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Abstract. We present bounds on various quantities of interest regarding the central trajectory
of a semidefinite program, where the bounds are functions of Renegar’s condition number C(d) and
other naturally occurring quantities such as the dimensions n and m. The condition number C(d)
is defined in terms of the data instance d = (A, b, C) for a semidefinite program; it is the inverse
of a relative measure of the distance of the data instance to the set of ill-posed data instances,
that is, data instances for which arbitrary perturbations would make the corresponding semidefinite
program either feasible or infeasible. We provide upper and lower bounds on the solutions along
the central trajectory, and upper bounds on changes in solutions and objective function values along
the central trajectory when the data instance is perturbed and/or when the path parameter defining
the central trajectory is changed. Based on these bounds, we prove that the solutions along the
central trajectory grow at most linearly and at a rate proportional to the inverse of the distance to
ill-posedness, and grow at least linearly and at a rate proportional to the inverse of C(d)2, as the
trajectory approaches an optimal solution to the semidefinite program. Furthermore, the change in
solutions and in objective function values along the central trajectory is at most linear in the size of
the changes in the data. All such bounds involve polynomial functions of C(d), the size of the data,
the distance to ill-posedness of the data, and the dimensions n and m of the semidefinite program.
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1. Introduction. We study various properties of the central trajectory of a
semidefinite program P (d) : min{C • X : AX = b,X � 0}. Here X and C are
symmetric matrices; C • X denotes the trace inner product; A is a linear operator
that maps symmetric matrices into �m; b ∈ �m; X � 0 denotes that X is a symmetric
positive semidefinite matrix; and the data for P (d) is the array d = (A, b, C). The
central trajectory of P (d) is the solution to the logarithmic barrier problem Pµ(d) :
min{C • X − µ ln det(X) : AX = b,X � 0} as the trajectory parameter µ ranges
over the interval (0,∞). Semidefinite programming (SDP) has been the focus of an
enormous amount of research in the past decade and has proven to be a unifying model
for many convex programming problems amenable to efficient solution by interior-
point methods; see [1, 14, 27], and [2], among others. Our primary concern lies in
bounding a variety of measures of the behavior of the central trajectory of P (d) in
terms of the condition number C(d) for P (d) originally developed by Renegar.

By the condition number C(d) of the data d = (A, b, C), we mean a scale-invariant
positive measure depending on a given feasible data instance d = (A, b, C) and
with the following property: the condition number approaches infinity as the data
approaches the set of data instances for which the problem P (d), or its dual,
becomes infeasible. In particular, we say that a data instance is ill-posed whenever its
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CONDITION-MEASURE ON SEMIDEFINITE TRAJECTORY 819

corresponding condition number is unbounded, that is, whenever the data instance is
on the boundary of the set of primal-dual feasible data instances. This notion of con-
ditioning (formally presented in subsection 2.3) was originally developed by Renegar
in [17] within a more general convex programming context and has proven to be a
key concept in the understanding of the continuous complexity of convex optimization
methods (see, for instance, [4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 28, 29] among others). In
this paper, we show the relevance of using this measure of conditioning in the analysis
of the central trajectory of a semidefinite program of the form P (d).

More specifically, in section 3 we present a variety of results that bound certain
behavioral measures of the central trajectory of P (d) in terms of the condition number
C(d). In Theorem 3.1, we present upper bounds on the norms of solutions along the
central trajectory. These bounds show that the solutions along the central trajectory
grow at most linearly in the trajectory parameter µ and at a rate proportional to
the inverse of the distance to ill-posedness of d. In Theorem 3.2, we present lower
bounds on the values of the eigenvalues of solutions along the central trajectory.
These bounds show that the eigenvalues of solutions along the central trajectory grow
at least linearly in the trajectory parameter µ and at a rate proportional to C(d)−2.

In Theorem 3.3, we present bounds on changes in solutions along the central tra-
jectory under simultaneous changes (perturbations) in the data d as well as changes
in the trajectory parameter µ. These bounds are linear in the size of the data per-
turbation, quadratic in the inverse of the trajectory parameter, and are polynomial
functions of the condition number and the dimensions m and n. Finally, in Theo-
rem 3.4 we present similar bounds on the change in the optimal objective function
values of the barrier problem along the central trajectory, under data and trajec-
tory parameter perturbations. These bounds also are linear in the size of the data
perturbation and in the size of the change in the trajectory parameter.

The use of continuous complexity theory in convex optimization, especially the
theory developed by Renegar in [17, 18, 19, 20], has added significant insight into
what makes certain convex optimization problems better or worse behaved (in terms
of the deformation of problem characteristics under data perturbations) and conse-
quently what makes certain convex optimization problems easier or harder to solve.
We believe that the results presented in this paper contribute to this understand-
ing by providing behavioral bounds on relevant aspects of the central trajectory of a
semidefinite program.

The main results presented in this paper can be viewed as extensions of related
results for the linear programming (LP) case presented in [15]. While some of the
extensions contained herein are rather straightforward generalizations of analogous
results for the LP case, other extensions have proven to be mathematically challenging
to us and have necessitated (in their proofs) the development of further properties
of matrices arising in the analysis of SDP; see Propositions 5.1 and 5.3, for example.
One reason why we have found the extension from LP to SDP to be mathematically
challenging has to do with the linear algebra of certain linear operators that arise in the
study of the central trajectory. In the case of LP, we haveXX̄ = X̄X wheneverX and
X̄ are diagonal matrices. Matrix products like this appear when dealing with solutions
x and x̄ on the central trajectory of a data instance and its perturbation, respectively,
thus streamlining the proofs of results in the LP case. When dealing with analogous
solutions in the case of SDP, we no longer have the same commutative property of the
matrix product, and so it is necessary to develop more complicated linear operators
in the analysis of the central trajectory. Another difficulty in the extension from the

D
ow

nl
oa

de
d 

10
/1

1/
16

 to
 1

8.
11

1.
10

4.
46

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



820 MANUEL A. NUNEZ AND ROBERT M. FREUND

LP case to the SDP case is the lack of closedness of certain projections of the cone of
positive semidefinite symmetric matrices. This lack of closedness prevents the use of
“nice” LP properties such as strict complementarity of solutions.

Literature review. The study of perturbation theory and continuous complex-
ity for convex programs in terms of the distance to ill-posedness and condition number
of a given data instance was introduced in [17] by Renegar, who studied perturbations
in a very general setting of the problem (RLP ) : sup{c∗x : Ax ≤ b, x ≥ 0, x ∈ X},
where X and Y denote real normed vector spaces, A : X → Y is a continuous linear
operator, c∗ : X → � is a continuous linear functional, and the inequalities Ax ≤ b
and x ≥ 0 are induced by any closed convex cones (linear or nonlinear) containing
the origin in X and Y, respectively. Previous to the paper of Renegar, many papers
were written on perturbations of linear programs and systems of linear inequalities,
but not in terms of the distance to ill-posedness (see, for instance, [12, 22, 23, 24, 25]).

Even though there is now a vast literature on SDP, there are only a few papers
that study SDP in terms of some notion of a condition measure. Renegar [17] presents
a bound on solutions to RLP , a bound on the change in optimal solutions when
only the right-hand side vector b is perturbed, and a bound on changes in optimal
objective function values when the whole data instance is perturbed. All of these
bounds depend on the distance to ill-posedness of the given data instance. Because of
their generality, these results also apply to the SDP case studied in this paper. Later,
in [19] and [20] Renegar presented upper and lower bounds on the inverse of the
Hessian matrix resulting from the application of Newton’s method to the optimality
conditions of RLP along the central trajectory. Again, these bounds depend on the
distance to ill-posedness of the data instance, and they apply to the SDP case. These
bounds are important because they can be used to study the continuous complexity of
interior-point methods for solving semidefinite programs (see [19]) as well as the use
of the conjugate gradient method in the solution of semidefinite programs (see [20]).

Nayakkankuppam and Overton in [13] study the conditioning of SDP in terms
of a condition measure that depends on the inverse of a certain Jacobian matrix.
This Jacobian matrix arises when applying Newton’s method to find a root of a
semidefinite system of equations equivalent to the system of equations that arise from
the Karush–Kuhn–Tucker optimality conditions for P (d). In particular, under the
assumption that both P (d) and its dual have unique optimal solutions, they present
a bound on the change in the optimal solution to P (d) and P (d +∆d), where ∆d is
a data perturbation, in terms of their condition number. This bound is linear in the
norm of ∆d. Their analysis pertains to the study of the optimal solution of P (d), but
is not readily applicable to the central trajectory of a semidefinite program.

Sturm and Zhang [26] study the sensitivity of the central trajectory of a semi-
definite program in terms of changes in the right-hand side of the constraints
AX = b in P (d). Given a data instance d = (A, b, C) of a semidefinite program,
they consider data perturbations of the form d + ∆d = (A, b + ∆b, C). Using this
kind of perturbation, and under a primal and dual Slater condition as well as a
strict complementarity condition, they show several properties of the derivatives of
central trajectory solutions with respect to the right-hand side vector. The results
presented herein differ from these results in that we use data perturbations of the form
d+∆d = (A+∆A, b+∆b, C+∆C), and we express our results in terms of the distance
to ill-posedness of the data. As a result, our results are not as strong in terms of the
size of bounds, but our results are more general, as they do not rely on any particular
assumptions.
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CONDITION-MEASURE ON SEMIDEFINITE TRAJECTORY 821

2. Notation, definitions, and preliminaries.

2.1. Space of symmetric matrices. Given two matrices U and V in �n×n,
we define the inner product of U and V as U • V := trace(UTV ), where trace(W ) :=∑n

j=1 Wjj for all W ∈ �n×n. Given a matrix U ∈ �n×n, we denote by σ(U) =

(σ1, . . . , σn)
T the vector in �n whose components are the ordered singular values of

U ; that is, each σj is a singular value of U , and 0 ≤ σ1 ≤ · · · ≤ σn. Furthermore, we
denote by σj(U) the jth singular value of U chosen according to the increasing order
in σ(U). In particular, σ1(U) and σn(U) are the smallest and the largest singular
values of U , respectively. We use the following norms in the space �n×n:

‖U‖1 :=

n∑
j=1

σj(U),(1)

‖U‖2 :=


 n∑

j=1

σj(U)
2




1/2

= (U • U)1/2 ,(2)

‖U‖∞ := max
1≤j≤n

σj(U) = σn(U)(3)

for all matrices U ∈ �n×n. The norm (1) is known as the Ky Fan n-norm or trace
norm (see [3]); the norm (2) is known as the Hilbert–Schmidt norm or Frobenius norm
and is induced by the inner product • defined above; (3) is the operator norm induced
by the Euclidean norm on �n. Notice that all these norms are unitarily invariant in
that ‖U‖ = ‖PUQ‖ for all unitary matrices P and Q in �n×n. We also have the
following proposition that summarizes a few properties of these norms.
Proposition 2.1. For all U, V ∈ �n×n we have
(i) Hölder’s inequalities (see [3])

|U • V | ≤ ‖U‖∞‖V ‖1,(4)

|U • V | ≤ ‖U‖2‖V ‖2.(5)

(ii) ‖UV ‖2 ≤ ‖U‖2‖V ‖2.
(iii) ‖U‖∞ ≤ ‖U‖2 ≤ √

n‖U‖∞.
(iv) 1√

n
‖U‖1 ≤ ‖U‖2 ≤ ‖U‖1.

From now on, whenever we use a Euclidean norm over any space, we will omit
subscripts. Hence, ‖U‖ := ‖U‖2 for all U in �n×n.

Let Sn denote the subspace of �n×n consisting of symmetric matrices. Given a
matrix U ∈ Sn, let U � 0 denote that U is a positive semidefinite matrix, and let
U � 0 denote that U is a positive definite matrix. We denote by S+

n the set of positive
semidefinite matrices in Sn, that is, S+

n = {U ∈ Sn : U � 0}. Observe that S+
n is a

closed convex pointed cone in Sn with nonempty interior given by {U ∈ Sn : U � 0}.
Furthermore, notice that the polar (S+

n )
∗ of the cone S+

n is the cone S+
n itself. When

U ∈ Sn, we denote by λ(U) := (λ1, . . . , λn)
T the vector in �n whose components are

the real eigenvalues of U ordered as 0 ≤ |λ1| ≤ · · · ≤ |λn|. Moreover, we denote by
λj(U) the jth eigenvalue of U chosen according to the order in λ(U). In particular,
notice that σj(U) = |λj(U)| whenever U ∈ Sn.

Given matrices A1, . . . , Am ∈ Sn, we define the linear operator A = (A1, . . . , Am)
from Sn to �m as follows:

AX := (A1 •X, . . . , Am •X)T(6)
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822 MANUEL A. NUNEZ AND ROBERT M. FREUND

for all X ∈ Sn. We denote by Lm,n the space of linear operators from Sn to �m of
the form (6). Given a linear operator A = (A1, . . . , Am) ∈ Lm,n, we define the rank
of A as the dimension of the subspace generated by the matrices A1, . . . , Am, that
is, rank(A) := dim (〈A1, . . . , Am〉). We say that A has full-rank whenever rank(A) =
min{m,n(n − 1)/2}. Throughout the remainder of this paper we will assume that
m ≤ n(n−1)/2, so that A has full-rank if and only if rank(A) = m. The corresponding
adjoint transformation AT : �m �→ Sn, associated with A, is given by

AT [y] =

m∑
i=1

yiAi

for all y ∈ �m. Furthermore, we endow the space Lm,n with the operator norm
‖A‖ := max{‖AX‖ : X ∈ Sn, ‖X‖ ≤ 1} for all operators A ∈ Lm,n. Finally, if we
define the norm of the adjoint operator as ‖AT ‖ := max{‖AT [y]‖ : y ∈ �m, ‖y‖ ≤ 1},
then it follows that ‖AT ‖ = ‖A‖.

2.2. Data instance space. Consider the vector space D defined as D := {d =
(A, b, C) : A ∈ Lm,n, b ∈ �m, C ∈ Sn}. We regard D as the space of data instances
associated with the following pair of dual semidefinite programs:

P (d) : min {C •X : AX = b,X � 0} ,
D(d) : max

{
bT y : AT [y] + S = C, S � 0

}
,

where d = (A, b, C) ∈ D. To study the central trajectory of a data instance in D, we
use the functional p(·) defined as p(U) = − ln detU for all U � 0. Notice that, as
proven in [14], p(·) is a strictly convex n-normal barrier for the cone S+

n . Given a data
instance d = (A, b, C) ∈ D and a fixed scalar µ > 0, we study the following parametric
family of dual logarithmic barrier problems associated with P (d) and D(d):

Pµ(d) : min {C •X + µp(X) : AX = b,X � 0} ,
Dµ(d) : max

{
bT y − µp(S) : AT [y] + S = C, S � 0

}
.

Let X(µ) and (y(µ), S(µ)) denote the optimal solutions of Pµ(d) and Dµ(d), respec-
tively (when they exist). Then the primal central trajectory is the set {X(µ) : µ > 0}
and is a smooth mapping from (0,∞) to S+

n [10, 27]. Similarly, the dual central
trajectory is the set {(y(µ), S(µ)) : µ > 0} and is a smooth mapping from (0,∞) to
�m × S+

n .
We provide the data instance space D with the norm

‖d‖ := max {‖A‖, ‖b‖, ‖C‖}(7)

for all data instances d = (A, b, C) ∈ D. Using this norm, we denote by B(d, δ) the
open ball {d+∆d ∈ D : ‖∆d‖ < δ} in D centered at d and with radius δ > 0 for all
d ∈ D.

2.3. Distance to ill-posedness. We are interested in studying data instances
for which both programs P (·) and D(·) are feasible. Consequently, consider the fol-
lowing subset of the data set D:

F :=
{
(A, b, C) ∈ D : b ∈ A(S+

n ) and C ∈ AT [�m] + S+
n

}
,

that is, the elements in F correspond to those data instances d in D for which P (d)
and D(d) are feasible. The complement of F , denoted by FC , is the set of data
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CONDITION-MEASURE ON SEMIDEFINITE TRAJECTORY 823

instances d = (A, b, C) for which P (d) or D(d) is infeasible. The boundary of F ,
denoted by ∂F , is called the set of ill-posed data instances. This is because arbitrarily
small changes in a data instance d ∈ ∂F can yield data instances in F as well as data
instances in FC .

For a data instance d ∈ D, the distance to ill-posedness is defined as

ρ(d) := inf{‖∆d‖ : d+∆d ∈ ∂F}

(see [17, 21, 18]), and so ρ(d) is the distance of the data instance d to the set of
ill-posed instances ∂F . The condition number C(d) of the data instance d is defined
as

C(d) :=
{

‖d‖
ρ(d) if ρ(d) > 0,

∞ if ρ(d) = 0.

The condition number C(d) can be viewed as a scale-invariant reciprocal of ρ(d), as it
is elementary to demonstrate that C(d) = C(αd) for any positive scalar α. Moreover,
for d = (A, b, C) /∈ ∂F , let ∆d = (−A,−b,−C). Observe that d+∆d = (0, 0, 0) ∈ ∂F
and, since ∂F is a closed set, we have ‖d‖ = ‖∆d‖ ≥ ρ(d) > 0 so that C(d) ≥ 1. The
value of C(d) is a measure of the relative conditioning of the data instance d.

As proven in [24], the interior of F , denoted Int(F), is characterized as follows:

(8)

Int(F) = {(A, b, C) ∈ D : b ∈ A(Int(S+
n )), C ∈ AT [�m] + Int(S+

n ), A has full-rank
}
.

In particular, notice that data instances in Int(F) correspond to data instances for
which both Pµ(·) and Dµ(·) are feasible (for any µ > 0). Also, observe that d =
(A, b, C) ∈ F and ρ(d) > 0 if and only if d ∈ Int(F), and so, if and only if the
characterization given in (8) holds for d. We will use this characterization of the
interior of F throughout the remainder of this paper.

We will also make use of the following elementary sufficient certificates of infea-
sibilty.
Proposition 2.2. Let d = (A, b, C) ∈ D.
1. If there exists y ∈ �m satisfying AT [y] ≺ 0 and bT y ≥ 0, then Pµ(d) is

infeasible.
2. If there exists X ∈ Sn satisfying AX = 0, X � 0, and C •X ≤ 0, then Dµ(d)

is infeasible.

3. Statement of main results. For a given data instance d ∈ Int(F) and a
scalar µ > 0, we denote by X(d, µ) the unique optimal solution to Pµ(d) and by
(y(d, µ), S(d, µ)) the unique optimal solution to Dµ(d). Furthermore, we use the
following function of d and µ as a condition measure for the programs Pµ(d) and
Dµ(d):

K(d, µ) := C(d)2 + µn

ρ(d)
.(9)

As with the condition number C(d), it is not difficult to show that K(d, µ) ≥ 1
and K(d, µ) is scale-invariant in the sense that K(λd, λµ) = K(d, µ) for all λ > 0.
The reason why we call K(d, µ) a condition measure will become apparent from the
theorems stated in this section.
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824 MANUEL A. NUNEZ AND ROBERT M. FREUND

Our first theorem concerns upper bounds on the optimal solutions to Pµ(d) and
Dµ(d), respectively. The bounds are given in terms of the condition measure K(d, µ)
and the size of the data ‖d‖. In particular, the theorem shows that the norm of the
optimal primal solution along the central trajectory grows at most linearly in the
barrier parameter µ and at a rate no larger than n/ρ(d). The proof of this theorem
is presented in section 4.
Theorem 3.1. Let d ∈ Int(F) and µ be a positive scalar. Then

‖X(d, µ)‖ ≤ K(d, µ),(10)

‖y(d, µ)‖ ≤ K(d, µ),(11)

‖S(d, µ)‖ ≤ 2‖d‖K(d, µ),(12)

where K(d, µ) is the condition measure defined in (9).
As the proof of Theorem 3.1 will show, there is a tighter bound on ‖X(d, µ)‖,

namely, ‖X(d, µ)‖ ≤ M(d, µ), where

M(d, µ) :=




C(d) if C •X(d, µ) ≤ 0,

max
{
C(d), µn

ρ(d)

}
if 0 < C •X(d, µ) ≤ µn,

C(d)2 + µn
ρ(d) if µn < C •X(d, µ),

(13)

whenever d ∈ Int(F) and µ > 0. Notice that because of the uniqueness of the optimal
solution to Pµ(d) for µ > 0, the condition measure M(d, µ) is well defined. Also,
observe that M(d, µ) can always be bounded from above by K(d, µ).

It is not difficult to create data instances for which the condition measureM(d, µ)
is a tight bound on ‖X(d, µ)‖. Even though the condition measure M(d, µ) provides
a tighter bound on ‖X(d, µ)‖ than K(d, µ), we will use the condition measure K(d, µ)
for the remainder of this paper. This is because K(d, µ) conveys the same general
asymptotic behavior as M(d, µ) and also because using K(d, µ) simplifies most of
the expressions in the theorems to follow. Similar remarks apply to the bounds on
‖y(d, µ)‖ and ‖S(d, µ)‖.

In particular, when C = 0, that is, when we are solving a semidefinite analytic
center program, we obtain the following corollary.
Corollary 3.1. Let d = (A, b, C) ∈ Int(F) be such that C = 0 and µ be a

positive scalar. Then

‖X(d, µ)‖ ≤ C(d).
The following theorem presents lower bounds on the eigenvalues of solutions along

the primal and dual central trajectories. In particular, the lower bound on the eigen-
values of solutions along the primal central trajectory implies that the convergence of
X(d, µ) to an optimal solution to P (d), as µ goes to zero, is at least asymptotically
linear in µ and at a rate of 1/(2‖d‖C(d)2).
Theorem 3.2. Let d ∈ Int(F) and µ be a positive scalar. Then for all j =

1, . . . , n,

λj(X(d, µ)) ≥ µ

2‖d‖K(d, µ) ,

λj(S(d, µ)) ≥ µ

K(d, µ) .
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CONDITION-MEASURE ON SEMIDEFINITE TRAJECTORY 825

The proof of Theorem 3.2 is presented in section 4.
The next theorem concerns bounds on changes in optimal solutions to Pµ(d) and

Dµ(d) as the data instance d and the parameter µ are perturbed. In particular,
we present these bounds in terms of an asymptotically polynomial expression of the
condition number C(d), the condition measure K(d, µ), the size of the data ‖d‖, the
scalar µ, and the dimensions m and n. It is also important to notice the linear
dependence of the bound on the size of the data perturbation ‖∆d‖ and the parameter
perturbation |∆µ|.
Theorem 3.3. Let d = (A, b, C) be a data instance in Int(F), µ be a positive

scalar, ∆d = (∆A,∆b,∆C) ∈ D be a data perturbation such that ‖∆d‖ ≤ ρ(d)/3, and
∆µ be a scalar such that |∆µ| ≤ µ/3. Then,

‖X(d+∆d, µ+∆µ)−X(d, µ)‖ ≤ ‖∆d‖ 640n
√
mC(d)2K(d, µ)5(µ+ ‖d‖)

µ2

+ |∆µ| 6n‖d‖K(d, µ)
2

µ2
,(14)

‖y(d+∆d, µ+∆µ)− y(d, µ)‖ ≤ ‖∆d‖ 640
√
mC(d)2K(d, µ)5(µ+ ‖d‖)

µ2

+ |∆µ| 32
√
m‖d‖C(d)2K(d, µ)2

µ2
,(15)

‖S(d+∆d, µ+∆µ)− S(d, µ)‖ ≤ ‖∆d‖ 640
√
mC(d)2K(d, µ)5(µ+ ‖d‖)2

µ2

+ |∆µ| 32
√
m‖d‖2C(d)2K(d, µ)2

µ2
.(16)

The proof of Theorem 3.3 is presented in section 5.
Finally, we present a theorem concerning changes in optimal objective function

values of the program Pµ(d) as the data instance d and the parameter µ are perturbed.
We denote by z(d, µ) the optimal objective function value of the program Pµ(d),
namely, z(d, µ) := C •X(d, µ)+µp(X(d, µ)), where X(d, µ) is the optimal solution of
Pµ(d).
Theorem 3.4. Let d = (A, b, C) be a data instance in Int(F), µ be a positive

scalar, ∆d = (∆A,∆b,∆C) ∈ D be a data perturbation such that ‖∆d‖ ≤ ρ(d)/3, and
∆µ be a scalar such that |∆µ| ≤ µ/3. Then

|z(d+∆d, µ+∆µ)− z(d, µ)| ≤ ‖∆d‖ 9K(d, µ)2
+ |∆µ| n (ln 16 + | lnµ|+ | ln ‖d‖|+ lnK(d, µ)) .

Notice that it follows from Theorem 3.4 that changes in objective function values
of Pµ(d) are at most linear in the size of the perturbation of the data instance d and the
parameter µ. As with Theorem 3.3, the bound is polynomial in terms of the condition
measure K(d, µ) and the size of the data instance d. Also observe that if ∆d = 0, and
we let ∆µ go to zero, from the analytic properties of the central trajectory [10, 27]
we obtain the following bound on the derivative of z(·) with respect to µ:∣∣∣∣∂z(d, µ)∂µ

∣∣∣∣ ≤ n (ln 16 + | lnµ|+ | ln ‖d‖|+ lnK(d, µ)) .
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826 MANUEL A. NUNEZ AND ROBERT M. FREUND

We remark that it is not known to us if the bounds in Theorem 3.1, 3.2, 3.3, or
3.4 are tight (even up to a constant) for some data instances, but we suspect that
they are not. However, our concern herein is not the exploration of the best possible
bounds but rather the demonstration of bounds that are some polynomial function of
appropriate natural behavior measures of a semidefinite program.

The remaining two sections of this paper are devoted to proving the four theorems
stated in this section.

4. Proof of bounds on optimal solutions. This section presents the proofs
of the results on lower and upper bounds on sizes of optimal solutions along the
central trajectory for the pair of dual logarithmic barrier problems Pµ(d) and Dµ(d).
We start by proving Theorem 3.1. Our proof is an immediate generalization to the
semidefinite case of the proof of Theorem 3.1 in [15] for the case of a linear program.

Proof of Theorem 3.1. Let X̂ := X(d, µ) be the optimal solution to Pµ(d) and

(ŷ, Ŝ) := (y(d, µ), S(d, µ)) be the optimal solution to the corresponding dual problem
Dµ(d). Notice that the optimality conditions of Pµ(d) and Dµ(d) imply that C • X̂ =
bT ŷ + µn.

Observe that since Ŝ = C − AT [ŷ], then ‖Ŝ‖ ≤ ‖C‖ + ‖AT ‖‖ŷ‖. Since ‖AT ‖ =
‖A‖, we have that ‖Ŝ‖ ≤ ‖d‖(1+‖ŷ‖), and using the fact that K(d, µ) ≥ 1 the bound
(12) on ‖Ŝ‖ is a consequence of the bound (11) on ‖ŷ‖. It therefore is sufficient to
prove the bounds on ‖X̂‖ and on ‖ŷ‖. Furthermore, the bound on ‖ŷ‖ is trivial if
ŷ = 0; therefore from now on we assume that ŷ �= 0. Also, let X̄ = X̂/‖X̂‖ and
ȳ = ŷ/‖ŷ‖. Clearly, X̄ • X̂ = ‖X̂‖, ‖X̄‖ = 1, ȳT ŷ = ‖ŷ‖, and ‖ȳ‖ = 1.

The rest of the proof proceeds by examining three cases:
(i) C • X̂ ≤ 0,
(ii) 0 < C • X̂ ≤ µn, and
(iii) µn < C • X̂.
In case (i), let ∆Ai := −biX̄/‖X̂‖ for i = 1, . . . ,m. Then, by letting the operator

∆A := (∆A1, . . . ,∆Am) and ∆d := (∆A, 0, 0) ∈ D, we have (A + ∆A)X̂ = 0,
X̂ � 0, and C • X̂ ≤ 0. It then follows from Proposition 2.2 that Dµ(d + ∆d)

is infeasible, and so ρ(d) ≤ ‖∆d‖ = ‖∆A‖ = ‖b‖/‖X̂‖ ≤ ‖d‖/‖X̂‖. Therefore,
‖X̂‖ ≤ ‖d‖/ρ(d) = C(d) ≤ K(d, µ). This proves (10) in this case.

Consider the following notation: θ := bT ŷ, ∆b := −θȳ/‖ŷ‖, ∆Ai := −ȳiC/‖ŷ‖
for i = 1, . . . ,m, ∆A := (∆A1, . . . ,∆Am), and ∆d := (∆A,∆b, 0) ∈ D. Observe
that (b + ∆b)T ŷ = 0 and (A + ∆A)T [ŷ] ≺ 0, so from Proposition 2.2 we conclude
that Pµ(d+∆d) is infeasible. Therefore, ρ(d) ≤ ‖∆d‖ = max{‖C‖, |θ|}/‖ŷ‖. Hence,
‖ŷ‖ ≤ max{C(d), |θ|/ρ(d)}. Furthermore, |θ| = |bT ŷ| = |C•X̂−µn| ≤ ‖X̂‖‖C‖+µn ≤
C(d)‖d‖+ µn. Therefore, using the fact that C(d) ≥ 1 for any d, we have (11).

In case (ii), let ∆d := (∆A, 0,∆C) ∈ D, where ∆Ai := −biX̄/‖X̂‖ for i =
1, . . . ,m and ∆C := −µnX̄/‖X̂‖. Observe that (A+∆A)X̂ = 0 and (C+∆C)• X̂ ≤
0. Hence, from Proposition 2.2 Dµ(d + ∆d) is infeasible, and so we conclude that

ρ(d) ≤ ‖∆d‖ = max{‖∆A‖, ‖∆C‖} = max{‖b‖, µn}/‖X̂‖ ≤ max{‖d‖, µn}/‖X̂‖.
Therefore, ‖X̂‖ ≤ max{C(d), µn/ρ(d)} ≤ K(d, µ). This proves (10) for this case.

Now let ∆d := (∆A,∆b, 0), where ∆Ai := −ȳiC/‖ŷ‖ for i = 1, . . . ,m and ∆b :=
µnȳ/‖ŷ‖. Observe that (b+∆b)T ŷ = bT ŷ+µn = C •X̂ > 0 and (A+∆A)T [ŷ] ≺ 0. As
before, we have from Proposition 2.2 that Pµ(d+∆d) is infeasible, and so we conclude
that ρ(d) ≤ ‖∆d‖ = max{‖∆A‖, ‖∆b‖} = max{‖C‖, µn}/‖ŷ‖ ≤ max{‖d‖, µn}/‖ŷ‖.
Therefore, we obtain ‖ŷ‖ ≤ max{C(d), µn/ρ(d)} ≤ K(d, µ).

In case (iii), we first consider the bound on ‖ŷ‖. Let ∆d := (∆A, 0, 0) ∈ D, where
∆Ai := −ȳiC/‖ŷ‖ for i = 1, . . . ,m. Since (A+∆A)T [ŷ] ≺ 0 and bT ŷ = C•X̂−µn > 0,
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CONDITION-MEASURE ON SEMIDEFINITE TRAJECTORY 827

it follows from Proposition 2.2 that Pµ(d +∆d) is infeasible, and so ρ(d) ≤ ‖∆d‖ =
‖C‖/‖ŷ‖. Therefore, ‖ŷ‖ ≤ C(d) ≤ K(d, µ).

Finally, let ∆Ai := −biX̄/‖X̂‖ for i = 1, . . . ,m, and ∆C := −θX̄/‖X̂‖, where
θ := C • X̂. Observe that (A + ∆A)X̂ = 0 and (C + ∆C) • X̂ = 0. Thus, from
Proposition 2.2 we conclude that Dµ(d + ∆d) is infeasible, and so ρ(d) ≤ ‖∆d‖ =
max{‖∆A‖, ‖∆C‖} = max{‖b‖, θ}/‖X̂‖ so that ‖X̂‖ ≤ max{C(d), θ/ρ(d)}. Further-
more, θ = C • X̂ = bT ŷ + µn ≤ ‖b‖‖ŷ‖ + µn ≤ ‖d‖C(d) + µn. Therefore, ‖X̂‖ ≤
K(d, µ).

The following corollary presents upper bounds on optimal solutions to Pµ+∆µ(d+
∆d) and Dµ+∆µ(d + ∆d), where ∆d is a data instance in D representing a small
perturbation of the data instance d, and ∆µ is a scalar.
Corollary 4.1. Let d ∈ Int(F) and µ > 0. If ‖∆d‖ ≤ ρ(d)/3 and |∆µ| ≤ µ/3,

then

‖X(d+∆d, µ+∆µ)‖ ≤ 4K(d, µ),
‖y(d+∆d, µ+∆µ)‖ ≤ 4K(d, µ),
‖S(d+∆d, µ+∆µ)‖ ≤ 6‖d‖K(d, µ).

Proof. The proof follows by observing that

‖d+∆d‖ ≤ ‖d‖+ ρ(d)

3
,

µ+∆µ ≤ 4µ

3
,

ρ(d+∆d) ≥ 2ρ(d)

3
.

From these inequalities, we have C(d + ∆d) ≤ 3
2 (‖d‖ + ρ(d)/3)/ρ(d) = 3

2 (C(d) +
1/3) ≤ 2C(d) and ‖d + ∆d‖ ≤ 4

3‖d‖ ≤ 1.5‖d‖, since C(d) ≥ 1. Furthermore,
(µ+∆µ)n/ρ(d+∆d) ≤ 2µn/ρ(d). Therefore, K(d+∆d, µ+∆µ) ≤ 4K(d, µ), and the
result follows.

The following proof of Theorem 3.2 is a generalization of part of the proof of
Theorem 3.2 in [15] for the case of a linear program.

Proof of Theorem 3.2. Because of the Karush–Kuhn–Tucker optimality conditions
of the dual pair of programs Pµ(d) and Dµ(d), we have X(d, µ)S(d, µ) = µI. This
being the case, X(d, µ) and S(d, µ) can be simultaneously diagonalized, and so there
exists an orthogonal matrix U such thatX(d, µ) = UDUT , whereD = diag(λ(X(d, µ)))
and S(d, µ) = µUD−1UT . Then

1

λj(X(d, µ))
≤ 1

D11
=

‖S(d, µ)‖∞
µ

,

and so λj(X(d, µ)) ≥ µ
‖S(d,µ)‖∞

for j = 1, . . . , n, and the result for λj(X(d, µ)) follows

from Theorem 3.1. Similarly,

1

λj(S(d, µ))
≤ Dnn

µ
=

‖X(d, µ)‖∞
µ

,

and so λj(S(d, µ)) ≥ µ
‖X(d,µ)‖∞

for j = 1, . . . , n, and the result for λj(S(d, µ)) again

follows from Theorem 3.1.
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828 MANUEL A. NUNEZ AND ROBERT M. FREUND

Corollary 4.2. Let d ∈ Int(F) and µ > 0. If ‖∆d‖ ≤ ρ(d)/3 and |∆µ| ≤ µ/3,
then for all j = 1, . . . , n,

λj (X(d+∆d, µ+∆µ)) ≥ µ

16‖d‖K(d, µ) ,

λj (S(d+∆d, µ+∆µ)) ≥ µ

6K(d, µ) .

Proof. The proof follows immediately from Theorem 3.2 by observing that
‖d+∆d‖ ≤ 4

3‖d‖, µ+∆µ ≥ 2
3µ, and K(d+∆d, µ+∆µ) ≤ 4K(d, µ).

5. Proof of bounds on changes in optimal solutions. In this section we
prove Theorems 3.3 and 3.4. Before presenting the proofs, we first present properties
of certain linear operators that arise in our analysis, in Propositions 5.1–5.5, and
Corollary 5.1.
Proposition 5.1. Given a data instance d = (A, b, C) ∈ D and matrices X and

X̄ such that X, X̄ � 0, let P be the linear operator from �m to �m defined as

Pw := A
(
X
(
AT [w]

)
X̄
)

for all w ∈ �m. If A has rank m, then the following statements hold true:
1. P corresponds to a symmetric positive definite matrix in �m×m,
2. Pw = A

(
X̄
(
AT [w]

)
X
)

for all w ∈ �m.
Proof. By using the canonical basis for �m and slightly amending the notation,

we have that the (i, j)-coordinate of the matrix corresponding to P is given by

Pij = Ai • (XAjX̄).(17)

Hence, if w is such that Pw = 0, then for all i = 1, . . . ,m,

m∑
j=1

(
Ai • (XAjX̄)

)
wj = 0,

m∑
j=1

(
(X1/2Ai) • (X1/2AjX̄)

)
wj = 0,

m∑
j=1

(
(X1/2AiX̄

1/2) • (X1/2AjX̄
1/2)

)
wj = 0.

It therefore follows that

wTPw =

m∑
i=1

m∑
j=1

wi

(
(X1/2AiX̄

1/2) • (X1/2AjX̄
1/2)

)
wj = 0.(18)

This in turn can be written as

‖X1/2(AT [w])X̄1/2‖2
2 = 0,

from which we obtain AT [w] = 0. Using the fact that A has rank m, we have w = 0.
Therefore the matrix corresponding to P is nonsingular.

On the other hand, notice that from (17) we have Pij = Ai•(XAjX̄) = (XAiX̄)•
Aj = Aj • (XAiX̄) = Pji for all 1 ≤ i, j ≤ m. Hence, P is a symmetric operator.
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CONDITION-MEASURE ON SEMIDEFINITE TRAJECTORY 829

Furthermore, if we let Â := (X1/2A1X̄
1/2, . . . , X1/2AmX̄1/2), we obtain from (18)

wTPw = ‖ÂT [w]‖2
2 ≥ 0 for all w ∈ �m. Hence, P is a positive semidefinite operator.

Using that P is nonsingular, we conclude the first statement.
Finally, the second statement follows from well-known properties of the trace:

trace
(
AiXAjX̄

)
= trace

(
XAjX̄Ai

)
= trace

(
(XAjX̄Ai)

T
)

= trace
(
AiX̄AjX

)
for all 1 ≤ i, j ≤ m. Therefore, Pw = A

(
X̄
(
AT [w]

)
X
)
for all w ∈ �m, and the

result follows.
Proposition 5.2. Let d = (A, b, C) ∈ Int(F) and P be the linear operator from

�m to �m defined as

Pw := A
(
AT [w]

)
for all w ∈ �m. Then P is a symmetric positive definite matrix and

ρ(d) ≤
√
λ1(P ).

Proof. Observe that since d ∈ Int(F), A has rank m, and so from Proposition 5.1
(setting X̄ := X := I), P is a symmetric and positive semidefinite matrix.

Let λ := λ1(P ). There exists a vector v ∈ �m with ‖v‖ = 1 and Pv = λv. Hence,
vTPv = λ. Let ∆A ∈ Lm,n be defined as

∆A :=
(−v1(A

T [v]), . . . ,−vm(AT [v])
)T

,

and ∆b = εv for any ε > 0 and small. Then, (A + ∆A)T [v] = 0 and (b + ∆b)T v =
bT v + ε �= 0 for all ε > 0 and small. Hence, (A +∆A)X = b +∆b is an inconsistent
system of equations for all ε > 0 and small. Therefore, ρ(d) ≤ max{‖∆A‖, ‖∆b‖} =
‖∆A‖ = ‖AT [v]‖ = √

λ, thus proving this proposition.
Proposition 5.3. Given a data instance d = (A, b, C) ∈ D such that A has rank

m, and matrices X and X̄ such that X, X̄ � 0, let Q be the linear operator from �n×n

to �n×n defined as

QV := V − X̄1/2
(
AT

[
P−1A

(
X̄1/2V X1/2

)])
X1/2

for all V ∈ �n×n, where P is the matrix from Proposition 5.1. Then Q corresponds
to a symmetric projection operator.

Proof. Let RV := X̄1/2
(
AT

[
P−1A

(
X̄1/2V X1/2

)])
X1/2 for all V ∈ �n×n. Since

QV = V − RV = (I − R)V , then Q is a symmetric projection if and only if R is a
symmetric projection. It is straightforward to show that

RV =
m∑
i=1

m∑
j=1

P−1
ij

(
Aj •

(
X̄1/2V X1/2

))(
X̄1/2AiX

1/2
)

(19)

for all V ∈ �n×n. For a fixed matrix V in �n×n, it follows from this identity that

W • (RV ) =

 m∑

i=1

m∑
j=1

P−1
ij

(
Ai •

(
X̄1/2WX1/2

))(
X̄1/2AjX

1/2
) • V
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830 MANUEL A. NUNEZ AND ROBERT M. FREUND

for all W in �n×n. Hence, we have

RT [W ] =

m∑
i=1

m∑
j=1

P−1
ij

(
Ai •

(
X̄1/2WX1/2

))(
X̄1/2AjX

1/2
)

for all W in �n×n. By noticing that P is a symmetric matrix and using (19), we
obtain R = RT ; that is, R is a symmetric operator.

On the other hand, for a given V in �n×n, let w := P−1A
(
X̄1/2V X1/2

)
. Thus,

using Proposition 5.1, statement 2, we obtain

RRV = X̄1/2
(
AT

[
P−1A

(
X̄1/2(RV )X1/2

)])
X1/2

= X̄1/2
(
AT

[
P−1A

(
X̄1/2

(
X̄1/2

(
AT

[
P−1A

(
X̄1/2V X1/2

)])
X1/2

)
X1/2

)])
X1/2

= X̄1/2
(
AT

[
P−1A

(
X̄
(
AT [w]

)
X
)])

X1/2

= X̄1/2
(
AT

[
P−1Pw

])
X1/2

= X̄1/2
(
AT [w]

)
X1/2

= RV,

where the fourth equality above follows from statement 2 of Proposition 5.1. There-
fore, from [11, Theorem 1, page 73], R is a projection and the result follows.
Proposition 5.4. Given a data instance d = (A, b, C) ∈ D and matrices X and

X̄ such that X, X̄ � 0, let P be the linear operator from �m to �m defined as

Pw := A
(
X
(
AT [w]

)
X̄
)

for all w ∈ �m. Then if A has rank m,

‖P−1‖∞ ≤ ‖X−1‖∞‖X̄−1‖∞‖(AAT )−1‖∞.

Proof. From Proposition 5.1, it follows that P is nonsingular. Let w be any vector
in �m normalized so that ‖w‖ = 1, and consider a spectral decomposition of X as

X =
n∑

k=1

λk(X)uku
T
k ,

where {u1, . . . , un} is an orthonormal basis for �n. By using that trace(uku
T
k ) ≥ 0 for

all 1 ≤ k ≤ n, and
∑n

k=1 uku
T
k = I, we have

wTPw =

m∑
i=1

m∑
j=1

trace
(
AiXAjX̄

)
wiwj

= trace


 m∑

i=1

m∑
j=1

AiXAjX̄wiwj




= trace


X̄1/2

(
m∑
i=1

Aiwi

)
X


 m∑

j=1

Ajwj


 X̄1/2




=
n∑

k=1

λk(X)trace


X̄1/2

(
m∑
i=1

Aiwi

)
uku

T
k


 m∑

j=1

Ajwj


 X̄1/2


D
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CONDITION-MEASURE ON SEMIDEFINITE TRAJECTORY 831

≥ ‖X−1‖−1
∞ trace


X̄1/2

(
m∑
i=1

Aiwi

) m∑
j=1

Ajwj


 X̄1/2




= ‖X−1‖−1
∞ trace


( m∑

i=1

Aiwi

)
X̄


 m∑

j=1

Ajwj




 .

Now, consider a spectral decomposition of X̄ as

X̄ =

n∑
k=1

λk(X̄)vkv
T
k ,

where, as before, {v1, . . . , vn} is an orthonormal basis for �n, and so
∑n

k=1 vkv
T
k = I.

Notice that from Proposition 5.1, it follows that the operator AAT is nonsingular.
Then, we have

wTPw ≥ ‖X−1‖−1
∞

n∑
k=1

λk(X̄)trace


( m∑

i=1

Aiwi

)
vkv

T
k


 m∑

j=1

Ajwj






≥ ‖X−1‖−1
∞ ‖X̄−1‖−1

∞ trace


( m∑

i=1

Aiwi

) m∑
j=1

Ajwj






≥ ‖X−1‖−1
∞ ‖X̄−1‖−1

∞ ‖(AAT )−1‖−1
∞ .

Notice that in the last inequality we used

trace


( m∑

i=1

Aiwi

) m∑
j=1

Ajwj




 = wT P̂w ≥ min

k
λk(P̂ ) = ‖(AAT )−1‖−1

∞ ,

where P̂ = AAT .
Now let ŵ be the normalized eigenvector corresponding to the smallest eigenvalue

of P , i.e., ‖ŵ‖ = 1 and Pŵ = λ1(P )ŵ. Then from above we have

‖P−1‖−1
∞ = λ1(P ) = ŵTPŵ ≥ ‖X−1‖−1

∞ ‖X̄−1‖−1
∞ ‖(AAT )−1‖−1

∞

and the result follows.
Corollary 5.1. Let d = (A, b, C) be a data instance in Int(F), µ be a positive

scalar, ∆d = (∆A,∆b,∆C) ∈ D be a data perturbation such that ‖∆d‖ ≤ ρ(d)/3, and
∆µ be a scalar such that |∆µ| ≤ µ/3. Then

‖P−1‖ ≤ 32
√
m

(C(d)K(d, µ)
µ

)2

,

where P is the linear operator from �m to �m defined as

Pw := A
(
X(d, µ)

(
AT [w]

)
X(d+∆d, µ+∆µ)

)
for all w ∈ �m, and K(d, µ) is the scalar defined in (9).

Proof. Let X = X(d, µ) and X̄ = X(d +∆d, µ +∆µ). From Proposition 5.4 we
know that

‖P−1‖∞ ≤ ‖X−1‖∞‖X̄−1‖∞‖(AAT )−1‖∞.
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832 MANUEL A. NUNEZ AND ROBERT M. FREUND

From Theorem 3.2 and Corollary 4.2, respectively, we have

‖X−1‖∞ ≤ 2‖d‖K(d, µ)
µ

,

‖X̄−1‖∞ ≤ 16‖d‖K(d, µ)
µ

.

Furthermore, from Proposition 5.2 we have

‖(AAT )−1‖∞ ≤ 1

ρ(d)2
.

By combining these results and using Proposition 2.1, we obtain the corollary.
Proposition 5.5. Let d = (A, b, C) be a data instance in Int(F), µ be a positive

scalar, ∆d = (∆A,∆b,∆C) ∈ D be a data perturbation such that ‖∆d‖ ≤ ρ(d)/3, and
∆µ be a scalar such that |∆µ| ≤ µ/3. Then,

‖∆b−∆AX(d+∆d, µ+∆µ)‖ ≤ 5‖∆d‖K(d, µ),
‖∆C −∆AT [y(d+∆d, µ+∆µ)]‖ ≤ 5‖∆d‖K(d, µ).

Proof. Let X̄ := X(d + ∆d, µ + ∆µ) and ȳ := y(d + ∆d, µ + ∆µ). From Corol-
lary 4.1, we have

‖∆b−∆AX̄‖ ≤ ‖∆d‖ (1 + ‖X̄‖)
≤ ‖∆d‖ (1 + 4K(d, µ))
≤ 5‖∆d‖K(d, µ),

‖∆C −∆AT [ȳ]‖ ≤ ‖∆d‖ (1 + ‖ȳ‖)
≤ ‖∆d‖ (1 + 4K(d, µ))
≤ 5‖∆d‖K(d, µ),

and so the proposition follows.
Now we are ready to present the proof of Theorem 3.3.
Proof of Theorem 3.3. To simplify the notation, let (X, y, S) := (X(d, µ), y(d, µ),

S(d, µ)), (X̄, ȳ, S̄) := (X(d+∆d, µ+∆µ), y(d+∆d, µ+∆µ), S(d+∆d, µ+∆µ)), and
µ̄ := µ +∆µ. From the Karush–Kuhn–Tucker optimality conditions associated with
the programs Pµ(d) and Pµ+∆µ(d+∆d), respectively, we obtain

XS = µI, X̄S̄ = µ̄I,
AT [y] + S = C, (A+∆A)T [ȳ] + S̄ = C +∆C,

AX = b, (A+∆A)X̄ = b+∆b,
X � 0, X̄ � 0.

Let ∆E := ∆b−∆AX̄ and ∆F := ∆C −∆AT [ȳ]. Therefore,

X̄ −X =
1

µµ̄
X̄(µ̄S − µS̄)X

=
1

µµ̄
X̄
(
µ̄(C −AT [y])− µ(C +∆C − (A+∆A)T [ȳ]))X

=
1

µµ̄
X̄
(
∆µC − µ(∆C −∆AT [ȳ])−AT [µ̄y − µȳ]

)
X

=
∆µ

µµ̄
X̄CX − 1

µ̄
X̄∆FX − 1

µµ̄
X̄
(
AT [µ̄y − µȳ]

)
X.(20)

D
ow

nl
oa

de
d 

10
/1

1/
16

 to
 1

8.
11

1.
10

4.
46

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CONDITION-MEASURE ON SEMIDEFINITE TRAJECTORY 833

On the other hand, A(X̄ − X) = ∆b − ∆AX̄ = ∆E. Since d ∈ Int(F), then A has
full-rank (see (8)). It follows from Proposition 5.1 that the linear operator P from �m

to �m defined as Pw := A(X̄(AT [w])X), for all w ∈ �m, corresponds to a positive
definite matrix in �m×m. By combining this result with (20), we obtain

∆E =
∆µ

µµ̄
A
(
X̄CX

)− 1

µ̄
A
(
X̄∆FX

)− 1

µµ̄
P (µ̄y − µȳ),

and so

P−1∆E =
∆µ

µµ̄
P−1A

(
X̄CX

)− 1

µ̄
P−1A

(
X̄∆FX

)− 1

µµ̄
(µ̄y − µȳ).

Therefore, we have the following identity:

1

µµ̄
(µ̄y − µȳ) =

∆µ

µµ̄
P−1A

(
X̄CX

)− 1

µ̄
P−1A

(
X̄∆FX

)− P−1∆E.(21)

Combining (21) and (20), we obtain

X̄ −X =
∆µ

µµ̄
X̄CX − 1

µ̄
X̄∆FX

− X̄

(
AT

[
∆µ

µµ̄
P−1A

(
X̄CX

)− 1

µ̄
P−1A

(
X̄∆FX

)− P−1∆E

])
X

=
∆µ

µµ̄

(
X̄CX − X̄

(
AT

[
P−1A

(
X̄CX

)])
X
)

− 1

µ̄

(
X̄∆FX − X̄

(
AT

[
P−1A

(
X̄∆FX

)])
X
)

+ X̄
(
AT

[
P−1∆E

])
X

=
∆µ

µµ̄
X̄1/2Q

(
X̄1/2CX1/2

)
X1/2 − 1

µ̄
X̄1/2Q

(
X̄1/2∆FX1/2

)
X1/2

+ X̄
(
AT

[
P−1∆E

])
X,(22)

where by Q we denote the following linear operator from �n×n to �n×n:

Q(V ) := V − X̄1/2
(
AT

[
P−1A

(
X̄1/2V X1/2

)])
X1/2

for all V ∈ �n×n. By using Proposition 5.3, it follows that Q is a symmetric projection
operator, and so ‖QV ‖ ≤ ‖V ‖ for all V ∈ �n×n. Since ‖V 1/2‖2 ≤ √

n‖V ‖ for all V
in S+

n , from (22), Theorem 3.1, Corollary 4.1, Corollary 5.1, and Proposition 5.5, it
follows that

‖X̄ −X‖ ≤ |∆µ|
µµ̄

‖X̄1/2‖2‖C‖‖X1/2‖2 +
1

µ̄
‖X̄1/2‖2‖∆F‖‖X1/2‖2

+‖X̄ (
AT [P−1∆E]

)
X‖

≤ n|∆µ|
µµ̄

‖X̄‖‖C‖‖X‖+ n

µ̄
‖X̄‖‖∆F‖‖X‖+ ‖X̄‖‖AT ‖‖P−1‖‖∆E‖‖X‖

≤ 4n|∆µ|
µµ̄

‖d‖K(d, µ)2 + 20n‖∆d‖
µ̄

K(d, µ)3 + 640

µ2

√
m‖∆d‖‖d‖C(d)2K(d, µ)5.
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834 MANUEL A. NUNEZ AND ROBERT M. FREUND

Therefore, by noticing that µ̄ ≥ 2
3µ, we obtain

‖X̄ −X‖ ≤ 6n

µ2
|∆µ|‖d‖K(d, µ)2 + 640n

√
m

µ2
‖∆d‖C(d)2K(d, µ)5 (µ+ ‖d‖) ,

and so (14) follows.
Next, we prove the bound on ‖ȳ − y‖. From the identities (A +∆A)T [ȳ] + S̄ =

C +∆C and AT [y] + S = C, it follows that

S̄ − S = ∆F −AT [ȳ − y],

µ̄X̄−1 − µX−1 = ∆F −AT [ȳ − y],

X̄−1(µ̄X − µX̄)X−1 = ∆F −AT [ȳ − y].

Hence,

µ̄X − µX̄ = X̄
(
∆F −AT [ȳ − y]

)
X

= X̄∆FX − X̄
(
AT [ȳ − y]

)
X.

By premultiplying this identity by A, we obtain

∆µb− µ∆E = A
(
X̄∆FX

)− P (ȳ − y),

and so,

P (ȳ − y) = −∆µb+ µ∆E +A
(
X̄∆FX

)
,

ȳ − y = −∆µP−1b+ µP−1∆E + P−1A
(
X̄∆FX

)
.

Therefore, using this identity, Theorem 3.1, Corollary 4.1, Corollary 5.1, and Propo-
sition 5.5, we obtain

‖ȳ − y‖ ≤ |∆µ|‖P−1‖‖b‖+ µ‖P−1‖‖∆E‖+ ‖P−1‖‖A‖‖X̄‖‖∆F‖‖X‖
≤ 32

√
m|∆µ|‖d‖C(d)

2K(d, µ)2
µ2

+ 160
√
m‖∆d‖C(d)

2K(d, µ)3
µ

+ 640
√
m‖∆d‖‖d‖C(d)

2K(d, µ)5
µ2

≤ 32
√
m|∆µ|‖d‖C(d)

2K(d, µ)2
µ2

+ 640
√
m‖∆d‖C(d)

2K(d, µ)5(µ+ ‖d‖)
µ2

,

and so we obtain inequality (15).
Finally, to obtain the bound on ‖S̄ − S‖, we proceed as follows. Notice that

S̄ − S = ∆F −AT [ȳ − y]. Hence, from (15) and Proposition 5.5, we have

‖S̄ − S‖ ≤ ‖∆F‖+ ‖AT ‖‖ȳ − y‖
≤ 5‖∆d‖K(d, µ) + ‖d‖

(
32
√
m|∆µ|‖d‖C(d)

2K(d, µ)2
µ2

+ 640
√
m‖∆d‖C(d)

2K(d, µ)5(µ+ ‖d‖)
µ2

)

≤ 32
√
m|∆µ|‖d‖2 C(d)2K(d, µ)2

µ2
+ 640

√
m‖∆d‖C(d)

2K(d, µ)5(µ+ ‖d‖)2
µ2

,
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CONDITION-MEASURE ON SEMIDEFINITE TRAJECTORY 835

which establishes (16), concluding the proof of this theorem.
Finally, we present the proof of Theorem 3.4.
Proof of Theorem 3.4. To simplify the notation, let z̄ := z(d+∆d, µ+∆µ) and z =

z(d, µ). Consider the Lagrangian functions associated with Pµ(d) and Pµ+∆µ(d+∆d),
respectively:

L(X, y) := C •X + µp(X) + yT (b−AX),

L̄(X, y) := (C +∆C) •X + (µ+∆µ)p(X) + yT (b+∆b− (A+∆A)X),
and define M(X, y) := L(X, y) − L̄(X, y). Let X̂ and (ŷ, Ŝ) denote the optimal
solutions to Pµ(d) and Dµ(d), respectively, and let X̄ and (ȳ, S̄) denote the optimal
solutions to Pµ+∆µ(d+∆d) and Dµ+∆µ(d+∆d), respectively. Hence, we have

z = L(X̂, ŷ)

= max
y

L(X̂, y)

= max
y

{
L̄(X̂, y) +M(X̂, y)

}
≥ L̄(X̂, ȳ) +M(X̂, ȳ)

≥ min
X	0

L̄(X, ȳ) +M(X̂, ȳ)

= z̄ +M(X̂, ȳ).

Thus, z− z̄ ≥ M(X̂, ȳ). Similarly, we can prove that z− z̄ ≤ M(X̄, ŷ). Therefore, we
obtain that either |z̄ − z| ≤ |M(X̂, ȳ)| or |z̄ − z| ≤ |M(X̄, ŷ)|. On the other hand, by
using Theorem 3.1 and Corollary 4.1, we have

|M(X̂, ȳ)| = |∆C • X̂ +∆µp(X̂) + ȳT∆b− ȳT∆AX̂|
≤ ‖∆C‖‖X̂‖+ |∆µ||p(X̂)|+ ‖ȳ‖‖∆b‖+ ‖ȳ‖‖∆A‖‖X̂‖
≤ ‖∆d‖

(
‖X̂‖+ ‖ȳ‖+ ‖ȳ‖‖X̂‖

)
+ |∆µ||p(X̂)|

≤ 9‖∆d‖K(d, µ)2 + |∆µ||p(X̂)|.
Similarly, it is not difficult to show that

|M(X̄, ŷ)| ≤ 9‖∆d‖K(d, µ)2 + |∆µ||p(X̄)|.
Therefore,

|z̄ − z| ≤ 9‖∆d‖K(d, µ)2 + |∆µ|max
{
|p(X̂)|, |p(X̄)|

}
.

By using Theorems 3.1 and 3.2 and Corollaries 4.1 and 4.2, we obtain

−n ln (K(d, µ)) ≤p(X̂)≤ −n ln
(

µ

2‖d‖K(d, µ)
)

−n ln (4K(d, µ)) ≤p(X̄)≤ −n ln
(

µ

16‖d‖K(d, µ)
)
.

Thus, we have the following bound:

max
{
|p(X̂)|, |p(X̄)|

}
≤ nmax

{
ln (4K(d, µ)) ,

∣∣∣∣ln
(

µ

16‖d‖K(d, µ)
)∣∣∣∣
}

≤ n (ln 16 + | lnµ|+ | ln ‖d‖|+ lnK(d, µ)) ,
and so the result follows.
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