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Abstract
Given a data instance d = (A, b, c) of a linear program, we show that certain

properties of solutions along the central trajectory of the linear program are inherently
related to the condition number C(d) of the data instance d = (A, b, c), where C(d) is
a scale-invariant reciprocal of a closely-related measure p(d) called the "distance to
ill-posedness." (The distance to ill-posedness essentially measures how close the data
instance d = (A, b, c) is to being primal or dual infeasible.) We present lower and
upper bounds on sizes of optimal solutions along the central trajectory, and on rates
of change of solutions along the central trajectory, as either the barrier parameter
,a or the data d = (A, b, c) of the linear program is changed. These bounds are all
linear or polynomial functions of certain natural parameters associated with the linear
program, namely the condition number C(d), the distance to ill-posedness p(d), the
norm of the data Ildll, and the dimensions m and n.

1 Introduction

The central trajectory of a linear program consists of the set of optimal solutions x = x(u)
and (y, s) = (y(/u), s(t)) to the logarithmic barrier problems:

P, (d) : min {cTx + p(x) : Ax = b,x > 0},

D,(d) : max{bTy - p(s): ATy + s =c, s >},

where for u > 0 in Rn, p(u) = - =1 ln(uj) is the logarithmic barrier function, d = (A, b, c)
is a data instance in the space of all data D = {(A, b, c) : A E Rmxn, b E Rm , c E Rn},
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and the parameter ip is a positive scalar considered independent of the data instance
d = (A, b, c) E D. The central trajectory is fundamental to the study of interior-point
algorithms for linear programming, and has been the subject of an enormous volume of
research, see among many others, the references cited in the surveys by Gonzaga [12] and
Jansen et al. [13], and the book by Wright [32]. It is well known that programs P,(d)
and D,1(d) are related through Lagrangian duality; if each program is feasible, then both
programs attain their optima, and optimal solutions x = x(p) and (y,s) = (y(u), s(pu))
satisfy cTx - bTy = nit, and hence exhibit a linear programming duality gap of nip for the
dual linear programming problems associated with P,,(d) and D~,(d).

The purpose of this paper is to explore and demonstrate properties of solutions to
P,,(d) and D,,(d) that are inherently related to the condition number C(d) of the data in-
stance d = (A, b, c), where the condition number C(d) and a closely-related measure p(d)
called the "distance to ill-posedness" were introduced by Renegar in a recent series of pa-
pers [19, 20, 21, 22]. In the context of the central trajectory problem, p(d) essentially is the
minimum change Ad = (A, Ab, Ac) in the data d = (A, b, c) necessary to create a data
instance d + Ad that is an infeasible instance of P,(.) or D,(.). The condition number of
the data instance d = (A, b, c), denoted C(d), is defined to be C(d) := 11dll/p(d) and is a
scale-invariant reciprocal of the distance to ill-posedness p(d), so that C(d) goes to o as
the data instance d approaches infeasibility.

The main results in the paper are stated in Sections 3 and 4. In Section 3 we present up-
per and lower bounds on sizes of optimal solutions to the barrier problems P, (d) and D, (d)
in terms of the conditioning of the data instance d. Theorems 3.1 and 3.2 state bounds
on such solutions that are linear in u, where the constants in the bounds are polynomial
functions of the condition number C(d), the distance to ill-posedness p(d), the dimension
n, the norm of the data lldll, or their inverses. These theorems show in particular that as
pu goes to zero, that j(M) grows at least linearly in pu; and as goes to ooc, xj(p) grows
at most linearly in . Moreover, in Theorem 3.3, we also show that when the feasible
region of P,,(d) is unbounded, then certain coordinates of x(p) grow exactly linearly in 
as -, oc, all at rates bounded by polynomial functions of the condition number C(d), the
distance to ill-posedness p(d), the dimension n, the norm of the data fldll, or their inverses.

In Section 4, we study the sensitivity of the optimal solutions to P,(d) and D,(d) as
either the data d = (A, b, c) changes or the barrier parameter changes. Theorems 4.1
and 4.4 state upper bounds on the sizes of the changes on optimal solutions as well as in the
optimal objective values as the data d = (A, b, c) is changed. Theorems 4.3 and 4.5 state
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upper bounds on the sizes of changes in optimal solutions and optimal objective values as
the barrier parameter fu is changed. Along the way, we prove Theorem 4.2, which states
bounds on the norm of the matrix (AX 2 (,)AT) - l. This matrix is the main computational
matrix in interior-point central trajectory methods. All of the bounds in this section are
polynomial functions of the condition number C(d), the distance to ill-posedness p(d), the
dimension n, the norm of the data ldl, or their inverses.

Literature review. The study of perturbation theory and information complexity for
convex programs in terms of the distance to ill-posedness p(d) and the condition number
C(d) of a given data instance d has been the subject of many recent papers. In particular,
Renegar in [19] studied perturbations in the very general setting:

RLP: z=sup{c*x:Ax< b,x >0 xEX),

where X and y denote real normed vector spaces, A : X - y is a continuous linear
operator, c* : X -+ X is a continuous linear functional, and the inequalities Ax < b and
x > 0 are induced by any closed convex cones (linear or nonlinear) containing the origin
in X and y, respectively. Previous to this paper of Renegar, others studied perturbations
of linear programs and systems of linear inequalities, but not in terms of the distance to
ill-posedness (see [16, 23, 24, 25]). In [20] and [21] Renegar introduced the concept of a fully
efficient algorithm; and provided a fully-efficient algorithm that given any data instance d
answers whether the program RLP associated with d is consistent or not.

Vera in [30] developed a fully-efficient algorithm for a certain form of linear program-
ming that is a special case of RLP in which the spaces are finite-dimensional, the linear
inequalities are induced by the nonnegative orthant, and nonnegativity constraints x > 0
do not appear; that is, the problem RLP is min{cT x : Ax < b,x E n}. In [28], Vera
established bounds similar to those in [19] for norms of optimal primal and dual solutions
and optimal objective function values. He then used these bounds to develop an algorithm
for finding approximate optimal solutions of the original instance. In [29] he provided a
measure of the precision of a logarithmic barrier algorithm based upon the distance to
ill-posedness of the instance. To do this, he followed the same arguments as Den Hertog,
Roos, and Terlaky [5], making the appropriate changes when necessary to express their
results in terms of the distance to ill-posedness.

Filipowski [6, 7, 8] expanded upon Vera's results under the assumption that it is known
beforehand that the primal data instance is feasible. In addition, she developed several
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fully-efficient algorithms that approximate optimal solutions to the original instance under
this assumption.

Freund and Vera [9] addressed the issue of deciding feasibility of RLP. The problem
that they studied is defined as finding x that solves b - Ax E Cy and x E Cx, where Cx
and Cy are closed convex cones in the linear vector spaces X and y, respectively. They
developed optimization problems that allow one to compute exactly or at least estimate
the distance to ill-posedness. They also showed additional results relating the distance to
ill-posedness to the existence of certain inscribed and circumscribed balls for the feasible
region, which has implications for Khachiyan's ellipsoid algorithm [14].

Organization of the paper. This paper is organized as follows. In Section 2 we for-
mally review the concept of ill-posed data instances, the distance to ill-posedness p(d), and
the condition number C(d). In this section we also discuss the notational conventions and
present a few preliminary results that are used throughout the paper.

In Section 3 we present results on lower and upper bounds on sizes of optimal solutions
along the central trajectory of the dual logarithmic barrier problems P,(d) and D,(d). The
upper bound results are stated in Theorem 3.1, and the lower bound results are stated in
Theorem 3.2 and Theorem 3.3.

In Section 4 we study the sensitivity of optimal solutions along the central trajectory to
changes (perturbations) in the data d = (A, b, c) and in the barrier parameter P. Theorems
4.1 and 4.3 state upper bounds on changes in optimal solutions and objective values along
the central trajectory as the data instance d is changed to a "nearby" data instance d + Ad.
Theorems 4.4 and 4.5 state upper bounds on changes in optimal solutions and objective
values along the central trajectory as the barrier parameter A is changed. Theorem 4.2
states upper and lower bounds on the norm of the matrix (AX 2 (,)A T) -1. Corollary 4.1
states upper bounds on the first derivatives i(/) and ((pu), S(,)) of optimal solutions along
the central trajectory with respect to the barrier parameter A.

Section 5 contains a brief examination of properties of analytic center problems related
to condition measures. These properties are used to demonstrate one of the lower bound
results in Section 3.
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2 Notation, Definitions, and Preliminaries

We denote by D the space of data instances, that is, D = {(A,b,c) : A E Jmxn, b E
Rm, c E Rn}, where m < n. The data for the programs P,(d) and D.(d) is the array
d = (A, b, c) E D. As observed in the Introduction, the positive scalar is treated as a
parameter independent of the data d = (A, b, c). Given a subset of data instances S C 2),
we denote by cl(S) the closure of S, by int(S) the interior of S, and by OS the boundary
of S.

Consider the following subset of the data set ):

. = {(A, b, c) E : there exists (x, y) such that Ax = b, x > 0, ATy < c},

that is, the elements in F correspond to those instances in D for which P,,(d) and D,,(d)
are feasible. The complement of F, denoted by Frc, is the set of data instances d = (A, b, c)
for which P,(d) or D,,(d) is infeasible. The boundary of F and Fc is the set

B = . = f = cl(F) n cl(YC).

Note that B # 0 since (0, 0, 0) E B. The data instances d = (A, b, c) in B are called the
ill-posed data instances, due to the fact that arbitrarily small changes in the data d can
yield data instances in F as well as data instances in FC.

In order to measure the "distance to ill-posedness" of a given data instance, we need
to define a norm over the data set D. To do so we define the following norms on the space

ljvUlljj max Iv ) i /

<i<e i

for each v E Rk, where 1 < a < o, and where k = m or k = n. When computing the
norm of a given vector using one of these norms, we do not explicitly make the distinction
between the spaces Rm and Rn because the dimension will always be clear from the context.
Given an m x n-matrix A, we define the norm of A to be the operator norm:

flAfla,, = max{llAxp: x EC Rn2 , xIIl < 1},
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where 1 < a, p < o. In particular, we omit the subscripts when a = 3 = 1, that is,

It follows that IIAI = maxl<j<n'im=1 Aij. Furthermore, it follows that [1AT II,O =
IAl1,1 = IIAll. Finally, let A11H2 denote the norm defined by:

IIAI12 := JlA112,2.

Observe that if A = uvT, where u E Rm and v E Rn, then IIAII = ullu11Ivllv .

The following proposition states well known bounds among the norms I1 ll, 1112 , and
II .I1c.

Proposition 2.1 The following inequalities hold:

(i) f[v112 < j[v[1 < /11V2 for any v E jk.

(ii) lvll _< Ilvll < kllvll0 for any v E Rk.

(iii) (1/Vk)llvll 2 _ 11lv11- < lvll2 for any v E Rk.

(iv) (1/vi)llAll2 < AIIAl < V-lAIA12 for any A E RFmxn.

For d = (A, b, c) G D, we define the product norm on the
Rm x Rn as

Cartesian product mxn x

Ildll = max {11AII, Ilbll1, cjll}.

We define the ball centered at d E D with radius 6 as:

B(d, 6) = {d + Ad E D: IlAdll < 6}.

For a data instance d E 2D, the "distance to ill-posedness" is defined as follows:

p(d) = inf{ZlAdll : d + Ad E B},

see [19, 20, 21, 22], and so p(d) is the distance of the data instance d = (A, b, c) to the set
of ill-posed instances B. Observe that under the particular choice of norms used to define
the norm on D, the distance to ill-posedness p(d) can be computed in polynomial time
whenever d is rational (see Remark 3.1 of [9]).
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It is straightforward to show that

p(d) = sup{: B(d, ) c F) if d E (1)
( = sup{: B(d, 6) C FC) if d E FC,

so that we could also define p(d) by employing (1). The "condition number" C(d) of the
data instance d is defined as

C(d) = dp()
p(d)

when p(d) > 0, and C(d) = oo when p(d) = 0. The condition number C(d) can be viewed
as a scale-invariant reciprocal of p(d), as it is elementary to demonstrate that C(d) = C((ad)
for any positive scalar a. Moreover, for d = (A, b, c), let Ad = (-A, -b, -c) and observe
that since d + Ad = (0,0,0) E B and B is a closed set, then for any d B we have
Ildll = Iladll > p(d) > 0, so that C(d) > 1. The value of C(d) is a measure of the relative
conditioning of the data instance d.

The interior of F, int(Y), is characterized in the following lemma. For a proof of this
lemma see Robinson [25] or Ashmanov [2].

Lemma 2.1

int(JF) = {d = (A, b, c): d E F and rank(A) = m}.

Observe that given a data instance d E F and p(d) > 0 (so that d C int(.F)), it follows
from the strict convexity of the logarithmic barrier and the full rank of A that the programs
P,(d) and D,(d) will each have a unique optimal solution.

Furthermore, we state two elementary propositions that are well known variants of
classical "theorems of the alternative" for linear inequality systems, see Gale [10], and are
stated in the context of the central trajectory problems studied here.

Proposition 2.2 Exactly one of the following two systems has a solution:

* Ax = b and x> O.

* ATy < 0, bTy > 0, and (ATy, bTy) O.

Proposition 2.3 Exactly one of the following two systems has a solution:

7



· ATy < C.

· Ax= x>O, x Tx< O , and x ! O.

Finally, we introduce the following notational convention which is standard in the field
of interior point methods: if x E Rn, then X = diag(xl, ... , n). Moreover, we denote by
e a vector of ones whose dimension depends on the context of the expression where this
vector appears, so that no confusion should arise.

3 Upper and Lower Bounds of Solutions Along the
Central Trajectory

This section presents results on lower and upper bounds on sizes of optimal solutions along
the central trajectory, for the pair of dual logarithmic barrier problems P,(d) and D,(d).
As developed in the previous section, d = (A, b, c) represents a data instance. Before
presenting the first bound, we define the following scalar quantity, denoted /C(d, ), which
appears in many of the results of this section as well as in Section 4:

IC(d, ) = C(d)2 + p(- (2)

The first result concerns upper bounds on sizes of optimal solutions.

Theorem 3.1 If d = (A, b, c) E 7 and p(d) > O, then

IIx()II1 < IC(d,/), (3)
Iy()IIK < Ak(d,/), (4)
ls(u) oo < 211dll C(d, ), (5)

for the optimal solution x(l) to P,(d) and the optimal solution (y(pi),s(/)) to the dual
problem D,(d), where IC(d, ) is the scalar defined in (2).

This theorem states that the norms of optimal solutions along the central trajectory are
bounded above by quantities only involving the condition number C(d) and the distance to
ill-posedness p(d) of the data d, as well as the dimension n and the barrier parameter u.
Furthermore, for example, the theorem shows that the norm of the optimal primal solution
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along the central trajectory grows at most linearly in the barrier parameter /u, and at a
rate no larger than n/p(d), as goes to oo.

Proof of Theorem 3.1: Let = x(u) be the optimal solution to P,(d) and (, 8) =
(y(/i), s(p)) be the optimal solution to the corresponding dual problem D,(d). Note that
the optimality conditions of P,(d) and D,(d) imply that cT = bTy + /n.

Observe that since = c-ATY, then llo < Cllcl,+ AT oo,o T Ioo. Since IIAT O,00 =
IAll, we have that l lOO I< ldll(1 + I I ), and using the fact that C(d) > 1 the bound (5)

on lllj100 is a consequence of the bound (4) on II[II. It therefore is sufficient to prove the
bounds on llxll1 and on fIlIYI. In addition, the bound on 11711 is trivial if y = 0, so from
now on we assume that y 7 0. Also, let be a vector in ~Rm such that yTy = III and
1111l = 1.

The rest of the proof proceeds by examining three cases:

(i) CTi < 0,

(ii) 0 < CTi < uan, and

(iii) n < CTi.

In case (i), let AA = -beT/llill. Then (A + A) = 0, x > 0, and cTy < 0. From
Proposition 2.3, we have that D,,(d + Ad) is infeasible, and so p(d) < lAdll = iAAll =
llbll/llx[ll1 < lldll/llll1. Therefore, llll1i < lldll/p(d) = C(d) < K(d,,/), since C(d) > 1 for
any d. This proves (3) in this case.

Let 0 = bTp, Ab = -A/[ ll)o, AA = -cT/llll , and d + Ad = (A + AA, b + Ab, c).
Observe that (b + Ab)T7 = 0 and (A + AA)Ty < 0, so that P(d + Ad) is infeasible
from Proposition 2.2. Therefore, p(d) < Adll = max{jfc [oo, l IS}/fcllOo. Hence, IIIIo_ <
max{C(d), 10/p(d)}. Furthermore, 101 = bTl = CT i- 1unl < IIIIIllC + n < C(d)ldll +
,un. Therefore, again using the fact that C(d) > 1 for any d, we have (4).

In case (ii), let d + Ad = (A + AA, b, c + Ac), where AA = -beT/ j llil and Ac =

-/une/lllll. Observe that (A + AA)& = 0 and (c + Ac)T; < 0. From Proposition 2.3,
D,(d + Ad) is infeasible, and so we conclude that p(d) < IlAdll = max{ll All, lAclloo} =
max{ llblll, n}/llll < (dl + /Un)/l:ll1. Therefore, li lli < C(d) + ,un/p(d) < IC(d, ,u).
This proves (3) for this case.

Now, let d + Ad = (A + AA, b + Ab, c), where AA = -YcT/jj7 oo and Ab = nyl/ 7 OO.
Observe that (b + Ab)TT = bTp + n = cT > O0 and (A + AA)TQ < 0. Again, from
Proposition 2.2, P,(d + Ad) is infeasible, and so we conclude that p(d) < lAdll =
max{ll All, IlAbll1 = max{llclloo,,n}/lllloo < ( ldll + [an)/llo. Therefore, 1111 <
C(d) + uan/p(d) < IC(d, ).
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In case (iii), we first consider the bound on MI[o. Let d + Ad = (A + AA, b,c),
where AA = -cT/[I[Oo,1. Since (A + AA)Ty < 0 and bT -- cT - n > 0, it follows
from Proposition 2.2 that P,(d + Ad) is infeasible and so, p(d) < IlAdl = IIlcoll/lllo.
Therefore, II l IK < C(d) < C(d, ).

Finally, let AA = -beT/lI ll and Ac = -e/jlljll1, where 0 = cT. Observe that
(A + AA) = 0 and (c + Ac)T =- 0. Using Proposition 2.3, we conclude that D,, (d + Ad)
is infeasible and so, p(d) < lAdll = max{llAll, Acll,} = max{llbll,O}/ll Ijj, so that

xll1 < max{C(d),6/p(d)}. Furthermore, 0 = cT = bT + /n < L bIlloll + pn <
IldllC(d) +Ln. Therefore, Illl < (d, ).
q.e.d.

Note that the scalar quantity C(d, ) appearing in Theorem 3.1 is scale invariant in
the sense that C(Ad,X Ay) = C(d, /) for any A > 0. From this it follows that the bounds
in Theorem 3.1 on x(u)lll1 and IIy(/u)II are also scale invariant. However, as one would
expect, the bound on Ils() lloo is not scale invariant, since Ils(u) oo is sensitive to positive
scalings of the data. Moreover, observe that as - 0 the bounds in Theorem 3.1 converge
to the bounds presented by Vera in [28] for optimal solutions to linear programs of the
form min{cT x: Ax = b, x > 0}.

Examining the proof of Theorem 3.1, it is clear that the bounds stated in Theorem 3.1
will not generally be achieved. Indeed, implicit in the proof is the fact that bounds tighter
than those in the theorem can be proved, and will depend on which of the three cases in
the proof are applicable. However, our goal lies mainly in establishing bounds that are
polynomial in the condition number C(d), the parameter , the size of the data Ildll, and
the dimensions m and n, and not necessarily in establishing the best achievable bounds.

We now present a simple example illustrating that the bounds in Theorem 3.1 are not
necessarily tight. Let m = 1, n = 2, and

d=(A, b. c)= (" ll [][ -1 ])

For this data instance, we have that Ildl = 1 and p(d) = 1, so that C(d) = 1 and C(d,,u) 
1 +nL. Now observe that x(,u) = (1/2, 1/ 2 )T for all p > 0, so that Ix(u) 11 1 1 < KC(d, [) =
1+n /l for all p > 0, which demonstrates that (3) is not tight in general. Furthermore, notice
that in this example cTx(u) < 0, and so case (i) of the proof implies that Ilx(hu) ll < C(d)
(in fact, IIx()IIll1 = C(d) = 1 in this example), which is a tighter bound than (3).
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Corollary 3.1 Let a E (0, 1) be given and fixed, and let be such that 6 < ap(d), where
d E F and p(d) > O. If d + Ad E Z) is such that JlAdlJ < 6, then

IIy(/)II1 < (1+) 2 K(d, d),

1s(p)1 2(11 + ) (1(d2± (6,)

where x(u) is the optimal solution to P,,(d + Ad), (y([), s()) is the optimal solution to
Dm(d + Ad), and C(d, ) is the scalar defined in (2).

Proof: The proof follows by observing that for d E B(d, 6) we have ldll < dll + 6, and
p(d) > (1 - a)p(d), so that

JdJ + _ 1 )_
C(d) < (1- )p(( d)1 + p( (l a (C(d)+a) < C(d) (1 

-(1 -a)p(d) laJ~k( 1 - a-

since C(d) > 1.
q.e.d.

Note that for a fixed value a that Corollary 3.1 shows that the norms of solutions to
any suitably perturbed problem are uniformly upper-bounded by a fixed constant times
the upper bounds on the solutions to the original problem.

The next result presents a lower bound on the norm of the optimal solutions x(/u) and
s(/u) to the central trajectory problems P(d) and D,(d), respectively.

Theorem 3.2 If the program P,,(d) has an optimal solution and p(d) > 0, then

JIIXU01) 1 > pn11¢)111 ___ 2 1dllC(d, ,u) '

Ils(A)_ > ( )'

xj(H) - 2dlK(d

s3(U) > A(d, )'
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for all j = 1,..., n, where x(p) is the optimal solution to P,(d), (y(u), s(/p)) is the optimal
solution to D,(d), and C(d, ,u) is the scalar defined in (2).

This theorem shows that I x (c) 1 and xj(pu) are bounded from below by functions only

involving the quantities Idlj, C(d), p(d), n, and . In addition, the theorem shows that
for / close to zero, that xj(pu) grows at least linearly in p, and at a rate that is at least
1/(2ldlC(d)2 ) (since KC(d, ,) = C(d)2 + fun/p(d) C(d)2 near / = 0). Furthermore, the
theorem also shows that for close to zero, that sj(ft) grows at least linearly in u, and at
a rate that is at least 1/C(d)2 .

The theorem offers less insight when -, oc, since the lower bound on lx(it)lll presented
in the theorem converges to (2C(d))-1 as f -* oc. When the feasible region is unbounded,
it is well known (see also the results at the end of this section) that Ilx(p) I o-- as - oc,
so that as -, oo the lower bound of Theorem 3.2 does not adequately capture the behav-
ior of the sizes of optimal solutions to P,(d) when the feasible region is unbounded. We
will present a more relevant bound shortly, in Theorem 3.3. Similar remarks apply to the
bound on l s() loo1 as - o00.

Proof of Theorem 3.2: By the Karush-Kuhn-Tucker optimality conditions of the dual
pair of problems P,(d) and D,(d), we have that s(f)T X(ft) = tn. Since s(ft)Tx(f) <
Is(ft)lloolx(t),1, it follows that x(p)lll > tn/Hs(f)l oo and [[s(/t)jjoo > Un/llx(ft)j.
Therefore, the first two inequalities follow from Theorem 3.1.

For the remaining inequalities, observe that for each j = 1,...,n, = sj(pt)xj(eU),
j(ft) < Ix(p)I, and sj(ft) < IIs(/)joo. Therefore, the result follows again from Theo-

rem 3.1.
q.e.d.

The following corollary uses Theorem 3.2 to provide lower bounds for solutions to per-
turbed problems.

Corollary 3.2 Let a E (0, 1) be given and fixed, and let 6 be such that 6 < cap(d), where
d E F and p(d) > O. If d + Ad E D is such that IlAdli < 6, then

I1- ce) 2 in
-(1) a (ldj1 + ()(d, M

I + t (l a IC(d, p)
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l \2 -

~(/) ->-+ - / 2(- ( + 6)KC(d, )'

for all j = 1, .. , n, where xz(l) is the optimal solution to P,(d + Ad), (y(,u), s(p)) is the
optimal solution to D, (d + Ad), and IC(d, u) is the scalar defined in (2).

Proof: The proof follows the same logic as that of Corollary 3.1.
q.e.d.

Note that for a fixed value a that Corollary 3.2 shows that the norms of solutions to
any suitably perturbed problem are uniformly lower-bounded by a fixed constant times the
lower bounds on the solutions to the original problem.

The last result of this section, Theorem 3.3, presents different lower bounds on com-
ponents of x(u) along the central trajectory, that are relevant when - oc and when
the primal feasible region is unbounded. We will prove this theorem in Section 5. In this
theorem, C(dB) denotes a certain condition number that is independent of and only
depends on part of the data instance d associated with a certain partition of the indices of
the components of x. We will formally define this other condition number in Section 5.

Theorem 3.3 Let x(t) denote the optimal solution to P,(d) and (y(ft), s(f)) denote the
optimal solution to D,(d). Then there exists a unique partition of the indices {1,..., n}
into two subsets B and N such that

2HdllCI(dB)'

sj(f) < 2|ld|CI(dB),

for all j B, and xj(p) is uniformly bounded for all > 0 for all j E N, where dB =
(AB, b, CB) is a data instance in RmxlBl +m + lIB composed of those elements of d indexed by
the set B.

Note that the set B is the index set of components of x that are unbounded over the fea-
sible region of P,(d), and N is the index set of components of x that are bounded over the
feasible region of P,1(d). Theorem 3.3 states that as - o, that xj(fu) for j E B will go to
oc at least linearly in t as - o, and at a rate that is at least 1/(2Hd llCr(dB)). Of course,
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from Theorem 3.3, it also follows that when the feasible region of P,(d) is unbounded,
that is, B f 0, that lim, Ollx(,l)I1 = o. Finally, note that Theorem 3.1 combined with
Theorem 3.3 state that as A - oo, that xj(,u) for j E B will go to o exactly linearly in Au.

We end this section with the following remark concerning the scalar quantity KC(d, A)
defined in (2). Rather than using the quantity KC(d,/ ), the results in this section could
alternatively have been expressed in terms of the following scalar quantity:

7g,,, ( =max{Hld l , n /} 2
-R(d, ) = min{p(d), } ) (6)

One can think of the quantity 7Z(d, A) as the square of the condition number of the data
instance (A,b, c, L) associated with the problem P (d), where now > 0 is considered
as part of the data. The use of 7Z(d, A) makes more sense intuitively relative to other
results obtained in similar contexts (see for instance [28]). In this case, the norm on
the data space would be defined as II(A, b,c, )ll = max(llAll, Ilbll, Ilclloo, nA}, and the
corresponding distance to ill-posedness would be defined by p(A, b, c, t) = min{p(d), A}.
However, we prefer to use the scalar C(d, A) of (2), which arises more naturally in the
proofs and conveniently leads to slightly tighter results, and also because it more accurately
conveys the behavior of the optimal solutions to P,(d) as A changes.

4 Bounds on Changes in Optimal Solutions as the
Data is Changed

In this section, we present upper bounds on changes in optimal solutions to P,(d) and
D, (d) as the data d = (A, b, c) is changed or as the barrier parameter A is changed. The
major results of this section are contained in Theorems 4.1, 4.2, 4.3, 4.4, and 4.5. We first
present all five theorems; the proofs of the theorems are deferred to the end of the section.
As in the previous section, the bounds stated in these theorems are not necessarily the
best achievable. Rather, it has been our goal to establish bounds that are polynomial in
terms of the condition number C(d), the parameter A, the size of the data ldll, and the
dimensions m and n.

The first theorem, Theorem 4.1, presents upper bounds on the sizes of changes in
optimal solutions to P,(d) and D,(d) as the data d = (A, b, c) is changed to data d + Ad =
(A + AA, b + Ab, c + Ac) in a suitably small neighborhood of the original data d.

14



Theorem 4.1 Let d = (A, b, c) be a data instance in YF such that p(d) > 0, and let > 0
be given and fixed. Given a E (0,1) fixed, let Ad = (A, Ab, Ac) E D be such that
I/dll < ap(d). Then,

ltL(p) - x(I)11

HY(0t) - y(It)H

11 &-t) - s(it)11o

< LAdJ 640n C(d)21C(d, ,l)5(/t + ldll)
/.2(1 - a) 6

< JldJ 640m C(d)2 1C(d, [) 5(p + JdJ )
/2(1 - a) 6

• ld~ 640m C(d)21C(d,/,) 5(/ t+ lfdfl) 2

/ 2(1 -a) 6

where x(pu) and (t) are the optimal solutions to P(d) and P,(d + Ad), respectively;
(y(u), s(,L)) and (y(,u), S(u)) are the optimal solutions to D,(d) and D,(d+Ad), respectively;
and IC(d, u) is the scalar defined in (2).

Notice that the bounds are linear in [lAdl which indicates that the central trajectory
associated with d changes at most linearly and in direct proportion to perturbations in d as
long as the perturbations are smaller than ap(d). Also, the bounds are polynomial in the
condition number C(d) and the barrier parameter ,u. Furthermore, notice that as ,t - 0
these bounds diverge to oc. This is because small perturbations in d can produce extreme
changes in the limit of the central trajectory associated with d as - 0.

The next theorem is important in that it establishes
operator norm of the matrix (AX 2 (p)AT)- 1, where x(a)
This is of central importance in interior point algorithms
Newton's method.

Theorem 4.2 Let d = (A, b, c) be a data instance in F
the optimal solution of PI,(d), where / > O. Then

mn (C(d, i)lld < I(AX 2(/z)A T )-111 <

lower and upper bounds on the
is the optimal solution of P,(d).
for linear programming that use

such that p(d) > O. Let x(p) be

4m (C(d)lC(d, lt) 2

where IC(d, ) is the scalar defined in (2).

Notice that the bounds in the theorem only depend on the condition number C(d),
the distance to ill-posedness p(d), the size of the data instance d = (A, b, c), the barrier
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parameter ,, and the dimensions m and n. Also note that as t -* 0, the upper bound on
II(AX 2 (l)AT)-lllli, in the theorem goes to oo quadratically in 1/u in the limit. Inciden-
tally, the matrix (AX 2 (A)AT ) - differs from the inverse of the Hessian of the dual objective
function at its optimum by the scalar - 2 .

Theorem 4.3 presents upper bounds on the sizes of changes in optimal solutions to P,,(d)
and D,(d) as the barrier parameter At is changed:

Theorem 4.3 Let d = (A, b, c) be a data instance in F such that p(d) > O. Given A, >
O, let x(t) and x(f) be the optimal solutions of P,(d) and PA(d), respectively; and let
(y(/p),s(/t)) and (y(p),s(p)) be the optimal solutions of D,(d) and D,(d), respectively.
Then

j1x(P) - x(A)1li < nF - Al (d, A)K(d, ) ldl, (10)

4m
1lY(P)-Y(tU)1oo < -,m p- lC(d, )C(d, )lldlC(d)2, (11)

I (f) - s(A) oo < -I - IC(d, )IC(d, )ld 2 C(d)2 , (12)

where 1C(d, .) is the scalar defined in (2).

Notice that these bounds are linear in fi- tl, which indicates that solutions along
the central trajectory associated with d change at most linearly and in direct proportion
to changes in A. Also, the bounds are polynomial in the condition number C(d) and the
barrier parameter A.

The next result, Corollary 4.1, states upper bounds on the first derivatives of the optimal
solutions x(At) and (y(/t), s(t)) of P,1(d) and D,(d), respectively, with respect to the barrier
parameter A. We first define the derivatives along the central trajectory as follows:

*/;G) = lim X()- X(8)

y(/) = lim Y( ) Y(),

~(A) = lim (P)- s(/)
AtH H t
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See Adler and Monteiro [1] for the application of these derivatives to the limiting behavior
of central trajectories in linear programming.

Corollary 4.1 Let d = (A, b, c) be a data instance in .F such that p(d) > 0, and let i > 0
be given and fixed. Let x(tL) and (y(jt), s(/)) be the optimal solutions of P,(d) and D,(d),
respectively. Then

< 2 (d, ) 21ldll,

< 4m kc(d, [t) 2dJJC(d)2'

< 4m C(d, d (d
Ils(b)lcl < AC(d, i)2 ] d 2 C(d)2,

where IC(d, p) is the scalar defined in (2).

The proof of this corollary follows immediately from Theorem 4.3.

Theorem 4.4 presents an upper bound on the size of the change in the optimal objective
function value of P, (d) as the data d is changed to data d + Ad in a specific neighborhood
of the original data d. Before stating this theorem, we introduce the following notation.
Let d be a data instance in F, then we denote by z(d) the corresponding optimal objective
value associated with P,,(d) by keeping the parameter p fixed, that is,

z(d) = min{cT x + I-p(x): Ax = b, x > 0}.

Theorem 4.4 Let d = (A, b, c) be a data instance in .F such that p(d) > 0, and let , > 0
be given and fixed. Given a E (0,1) fixed, let Ad (AA, Ab, Ac) E D be such that
IAd < ap(d). Then,

z(d + Ad) - z(d)l < 3 /Adll +a) K(d, )2, (13)

where C(d, 1u) is the scalar defined in (2).

Observe that, as in Theorem 4.1, the upper bound in the change in the objective func-
tion value is linear in IlAdll so long as JlAdll is no larger than ap(d), which indicates that
optimal objective values along the central trajectory will change at most linearly and in
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direct proportion to changes in d for small changes in d. Note also that the bound is poly-
nomial in the condition number C(d) and in the barrier parameter ,u.

Last of all, Theorem 4.5 presents an upper bound on the size of the change in the
optimal objective function value of P,(d) as the barrier parameter is changed. As before,
it is convenient to introduce the following notation. Let d be a data instance in F, then we
denote by z(ft) the corresponding optimal objective value associated with P,(d) by keeping
the data instance d fixed, that is,

Z(l) = min{cT x + p(x): Ax = b, x > 0}.

Theorem 4.5 Let d = (A, b, c) be a data instance in F such that p(d) > O. Then,

Iz(f)-z(/) < 1 f-/tl n ( ln(2) + in (IC(d, )KIC(d, ,i)) + I ln(ld I)l + max {I ln(ft)l, I ln(f)} ),

for given u, j, > O, where IC(d, ) is the scalar defined in (2).

As in Theorem 4.3, the upper bound given by this theorem is linear in ji - Al], which
indicates that optimal objective function values along the central trajectory associated with
d change at most linearly and in direct proportion to changes in u. Also, the bounds are
logarithmic in the condition number C(d) and in the barrier parameter u.

Remark 1 Since z(/) = cTx(/) + p(x(t)), it follows from the smoothness of x(pt) that
z(u) is also a smooth function, and from Theorem 4.5 it then follows that

NI(/) < n ( ln(2) + 2 ln(KC,(d)) + I ln(lldll) + I ln()I ).

Before proving the five theorems, we first prove a variety of intermediary results that will
be used in the proofs of the five theorems. The following proposition is a key proposition
that relates the distance to ill-posedness of a data instance d = (A, b, c) to the smallest
eigenvalue of the matrix AAT.

Proposition 4.1 Let d = (A, b, c) E F and p(d) > O. Then

(i) (1/m)II(AAT)-1I12 <_ I(AAT)-li, _ < I(AAT)-~I12,

and

(ii) p(d) < V/mA(AA T ),
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where A 1(AAT) denotes the smallest eigenvalue of AAT.

Proof: From Lemma 2.1, A has rank m, so that (AAT)-1 exists. The proof of (i) follows di-

rectly from Proposition 2.1, inequalities (i) and (iii). For the proof of (ii), let A1 = A 1(AAT).

There exists v E Rm with Ilvl 2 = 1 and AATv = Alv, so that IIATvll 2 = vTAATv = A1.

Let AA = -vvTA, Ab = v for any e > 0 and small. Then, (A + AA)Tv = 0 and

(b+ Ab)TV = bTv + e f 0, for all e > 0 small. Hence, (A + AA)x = b+ Ab is an inconsistent

system of equations for all e > 0 and small. Therefore, by Proposition 2.1, inequality (iv),

p(d) < max{llAllA, Il/blll) = IIAAl • V/lIIAA112 = V/~JA Tvll2 = V/mA, thus proving
(ii).
q.e.d.

The next three results establish upper and lower bounds on certain quantities as the

data d = (A, b, c) is changed to data d + Ad = (A + AA, b + Ab, c + Ac) in a specific

neighborhood of the original data d; or as the parameter pu is changed along the central

trajectory. These results will also be used in the proofs of the theorems of this section.

Lemma 4.1 Suppose that d = (A, b, c) E 5F, p(d) > O. Let a E (0, 1) be given and fixed,

and let Ad be such that IlAdll < ap(d). If x(/1 ) is the optimal solution to P,(d), and x(,u)

is the optimal solution to P,(d + Ad), then for j = 1, ..., n,

32 IdH(C(d, ))) < xAj()j(/) < 4) (14)

where / > 0 is given and fixed, and IC(d, /) is the scalar defined in (2).

Proof: Let x = x(,u) and x = (t(p). From Theorem 3.1 we have that Ixfi < IC(d, p), and

from Corollary 3.1 we also have that II111 < (4/(1 - )2 )IC(d, f). Therefore, we obtain

xj¾3 <x lIxIll II 1 < 4(KC(d, p)2/(1- _ a)2) for all j = 1, n.

On the other hand, from Theorem 3.2 and Corollary 3.2, it follows that

I
j >

- 21lidlC(d, /)'

(1 -a) 2,
- 8(1dll + IlAdll)C(d, )

> (1-- a)2
- 161dl(d, /) '
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for all j = 1,..., n. Therefore,

Xj tj>1 M(1-a) 2
32 > ~ d jI(d,,)'

for all j = 1,...,n.
q.e.d.

Lemma 4.2 Suppose that d = (A, b, c) E F and p(d) > O. Let a E (0, 1) be given and
fixed, and let Ad be such that lIAdll < cap(d). If x = x(p) is the optimal solution to P,(d),
and x = x(p) is the optimal solution to P,,(d + Ad), then

4mn 1C(d, )lldll
< I(AXXA T )- 1l11,o < 32m /C(( ( - a) 2

_ [, /( - )

where [L > 0 is given and fixed, and JC(d, /u) is the scalar defined in (2).

Proof: Using identical logic to Proposition 4.1 part (i), we have that

I(AXXA T) - I,, 11 (AXXA T ) - 1
2

< n (AAT) - 1 112
- minj {xjtj }

Now, by applying Proposition 4.1, part (ii), and Lemma 4.1, we obtain that

-(AXXAT 1, K
3211d l2 C(d, 8/)2

32(1 a)2A(d(AAT)
32mlldII2jC(d, Iu)2

- p2(1 - a)2 p(d)2

32mC(d)21C(d, 8/)2

2(1 - a)2

On the other hand, by identical logic to Proposition 4.1 part (i),

I (AXXA T )-1 I,,.
1

> -11 (AXXAT )- 112

> l (AA T )-1 12
- mmax{xj j}'

20
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Now, by applying Proposition 2.1, part (iv), and Lemma 4.1, we obtain that

II(AXXA T )- 1 1,oo
(1 -a)2

4mC(d, l)2Al (AAT)

(1 -)2

4mlC(d, ii)2Am(AAT)

(1 -a)2

4mK(d, 21)2 11A2

(1 -a)2

4mniC(d, )2 11HAl 2

(1 - )2

4mnlC(d, )21 d 2 '

where Am(AAT) is the largest eigenvalue of AAT.
q.e.d.

Lemma 4.3 Let d = (A, b, c) be a data instance in F such that p(d) > O. Let x = x()
and x = x(fi) be the optimal solutions of P,(d) and P,(d), respectively,
Then

mnC(d, u)IC(d, ) IId 12< II(AXXAT)- 1111 <

where , > 0.

4mC(d) 21C(d, /u)/C(d, pi)

IpLL

where IC(d, ) is the scalar defined in (2).

Proof: Following the proof of Lemma 4.2, we have from Proposition 4.1 and Theorem 3.2
that

II(AXXA T )-1 I,o <

<

m
minj {xjtj}p(d) 2

4m I dll21C(d, ,u)IC(d, ,i)
UFp(d)2

4mC(d)21C(d, /u)C (d, fi)
tI_
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On the other hand, we have again from Proposition 2.1, Theorem 3.1, and Proposition 4.1
that

-T(AXXAT - 1io
II(AA T )-1 112

m maxj xjj}
1

mK(d, p)CK(d, fi)A1 (AAT)
1

mK](d, ,u)IC(d, p)Am(AAT)
1

mIC(d, I)KIC(d, ft) AI 2
1

mnJC(d, u)/C(d, ft) IIAI 2

1
- mnK(d, L[t)(d, )lldll2'

q.e.d.

Note that the proof of Theorem 4.2 follows as an immediate application of Lemma 4.3,
by setting = .

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1: Let x = x([t) and = t(u) be the optimal solutions to P,(d)
and P,,(d + Ad), respectively; and let (y, s) = (y(/), s(p)) and (, ) = ((/u), (pu)) be the
optimal solutions to D,(d) and D,1(d + Ad), respectively. Then from the Karush-Kuhn-
Tucker optimality conditions we have that:

(A + A)x

= l/e,
= c+ Ac,

= b+ Ab,
> O.

1
= -XX(s- ,)

/z

22

Xs

ATy + s
= /le, XA
= c, (A + A)Ty + 

Therefore,

Ax = b,
x > 0,



1
= -xX

IL
((c - ATy) - (c + Ac - (A + AA)Tq))

= -XX (AAT - AC) + XXAT( -)
IL ~~~~~~~~~~~~~I L

(16)

On the other hand, A(x - x) = Ab - AA. Since A has rank m (otherwise p(d) = 0), then
P = AXXAT is a positive definite matrix. By combining these statements together with
(16), we obtain

Ab - AA = AXX (AATq-
It

1-

and so
[P -1 (Ab - AAt) = P-1AXX (AAT9

Therefore, we have the following identity:

- Ac) + - y.

y - y = P -1 (Ab - AA) + P-1AXX (Ac - AAT) .

From this identity, it follows that

I Y < P-1 1, (lAb Ab- AAtI1 + All IXX(Ac - AAT) 1 ) 

Note that

IXX(c - AATY)111 i< lXXll cll - AA T 9Y|| < xil llllll iAc - AA TYlO.

From Corollary 3.1, we have that

IlAb- AA| 1i < lAdll(l + LH1)

< lAd (1 + (1 -C) 2 (d, )(-ce)-0 

< (1 - ) 2 KIC(d, ) ,

lAc - AA T ll < llAdl(1 + IY11)

Adll 1 + (1 C )2 C(d, i))

< (1 Ce2IC(d, -
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Therefore, by combining (18), (19), (20), and (21), and by using Theorem 3.1, Corol-
lary 3.1, and Lemma 4.2, we obtain the following bound on - yllO:

( (d)IC(d, ) )
11H 00- k 32m /( - ) (1- _)2 I - a

< 640mCAdI C(d)21C(d, t)5( + lldl)
K m f2 (1 - ) 6

thereby demonstrating the bound (8) on IY- yl.
Now, by substituting identity (17) into equation (16), we obtain

-x = 1 XX (I - ATP -1 AXX) (AATy - Ac) + XXAT P - 1 (Ab - AAt)

- D2 (I-D ATP1AD) D (AT - Ac) + DATP-1 (Ab - AM),

where D = XX. Observe that the matrix Q = I- DATP-AD2 is a projection matrix,
and so HlQx112 < Ixll2 for all x E R . Hence, from Proposition 2.1 parts (i) and (iii), we
obtain that

-x i_< -D2i11- X111 • -HDJI(I - DATP-1AD½ ) D (ATy - Ac) 1i +

I DATP- i (Ab- AA:) 1i

_< -max{xjxj}l ,'ATy -/'cllo + I Dlloo l A T llooxllP-pI ,oo- l"b -/A|:

_ -max{xjtj}HAAr -IAcH, + D ,1xA TP- 1 ,.Ab - A A J

max{xjxj}llIA T y - AclI + IxIXllJlld IP-Hll,0 ollHb - \A

It follows from Lemma 4.1, Theorem 3.1, Corollary 3.1, Lemma 4.2, and inequalities (20)
and (21) that

<4n IC(d, -a)A I- ~ 1-
51 d Kc(d, ) +

(1 -a)2

24



128m (IC(d ) ) 2 (51 A)lIC(d, u),
(I - a)2

from which we obtain the following bound (recall that n > m):

I x-i _ _ 64 0niHA\dH C(d) C(d, ,)5([L + ldHl)
A2(1 _ ~)6

which thereby demonstrates the bound (7) on - x lll.
Finally, observe that - s = Ac - AT + AT(y-y), so that ls - s l,< Ilzc -

AATI l + IIATIloo,ooyY- = lijc - AATj + IIAIIy - I-ll. Using our previous

results, we obtain

( d11) + 640m Ad C(d) 21C (d, )5(( , + Ild )
HSsioc ~ (1 - ) )2(1 - a)6

< 6 40mldl C(d)21C(d, p) 5( + jldl )2

P2(1 -cO) 6

and this concludes the proof of this theorem.
q.e.d.

We now present the proof of Theorem 4.3.

Proof of Theorem 4.3: Let x = x(,u) and t = x(fi) be

P,(d) and P. (d), respectively; and let (y, s) = (y([), s(,))
dual optimal solutions to D,(d) and Dp(d), respectively.
optimality conditions we have that

Xs

ATy + 
Ax

x

1ue,
C,

b,
0,

the primal optimal solutions to
and (, s) = (y(fi), s(fi)) be the
From the Karush-Kuhn-Tucker

fue,
C,

b,
0.

Therefore,

1 -
-X (s - p')
MuPt

= XX

= -- XX
API~

((c - A T y) - g(c - ATy))

(22)
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On the other hand, A(t - x) = b - b = 0. Since A has rank m (otherwise p(d) = 0), then
P = AXXAT is a positive definite matrix. By combining these statements together with
(22), we obtain

0 = AXX ((F - u)c - AT (uy- M)) 

and so
P (y - My) = ( - iu)AXXc,

equivalently
fy - [y = ( - b)P- 1AXXc. (23)

By substituting identity (23) into equation (22) and by letting D = XX, we obtain:

x-x = i - IXX (c- ATP-1AXXc)

- -LD (c-ATP-1ADc)

= -IZD ½ (I- D2ATP-1AD2) D2c,

Observe that the matrix Q = I - DAT-1AD2 is a projection matrix, and so IIQxll2 <
IIxH12 for all x E R. Hence, from Proposition 2.1, parts (i) and (iii), and Theorem 3.1, we
have

HX -X 1 < Vnllx - x2

< -_ft l-B ½ X.liD =lH cH< -ftI - lC(d, ,u)c(df)Hd
/t
n

which demonstrates the bound (10) for | - xJ 1.
Now, since c = ATy + s and c = ATg + g, it follows that AT( -y) + -s = 0, which

yields the following equalities in logical sequence:

0 = AT(y-y) + x-lX-l(fx- X ),

AT(y-y) = X- 1X-l(fix-f T),

XXAT(y- ) = Fpx- ux,

26



so that by premultiplying by A, we obtain

AXXA T ( y-y) = (i-)b,

P(y-y) = (- -p)b,

Y-Y = (fi-[t)P-b.

Therefore, from Corollary 4.3,

1i-Yll. < _ - / P-'1 j1, Obljj
4m

< -I - C(d)2 IC(d, u)C(d, p)lld ,

which establishes the bound (11) for 1Y- yllo.
Finally, using the fact that s - = AT(y-y), we obtain I s- l, < I ATjI -Oly- Yloo 

IIAIIy -II OO < j Idly -Yll 00, which establishes (12) from (11), and so this concludes the
proof of this theorem.
q.e.d.

We now prove Theorem 4.4.

Proof of Theorem 4.4: Consider the Lagrangian functions associated with these prob-
lems,

L(x, y) = cTx + p(x) + yT(b- x),
L(x, y) = (c + Ac)Tx + ,up(x) + yT(b + Ab - (A + AA)x),

and define ~(x, y) = L(x, y) - L(x, y). Observe that

z(d) = maxy minx>0 L(x, y) = minx>0 maxy L(x, y),
z(d + Ad) = maxy minx>0 L(x, y) = minx>0 maxy L(x, y).

Hence, if (x(,l), y(p)) is a pair of optimal solutions to the primal and dual programs cor-
responding to d, and ((,u), y(,u)) is a pair of optimal solutions to the primal and dual
programs corresponding to d + Ad, then

z(d) = L(x (p),y ())

= max L(x(L), y)
Y

= max{L(x(u), y) + cD(x(/), y)}
Y

> L( (x), y(p)) + (x(), y())
> z(d + Ad) + (x(), )).
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Thus, z(d) - z(d + Ad) > P(x(p), (p/)). Similarly, we can prove that z(d) - z(d + Ad) <
Therefore), ))we obtain the following bounds: either
Therefore, we obtain the following bounds: either

z(d + Ad) - z(d) < 1((x(),Y())1,
or

< I(( ), y( ))I.Iz(d + Ad) - z(d) 

On the other hand, using Holder's inequality and the bounds from Corollary 3.1 we have

= IAcTx(g) + y(u)TAb - y(u)T AAx() 

< llcllzXo x([)jj + +IY(i)H ~llAbbll + ()ll( )lAAllj lx(p)Ij
< IlAd (1x(u) II + 11(p) H0 + I j() H+ HxII (U)II1)

< 3Adl (1+ a (d)

Similarly, we can show that

I(t(),y(p))l < 3d (1 + ) C(d, °_)2_<3 Ad k ---- Ce d/

and the result follows.
q.e.d.

Finally, we prove Theorem 4.5.

Proof of Theorem 4.5: Let x(pu) and x(i) be the optimal solutions to P,(d)
respectively; and (y(/i), s(/p)) and (y(fi), s(ft)) be the optimal solutions to D,(d)

and P (d),
and D (d),

respectively. As in Theorem 4.4, for given ,u, f > 0, consider the following Lagrangian
functions: L(x, y) = CTx + Up(X) + yT(b - Ax) and L(x, y) = cTx + tp(x) + yT(b - Ax).
Define (x, y) = L(x, y) - L(x, y) = ( - Pt)p(x).

By a similar argument as in the proof of Theorem 4.4, we have that z(,) - z(F) >
((x(/p), y(ai)) and z(/) - z(ti) < D(x(p), y(ft)). Therefore, we obtain the following bounds:
either

IZ(o) - Z(.) < I - (x(p), y())
or

< I - (x(p), Y ())1Iz() - Z() I = - HIp(x(t))l.
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Therefore,
Iz(f) - z(/) I< I - I max{lp(x(L))[, p(x(p))I}.

On the other hand, from Theorem 3.1 and Theorem 3.2, we have

<dll( Xj() < K(d, ),

for all j = 1, . ., n. Hence,

n (21dll/C(d, ))(" < -p(x(lu)) < nln(IC(d, )),

so that

Ip(x()) I < nmax In (2lldlC(d) , ln(IC(d, p))}

< n ( ln(2) + ln(KC(d, )(d, )) + I ln( dl) + max {1 ln(y), ln()} ) .

Similarly, using i instead of pt we also obtain

p(x(ft)) < n ( ln(2) + ln(/C(d, /)IC(d, )) + ln( dl)l +max { ln(t)l, ln(p)l} ),

and the result follows.
q.e.d.

5 Bounds for Analytic Center Problems

In this section, we study some elementary properties of primal and dual analytic center
problems, that are used in the proof of Theorem 3.3, which is presented at the end of this
section.

Given a data instance d = (A, b, c) for a linear program, the analytic center problem in
equality form, denoted AE(d), is defined as:

AE(d): min{p(x) : Ax = b, x > 0}.

Structurally, the program AE(d) is closely related to the central trajectory problem P(d),
and was first extensively studied by Sonnevend, see [26] and [27]. In terms of data depen-
dence, note that the program AE(d) does not depend on the data c. It is well known that
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AE(d) has a unique solution when its feasible region is bounded and non-empty. We call
this unique solution the (primal) analytic center.

Similarly, we define the analytic center problem in inequality form, denoted AI(d), as:

AI(d) : max{-p(s) : s = c - ATy, s > 0).

In terms of data dependence, the program AI(d) does not depend on the data b. The
program AI(d) has a unique solution when its feasible region is bounded and non-empty,
and we call this unique solution the (dual) analytic center. Note in particular that the two
programs AE(d) and AI(d) are not duals of each other. (In fact, direct calculation reveals
that AE(d) and AI(d) cannot both be solvable, since at least one of AE(d) and AI(d) must
be unbounded.) As we will show soon, the study of these problems is relevant to obtain
certain results on the central trajectory problem.

We will now present some particular upper bounds on the norms of feasible solutions
of the analytic center problems AE(d) and AI(d), that are similar in spirit to certain
results of the previous sections on the central trajectory problems P,(d) and D,,(d). In
order to do so, we first introduce a bit more notation. Define the following data sets:

DE = (A,b) : A E Rmxn, b E Rm} and DI = {(A,c) : A E Rmxn, C E Rn}. In a manner
similar to the central trajectory problem, we define the following feasibility sets for analytic
center problems:

FE = {(A, b) E DE: there exists (x, y) such that Ax = b, x > 0, and ATy < 0},

T = {(A, c) E DI: there exists (x, y) such that ATy < c, and Ax = 0, x > 0},

in other words, SE consists of data instances d for which AE(d) is feasible and attains
its optimal value, that is, AE(d) is solvable; and FI consists of data instances d for which
AI(d) is feasible and attains its optimal value, that is, AI(d) is solvable. It is also appropri-
ate to introduce the corresponding sets of ill-posed data instances: E = cl(.E) n cl(E c ) =
OFE = 0.FEC, and BI = cl(TI) n cl(F c ) = O.FI = O.FFc .

For the analytic center problem in equality form AE(d), the distance to ill-posedness of a
data instance d = (A, b, c) is defined as pE(d) = inf{ I (A, Ab)IIE: (A+AA, b+ /b) E BE})
For the analytic center problem in inequality form AD(d), the distance to ill-posedness of a
data instance d = (A, b, c) is defined as pI(d) = inf (AA, Ac) 11 : (A + AA, c + Ac) E BI),
where II(A,b)IE = max{llAll, Ilbl l } and 11(A,c)lli = max{llAll, Ilcllo)}. Likewise, the cor-
responding condition measures are CE(d) = II(A, b)llE/PE(d) if pE(d) > 0 and CE(d) = oo
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otherwise; C (d) = I (A, c) I /pi(d) if p (d) > 0 and C1(d) = oo otherwise.

Proposition 5.1 If d = (A, b, c) is such that (A, b) E FE, then pE(d) < p(d).

Proof: Given any e > 0, consider 6 = pE(d) - e. If d + d = (A + AA, b + Ab, c + Ac) is a
data instance such that dl < 6, then I( NA, b) E < 6. Hence, (A + A, b + b) E E,

so that the system (A + AA)x = b + Ab, x > 0, (A + AA)Ty < 0 has a solution, and
therefore the system (A + AA)x = b + Ab, x > 0, (A + AA)Ty < c also has a solution, that
is, d + Ad E F. Therefore, p(d) > 6 = pE(d) - , and the result follows by letting e - 0.
q.e.d.

The following two lemmas present upper bounds on the norms of all feasible solutions
for analytic center problems in equality form and in inequality form, respectively.

Lemma 5.1 Let d = (A, b, c) be such that (A, b) E FE and pE(d) > O. Then

lxij_ < CE(d)

for any feasible x of AE(d).

Proof: Let x be a feasible solution of AE(d). Define AA = -beT/lxf1ll and Ad =
(ZA, 0, 0). Then, (A + A)x = 0 and x > 0. Now, consider the program AE(d + Ad). Be-
cause (A+AA)x = 0, x > 0, has a solution, there cannot exist y for which (A+AA)Ty < 0,
and so (A + AA, b) E FE, whereby pE(d) < (AA, 0) E. On the other hand, fl(AA, 0)1E =
llbll1/Hx l1 - < l(A, b) E/I x1, so that xH1 <I (A, b) IE/PE(d) = CE(d).
q.e.d.

Lemma 5.2 Let d = (A, b, c) be such that (A, c)F and pr(d) > O. Then

IlYll < C(d),
||S||0 < 2 (A, c) ICI(d) ,

for any feasible (y, s) of AI(d).

Proof: Let (y, s) be a feasible solution of AI(d). If y = 0, then s = c and the bounds are
trivially true, so that we assume y 0. Let y be such that Ilyl = yTy and 11Yk91 = 1.
Let AA = -cT/jyj and Ad = (AA, 0, 0). Hence, (A + AA)Ty = ATy - c < O. Because
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(A + AA)Ty < 0 has a solution, there cannot exist x for which (A + AA)x = 0 and x > 0,
and so (A + AA, c) E fC, whereby pi(d) < I (A, 0) III. On the other hand, Il (A, 0) 11 =

Icllo/lyllo II l(A,c)I/IIylII, so that IIyII < II(A,c)HII/pi(d) = CI(d). The bound for
Ilsllo is easily derived using the fact that ls[ I < Ic I1c+ IIATI~,olIyloo = IIcllo+ IIAl IIyIl
and Cl(d) > 1.
q.e.d.

With the aid of Lemma 5.2, we are now in position to present the proof of Theorem 3.3.

Proof of Theorem 3.3: From Tucker's strict complementarity theorem (see Dantzig [4],
p. 139, and [31]), there exists a unique partition [B, N] of the set {1,.. ., n} into subsets
B and N, B n N = 0 and B U N = {1,..., n} satisfying the following two properties:

1. Au = 0, u > 0 implies UN = 0 and there exists ft for which Aft = 0, iB > 0, and

UN =0,

2. ATy = v, v < 0 implies VB = 0 and there exists (, v) for which ATY = v, VB = 0,

and VN < 0.

Consider the set S = {SB E RIBI: SB = CB-ATBY for some y E Rm, SB > 0}. Because P,(d)

has an optimal solution, S is non empty. Also, S is bounded. To see this, suppose instead
that S is unbounded, in which case there exists y such that A T_ < 0 and A79 T 0. Then,
using the vector y from property 2 above, we obtain that A T(9 + ,A) = A T + XAN <_ 0
for A sufficiently large, and since ATB = VB = , it follows that AT(Y + XA) < 0 for A
sufficiently large. By the definition of the partition [B, N], we have that AT (y + A)) = 0.
This in turn implies that A T = 0, a contradiction.

Because S is non-empty and bounded, dB = (AB, b, CB) E T1 . Therefore, by Lemma 5.2,

for any SB E S, IISB oo < 2| (AB, cB) ICI(dB), in particular

IISB(IU)IIo < 2I(AB, CR)l ICI(dB) < 2I|d||C(dB).

Hence, for any j E B, sj(/l) < IISB(I) o < 2IldllCI(dB). Moreover, since xj(/)sj([/) = ,
then

xj() 2 (d
2I d ICi(dB)'

for j E B.
Finally, by definition of the partition of {1,..., n) into B and N, xj(u) is bounded for

all j E N and for all , > 0. This also ensures that B is unique.
q.e.d.
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