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Abstract. A convex optimization problem in conic linear form is an optimization problem of
the form

CP (d) : maximize cT x
s.t. b−Ax ∈ CY ,

x ∈ CX ,

where CX and CY are closed convex cones in n- and m-dimensional spaces X and Y, respectively,
and the data for the system is d = (A, b, c). We show that there is a version of the ellipsoid algorithm

that can be applied to find an ε-optimal solution of CP (d) in at most O(n2 ln(
C(d)‖c‖∗
c1ε

)) iterations

of the ellipsoid algorithm, where each iteration must either perform a separation cut on one of the
cones CX or CY or perform a related optimality cut. The quantity C(d) is the “condition number”
of the program CP (d) originally developed by Renegar and is essentially a scale-invariant reciprocal
of the smallest data perturbation ∆d = (∆A,∆b,∆c) for which the system CP (d + ∆d) becomes
either infeasible or unbounded. The scalar quantity c1 is a constant that depends only on the simple
notion of the “width” of the cones and is independent of the problem data d = (A, b, c) but may
depend on the dimensions m and/or n.
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1. Introduction. Consider a convex program in conic linear form:

CP (d) : maximize cTx
s.t. b−Ax ∈ CY ,

x ∈ CX ,
(1)

where CX ⊂ X and CY ⊂ Y are each a closed convex cone in the (finite) n-dimensional
linear vector space X (with norm ‖x‖ for x ∈ X) and in the (finite) m-dimensional
linear vector space Y (with norm ‖y‖ for y ∈ Y ), respectively. Here b ∈ Y, and
A ∈ L(X,Y ), where L(X,Y ) denotes the set of all linear operators A : X → Y .
Also, c ∈ X∗, where X∗ is the space of all linear functionals defined on X; i.e., X∗ is
the dual space of X. In order to maintain consistency with standard linear algebra
notation in mathematical programming, we consider c to be a column vector in the
space X∗ and we denote the linear function c(x) by cTx. Similarly, for A ∈ L(X,Y )
and f ∈ Y ∗, we denote A(x) by Ax and f(y) by fT y. We denote the adjoint of A by
AT .
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156 ROBERT M. FREUND AND JORGE R. VERA

The “data” d for problem CP (d) is the array d = (A, b, c) ∈ {L(X,Y ), Y,X∗}. We
call the above program CP (d) rather than simply CP to emphasize the dependence
of the optimization problem on the data d = (A, b, c), and we note that the cones CX
and CY are not part of the data; that is, they are considered to be given and fixed.
At the moment, we make no assumptions on CX and on CY except to note that each
is a closed convex cone.

The format of CP (d) is quite general (any convex optimization problem can be
cast in the format of CP (d)) and has received much attention recently in the context
of interior-point algorithms; see Nesterov and Nemirovskii [13] and Renegar [19], [20],
as well as Nesterov and Todd [15], [14] and Nesterov, Todd, and Ye [16], among others.

In contrast to interior-point methods, this paper focuses on the complexity of
solving CP (d) via the ellipsoid algorithm. The ellipsoid algorithm of Yudin and Ne-
mirovskii [26] and Shor [21] (see also [4], [8], and [9]) and the interior-point algorithm
of Nesterov and Nemirovskii [13] are two fundamental theoretically efficient algorithms
for solving general convex optimization. The ellipsoid algorithm enjoys a number of
important advantages over interior-point algorithms: the ellipsoid algorithm is based
on elegantly simple geometric notions, it always has excellent theoretical efficiency in
the dimension of the variables n, it requires only the use of a separation oracle for
its implementation, and it is important in both continuous and discrete optimization
[8]. (Of course, when applied to solving linear programs, interior-point algorithms
typically exhibit vastly superior practical performance over the ellipsoid algorithm,
but that is not the focus of this study.)

The ellipsoid algorithm belongs to a larger class of efficient volume-reducing
cutting-plane algorithms that includes the method of centers of gravity [11], the
method of inscribed ellipsoids [10], and the method of volumetric centers [22], among
others. We focus herein on the ellipsoid algorithm because of its prominence and
history in the complexity analysis of convex optimization, but our analysis is appli-
cable to these other volume-reducing cutting-plane methods as well; see the remarks
in section 6.

In analyzing the complexity of the ellipsoid algorithm, we adopt the relatively new
concept of the condition number C(d) of the program CP (d), developed by Renegar
in the series of papers [17], [18], and [19]. We show (in section 5) that there is a
version of the ellipsoid algorithm that can be applied to find an ε-optimal solution of

CP (d) in at most O(n2 ln(C(d)‖c‖∗
c1ε

)) iterations of the ellipsoid algorithm, where each
iteration must perform either a separation cut on one of the cones CX or CY or a
related optimality cut. The quantity C(d) is the condition number of the program
CP (d), and ‖c‖∗ is the norm of c. The scalar quantity c1 is a constant that depends
only on the simple notion of the “width” of the cones, and is independent of the
problem data d = (A, b, c), but may depend on the dimensions m and/or n.

Two special cases of CP (d) deserve special mention: linear programming and
semidefinite programming. Let < and <+ denote the set of real numbers and the set of
nonnegative real numbers, respectively, and let <k and <k+ denote real k-dimensional
space and the nonnegative orthant in <k, respectively. Then by setting (i) CX = <n+
and CY = <m+ , (ii) CX = <n+ and CY = {0}, or (iii) CX = <n and CY = <m+ , then
CP (d) is a linear program of the format (i) max{cTx | Ax ≤ b, x ≥ 0, x ∈ <n}, (ii)
max{cTx | Ax = b, x ≥ 0, x ∈ <n}, or (iii) max{cTx | Ax ≤ b, x ∈ <n}, respectively.

The other special case of CP (d) that we mention is semidefinite programming.
Semidefinite programming has been shown to be of enormous importance in mathe-
matical programming (see Alizadeh [1] and Nesterov and Nemirovskii [13] as well as
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COMPLEXITY OF CONVEX OPTIMIZATION 157

Vandenberghe and Boyd [23]). Let X denote the set of real k × k symmetric ma-
trices, whereby n = k(k + 1)/2, and define the Löwner partial ordering “�” on X
as x � w if and only if the matrix x − w is positive semidefinite. The semidefinite
program in standard (primal) form is the problem max{cTx | Ax = b, x � 0}. De-
fine CX = {x ∈ X | x � 0}. Then CX is a closed convex cone. Let Y = <m and
CY = {0} ⊂ <m. Then the standard form semidefinite program is easily seen to be
an instance of CP (d).

Most studies of the ellipsoid algorithm (for example, [9], [4], [8]) pertain to the
case when CP (d) is a linear or convex quadratic program and focus on the complexity
of the algorithm in terms of the bit length L of a binary representation of the data
d = (A, b, c). However, when the cones CX and/or CY are not polyhedral or when the
data d = (A, b, c) are not rational, it makes little or no sense to study the complexity
of the ellipsoid algorithm in terms of L. Indeed, a much more natural and intuitive
measure that is relevant for complexity analysis and that captures the inherent data-
dependent behavior of CP (d) is the “condition number” C(d) of the problem CP (d),
which was developed by Renegar in a series of papers [17], [18], [19]. The quan-
tity C(d) is essentially a scale invariant reciprocal of the smallest data perturbation
∆d = (∆A,∆b,∆c) for which the system CP (d + ∆d) becomes either infeasible or
unbounded. (These concepts will be reviewed in detail shortly.)

The paper is organized as follows. The remainder of this introductory section
discusses the condition number C(d) of the optimization problem CP (d). Section 2
contains further notation and a discussion of the width of a cone. In section 3 we
demonstrate a ball construction for the set of ε-optimal solutions of CP (d), and we
review several previous results regarding the geometry of CP (d). Section 4 briefly
reviews relevant complexity aspects of the ellipsoid algorithm and reviews a trans-
formation of CP (d) into a homogenized form called HP (d) that is more convenient
for the application of the ellipsoid algorithm. Lemma 4.1 contains a key volume-
ratio upper bound that is the main tool used in proving the complexity results for
the ellipsoid algorithm for solving CP (d), which are presented in section 5. Section 6
discusses related issues: complexity results for other volume-reducing cutting-plane al-
gorithms, testing for ε-optimality, the complexity of testing for infeasibility of CP (d),
and bounding the skewness of the ellipsoids computed in the ellipsoid algorithm.

The concept of the “distance to ill-posedness” and a closely related condition
number for problems such as CP (d) was introduced by Renegar in [17] in a more
specific setting but then generalized more fully in [18] and [19]. We now describe
these two concepts in detail.

Using the constructs of Lagrangian duality, one obtains the following dual problem
of CP (d):

CD(d) : minimize bT y
s.t. AT y − c ∈ C∗X ,

y ∈ C∗Y ,
(2)

where C∗X and C∗Y are the dual convex cones associated with the cones CX and CY ,
respectively, and where the dual cone of a convex cone K in a linear vector space X
is defined by

K∗ = {z ∈ X∗|zTx ≥ 0 for any x ∈ K}.

The data for the program CD(d) is also the array d = (A, b, c).
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158 ROBERT M. FREUND AND JORGE R. VERA

We denote the space of all data d = (A, b, c) for CP (d) by D. Then D = {d =
(A, b, c) | A ∈ L(X,Y ), b ∈ Y, c ∈ X∗}. Because X and Y are normed linear vector
spaces, we can define the following product norm on the data space D:

‖d‖ = ‖(A, b, c)‖ = max{‖A‖, ‖b‖, ‖c‖∗} for any d ∈ D,
where ‖A‖ is the operator norm, namely,

‖A‖ = max{‖Ax‖ | ‖x‖ ≤ 1},
and where ‖c‖∗ is the dual norm of c induced on c ∈ X∗, defined as

‖c‖∗ = max{cTx | ‖x‖ ≤ 1, x ∈ X},
with a similar definition holding for ‖v‖∗ for v ∈ Y ∗.

Consider the following subsets of the data set D:

FP = {(A, b, c) ∈ D | there exists x such that b−Ax ∈ CY , x ∈ CX},

FD = {(A, b, c) ∈ D | there exists y such that AT y − c ∈ C∗X , y ∈ C∗Y },
and

F = FP ∩ FD.
The elements in FP correspond to those data instances d = (A, b, c) in D for which
CP (d) is feasible and the elements in FD correspond to those data instances d =
(A, b, c) in D for which CD(d) is feasible. Observe that F is the set of data instances
d = (A, b, c) that are both primal and dual feasible. The complement of FP , denoted
by FCP , is the set of data instances d = (A, b, c) for which CP (d) is infeasible, and the
complement of FD, denoted by FCD , is the set of data instances d = (A, b, c) for which
CD(d) is infeasible.

The boundary of FP and FCP is the set

BP = ∂FP = ∂FCP = cl(FP ) ∩ cl(FCP ),

and the boundary of FD and FCD is the set

BD = ∂FD = ∂FCD = cl(FD) ∩ cl(FCD ),

where ∂S denotes the boundary of a set S and cl(S) is the closure of a set S. Note
that BP 6= ∅ since (0, 0, 0) ∈ BP . The data instances d = (A, b, c) in BP are called the
ill-posed data instances for the primal, in that arbitrarily small changes in the data
d = (A, b, c) can yield data instances in FP as well as data instances in FCP . Similarly,
the data instances d = (A, b, c) in BD are called the ill-posed data instances for the
dual.

For d = (A, b, c) ∈ D, we define the ball centered at d with radius δ as

B(d, δ) = {d̄ ∈ D : ‖d̄− d‖ ≤ δ}.
For a data instance d ∈ D, the “primal distance to ill-posedness” is defined as follows:

ρP (d) = inf{‖∆d‖ : d+ ∆d ∈ BP }
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COMPLEXITY OF CONVEX OPTIMIZATION 159

(see [17], [18], [19]), and so ρP (d) is the distance of the data instance d = (A, b, c) to
the set BP of ill-posed instances for the primal problem CP (d). It is straightforward
to show that

ρP (d) =

{
sup{δ : B(d, δ) ⊂ FP } if d ∈ FP ,
sup{δ : B(d, δ) ⊂ FCP } if d ∈ FCP ,(3)

so that we could also define ρP (d) by employing (3). In the typical case when CP (d)
is feasible, i.e., d ∈ FP , ρP (d) is the minimum change ∆d in the data d needed to
create a primal-infeasible instance d+ ∆d, and so ρP (d) measures how close the data
instance d = (A, b, c) is to the set of infeasible instances of CP (d). Put another way,
ρP (d) measures how close CP (d) is to being infeasible. Note that ρP (d) measures the
distance of the data d to primal infeasible instances, and so the objective function
vector c plays no role in this measure.

The “primal condition number” CP (d) of the data instance d is defined as

CP (d) =
‖d‖
ρP (d)

when ρP (d) > 0 and CP (d) = ∞ when ρP (d) = 0. The primal condition number
CP (d) can be viewed as a scale-invariant reciprocal of ρP (d), as it is elementary to
demonstrate that CP (d) = CP (αd) for any positive scalar α. Observe that since
d̄ = (Ā, b̄, c̄) = (0, 0, 0) ∈ BP and BP is a closed set, then for any d /∈ BP we have
‖d‖ ≥ ρP (d) > 0, so that CP (d) ≥ 1. The value of CP (d) is a measure of the relative
conditioning of the primal feasibility problem for the data instance d. For a discussion
of the relevance of using CP (d) as a condition number for the problem CP (d), see
Renegar [17], [18] and Vera [24].

These measures are not nearly as intangible as they might seem at first glance.
In [7], it is shown that ρP (d) can be computed by solving rather simple convex op-
timization problems involving the data d = (A, b, c), the cones CX and CY , and the
norms ‖ · ‖ given for the problem. As in traditional condition numbers for systems of
linear equations, the computation of ρP (d) and hence of CP (d) is roughly as difficult
as solving CP (d); see [7].

For a data instance d ∈ D, the “dual distance to ill-posedness” is defined in a
manner exactly analogous to the “primal distance to ill-posedness”:

ρD(d) = inf{‖∆d‖ : d+ ∆d ∈ BD}

or equivalently

ρD(d) =

{
sup{δ : B(d, δ) ⊂ FD} if d ∈ FD,
sup{δ : B(d, δ) ⊂ FCD} if d ∈ FCD .(4)

The “dual condition number” CD(d) of the data instance d is defined as

CD(d) =
‖d‖
ρD(d)

when ρD(d) > 0 and CD(d) =∞ when ρD(d) = 0.
The two measures of distances to ill-posed instances and condition numbers are

combined as follows. Recalling the definition of F , the elements in F correspond to
those data instances d = (A, b, c) in D for which both CP (d) and CD(d) are feasible.
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160 ROBERT M. FREUND AND JORGE R. VERA

The complement of F , denoted by FC , is the set of data instances d = (A, b, c) for
which CP (d) is infeasible or CD(d) is infeasible. The boundary of F and FC is the
set

B = ∂F = ∂FC = cl(F) ∩ cl(FC).

The data instances d = (A, b, c) in B are called the ill-posed data instances in that
arbitrarily small changes in the data d = (A, b, c) can yield data instances in F as well
as data instances in FC . For a data instance d ∈ D, the “distance to ill-posedness”
is defined as follows:

ρ(d) = inf{‖∆d‖ : d+ ∆d ∈ B}
or equivalently

ρ(d) =

{
sup{δ : B(d, δ) ⊂ F} if d ∈ F ,
sup{δ : B(d, δ) ⊂ FC} if d ∈ FC .(5)

In the typical case when CP (d) and CD(d) are both feasible, i.e., d ∈ F , ρ(d) is the
minimum change ∆d in the data d needed to create a data instance d + ∆d that is
either primal infeasible or dual infeasible. The “condition number” C(d) of the data
instance d is defined as

C(d) =
‖d‖
ρ(d)

when ρ(d) > 0 and as C(d) = ∞ when ρ(d) = 0. The condition number C(d) can be
viewed as a scale-invariant reciprocal of ρ(d). The value of C(d) is a measure of the
relative conditioning of the problem CP (d) and its dual CD(d) for the data instance
d.

It is straightforward to demonstrate that

ρ(d) = min{ρP (d), ρD(d)} if d ∈ F ,
and so

C(d) = max{CP (d), CD(d)} if d ∈ F .(6)

We offer the following interpretation of ρ(d) and C(d) in terms of the primal
problem when both the primal problem and the dual problem are feasible. Because
ρP (d) measures how close the data instance d = (A, b, c) is to being an infeasible
instance of the primal, and the ρD(d) measures how close the data instance d =
(A, b, c) is to being an unbounded instance of the primal (in the primal objective
function value), then ρ(d) measures how close the data instance d = (A, b, c) is to
being either a primal infeasible or a primal unbounded data instance. The larger
the value of condition number C(d) is, the closer the primal problem is to either an
infeasible or an unbounded instance of the primal.

2. Further notation, coefficient of linearity, and width of a cone. We
will say that a cone C is regular if C is a closed convex cone, has a nonempty interior,
and is pointed (i.e., contains no line).

Remark 2.1. If C is a closed convex cone, then C is regular if and only if C∗ is
regular.
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COMPLEXITY OF CONVEX OPTIMIZATION 161

Let C be a regular cone in the normed linear vector space X. Let B(x, r) denote
the ball centered at x with radius r. We will use the following definition of the width
of C.

Definition 2.1. If C is a regular cone in the normed linear vector space X, the
width of C is given by

τ = max

{
r

‖x‖ | B(x, r) ⊂ C
}
.

We remark that τ measures the maximum ratio of the radius to the norm of the
center of an inscribed ball in C, and so larger values of τ correspond to an intuitive
notion of greater width of C. Note that τ ∈ (0, 1], since C has a nonempty interior
and C is pointed, and τ is attained for some (x̄, r̄) as well as along the ray (αx̄, αr̄)
for all α > 0.

In previous work [7], we employed the “coefficient of linearity” for a cone C.
Definition 2.2. If C is a regular cone in the normed linear vector space X, the

coefficient of linearity for the cone C is given by

β = sup inf uTx
u ∈ X∗, x ∈ C,
‖u‖∗ = 1, ‖x‖ = 1.

(7)

The coefficient of linearity β for the regular cone C is essentially the same as the
scalar α defined in Renegar [19, p. 328]. In [7], the coefficient of linearity was used
as part of an analysis of geometric properties of the feasible region of CP (d) that are
implied by the condition number CP (d). The following proposition shows that the
width of C is equal to the coefficient of linearity of C∗.

Proposition 2.1. Suppose that C is a regular cone in the normed linear vector
space X, τ denote the width of C, and β∗ denote the coefficient of linearity for C∗.
Then τ = β∗.

Proof. From the definition of the coefficient of linearity for C∗, we have

β∗ = sup inf xTw
x ∈ X, w ∈ C∗,
‖x‖ = 1, ‖w‖∗ = 1.

(8)

From the outer optimization problem above, there exists x̄ ∈ X for which ‖x̄‖ = 1
and wT x̄ ≥ β∗ for any w ∈ C∗ satisfying ‖w‖∗ = 1. Let x ∈ B(x̄, β∗), i.e., x = x̄+β∗v,
where ‖v‖ ≤ 1. For any w ∈ C∗ satisfying ‖w‖∗ = 1, we have wTx = wT x̄+β∗wT v ≥
wT x̄− β∗‖w‖∗‖v‖ ≥ β∗ − β∗ = 0, and so B(x̄, β∗) ⊂ C. Therefore, τ ≥ β∗

‖x̄‖ = β∗.
From the definition of the width of C, there exists x̃ satisfying ‖x̃‖ = 1 and

B(x̃, τ) ⊂ C. Let w ∈ C∗ satisfying ‖w‖∗ = 1 be given. Then, from the duality
properties of norms, there exists v̄ ∈ X satisfying ‖v̄‖ ≤ 1 for which ‖w‖∗ = wT v̄.
Since B(x̃, τ) ⊂ C, x̃ − τ v̄ ∈ C, and so wT (x̃ − τ v̄) ≥ 0, whereby wT x̃ ≥ τwT v̄ =
τ‖w‖∗ = τ . As this is true for any given w ∈ C∗ satisfying ‖w‖∗ = 1, it follows that
β∗ ≥ τ , completing the proof.

We illustrate the width construction on two families of cones, the nonnegative
orthant <k+ and the positive semidefinite cone Sk×k+ . First consider the nonnegative

orthant. Let X = <k with Euclidean norm ‖x‖ = ‖x‖2 =
√
xTx, and C = <k+ ={

x ∈ <k | x ≥ 0
}

. Then it is straightforward to show, by setting x = e = (1, . . . , 1)T ,
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162 ROBERT M. FREUND AND JORGE R. VERA

that the width of <k+ is τ = 1/
√
k. Next consider the positive semidefinite cone.

Let X = Sk×k denote the set of real k × k symmetric matrices with Frobenius norm
‖x‖ :=

√
trace(xTx), and let C = Sk×k+ =

{
x ∈ Sk×k | x � 0

}
. Then Sk×k+ is a closed

convex cone, and it is easy to show by setting x = I that the width of Sk×k+ is τ = 1√
k

.

For the remainder of this paper, we amend our notation as follows.
Definition 2.3. Whenever the cone CX is regular, the width of CX is denoted

by τ , and the width of C∗X is denoted by τ∗. Whenever the cone CY is regular, the
width CY is denoted by τ̄ , and the width of C∗Y is denoted by τ̄∗.

3. A ball construction for the ε-optimal set for CP (d). In this section we
demonstrate some valuable geometric properties of the set of ε-optimal solutions of
CP (d) that will be used later to obtain complexity bounds for the ellipsoid algorithm.
Let Xd denote the feasible region of CP (d) and let z∗(d) denote the optimal objective
function value of CP (d). For any ε > 0, denote the set of ε-optimal solutions of CP (d)
by Xε

d, i.e., Xε
d = {x ∈ X | x ∈ Xd and cTx ≥ z∗(d)− ε}.

Let ε > 0 be given. The following lemma asserts the existence of a ball in the
set of ε-optimal solutions of CP (d) that has certain geometric properties, under the
condition that the feasible region contains a ball B(x̂, r).

Lemma 3.1. Suppose that the feasible region Xd contains the ball B(x̂, r), where
r > 0. Let x∗ be an optimal solution of CP (d), and let ε > 0 be given. Then there
exists a ball B(x̄, r̄) with the following properties:

(i) B(x̄, r̄) ⊂ Xε
d ,

(ii) r̄ ≥ εr

max{ε, z∗(d)− cT x̂+ r‖c‖∗} ,

and (iii) ‖x̄‖ ≤ max {‖x̂‖, ‖x∗‖} .

Proof. We have B(x̂, r) ⊂ Xd and x∗ ∈ Xd. Therefore, from the convexity of Xd,
we have

B(αx̂+ (1− α)x∗, αr) ⊂ Xd for any α ∈ [0, 1].(9)

We have two cases.
Case 1. ε ≤ z∗(d)− cT x̂+ r‖c‖∗. Define

α =
ε

z∗(d)− cT x̂+ r‖c‖∗ , x̄ = αx̂+ (1− α)x∗ , and r̄ = αr.

Then α ∈ [0, 1] and so B(x̄, r̄) ⊂ Xd from (9). Furthermore, for any x ∈ B(x̄, r̄), we
have

cTx ≥ αcT x̂+ (1− α)cTx∗ − αr‖c‖∗ = z∗(d)− α (z∗(d)− cT x̂+ r‖c‖∗
)

= z∗(d)− ε,

whereby (i) is satisfied. For (ii), note that

r̄ = αr =
εr

z∗(d)− cT x̂+ r‖c‖∗ =
εr

max{ε, z∗(d)− cT x̂+ r‖c‖∗} .

Part (iii) follows since ‖x̄‖ = ‖αx̂+ (1− α)x∗‖ ≤ max {‖x̂‖, ‖x∗‖}.
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COMPLEXITY OF CONVEX OPTIMIZATION 163

Case 2. ε > z∗(d)− cT x̂+ r‖c‖∗. Define

x̄ = x̂ and r̄ = r.

To prove (i), note that for any x ∈ B(x̂, r), we have

cTx ≥ cT x̂− r‖c‖∗ = z∗(d)− (z∗(d)− cT x̂+ r‖c‖∗
)
> z∗(d)− ε,

whereby (i) is satisfied. Parts (ii) and (iii) follow trivially.
We would like to apply Lemma 3.1 to obtain a lower bound on the volume of the

set of ε-optimal solutions of CP (d). However, in order to obtain such a lower bound
via Lemma 3.1, we need the following ingredients:

(i) an upper bound on the optimal objective function value z∗(d) of CP (d),
(ii) an upper bound on the norm of an optimal solution x∗ of CP (d), and
(iii) the existence of a ball B(x̂, r) in the feasible region for which there is an

upper bound on ‖x̂‖ and a lower bound on r.
The following previously derived results pertain to the first two conditions above.
Theorem 1 of [17]. Suppose that d ∈ F and C(d) < +∞. Then

|z∗(d)| ≤ ‖c‖∗C(d).(10)

Furthermore, CP (d) attains its optimum and every optimal solution x∗ satisfies

‖x∗‖ ≤ C(d)2 .(11)

The third condition above is treated with the following previously known results.
Theorem 5.1 of [7] Suppose that CX is a regular cone and CY is a regular cone

and that d ∈ F and that C(d) < +∞. Then there exists x̂ ∈ Xd and a scalar r > 0
such that B(x̂, r) ⊂ Xd, and

r ≥ min{τ, τ̄}
6C(d)

, ‖x̂‖ ≤ 4C(d)

min{τ, τ̄} , and
‖x̂‖
r
≤ 6C(d)

min{τ, τ̄} .(12)

Theorem 5.3 of [7] Suppose that CX is a regular cone and CY = {0} and that
d ∈ F and that C(d) < +∞. Then there exists x̂ ∈ Xd and a scalar r > 0 such that
{x ∈ X | ‖x− x̂‖ ≤ r,Ax = b} ⊂ Xd, and

r ≥ τ

3C(d)
, ‖x̂‖ ≤ 4C(d)

τ
, and

‖x̂‖
r
≤ 3C(d)

τ
.(13)

Theorem 5.5 of [7] Suppose that CX = X and CY is a regular cone, that
d ∈ F , and that C(d) < +∞. Then there exists x̂ ∈ Xd and a scalar r > 0 such that
B(x̂, r) ⊂ Xd, and

r ≥ τ̄

3C(d)
, ‖x̂‖ ≤ 3C(d)

τ̄
, and

‖x̂‖
r
≤ 2C(d)

τ̄
.(14)

(These three results are slightly altered from their presentation in [7], which uses
the notation of coefficients of linearity. In the notation of [7], we have from Proposition
2.1 that τ = β∗, τ∗ = β, τ̄ = β̄∗, and τ̄∗ = β̄. The above statements follow by noticing

from [7] that C(d) ≥ 1, τ ≤ 1, τ̄ ≤ 1, and ‖x̂‖r ≤ R
r − 1.)
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164 ROBERT M. FREUND AND JORGE R. VERA

4. The ellipsoid algorithm and a homogenizing transformation. We re-
view a few basic results regarding the ellipsoid algorithm for solving an optimization
problem; see [26], [21], [9], [4], [8], [3]. We will consider the following optimization
problem:

P : maximize f(x)
x

s.t. x ∈ S,
(15)

where S is a convex set (closed or not) in <k, f(x) is a quasi-concave function, and

‖x‖2 :=
√
xTx is the Euclidean norm. Actually, the ellipsoid algorithm is more usually

associated with the assumption that S is a closed convex set and also that f(x) is a
concave function, but these assumptions can be relaxed slightly. It is only necessary
that S be a convex set, that the upper level sets of f(x) be convex sets on S (which
is equivalent to the statement that f(x) is a quasi-concave function on S; see [2], for
example), and that a separation oracle be available for S as well as for each of the
upper level sets of f(x). (Note that if f(x) is a differentiable quasi-concave function,
then ∇f(x) furnishes a separation oracle for the upper level sets of f(x), provided
that ∇f(x) does not vanish at any nonmaximizing points.)

In order to implement the ellipsoid algorithm to approximately solve P , it is
necessary that one has available a separation oracle for the set S, i.e., that for any
x̄ /∈ S, one can perform a feasibility cut for the set S, which consists of computing
a vector v 6= 0 for which S ⊂ {x | vTx ≥ vT x̄}. Suppose that T1 is an upper
bound on the number of operations needed to perform a feasibility cut for the set
S. It is also necessary that one has available a support oracle for the upper level
sets Uα = {x ∈ S | f(x) ≥ α} of the quasi-concave function f(x). That is, for
any x̄ ∈ S, it is necessary to be able to perform an optimality cut for the objective
function f(x) at any point x̄ ∈ S, which consists of computing a vector v 6= 0 for
which Uf(x̄) ⊂ {x ∈ <k | vTx ≥ vT x̄}. Suppose that T2 is an upper bound on the
number of operations needed to compute an optimality cut for the function f(x) on
the set S.

Let z∗ denote the optimal value of P , and denote the set of ε-optimal solutions
of P by Sε, i.e., Sε = {x ∈ <k | x ∈ S and f(x) ≥ z∗ − ε}. In a typical application
of the ellipsoid algorithm, we wish to find an ε-optimal solution of P . Suppose that
we know a priori a positive scalar R with the property that

B(0, R) ∩ Sε

has positive volume, where B(x̄, r) := {x ∈ <k | ‖x − x̄‖2 ≤ r} is the Euclidean
ball centered at x̄ with radius r. Then the ellipsoid algorithm for solving P can be
initiated with the Euclidean ball B(0, R). The following is a generic result about
the performance of the ellipsoid algorithm, where in the statement of the theorem,
“vol(Q)” denotes the volume of a set Q.

Ellipsoid Algorithm Theorem with Known R (from [26], [21]). Suppose
that a positive scalar R is known with the property that the set

F := B(0, R) ∩ Sε

has positive volume. Then, if the ellipsoid algorithm is initiated with the Euclidean
ball B(0, R), the algorithm will compute an ε-optimal solution of P in at most⌈

2(k + 1) ln

(
vol(B(0, R))

vol(B(0, R) ∩ Sε)
)⌉

(16)
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COMPLEXITY OF CONVEX OPTIMIZATION 165

iterations, where each iteration must perform at most
(
k2 + max{T1, T2}

)
operations,

and where T1 and T2 are the numbers of operations needed to perform a feasibility cut
on S and an optimality cut on f(x), respectively.

We note that the bound on the number of operations per iteration arises from
performing either a feasibility or an optimality cut (which takes max{T1, T2} opera-
tions), and then performing a rank-one update of the positive definite matrix defining
the ellipsoid (see [3], for example), which takes k2 operations.

Because an a priori bound on R is typically not known except in very special
cases of P , we employ a standard homogenizing transformation to convert P to the
homogenized fractional program:

HP : maximize g(w, θ) := f(w/θ)
w, θ
s.t. w ∈ θS,

θ > 0

(17)

(see, for example, [5] and [6]). It is trivial to show that z∗ is the common optimal
objective function value of P and HP . Let H and Hε denote the set of feasible and
ε-optimal solutions of HP , respectively, i.e.,

H = {(w, θ) ∈ <k+1 | w ∈ θS, θ > 0}(18)

and

Hε = {(w, θ) ∈ <k+1 | w ∈ θS, θ > 0, g(w, θ) ≥ z∗ − ε}.(19)

Then H and Hε are both convex sets. Furthermore, the objective function g(w, θ) :=
f(w/θ) of HP is easily seen to be a quasi-concave function over the feasible region H
whenever f(x) is a quasi-concave function over the feasible region S. The following
(obvious) transformations h(·) and h−1(·) map the feasible regions and ε-optimal re-
gions of P and HP onto one another:

h(T ) = {(w, θ) ∈ <k+1 | w/θ ∈ T and θ > 0} for any T ⊂ S(20)

and

h−1(W ) = {x ∈ <k | x = w/θ for some (w, θ) ∈W} for any W ⊂ H .(21)

Because any feasible solution of HP can be scaled by an arbitrary positive scalar
without changing its objective function value or affecting its feasibility, the feasible
region and all upper level sets of the objective function g(w, θ) of HP contain points
in the (k + 1)-dimensional unit Euclidean ball. This allows us to conveniently start
the ellipsoid algorithm for solving HP with the (k + 1)-dimensional unit Euclidean
ball.

The following result concerns volumes of subsets of S under the projective trans-
formation h(·) and provides the final ingredient we will need for our analysis of the
ellipsoid algorithm. Let Bk+1 denote the (k + 1)-dimensional unit Euclidean ball,
namely,

Bk+1 :=
{

(w, θ) ∈ <k+1 |
√
wTw + θ2 ≤ 1

}
.
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166 ROBERT M. FREUND AND JORGE R. VERA

Lemma 4.1. Suppose that S is a convex set in <k, that T ⊂ S is given, that there
exists r̄ > 0 and x̄ for which B(x̄, r̄) ⊂ T , and that r̄ ≤ 1. Let W = h(T ), where h(·)
is defined as in (20). Then

ln

(
vol
(
Bk+1

)
vol (Bk+1 ∩W )

)
≤ (k + 1) ln

(
2 +

3(‖x̄‖+ 1)

r̄

)
+ [ln (‖x̄‖)]+ .

Proof. We first define two constants,

δ = max{‖x̄‖, 1}
and

γ = 1 +
r̄

3
+

r̄

3δ
+ ‖x̄‖,

and we define the following ellipsoid centered at (x̄, 1) ∈ <k+1:

E =

{
(w, θ) ∈ <k+1 |

√
(w − x̄)T (w − x̄) + δ2(θ − 1)2 ≤ r̄

3

}
.

We prove below that

E ⊂W,(22)

E ⊂ γBk+1.(23)

It then follows that

γ−1E ⊂ Bk+1 and γ−1E ⊂W,(24)

and so

γ−1E ⊂ Bk+1 ∩W,(25)

since in particular W is closed under positive scalings. Then

ln

(
vol
(
Bk+1

)
vol (Bk+1 ∩W )

)
≤ ln

(
vol
(
Bk+1

)
vol (γ−1E)

)

= (k + 1) ln(γ) + ln

(
vol
(
Bk+1

)
vol (E)

)

= (k + 1) ln(γ) + ln

 1( r̄
3

)k+1
(

1

δ

)


= (k + 1) ln

(
3γ

r̄

)
+ ln (δ)

= (k + 1) ln

(
3

r̄
+ 1 +

1

δ
+

3‖x̄‖
r̄

)
+ ln (δ)

≤ (k + 1) ln

(
2 +

3(‖x̄‖+ 1)

r̄

)
+ [ln (‖x̄‖)]+ ,
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COMPLEXITY OF CONVEX OPTIMIZATION 167

since δ ≥ 1. We therefore need to demonstrate (22) and (23) to complete the proof.
For any (w, θ) ∈ E, (w, θ) = (x̄+ q, 1 + v), where ‖q‖ ≤ r̄

3 and |v| ≤ r̄
3δ ≤ 1

3 , since
r̄ ≤ 1 and δ ≥ 1, and so θ ≥ 2

3 > 0. We also have

w

θ
=
x̄+ q

1 + v
= x̄+

q − vx̄
1 + v

,

and so ∥∥∥w
θ
− x̄
∥∥∥ =

‖q − vx̄‖
1 + v

≤ 3

2
(‖q‖+ |v|‖x̄‖) ≤ 3

2

( r̄
3

+
r̄

3δ
‖x̄‖
)
≤ r̄ .

Therefore, wθ ∈ B(x̄, r̄), whereby w
θ ∈ T , and so w ∈ θT or, equivalently, (w, θ) ∈ h(T ).

Therefore, E ⊂ h(T ) = W , proving (22).
To prove (23), let (w, θ) ∈ E. Then ‖w − x̄‖2 ≤ r̄

3 and |θ − 1| ≤ r̄
3δ . Therefore,

‖(w, θ)‖2 ≤ ‖(w − x̄, θ − 1)‖2 + ‖(x̄, 1)‖2

≤ ‖w − x̄‖2 + |θ − 1|+ ‖x̄‖2 + 1

≤ r̄

3
+

r̄

3δ
+ ‖x̄‖2 + 1

= γ ,

and so (w, θ) ∈ γBk+1, which proves (23) and thus the proof of the lemma is
complete.

It is trivial to show that a separation oracle for S can be readily converted to
a separation oracle for H. If T1 is the number of operations needed to compute a
feasibility cut for S, then one needs O(T1 + k) operations to compute a feasibility cut
for H. Furthermore, any support oracle for the upper level sets of f(x) over S can
be readily converted to a support oracle for the upper level sets of g(w, θ) over H.
To see why this is true, suppose that (w̄, θ̄) is a feasible solution of HP , and define
x̄ = w̄/θ̄. Then x̄ is feasible for P and let v be the vector produced by the support
oracle for f(x) at x = x̄. Then

{x ∈ S | f(x) ≥ f(x̄)} ⊂ {x ∈ <k | vTx ≥ vT x̄} ,
which implies that{

(w, θ) ∈ H | g(w, θ) ≥ g(w̄, θ̄)
} ⊂ {(w, θ) ∈ <k+1 | vTw − ((vT w̄)/θ̄)θ ≥ 0

}
,

and so the concatenated vector (v,−(vT w̄/θ̄)) is a support vector for the upper level
set of the function g(w, θ) at the feasible point (w̄, θ̄). If T2 is the number of operations
needed to compute an optimality cut on f(x) over S, then one needs O(T2 + k)
operations to compute an optimality cut on g(w, θ) over H.

Finally, returning to the problem CP (d), note that the homogenized problem
corresponding to CP (d) is

HP (d) : maximizew,θ g(w, θ) :=
cTw

θ
s.t. bθ −Aw ∈ CY ,

w ∈ CX ,
θ > 0 ,

(26)

which we refer to as HP (d).

D
ow

nl
oa

de
d 

10
/1

1/
16

 to
 1

8.
11

1.
10

4.
46

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



168 ROBERT M. FREUND AND JORGE R. VERA

5. Complexity results. In this section, we assume that X = <n is endowed
with the Euclidean norm ‖x‖ = ‖x‖2 =

√
xTx. For the purpose of developing com-

plexity results, we focus on three different classes of instances of CP (d), namely,

Class (i): CX and CY are both regular;

Class (ii): CX is regular and CY = {0};

Class (iii): CX = X and CY is regular.

For these three classes of instances, CP (d) can be written as (i) max{cTx | b−Ax ∈
CY , x ∈ CX}, (ii) max{cTx | Ax = b, x ∈ CX}, and (iii) max{cTx | b−Ax ∈ CY , x ∈
X}, respectively.

The following three theorems contain iteration complexity bounds on the ellipsoid
algorithm for these three classes of instances of CP (d), respectively. The proofs of
the theorems are deferred to the end of the section.

Theorem 5.1. Suppose that CX is a regular cone with width τ , that CY is a
regular cone with width τ̄ , and that d ∈ F and C(d) < +∞. Let ε satisfying 0 < ε <
‖c‖∗ be given. Suppose that the ellipsoid algorithm is applied to solve HP (d) and is
initiated with the Euclidean unit ball centered at (w0, θ0) = (0, 0). Then the ellipsoid
algorithm will compute an ε-optimal solution of HP (d) (and hence, by transformation,
to CP (d)) in at most ⌈

8(n+ 2)2 ln

(
4C(d)

min{τ, τ̄}
‖c‖∗
ε

)⌉
iterations, where each iteration must perform at most

(
(n+1)2 +max{2n, S1,m+mn

+S2}
)

operations, and where S1 and S2 are the number of operations needed to per-
form a feasibility cut on CX and CY , respectively.

Theorem 5.2. Suppose that CX is a regular cone with width τ , that CY = {0},
and that d ∈ F and C(d) < +∞. Let ε satisfying 0 < ε < ‖c‖∗ be given. Suppose that
the ellipsoid algorithm is applied to solve HP (d) and is initiated with the Euclidean
unit disk centered at (w0, θ0) = (0, 0) in the subspace {(w, θ) ∈ <n+1 | Aw − bθ = 0}.
Then the ellipsoid algorithm will compute an ε-optimal solution of HP (d) (and hence,
by transformation, to CP (d)) in at most⌈

8(n−m+ 2)2 ln

(
3C(d)

τ

‖c‖∗
ε

)⌉
iterations, where each iteration must perform at most

(
(n−m+ 1)2 + max{2n, S1}

)
operations, and where S1 is the number of operations needed to perform a feasibility
cut on CX .

Theorem 5.3. Suppose that CX = X and CY is a regular cone with width τ̄ ,
and that d ∈ F and C(d) < +∞. Let ε satisfying 0 < ε < ‖c‖∗ be given. Suppose that
the ellipsoid algorithm is applied to solve HP (d), and is initiated with the Euclidean
unit ball centered at (w0, θ0) = (0, 0). Then the ellipsoid algorithm will compute an
ε-optimal solution of HP (d) (and hence, by transformation, to CP (d)) in at most⌈

8(n+ 2)2 ln

(
3C(d)

τ̄

‖c‖∗
ε

)⌉D
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COMPLEXITY OF CONVEX OPTIMIZATION 169

iterations, where each iteration must perform at most
(
(n+ 1)2 + max{2n,m+mn+

S2}
)

operations and where S2 is the number of operations needed to perform a feasi-
bility cut on CY .

Proof of Theorem 5.1. Let

a1 =
6

min{τ, τ̄} , a2 =
4

min{τ, τ̄} , and a3 =
6

min{τ, τ̄} .(27)

Then, from (12), we have that there exists x̂ and r > 0 such that B(x̂, r) ⊂ Xd, and

1

r
≤ a1C(d), ‖x̂‖ ≤ a2C(d) , and

‖x̂‖
r
≤ a3C(d) .(28)

Applying Lemma 3.1, Xε
d contains a ball B(x̄, r̄) with the following properties:

1

r̄
≤ max{ε, z∗(d)− cT x̂+ r‖c‖∗}

εr
and ‖x̄‖ ≤ max {‖x̂‖, ‖x∗‖} ,(29)

where x∗ is any optimal solution of CP (d). Furthermore, from (10) and (11), we have
|z∗(d)| ≤ ‖c‖∗C(d) and ‖x∗‖ ≤ C(d)2.

Examining the first inequality of (29), notice that

max{ε, z∗(d)− cT x̂+ r‖c‖∗}
εr

≥ ‖c‖∗
ε
≥ 1 .

If r̄ > 1, we can reset r̄ = 1 and (29) will still hold. Therefore, there is no loss of
generality in assuming that r̄ ≤ 1.

The dimension in which the ellipsoid algorithm is implemented is n+ 1. Let Hε
d

denote the set of ε-optimal solutions of HP (d), and so Hε
d is the image of Xε

d under
the transformation h(·) of (20). Then, from the ellipsoid algorithm theorem (16), the
algorithm will compute an ε-optimal solution of HP (d) in at most⌈

2(n+ 2) ln

(
vol(Bn+1)

vol(Bn+1 ∩Hε
d)

)⌉
(30)

iterations, where Bn+1 is the (n+ 1)-dimensional Euclidean unit ball.
Now let T = Xε

d. Then Hε
d = h(T ) and B(x̄, r̄) ⊂ Xε

d. Furthermore, r̄ ≤ 1 from
the comments above. We therefore can apply Lemma 4.1 to bound the logarithm
term of (30):

ln

(
vol
(
Bn+1

)
vol (Bn+1 ∩Hε

d)

)
≤ (n+ 1) ln

(
2 +

3(‖x̄‖+ 1)

r̄

)
+ [ln (‖x̄‖)]+ .(31)

We now bound the relevant quantities in (31) in order to obtain the desired bound
on (30).

From (29) we have

‖x̄‖
r̄

≤ 1

ε
max {‖x̂‖, ‖x∗‖}max

{
ε

r
,
z∗(d)− cT x̂

r
+ ‖c‖∗

}

≤ 1

ε
max {‖x̂‖, ‖x∗‖}

(
max

{
ε

r
,
z∗(d)− cT x̂

r

}
+ ‖c‖∗

)

≤ 1

ε
max

{‖x̂‖
r

,
‖x∗‖
r

}
max

{
ε, z∗(d)− cT x̂}+

1

ε
max {‖x̂‖, ‖x∗‖} ‖c‖∗ .D
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170 ROBERT M. FREUND AND JORGE R. VERA

Substituting in the bounds from (28), (10), and (11) and recalling that ε ≤ ‖c‖∗, we
obtain from the above inequality

‖x̄‖
r̄

≤ 1

ε
max

{
a3C(d), a1C(d)3

}
max {‖c‖∗, ‖c‖∗C(d) + ‖c‖∗a2C(d)}

+
1

ε
max

{
a2C(d), C(d)2

} ‖c‖∗ ,
whereby we obtain

‖x̄‖
r̄
≤ ‖c‖∗

ε
C(d)4 [(1 + a2) (max {a1, a3}) + a2] .(32)

From (29) we have

1

r̄
≤ max{ε, z∗(d)− cT x̂+ r‖c‖∗}

εr

=
1

ε
max

{
ε

r
,
z∗(d)− cT x̂

r
+ ‖c‖∗

}

≤ 1

ε

(
max

{‖c‖∗
r

,
z∗(d)− cT x̂

r

}
+ ‖c‖∗

)

≤ 1

ε

[
max

{‖c‖∗
r

,
‖c‖∗C(d)

r
+
‖c‖∗‖x̂‖

r

}
+ ‖c‖∗

]
(from (10))

≤ ‖c‖∗
ε

[
max

{
a1C(d), a1C(d)2 + a3C(d)

}
+ 1
]

(from (28)),

and so

1

r̄
≤ ‖c‖∗

ε
C(d)2 (a1 + a3 + 1) .(33)

We also have from (29) that

‖x̄‖ ≤ max {‖x̂‖, ‖x∗‖} ≤ max
{
a2C(d), C(d)2

} ≤ a2C(d)2 .(34)

Substituting (32), (33), and (34) into (31) and then substituting (31) into (30)
yields the following iteration bound on the ellipsoid algorithm:

(35)⌈
2(n+ 2)

[
(n+ 1) ln

(
2 +

3‖c‖∗
ε
C(d)4 (1 + a1 + a2 + a3 + (1 + a2) max {a1, a3})

)
+ ln(a2C(d)2)

]⌉
.

Substituting (27) into (35), we obtain the following chain of upper bounds on the
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COMPLEXITY OF CONVEX OPTIMIZATION 171

iteration bound:⌈
2(n+ 2)

{
(n+ 1) ln

(
2 +

141‖c‖∗
ε(min {τ, τ̄})2

C(d)4

)
+ ln

(
4

min {τ, τ̄}C(d)2

)}⌉

≤
⌈

2(n+ 2)2 ln

(
143‖c‖∗

ε

( C(d)

min {τ, τ̄}
)4
)⌉

≤
⌈

8(n+ 2)2 ln

(
4C(d)

min {τ, τ̄}
‖c‖∗
ε

)⌉
.

The number of operations needed to perform an optimality cut in HP (d) is at
most 2n, since an upper level set support vector for g(w, θ) at a feasible point (w̄, θ̄)
of HP (d) is computed as (c,−(cT w̄/θ̄)), and the number of operations needed to
compute and test for feasibility of bθ −Aw ∈ CY is (m+mn+ S2).

The proofs of Theorems 5.2 and 5.3 are accomplished by slightly modifying the
analysis in the proof of Theorem 5.1 as per the following remark.

Remark 5.1. Note in the proof of Theorem 5.1 that the ellipsoid algorithm
iteration bound in (35) was derived based only on the following facts: the feasible
region of CP (d) contains a ball B(x̂, r) satisfying 1

r ≤ a1C(d), ‖x̂‖ ≤ a2C(d), and
‖x̂‖
r ≤ a3C(d); |z∗(d)| ≤ ‖c‖∗C(d); and there exists an optimal solution x∗ of CP (d)

satisfying ‖x∗‖ ≤ C(d)2.
This remark will be used in the proofs of Theorems 5.2 and 5.3, which we now

do in reverse order.
Proof of Theorem 5.3. Let

a1 =
3

τ̄
, a2 =

3

τ̄
, and a3 =

2

τ̄
.(36)

Then from (14) we know that the feasible region of CP (d) contains a ball B(x̂, r)

satisfying 1
r ≤ a1C(d), ‖x̂‖ ≤ a2C(d), and ‖x̂‖

r ≤ a3C(d). Also, from (10), we have
|z∗(d)| ≤ ‖c‖∗C(d). Furthermore, from (11), there exists an optimal solution x∗ of
CP (d) satisfying ‖x∗‖ ≤ C(d)2. Then, from Remark 5.1, the iteration bound of (35)
is valid with values of a1, a2, and a3 from (36). Substituting (36) into (35) yields the
following iteration bound:⌈

2(n+ 2)

{
(n+ 1) ln

(
2 +

63‖c‖∗
ετ̄2

C(d)4

)
+ ln

(
3

τ̄
C(d)2

)}⌉

≤
⌈

2(n+ 2)2 ln

(
65‖c‖∗
ε

(C(d)

τ̄

)4
)⌉

≤
⌈

8(n+ 2)2 ln

(
3C(d)

τ̄

‖c‖∗
ε

)⌉
.

Proof of Theorem 5.2. The feasible region of CP (d) lies in the affine set {x ∈
<n | Ax = b}. In order to apply the ellipsoid algorithm conveniently, we construct
a Euclidean-norm-preserving linear transformation to <(n−m). For concreteness, we
assume with no loss of generality that A is an m × n real matrix. Let F be an
(n −m) × n matrix whose rows form an orthonormal basis for the null space of A,
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172 ROBERT M. FREUND AND JORGE R. VERA

and let g = AT (AAT )−1b, where C(d) < +∞ implies that rank(A) = m and so F and
g are well defined. Then the following problems are equivalent under the invertible
linear transformations s = Fx, x = FT s+ g between {x ∈ <n | Ax = b} and <(n−m):

CP (d) : maximize cTx Q : maximize cTFT s+ cT g
s.t. Ax = b, s.t. FT s+ g ∈ CX .

x ∈ CX ,

Let

a1 =
3

τ
, a2 =

4

τ
, and a3 =

3

τ
.(37)

Then, from (13), we know that there exists x̂ and r for which Ax̂ = b and B(x̂, r) ⊂
CX , and that satisfies 1

r ≤ a1C(d), ‖x̂‖ ≤ a2C(d), and ‖x̂‖r ≤ a3C(d). If we let ŝ := Fx̂,
then it is straightforward to show that B(ŝ, r) is contained in the feasible region of Q

and that ‖ŝ‖ ≤ ‖x̂‖ ≤ a2C(d), and ‖ŝ‖r ≤ a3C(d), where ‖s‖ = ‖s‖2 for s ∈ <n−m and
B(s, r) is the Euclidean ball centered at s ∈ <n−m with radius r. Let zQ denote the
optimal objective function value of Q, and let x∗ denote an optimal solution of CP (d).
Then one can also easily show that zQ = z∗(d), and so |zQ| = |z∗(d)| ≤ ‖c‖∗C(d) from
(10). Furthermore, let s∗ := Fx∗. Then it is easy to show that s∗ is an optimal
solution of Q and ‖s∗‖ ≤ ‖x∗‖ ≤ C(d)2 from (11). Then, from Remark 5.1, the
iteration bound of (35) is valid for the program Q with values of a1, a2, and a3 from
(37) and with the dimension n replaced by n−m. Substituting (37) into (35) yields
the following iteration bound:⌈

2(n−m+ 2)

{
(n−m+ 1) ln

(
2 +

78‖c‖∗
ετ2

C(d)4

)
+ ln

(
4

τ
C(d)2

)}⌉

≤
⌈

2(n−m+ 2)2 ln

(
80‖c‖∗
ε

(C(d)

τ

)4
)⌉

≤
⌈

8(n−m+ 2)2 ln

(
3C(d)

τ

‖c‖∗
ε

)⌉
.

6. Further issues: Applications to other volume-reducing cutting-plane
algorithms; testing for ε-optimality; testing for infeasibility; skewness of
the ellipsoids.

Applications to other volume-reducing cutting-plane algorithms. The
ellipsoid algorithm belongs to a larger class of efficient volume-reducing cutting-plane
algorithms that includes the method of centers of gravity [11], the method of inscribed
ellipsoids [10], and the method of volumetric centers [22], among others. Here we
discuss how our analysis of the ellipsoid algorithm can be easily extended to these
other methods. To keep the discussion simple, we focus on the class of instances of
CP (d), where CX and CY are both regular cones.

Consider the strategy of applying either the method of centers of gravity or the
method of inscribed ellipsoids to solve CP (d) by solving HP (d), starting with the
unit ball Bn+1 in <n+1 (centered at the origin) and with the goal of computing an
ε-optimal solution to HP (d) and hence to CP (d) as well. Because both of these
methods achieve an (absolute) constant reduction in volume at each iteration, the
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COMPLEXITY OF CONVEX OPTIMIZATION 173

iteration complexity of each of these methods will be O( ln(
vol(Bn+1)

vol(Bn+1∩Hε
d)

)) in order

to find an ε-optimal solution of CP (d). Now notice that a slight rearrangement of the
proof of Theorem 5.1 yields the following inequality:

ln

(
vol
(
Bn+1

)
vol (Bn+1 ∩Hε

d)

)
≤ 4(n+ 2) ln

(
4C(d)

min{τ, τ̄}
‖c‖∗
ε

)
.(38)

Therefore, the iteration complexity of these two methods is O(n ln( C(d)
min{τ,τ̄}

‖c‖∗
ε )).

The analysis of the method of volumetric centers is roughly the same as above;
this method also achieves a constant reduction in volume at each iteration. However,
the volumetric centers method must be initiated with a polytope as opposed to a
Euclidean ball. Suppose we endow X = <n with the L∞ norm rather than the
Euclidean norm and that we apply the method of volumetric centers to solve HP (d)
initiated at the unit cube Cn+1 in <n+1. Then an identical version of (38) can
be proved with Bn+1 replaced by Cn+1, and so one can prove that the method of

volumetric centers also has iteration complexity O(n ln( C(d)
min{τ,τ̄}

‖c‖∗
ε )). We also point

out that the method of volumetric centers requires fewer total arithmetic operations
than the ellipsoid algorithm.

Similar results can be derived for the two other classes of instances of CP (d).
For a more thorough discussion of the complexity of volume-reducing cutting-plane
methods, see [12].

Testing for ε-optimality by solving the dual problem. One uncomfortable
fact about Theorems 5.1, 5.2, and 5.3 is that while the ellipsoid algorithm is guar-
anteed to find an ε-approximate solution of CP (d) in the stated complexity bounds
of these theorems, the quantities in the bounds may be unknown (one may know
the relevant widths of the cones, but in all likelihood the condition number C(d) is
unknown), and so one does not know when an ε-approximate solution of CP (d) has
been found. An obvious strategy for overcoming this difficulty is to solve the primal
and the dual problems in parallel, and then test at each iteration (of each algorithm)
if the best primal and dual solutions obtained so far satisfy a duality gap of at most ε.
Because of the natural symmetry in format of the dual pair of problems CP (d) and
CD(d), one can obtain complexity results for solving the dual problem CD(d) that
exactly parallel those of Theorems 5.1, 5.2, and 5.3, where the quantities ‖c‖∗, n, τ ,
and τ̄ are replaced by ‖b‖,m, τ̄∗, and τ∗, respectively, and where the cones CX and
CY are replaced by C∗Y and C∗X in the statements of the complexity results. One also
must assume that Y ∗ = <m and that the norm ‖y‖∗ on <m is the Euclidean norm.

Testing for infeasibility. If one is not sure whether CP (d) has a feasible solu-
tion, the ellipsoid algorithm can be run to test for infeasibility of the primal problem
(in parallel with attempting to solve CP (d)). This can be accomplished as follows.
First, assume that the dual space Y ∗ = <m is endowed with the Euclidean norm ‖y‖2.
Second, note that CP (d) has no feasible solution if the “alternative” system,

AP (d) : AT y ∈ C∗X ,
y ∈ C∗Y ,
yT b < 0,

has a solution. Define the following “alternative” set:

Yd = {y ∈ Y ∗ | AT y ∈ C∗X , y ∈ C∗Y , yT b ≤ 0}.(39)

D
ow

nl
oa

de
d 

10
/1

1/
16

 to
 1

8.
11

1.
10

4.
46

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



174 ROBERT M. FREUND AND JORGE R. VERA

Suppose CP (d) has no feasible solution. Then, as special cases of Theorems 5.2, 5.4,
and 5.6 of [7], Yd must contain an inscribed Euclidean ball B2(ŷ, r) (or a disk in the
vector subspace {y ∈ <m | AT y = 0} if CX = X) such that ‖ŷ‖2 + r ≤ 1 (and so
B2(ŷ, r) is contained in the unit Euclidean ball) and such that

(i) r ≥ min{τ∗, τ̄∗}
4CP (d)

when CX and CY are both regular,

(ii) r ≥ τ∗

2CP (d)
when CX is regular and CY = {0},

(iii) r ≥ min{τ̄∗, τ̄}
4CP (d)

when CX = X and CY is regular.

These results can then be used to demonstrate that an upper bound on the
number of iterations needed to find a solution of AP (d) using the ellipsoid algorithm
starting with the Euclidean unit ball in <m (or the unit disk in the vector subspace
{y ∈ <m | AT y = 0} if CX = X) is

(i): O

(
m2 ln

( CP (d)

min{τ∗, τ̄∗}
))

when CX and CY are both regular,

(ii): O

(
m2 ln

(CP (d)

τ∗

))
when CX is regular and CY = {0},

(iii): O

(
(m− n)2 ln

( CP (d)

min{τ̄∗, τ̄}
))

when CX = X and CY is regular.

Bounding the skewness of the ellipsoids in the ellipsoid algorithm. Let
Ex̄,Q = {x ∈ X | (x − x̄)TQ−1(x − x̄) ≤ 1} be an ellipsoid centered at the point
x̄, where Q is a positive definite matrix. The skewness of Ex̄,Q is defined to be the
ratio of the largest to the smallest eigenvalue of the matrix Q defining Ex̄,Q, and so
the skewness also corresponds to the traditional condition number of the matrix Q.
The skewness of the ellipsoids generated in an application of the ellipsoid algorithm
determines the numerical stability of the ellipsoid algorithm, since each iteration of
the ellipsoid algorithm uses the current value of Q−1 to update the center x̄ of the
ellipsoid and to perform a rank-one update of Q−1; see [3], for example. Furthermore,
one can show that the logarithm of the skewness of the ellipsoid computed at a given
iteration is sufficient to specify the numerical precision requirements of the ellipsoid
algorithm at that iteration. Herein, we provide an upper bound on the skewness of
all of the ellipsoids computed in the ellipsoid algorithm as a function of the condition
number C(d) of CP (d).

The skewness of the unit ball (which is used to initiate the ellipsoid algorithm
herein) is 1. From the formula for updating the ellipsoids encountered in the ellipsoid
algorithm at each iteration, the skewness increases by at most (1 + 2

k−1 ) at each
iteration, where k is the dimension of the space in which the ellipsoid algorithm is
implemented. Therefore, the skewness of the ellipsoid at iteration j is bounded above
by (1 + 2

k−1 )j . Let us consider the class of instances defined for Theorem 5.1, for
example, and let J be the (unrounded) iteration bound for the ellipsoid algorithm
from Theorem 5.1, namely,

J = 8(n+ 2)2 ln

(
4C(d)

min{τ, τ̄}
‖c‖∗
ε

)
,(40)
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COMPLEXITY OF CONVEX OPTIMIZATION 175

and assume for simplicity of exposition that J is an integer. Let (Skew)j denote the
skewness of the ellipsoid computed in the ellipsoid algorithm at iteration j. Then, for
this class of instances, we have k = n+ 1, whereby

(Skew)J ≤
(

1 +
2

n

)J
=
(
e(ln(1+ 2

n ))
)J

= eJ(ln(1+ 2
n )) =

(
eJ
)(ln(1+ 2

n ))
.(41)

Substituting for (40) in (41), we obtain

(Skew)J ≤
(

4C(d)

min{τ, τ̄}
‖c‖∗
ε

)8(n+2)2 ln(1+ 2
n )
.

However, the exponent in the above expression is bounded above by 45n for n ≥ 2
(actually, it is bounded above by 17n for large n ≥ 49), and we have

(Skew)J ≤
(

4C(d)

min{τ, τ̄}
‖c‖∗
ε

)45n

.

Taking logarithms, we can rewrite this bound as

ln (Skew)J ≤ 45n ln

(
4C(d)

min{τ, τ̄}
‖c‖∗
ε

)
.(42)

Therefore, the logarithm of the skewness of the ellipsoids encountered in the ellipsoid
algorithm grows at most linearly in the logarithm of the condition number C(d). Also,
the bound in (42) specifies the sufficient numerical precision requirements for the
ellipsoid algorithm (in terms of ln(C(d)) and other quantities) because the logarithm
of the skewness is sufficient to specify such requirements. This is similar to the
results on numerical precision presented in [25] for an interior-point method for linear
programming.

Finally, the above reasoning can be used to obtain similar bounds on the skewness
for the other two classes of instances of CP (d).
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