to explore heuristic methods for preconditioning (FPd). The notion
of a heuristic preconditioning/preprocessing stage in an algorithm is well-established;
most optimization software packages include some type of preprocessing options, such
as variable and constraint elimination or data scaling, for improving condition num-
bers and other numerical measures in matrix computations. We hope that the results
in this paper may inspire future research on the analysis of heuristic preconditioning
techniques for solving linear and conic optimization problems.

Appendix. Implementation of subroutine Weak Check. In this appendix
we present an implementation of the subroutine Weak Check. Recall that each iter-
ation of Algorithm WLJ calls the subroutine Weak Check with input being the axes
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MEASURES OF CONDITIONING AND PRECONDITIONERS 651

v1, . . . , vm of an ellipsoid EQ ⊇ Td. The purpose of Weak Check is to verify whether
the rescaled axes ± 1

4
√
m
vi are elements of Td, for i = 1, . . . ,m, and if not, to produce

a parallel cut vector s satisfying (33).
Consider the following 2m optimization problems (Pφv

), where v = ±vi, i =
1, . . . ,m:

(Pφv
) φv = maxφ φ = maxθ,x,φ φ

s.t. φv ∈ Hd s.t. bθ −Ax = vφ,
|θ|+ ‖x‖ ≤ 1,
θ ≥ 0, x ∈ CX .

(42)

It is easy to verify that ± 1
4
√
m
vi ∈ Td for all i = 1, . . . ,m precisely when

φQ
�
= min±vi

φv ≥ 1

4
√
m
.(43)

(Here min±vi φv stands for min{φv1 ,−φv1 , . . . , φvm ,−φvm}.) We will therefore im-
plement the subroutine Weak Check by means of approximately solving the 2m opti-
mization problems (42) and checking whether condition (43) is satisfied.

The approach we use to solve the optimization problems (42) in the subroutine
Weak Check relies on the barrier method described in section 3. Since no obvious
starting point is available for (42), we solve (42) for all 2m values of v = ±vi, i =
1, . . . ,m, by considering its dual:

(Pγv ) γv = mins,q,γ γ
s.t. ‖Ats− q‖ ≤ γ,

bts ≤ γ,
q ∈ C∗

X ,
vts = 1.

(44)

It is straightforward to verify that strong duality holds for (Pφv
) and (Pγv ), and so

φQ = min±vi
φv = min±vi

γv.

In order to be able to apply the barrier method, we need the optimization problem
at hand to have a bounded feasible region. To satisfy this condition, we consider the
following modification of (44):

(Pγ̃v ) γ̃v = mins,q,γ γ
s.t. ‖Ats− q‖ ≤ γ,

bts ≤ γ,
‖V ts‖ ≤ 2

√
m,

γ ≤ 7
√
md̄√
λ1

,

q ∈ C∗
X ,

vts = 1,

(45)

where d̄ is the known upper bound on the norm of the data ‖d‖, and V = [v1, . . . , vm] ∈
�m×m. The following two simple facts are useful in the derivation of the forthcoming
results. First, for all i = 1, . . . ,m, we have

√
λ1 ≤ ‖vi‖ ≤

√
λm. Second, for any

vector s ∈ Y ∗, ‖s‖ ≤ ‖V ts‖√
λ1

. In the next proposition we show that solving (Pγ̃v )

instead of (Pγv ) still yields a valid estimate of φQ.
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652 M. EPELMAN AND R. M. FREUND

Proposition 36. For any v, γv ≤ γ̃v. Moreover,

φQ = min±vi
γv = min±vi

γ̃v.(46)

Proof. The first claim of the proposition is trivially true, since the feasible region
of the program (Pγ̃v ) is contained in the feasible region of the program (Pγv ).

To establish the second claim, note that

φQ = min±vi
γ±vi ≤ min±vi

γ̃±vi .

Suppose the minimum on the left is attained for v = vi0 , and let (s̄, q̄, γv) be an
optimal solution of the corresponding program (Pγv ). Then we have

γv = max{‖Ats̄− q̄‖, bts̄}, q̄ ∈ C∗
X , vts̄ = 1.

We can further assume without loss of generality that ‖Ats̄ − q̄‖ ≤ ‖Ats̄‖, since q̄
can always be chosen to minimize the distance from Ats̄ to the cone C∗

X . If the
point (s̄, q̄, γv) is feasible for the corresponding program (Pγ̃v ), then γv = γ̃v and (46)
follows. Otherwise, let σ = maxi |vti s̄| ≥ 1. We can assume without loss of generality
that σ = vtj s̄ for some j. (If vtj s̄ < 0, we can redefine the jth axis of EQ to be −vj .)
Define (s̃, q̃, γ̃) = ( 1

σ s̄,
1
σ q̄,

1
σγv). Note that vtj s̃ = 1, q̃ ∈ C∗

X , and

‖V ts̃‖ =

√√√√ m∑
i=1

(vti s̃)
2 ≤ √m ≤ 2

√
m.

It remains to check whether the upper bound constraint on γ̃ is satisfied. Observe

that ‖s̃‖ ≤
√
m√
λ1

(since ‖V ts̃‖ ≤ √m). Therefore

γ̃ = max{‖Ats̃− q̃‖, bts̃} ≤ max{‖Ats̃‖, bts̃} ≤ d̄ ·
√
m√
λ1

<
7
√
md̄√
λ1

.

Hence the vector (s̃, q̃, γ̃) is feasible for (Pγ̃vj ), and γ̃vj ≤ γ̃ ≤ γv ≤ γvj ≤ γ̃vj , which

implies that γ̃vj = γv, from which (46) follows.
Now define

S
�
=

{
(s, q, γ) : ‖Ats− q‖ ≤ γ, bts ≤ γ, ‖V ts‖ ≤ 2

√
m, γ ≤ 7

√
md̄√
λ1

, q ∈ C∗
X

}

and

Lv
�
= {(s, q, γ) : vts = 1}.

Then Lv is a translate of an affine space, and S is a bounded convex set. Recall from
the assumptions in section 5.2 that f∗(·) is a self-concordant barrier for the cone C∗

X

with complexity parameter ϑ∗. Then the interior of the set S is the domain of the
following self-concordant barrier f(s, q, γ):

f(s, q, γ)
�
= f∗(q)−ln(γ2−‖Ats−q‖2)−ln(γ−bts)−ln(4m−‖V ts‖2)−ln

(
7
√
md̄√
λ1

− γ

)
,

whose complexity parameter is ϑf ≤ ϑ∗ + 5.
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MEASURES OF CONDITIONING AND PRECONDITIONERS 653

In order to use the barrier method to solve (Pγ̃v ), we need to have a point
(s′, q′, γ′) ∈ intS ∩ Lv at which to initialize the method. The next proposition indi-
cates that such point is readily available when the vector u∗ ∈ C∗

X of (7) is known;
the second part of the proposition presents a lower bound on sym(S ∩Lv, (s′, q′, γ′)),
which is important in analyzing the complexity of the barrier method.

Proposition 37.

(s′, q′, γ′)
�
=

(
v

‖v‖2 ,
2d̄u∗
‖v‖ ,

4
√
md̄√
λ1

)
∈ intS ∩ Lv,

and

sym(S ∩ Lv, (s′, q′, γ′)) ≥ τ∗

13
√
m
·
√

λ1

λm
.

Proof. The first claim of the proposition is easily established by verifying directly
that (s′, q′, γ′) strictly satisfies the constraints of (45). The derivation of the bound
on the symmetry in the second claim is fairly long and tedious, and is omitted. We
refer the interested reader to [3] for details.

We now present the formal statement of the implementation of the subroutine
Weak Check.

Subroutine Weak Check.
• Input: Axes vi, i = 1, . . . ,m, of an ellipsoid EQ ⊇ Td.
• for v = ±vi, i = 1, . . . ,m,
Step 1 Form the problem (Pγ̃v ).
Step 2 Run the barrier method on the problem (Pγ̃v ) initialized at the point

(s′, q′, γ′) =

(
v

‖v‖2 ,
2d̄u∗
‖v‖ ,

4
√
md̄√
λ1

)

until the value of the barrier parameter η first exceeds η̄ =
24

√
mϑf

5 . Let
(s, q, γ) be the last iterate of the barrier method.

Step 3 If γ < 1
2
√
m

, terminate and return s. Otherwise, continue with the

next value of v.
• Assert that 1

4
√
m
vi ∈ Td for all i = 1, . . . ,m.

Proof of Lemma 32. Subroutine Weak Check will apply the barrier method to at
most 2m problems of the form (Pγ̃v ). Note that

min
(s,q,γ)∈S∩Lv

γ ≥ 0 and max
(s,q,γ)∈S∩Lv

γ ≤ 7
√
md̄√
λ1

.

Therefore, applying (15) and Proposition 37, we see that each of the (at most) 2m
applications of the barrier method will terminate in at most

O

(√
ϑf ln

(
7
√
md̄ϑf√
λ1

· η̄

sym(S ∩ Lv, (s′, q′, γ′))
))

≤ O

(√
ϑ∗ ln

(
7
√
md̄ϑ∗
√
λ1

· 24
√
mϑ∗

5
· 13
√
m

τ∗
·
√
λm
λ1

))

= O

(√
ϑ∗ ln

(
mϑ∗

τ∗
· d̄√

λ1

·
√
λm
λ1

))

iterations, giving (36).
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654 M. EPELMAN AND R. M. FREUND

Suppose subroutine Weak Check has terminated in Step 3 of an iteration in which
the barrier method is applied to the problem (Pγ̃vj ). (This is without loss of generality;

if the termination occurs during the iteration that applies the barrier method to the
problem (Pγ̃−vj

), we can redefine the jth axis of EQ to be −vj , to preserve the

notation.) Then the last iterate (s, q, γ) of the barrier method satisfies

‖Ats− q‖ ≤ γ < 1
2
√
m
,

bts ≤ γ < 1
2
√
m
,

‖V ts‖ ≤ 2
√
m,

q ∈ C∗
X , v

t
js = 1.

The vector s above yields a parallel cut that separates ± vj
2
√
m

from Td. To see why this

is true, let h ∈ Td. Then h ∈ Hd, and hence h = bθ − Ax for some (θ, x) ∈ �+ × CX
such that |θ|+ ‖x‖ ≤ 1. Therefore

sth = st(bθ −Ax) = θ(bts)− xt(Ats) = θ(bts)− xt(Ats− q)− xtq

≤ (|θ|+ ‖x‖)γ ≤ γ <
1

2
√
m

=
stvj
2
√
m
.

Applying the same argument for the point −h ∈ Hd, we conclude that sth > − stvj
2
√
m

,

and therefore the vector s returned by the subroutine Weak Check satisfies (37).
Next, suppose that the barrier method applied to (Pγ̃v ) has not terminated in

Step 3 of the subroutine Weak Check, i.e., we have γ ≥ 1
2
√
m

. Then, using (14),

γ̃v ≥ γ − 6ϑf
5η̄
≥ 1

2
√
m
− 6ϑf

5η̄
≥ 1

4
√
m
.

Therefore, if the subroutine Weak Check has not terminated in Step 3 for any v =
±vi, i = 1, . . . ,m, we conclude that φQ = min±vi γ̃v ≥ 1

4
√
m
, and we correctly assert

that ± 1
4
√
m
vi ∈ Td for all i = 1, . . . ,m.
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[30] L. Tunçel, Approximating the complexity measure of Vavasis-Ye algorithm is NP-hard, Math.
Program., 86 (1999), pp. 219–223.
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