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The purpose of this study is to broaden the scope of projective transformation methods in mathematical 
programming, both in terms of theory and algorithms. We start by generalizing the concept of the analytic 
center of a polyhedral system of constraints to the w-center of a polyhedral system, which stands for 
weighted center, where there is a positive weight on the logarithmic barrier term for each inequality 
constraint defining the polyhedron X. We prove basic results regarding contained and containing ellipsoids 
centered at the w-center of the system X. We next shift attention to projective transformations, and we 
exhibit an elementary projective transformation that transforms the polyhedron X to another polyhedron 
Z, and that transforms the current interior point to the w-center of the transformed polyhedron Z. We 
work throughout with a polyhedral system of the most general form, namely both inequality and equality 
costraints. 

This theory is then applied to the problem of finding the w-center of a polyhedral system X. We present 
a projective transformation algorithm, which is an extension of Karmarkar's algorithm, for finding the 
w-center of the system X. At each iteration, the algorithm exhibits either a fixed constant objective 
function improvement, or converges superlinearly to the optimal solution. The algorithm produces upper 
bounds on the optimal value at each iteration. The direction chosen at each iteration is shown to be a 
positively scaled Newton direction. This broadens a result of Bayer and Lagarias regarding the connection 
between projective transformation methods and Newton's method. Furthermore, the algorithm specializes 
to Vaidya's algorithm when used with a line-search, and so shows that Vaidya's algorithm is superlinearly 
convergent as well. Finally, we show how the algorithm can be used to construct well-scaled containing 
and contained ellipsoids at near-optimal solutions to the w-center problem. 

Key words: Analytic center, w-center, projective transformation, linear program, ellipsoid, barrier 
penalty, Newton method. 

1. Introduction 

The w-center o f  a polyhedral system 

In  [16],  K a r m a r k a r  s i m u l t a n e o u s l y  i n t r o d u c e d  i d e a s  r e g a r d i n g  t h e  c e n t e r  o f  a 

p o l y h e d r a l  sy s t em,  a p r o j e c t i v e  t r a n s f o r m a t i o n  t h a t  c e n t e r s  a g i v e n  p o i n t ,  a n d  a 
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linear programming algorithm that uses this methodology to decrease a potential 
function involving an objective function component and a centering component. 
Karmarkar's ideas have since been generalized along a number of lines, both 
theoretical and computational. Herein, we expand on Karmarkar's methodology in 
at least two ways. First we analyze the w-center of  a polyhedron system X =  
{x c R" l a x  <~ b, M x  = g}, defined as the solution £ to the following optimization 
problem: 

Pw: maximize ~ wi In si 
i ~ l  

subject to A x  + s = b, 

M x = g ,  

s > 0 .  

Note that Pw is a generalization of the analytic center problem first analyzed by 
Sonnevend [24, 25]. This problem has had numerous applications in mathematical 
programming; see Renegar [20], Gonzaga [14], and Monteiro and Adler [17, 18], 
among others. Also note that Pw is defined for the most general polyhedral representa- 
tion, namely inequality as well as equality constraints of  arbitrary form. In Pw, the 
weights wi can be arbitrary positive scalars, and for convenience they are normalized 
so that Y.~= 1 w~ = 1. Let ~ be the smallest weight, i.e., ~ = mini{w~}. The main result 
for the w-center problem is that if ~ is the w-center, then there exist well-scaled 
contained and containing ellipsoids at ~ as follows. Let X = {x ~ R n I A x <~ b, M x  = g}. 
Then there exist ellipsoids ETN and Eouv centered at ~, for which E~N c X ~ Eouv,  
and ( E o u v - ) ~ ) =  ((1 - # ) / # ) ( E ~ N - £ ) ,  i.e., the outer ellipse is a scaled copy of the 
inner ellipse, with scaling factor ( 1 - # ) / # .  When the weights are identical, w-- 
(1/m)e,  and ( ( 1 - # ) / # ) = ( m - I ) .  Essentially, the scaling factor ( 1 - # ) / #  is 
(almost exactly) inversely proportional to the smallest (normalized) weight wi. 

Projective w-centering for  polyhedra in arbitrary form 

Numerous researchers have extended Karmarkar's projective transformation 
methodology, and this study broadens this methodology as well. Gay [11] has shown 
how to apply Karmarkar's algorithm to linear programming problems in standard 
form (i.e., " A x  = b, x ~> 0"), and how to process inequality constraints by implicitly 
converting them to standard form. Later, Gay [12] shows how to process problems 
in standard form with upper and lower bounds, as does Rinaldi [22]. Bayer and 
Lagarias [4] have added to the theoretical foundations for linear programming by 
showing that for inequality constrained problems, there exists a class of projective 
transformation for centering a polyhedron about a given point )7. Anstreicher [2] 
has shown a different methodology for processing linear programming problems in 
standard form, and in [7] the author gives a simple projective transformation that 
constructively uses the result of Bayer and Lagarias for linear programming problems 
with inequality constraints. Even though linear programs in any one form (e.g., 
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standard primal form) can be either linearly or projectively transformed into another 
form, such transformations can be computat ionally bothersome and awkward, and 
lack aesthetic appeal. Herein, we work throughout with the most general polyhedral 
system, namely X = {x ~ N"[Ax ~ b, Mx  = g}. This system contains all of  the above 
as special cases, without transformations, addition or elimination of  variables, etc. 
In Sections 3 and 4 of  this paper,  we present an elementary projective transformation 
that projectively transforms a general polyhedral  system 

X =  {x c~nlAx<~b, M x =  g) 

to an equivalent system 

M z =  g), 

and that results in a given point X (in the relative interior of  X)  being the w-center 
of the polyhedral system Z. The approach taken is based on classical polarity theory 
for convex sets; see Rockafellar [23] and Gri inbaum [15]. 

A canonical optimization problem 
The results on the w-center problem are applied to the following canonical optimiz- 
ation problem: 

CP: minimize 
x 

subject to 

F(x)  = ln( U -  cVx) - ~, wi I n ( b / -  Aix) 
i = 1  

A x + s  = b, 

s > 0 ,  

M x = g ,  

cTx < ~f. 

where X = {x c R n I Ax <~ b, Mx = g} is given. Note that problem CP has two important  
special cases: linear programming and the w-center problem itself. I f  c is the objective 
function vector of  a linear program maximization problem defined on X =  
{x ~ R n lAx <<- b, Mx = g}, and if U is an appropriate  upper  bound on the optimal 

objective function value, then CP is just the problem of minimizing Karmarkar ' s  
potential function (generalized to nonuniform weights wi on the constraints). I f  
c = 0 and U = 1, then CP is just the w-center problem Pw. In Section 5 of  this paper,  
we present a local improvement  algorithm for program CP that is analogous to and 

is a generalization of Karmarkar ' s  algorithm. 

An algorithm for the w-center problem 
In Sections 5 and 6, the methodology and theory regarding the w-center, projecting 
to the w-center, and the local improvement  algorithm for the canonical optimization 
problem CP, are applied to an algorithm to solve the w-center problem Pw. Other 
algorithms for this problem have been developed by Censor and Lent [5] and by 
Vaidya [28]. We present a projective transformation algorithm for finding the 
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w-center that is an extension of the ideas of  Karmarkar ' s  algorithm applied to the 

program CP. 
This algorithm produces upper  bounds on the optimal objective value at each 

iteration, and these bounds are used to prove that the algorithm is superlinearly 
convergent. We also show that the direction chosen at each iteration is a positively 
scaled Newton direction. Thus, if the algorithm is augmented with a line-search, it 
specializes to Vaidya's algorithm. Although Vaidya has shown that his algorithm 
exhibits linear convergence, our approach and analysis demonstrate that his 
algorithm is actually superlinearly convergent, verifying a conjecture of Vaidya [29] 
that his algorithm might exhibit stronger convergence properties. We also show that 
after a fixed number of iterations of the algorithm, one can construct "well-scaled" 
containing and contained ellipsoids at the current iterate of the algorithm. I f  
X = {x  ~ ~"  l A x  <~ b, M x  = g} is the current iterate, one can easily construct ellipsoids 

F~n and F o u r  centered at )7, with the property that F~n c X c F o u r ,  and ( F o u r  = 
)7) = (2 .9 /~) (F in  -)7). When all weights are identical, then this scale factor is (2.9m) 
which is O(m).  In general, the order of this scale factor is O(1 /# ) ,  which is the 
same as for the ellipses EjN and EouT centered at the optimal solution to Pw, whose 
scale factor is (1 - ~ ) / ~  = 1 / ~  - 1. 

The paper  is organized as follows. Section 2 presents notation, definitions and a 
characterization of the properties of the w-center. Section 3 presents general results 
regarding properties of projective transformations of  polyhedra. In Section 4, we 
exhibit an elementary projective transformation for transforming the current point 

to the w-center of the t ransformed polyhedral system. In Section 5, we introduce 
the canonical optimization program CP, and present a projective transformation 
algorithm for the w-center program Pw. In Section 6, the performance of this 
algorithm is analyzed, and we demonstrate superlinear convergence. In Section 7, 
we show that the direction generated by the algorithm at each iterate is a positively- 
scaled Newton direction, and we discuss consequences of  this result. 

2. Notation and characterization at the w-center 

Throughout this paper, we will be concerned with a system of constraints of the form 

A x  <~ b, 
(2.1) 

Mx = g, 

where A is rnxn ,  M is k × n , x ~ R  n , b c R  m, and g ~ R  g. One can think of the 

constraint system as given by the data (A, b, M, g), and so we denote 

H ( X )  = ( a ,  b, M ,  g) (2.2) 

as the symbolic representation of  the constraint system of (2.1). (One can think of 
" H ( X ) "  as standing for hyperplanes and halfspaces.) In many contexts, however, 
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it will be particularly convenient to represent the polyhedron determined by all 

solutions x of (2.1) and so we write 

X = { x  c R"  ] A x  <~ b, M x  = g}. (2.3) 

For convenience we assume that A has rank n and M has rank k, and so m ~> n 

and k ~< n. 

If  X is given, we denote the slack space of X by 

S = {s c R ' ] s  >i O, s = b - A x  for some x satisfying M x  = g}, (2.4) 

i.e., S is the space of all slack vectors s = b - A x  of the constraint system X. We say 

X has an interior if and only if there exists x for which A x  < b and M x  = g, and 

we write int X ~ 0. Likewise, if there is a vector s c S for which s > 0, then S has 

an interior and we write int S ¢ 0. Obviously int X ~ 0 if and only if int S ¢ 0. 

Also, we use the following standard notation for diagonal matrices: if w, s, g, are 

vectors in Nm, then W, S, S denote the diagonal matrices whose diagonal entries 
correspond to the vectors w, s, ~. Let e = ( 1 , . . . ,  1) v denote the column of  ones of 

appropriate dimension. Let e~ denote the ith unit vector. 
Let w be a vector in N" for which w > 0 and w has been normalized so that 

e V w = l ,  w > 0 .  (2.5) 

Consider the problem 

Pw: maximize F w ( x )  = ~ w~ ln(b~-A~x) 
i = l  

subject to A x  + s = b, 
(2.6) 

M x = g ,  

s > 0 .  

This problem is a (weighted) generalization of the analytic center problem, posed 
by Sonnevend [22, 23], and used extensively in interior point algorithms for solving 

linear programming problems; see Renegar [20], Gonzaga [14], and Monteiro and 

Adler [17, 18], among others. 

Under the assumption that X is bounded and int X ~ 0, then Pw will have a unique 
solution, ~, which we call the w-cen ter  of the constraint system H ( X ) .  The Karush- 

Kuhn-Tucker (K-K-T)  conditions are necessary and sufficient for optimality in Pw, 

and thus ff is the w-center of H ( X )  if and only if ff satisfies 

A)7 + ~ = b, (2.7a) 

Mff = g, (2.7b) 

g > 0, (2.7c) 

wTS-IA = ~ T M  for some # c R k. (2.7d) 
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Let ~ denote  the smallest  c o m p o n e n t  of  w, i.e., 

= m i n { w l , . . . ,  win}, (2.8a) 

and define 

X/  ~ R = X / 1 - ~  (2.8b) r =  1 - # '  W 

General iz ing Sonnevend  [22, 23], we have the fol lowing proper t ies  of  the w-center  
o f  H ( X ) ,  that  characterize inner  and outer  ell ipsoids centered at 2. 

Theorem 2.1. Let X = {x c ~ l A x  <~ b, M x  = g}, let "Y be the w-center o f  H ( X ) ,  and 

let $ = b - A 2 .  Let  

and 

E,N = {X C ~" ] M x  = g, (x  - I f )TATs-1WS-1A(x  - ~) <~ r e} 

EOUT = {X C ~"  [Mx  = g, (x  - If)TATS ' W S - ~ A ( x  - "2) <~ R2}, 

where r and R are defined in (2.8). Then 

E 1 N c X c  EouT.  

Before proving  this theorem,  we make  the fol lowing remark.  

Remark  2.1. (EouT--X) = ( R / r ) ( E ~ N - ~ ) ,  i.e., the outer  ellipse is a scaled copy of  
the inner ellipse, with scaling fac tor  R / r  = (1 - # ) / # .  I f  w = (1~re)e, then # = I / m ,  

and so the scaling factor  is R / r  = ( m -  1). 

The p r o o f  of  Theo rem 2.1 is a ided by the fol lowing three proposi t ions :  

Proposition 2.1. I f  ~ is the w-center o f  H ( X ) ,  and g= b -AYe, then the set S defined 

in (2.4) is contained in the simplex A = {s ~ ~ "  Is ~> 0, wTs  ~s = 1}. 

Proof.  I f  s o S ,  then wTS-Is=wTS l ( b - A x )  for  some x c X ,  and so wTS-1s = 

wS  I ( g + A ~ - A x ) =  w T S - I g + w T S - 1 A ( Y ~ - x ) .  From (2.7d), this lat ter  expression 
equals w V S - l g + # T M ( ~ - - X ) = w T S - l g = w T e = I ,  since M ( x - ~ ) = g - g = O .  [] 

Proposition 2.2. Suppose v c R m, v satisfies wTv = 0, and v T w v  ~ r 2, where w and r 

satisfy (2.5) and (2.8). Then ]v~] <~ 1 for  each i = 1 . . . .  , m. 

Proof.  It  suffices to show that  vi ~< 1, i = 1 , . . . ,  m. For  each i, cons ider  the p rogram 

maximize  vi 

subject  to v r W v  <~ w J ( 1 -  w~), (eL) 

wT v = O. (f~) 
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The opt imal  solution to this p rogram is: v* = (1/(1 - wi))(-w~e + e~), with K - K - T  

multipliers, a = ( 1 - w ~ ) / ( 2 w i )  and /3 = 1, which satisfy the K - K - T  condit ions,  
e~ = 2 a W v + / 3 w .  Notice that  v/* = 1. Thus if vTWv <~ r~<~ w~/(1 -- w~) and wVv = 0 

then v~<l .  []  

Proposition 2.3. Let f be the w-center o f  H ( X ) and let g= b - A f t .  I f  s c ~m satisfies 
w T s  as = 1 and ( s -  g)T~ ~ W S  l(s - g) <~ r 2, then 0<~ S i ~ 2g~, i = 1 , . . . ,  m. 

Proof.  Let s be as given in the proposi t ion.  Let v = S - ~ ( s - g ) .  Then v satisfies the 

hypotheses o f  Proposi t ion 2.2, and hence ]v,[<~l, i = 1 , . . . ,  m. Thus 0<~s~<2~,  

i = l , . . . , m .  [] 

Proof  of  Theorem 2.1. We first prove that X c E o u v .  By Proposi t ion 2.1, S = A. The 

extreme points o f  A are (g i/wi)e~, i = 1 , . . . ,  m. Note  that each extreme point  satisfies 
( (~ /wi )e i  _ g ) v ~ - i  w~- l ( (g i /w i )e i  _ g ) =  ( 1 -  wi)/wi <~ R 2. Thus, because A is a con- 

vex set, every s ~ S satisfies (s - g)v~ ~ W~-~(s  _ g) <~ R 2. But (s - g) = - A ( x -  f ) ,  

so ( x -  f ) A v S  ~ W S  1 A ( x -  2)  <~ R e. This shows that X = EOUT. 
We next show that ErN ~ X. Let x ~ E~N, and let s be the slack corresponding  to 

x, i.e., s = b - A x .  Then ( s - -g )Ws  ~WS l ( s - g ) = ( x - f ) A T S - l W S - l A ( x - ~ ) < ~ r 2 .  

Also, similar to Proposi t ion 2.1, it is s t raightforward to show that wVS-~s = 1. Thus 

by Proposi t ion 2.3, s/> 0. Consequent ly  A x  <~ b, and since x c E IN, MX = g. It follows 

that x ~ X. [] 

The next proposi t ion  shows how the w-center  can be used to construct  an upper  

bound  on the slack si = ( b - A x ) i  of  any constraint  o f  X, i = 1 , . . . ,  m. 

Proposition 2.4. Let f be the w-center o f  H ( X ) .  For each i = 1 , . . . ,  m, for  any x ~ X, 

( b~ - A~x) <~ g~/ w~. 

Proof. For  any x ~ X ,  let s = b - A x .  By Proposi t ion 2.1, WTS--1S=I,s>~O, SO 

si <<- si/wi, i.e., bi - Aix <~ gi/wi. [] 

The last result o f  this section characterizes the behavior  o f  the weighted- 
logari thmic funct ion ~ m  I Wi l n ( b i -  Aix)  near  the w-center  f o f  H ( X ) .  This lemma 

parallels similar results for  the uni formly weighted center in Karmarkar  [16] and 

Vaidya [28]. 

Lemma 2.1. Let ~ be the w-center o f  H ( X ) ,  let ~ = b - A~, and let d c ~" be a direction 
that satisfies M d  = O, and d T A T s - 1 W S - 1 A d  <~ r 2. Then for  all a satisfying 0 <~ ce < 1, 

2 

w i l n ( b ~ - A ~ ( X + a d ) ) > ~  ~ w, ln(g~) a 
i - - I  i = l  2(1 - a )  

- -  r 9.  
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Proof. Let v = S ~Ad. Then wVv = wTs  ~Ad = "FrTMd = 0 for some 77 c ~k by (2.7d). 

Furthermore vVWv <~ r 2. Thus by Proposition 2.2, [vii ~< 1, i =  1 , . . . ,  m. Therefore 

w, ln(bi- A,(~ + ad)) 
i=1 

= ~ wi ln(gi(1 - avi)) 
i = l  

= ~ w i l n ~ +  ~ wi ln (1 -awi )  
i = l  i=1 

m ( a v i ) 2  
>~ ~ wi lngi+ ~ w i ( - a v i ) - ~  w i - -  

i : l  i = l  i = l  2(1 - a )  

OL 2/) T W/.) 

= ~ w i l n g l - a w V v  
i=1 2 ( 1 -  c~) 

2 

>~ ~ wi In gi a r2" [] 
i:l  2 ( l - a )  

(by Proposition A.2) 

Theorem 2.1 characterizes the existence of similar outer and inner ellipsoids at the 
w-center 2~ with a scale ratio of  (1 - ~ ) / ~ .  At points near the center, there also exist 
such inner and outer ellipsoids; see [8]. 

3. Projective transformations 

Let X be the polyhedron defined by (2.2) or (2.3) and let S be the slack space of 
X defined in (2.4). This section develops a class of  projective transformations of X 
and S into image sets Z and T. 

Let ff satisfy Aft < b and MS =g ,  i.e., ff ~ int X, and let g = b -  Ag be the slack 
vector corresponding to ft. Our interest lies in properties of  a projective transforma- 
tion of X of the form 

X - - X  

z = g(x)  = gy,~(x) = ff 4 1 -yY(x  --2) (3.1) 

for a suitable choice of  the vector parameter  y c ~" appearing in the denominator 
of  the transformation. The criterion of suitability that we impose is that the 
denominator  1--yT(x--ff)  remains positive for all x c in t  X. I f  y is chosen so that 

y c i n t  Y x = { y c ~ ' l y = A T $  lh fo r some  A > 0 s a t i s f y i n g A T e = l } ,  (3.2) 

then it is elementary to verify that yT(x -- 27) < 1 for all x ~ int X, so that the projective 
transformation g(x) given in (3.1) is well defined for all x c X. Note that g(x) is 
more formally denoted as gy,~(x) because the transformation is parametrized by y 
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and 32. Also note that  32 is a fixed point  o f  g ( . ) ,  i.e., 32 = g(32). I f  x ~ int X and 
z = g (x) ,  then  it is s t ra ightforward to verify that  z satisfies the constra int  sys tem 

,ff, z ~</~, 
(3.3) 

Mz=g, 

where 

.4 = A - gyV, (3.4a) 

/~ = b - gyV32. (3.4b) 

Analogous  to (2.2), (2.3), and  (2.4), we thus can define the image constraint  set 
o f  g ( . )  as 

H(Z) = H(Zy ,~ )  = (A,  b, M, g) = ( a  - gyT, b - gyT32, M, g),  (3.5) 

as a constraint  system or 

Z =  Z~,~= {z  ~ a n t ~ z ~ , ,  M z =  g} 

= {z ~ N" [ ( a  - gyT)z <~ (b - gyV32), Mz = g}, (3.6) 

and the slack space o f  Z as 

T= Ty.~={tcRmlt>~O,t=~)-AzforsomezsatisfyingMz=g}. (3.7) 

The inverse o f  g ( . )  is given by the funct ion 

x = h ( z )  = h~,~(z) = -1 gy.~(z) = 32-t 1 +yT(z--32)"  (3.8) 

The t ransformat ions  deve loped  in (3.1)-(3.8) are i l lustrated in Figure 3.1. Finally, 
we can extend g ( . )  and h ( .  ) to the slack spaces S and  T as follows. Let 

(X;  S ) = { ( x ,  s ) c R "  x R  ~ ] A x + s =  b, s>~O, Mz=g} 

and 

(Z, T) = {(z, t ) ~  n xRm J .4z+ t =/~, t>~O, Mz=g}, 

and define 

(z, t) = gy,~(x, s) 

( x - ~  s )  for(x,s)c(X,$), (3.9a) = 32-t l_fi-T~-~-_)~),l_yX-(-x_ ~ 

(x,  s)  = h,,~(z, t) 

( z-Y~ t )  for(z,t)~(Z,T). (3.9b) 

To formal ly  identify the proper t ies  of  the t r ans fo rma t ion  g ( .  ) = gy,~(. ), we consider  
separa te ly  the cases when  X is bounded  and  unbounded .  
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A x < b  

M x = g  

g(x) = X + 
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+ yT(z - ~) 

1 - 

]y ' l ' )z  < (b - ~ y ' r ~ )  

Mz = g 

Fig. 3.1. Projective t ransformat ion.  

L e m m a  3.1. Let H ( X )  and X be given by (2.2) and (2.3), and suppose X is bounded. 

Let  ,2 c i n t  X be given, let g = b - A~, and let y, g(  . ), h( .  ), Z,  and T satisfy (3 .2)- (3 .9) .  

Then: 

(i) g( .  ) maps X onto Z and S onto T. 

(ii) h( .  ) maps Z onto X and T onto S. 

(iii) X and Z are the same combinatorial type, and g ( . )  maps faces o f  X onto 

corresponding faces o f  Z. 

Proof .  I t  suffices to s h o w  tha t  (i) y X ( x - Y , ) <  1 fo r  all  x c X  a n d  (ii) - - y T ( z - - ) 2 ) <  1 

fo r  all  z ~ Z.  

(i) S u p p o s e  x ~ X a n d  yX(x - :~) ~> 1. T h e n  f r o m  (3.2), 

1 <~ yT(x  -- ~) = A T S - I A ( x  - 2)  = A T s  ~(Ax - b + g) = A T s  - I ( A x  -- b) + 1, 

a n d  so A T s - I ( A x -  b) >~ O. T h u s  A x  = b, s ince  A > 0 a n d  A x  <~ b. 

T h e r e f o r e  v = )~ - x sat isf ies Av  = - g  < 0 a n d  M y  = 0, a n d  so X is u n b o u n d e d ,  w h i c h  

is a c o n t r a d i c t i o n .  T h e r e f o r e  yX(x - ,2) < 1. 
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(ii) Now suppose z ~ Z and - -yT(z - -  2)/> 1. Then define v = z -  ~ and  note that 

v ~ 0. We have 

A v  = A z  - A:~ ~ A z  - b + £ <~ A z  - b - ~( yT(2. -- 2))  = Az  - / ~  ~ 0 

f rom (3.4)-(3.6). Also M y  =0 ,  so that v is a ray o f  X, which contradicts  the 
boundedness  of  X. []  

In the case when X is unbounded ,  we no longer can guarantee that the projective 

t ransformat ion g( .  ) is onto and invertible, unless we assume that the system A x  <~ b 

has been enlarged to include a trivial constraint  o f  the form 0Tx ~< 1. We then have: 

Lemma 3.2. Let  H ( X )  and X be given by (2.2) and (2.3), and suppose that the last 

row o f  the inequality constraints A x  <~ b is o f  the f o rm  OT x <~ l. Le t  ~ c i n t  X be given, 

let g= b - AY,, and let y, g ( .  ), h( .  ), Z and T satisfy (3.2)-(3.9). Then 

(i) g( .  ) is well defined f o r  all x c X. 

g ( .  ) maps int X onto int Z and int S onto int T. 

g( .  ) maps bounded faces  F o f  X onto those faces  G o f  Z that do not meet  the 
hyperplane H = { z c g~" l - y V ( z - 2 )  = 1}. 

(ii) h( .  ) is well defined f o r  all z ~ Z,  z ~ H. 

h ( .  ) maps int Z onto int X and int T onto int S. 

h( .  ) maps faces  G o f  Z that do not meet  H onto bounded faces  F o f  X. 

(iii) I f  z c Z and z ~ 14, then r = z - ~ f o rms  a nontrivial ray o f  X, i.e., 

R" Ix = + f o r  some h i> 0 } c  X. 

Proof. (i) Let x c X, and let s = b - A x .  Then s />0,  and f rom (3.2), y V ( x - - ~ ) =  

A v ~ q - l ( £ - s ) = l - A T S - l s < l ,  because the last constraint  o f  Ax<~b  is O V x ~ l ,  

~,, =sm = 1, and h > 0. Thus g( .  ) is well-defined for all x e X. I f  z = g ( x ) ,  then it 
remains to show that - - y T ( z - - g )  < 1. We have 

- y T ( x - g )  
- - yX ( z - -2 )  = 1 ~ )  < 1, 

because yX(x  - ~) < 1. 

(ii) I f  z c Z then the last constraint  o f  Az ~</~ is --yTz ~< 1 _yTff, f rom (3.4). I f  

z~  H, then - y T ( z - ) ~ )  < 1, and so h( z )  = g - l ( z )  is well-defined. 
(iii) Suppose  z e Z ~ H .  Let r = z - g .  Then M r = O .  Also ( A - - g y T ) z < ~ b - - £ y T ~  

and y T ( z - if) = - 1  implies A z  <~ b + £y V ( z - 2 ) = b - £ = AS, and so A ( z - 2 ) <~ O, i.e., 

A r  <-O. Finally, notice that  r ~ 0 (otherwise y T ( z -  ~ ) =  0). Thus 

{ x ~ R ' [ x = g + h ( z - ~ ) f o r s o m e h > ~ O } c X .  [] 
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As a corol lary to bo th  L e m m a  3.1 and 3.2 we have:  

Corol lary  3.1. Let X be given by (2.2) or (2.3), and suppose that X satisfies the 
following condition: 

(A) Either X is bounded or the last row of  the inequalities A x  <~ b is o f  the form 

0-Vx <~ 1. (3.10) 

Then the mappings g( .  ) and h( .  ) o f  Lemmas 3.1 or Lemma 3.2 are well-defined for 
all x c int X and z c int Z. [] 

It  can be shown (see [8]) that  the project ive t rans format ion  g ( .  ) is quite general,  
in that  any project ive t r ans fo rmat ion  g( -  ) that  leaves ~ fixed and  preserves  directions 
f rom ~ can be writ ten in a fo rm satisfying (3.1) and (3.2). The project ive t ransforma-  
t ion g ( x ) =  gy,~(x) can also be deve loped  th rough  convex  polar i ty  theory.  The  set 
Y~ of  (3.2) is the po la r  o f  ( X - ~ ) ;  see G r i i n b a u m  [15], and Rockafe l la r  [23]. The 
set ( Z - ~ )  then is the po la r  o f  the t ransla t ion of  Y~ by  y, i.e., Z = ( (X - ~ ) ° - y ) ° +  ~; 

see [8]. 

4. Projective transformations to w-center a given interior point 

Let X be the constraint  sys tem defined by (2.2) or (2.3) and let S be  the slack space 
of  X defined in (2.4). Let ff satisfy A~ < b and M)7 = g, i.e., ~ E int X, and  let g = b - A)7 
be the slack vector  cor responding  to ft. Suppose  we wish to find a project ion 
pa rame te r  y c Y~ so that  ~ is the w-center  of  the project ively t r ans fo rmed  constraint  
sys tem H ( Z )  = H(Zy.~) under  the project ive t r ans fo rmat ion  g (x )  = gy,~(x). 

Theorem 4.1. Let w > 0 be an m-vector satisfying eTw = 1. Let H ( X )  and X be a 

constraint system of  the form (2.2), (2.3), let ~ ~ int X, g = b - AY~, and let 

y = A T S - ~ w .  (4.1) 

Then y c in t (Y~)  given in (3.2), and ~ is the w-center of  the projectively transformed 
constraint system H ( Z)  = H ( Zy,~) given by (3.3)-(3.6),  under the projective transfor- 

mation g(x)  = gy,~(x) of  (3.8)-(3.9).  

Proof .  By setting A = w, we see that  y c i n t  Yx. Note  that  g(ff, g) = (~, g), so that  
(~, g) e (Z ;  T),  i.e., ,4ff + g =/~, Mff = g. F rom (2.7), it remains  to show that  wa-S 1~ = 
~rTM for some 7r e R k. One  has wTS-1A = wTIs  I ( A -  gyV) = w V ~ - l ( A _  gWT~-IA) = 

0. Hence,  one may  take ~r = 0, so (2.7) is satisfied, comple t ing  the proof .  [] 

T h e o r e m  4.1 is a genera l iza t ion of  a t heo rem of  Lagarias  [17] which  asserts the 
existence of  a project ive t r ans fo rmat ion  that  will result in )7 being the w-center  of  
a ful l -dimensional  po ly tope  X in the case of  w = (1/m)e.  T h e o r e m  4.1 covers a 
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general linear system of both inequality and equality constraints, and covers the 
case of  non-uniform weights w. Although the projective transformation g (x) = gy,~ (x)  

defined in Theorem 4.1 using (4.1) does not appear  to resemble Karmarkar ' s  
projective transformation [16] for centering in a simplex, it is shown in [8] that 
Theorem 4.1 specializes to Karmarkar ' s  projective transformation when viewed in 

the slack space S. 

5. A canonical optimization problem, and an algorithm for the w-center problem 

In this section, we consider the following canonical optimization problem: 

CP: minimize F ( x ) = l n ( U - c - C x )  - ~ w~ l n ( b i - A i x )  
x i--1 

subject to A x  + s = b, 

s > 0, (5.1) 

M x  = g, 

cTx < U. 

The data for the problem is the data for the constraint set H ( X )  = (A,  b, M, g), plus 
the m-vector of positive weights w = (wl, . . . ,  win) T which satisfy the normalization 
eTW = 1, plus the data for constraint c T x <  U. The general linear programming 

problem: 

LP: maximize 

subject to 

c T x  

A x  ~ b, (5.2) 

M x  = g, 

can be cast as an instance of  CP. By setting c to be the LP objective function vector 
and U to be an upper  bound on the optimal LP objective value, CP becomes the 
potential function minimization problem for LP, as in Karmarkar  [16]. This problem 

instance has already been treated in [7] and also [8]. 
The problem of  finding the w-center, namely problem Pw defined in (2.6), is also 

an instance of CP. By setting 

c = 0  and U = I ,  (5.3) 

problem CP specializes to problem Pw. In Sections 6 and 7, we present an analysis 
of  problem Pw viewed through the canonical optimization problem CP. 

Suppose now that we wish to solve CP, and that we have on hand a feasible 
solution ~ of CP, i.e., 2 c int X and c-r2 < U. I f  ~ happens to be the w-center of  X, 

then ~ has optimized the second part  of  the objective function F ( x )  of CP. I f  2 is 
not the w-center of  X, we can perform the projective transformation of Theorem 
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4.1 in order to ensure that 9~ is the w-center of  the t ransformed constraint set Z = Zy.~ 
(where y = ATs lw is given in (4.1)) under the projective transformation z = g ( x )  = 

gy,~(x) of  (3.9). Under  this projective transformation, the constraints of  X are 
mapped into the constraints of  Z, which are given by (3.3) and (3.4). Furthermore, 
if )7 c X and x satisfies cTx <~ U, it is then elementary to show z = gy,~(x) will satisfy 

~Tz <~ U, (5.4) 

where 

= c - ( U - cT~)y, [J = U -  ( U - cT2)yT2. (5.5) 

The next lemma shows that under the projective transformation gy, x(.  ), the program 

CP is transformed into program 

minimize F(z)  = l n ( U - ? T z )  - ~ wi ln(/~i-,4,z) 
z i = 1  

subject to A z + t = / ~ ,  t > 0 ,  (5.6) 

N/z  =- g, 

~Tz < U, 

where U, ? are given by (5.5) and (A,/~) is given by (3.4). 

Lemma 5.1 (equivalence of CP and CPy,~Z). Suppose y c i n t  Yx o f  (3.2) and define 

the projective transformation g ( .  ) = gy,~(. ) as in (3.9a) and its inverse h ( .  ) = hy,~(" ) 

as in (3.9b). I f  X satisfies condition (A) o f  Corollary 3.1, then programs CP and CP 

are equivalent, i.e.: 

(i) i f  x is feasible for  CP, z = g(x )  is feasible for  C"'ff and F ( x )  = F ( z ) .  

(ii) i f  z is feasible for  C"ff, x = h(z )  is feasible for  CP and F ( z ) =  F ( x ) .  

Proof. (i) I f  x is feasible for CP, then x c in t  X and so from Corollary 3.1, z = g(x )  

is well-defined and z c in t  Z. The equality F ( x )  = F(z)  follows by direct substitution. 

A parallel argument also demonstrates assertion (ii). [] 

Lemma 5.1 shows that by the projective transformation of Theorem 4.1, we can 
always reduce CP to the special case in which the current feasible solution 9~ is the 
w-center of  the constraint set X, and satisfies cTx < U. 

We therefore suppose, without loss of generality, that we have on hand a feasible 
solution )7 of  CP, i.e., ff c X, and cTx < U, and that ff is the w-center of  X. Then the 

inner ellipsoid E~N at the w-center is contained in X (from Theorem (2.1), and 
F ( x )  can be improved by optimizing cTx over the inner ellipsoid E IN. From Theorem 
2.1, the problem of finding the direction d that maximizes cT(~ + d) over the ellipsoid 

E I N  is 

maximize c T d 

subject to d T A T S  - 1 W S - I A d  <~ r 2, (5.7) 

M d  =0,  
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where r is defined in (2.8), and g= b - A 2 .  Under the assumption that A and M 
have full rank, program (5.7) has a unique solution given by 

d = rGc/~/cTGc, (5.8a) 

where 

Q=ATS 1WS-1A and G = [ Q - 1 - Q  1MT(MQ 1MT)-1MQ-1]. ( 5 . 8b )  

It is straightforward to check that G is positive semi-definite, and so cTGc >~0. 
Furthermore, cTGc = 0 if and only if c T lies in the row space of M, which implies 
that g solves CP since g is the w-center of the system H(X).  Therefore, unless g 
solves CP, the denominator of (5.8a) is well-defined and d given in (5.8) is the 
unique solution to program (5.7). 

The extent of improvement in optimizing F(z) of (5.1) by moving from g in the 
direction d of (5.8) is as follows: 

Theorem 5.1 (improvement of CP from the w-center 2). Suppose g is the w-center of 
X, g= b -Ag ,  and let d be the solution to (5.7) given in (5.8). Define the quantity 

cTd 
3' (U_cTX)r 2. (5.9) 

Then: 
(i) I f  3">~ 1/r 2, the program CP is unbounded from below. 

(ii) I f  3"<l/r 2, then 

F(X +a~)< F(.~)_r2(3"a °e2 
2(1-~ a)-) 

for all c~ ~ [0, 1). 

Before proving the theorem, we derive a consequence. The optimal objective 
value of the inner ellipsoid maximization program (5.7) is cVd, and so y is just a 
rescaling of this value by the quantity ( U -  cTff)r 2. In (ii) of the theorem, the extent 
of improvement in the objective function CP is proportional to the function 

2 
O/ 

f ( a )  = 3"a (5.10) 
2(1 -c~)" 

The value of a that maximizes f ( a )  over a e [0, 1] is 

1 
c~ = 1 I~T¥-~ '  (5.11) 

which yields the value o f f ( a )  of 

k(3') = (1 + 3' - 4 1  +23'). (5.12) 

Summarizing, we have: 

Corollary 5.1. I f  ce is given in (5.11), then 

F(X+~d) -F(*)<- -r2( l+7- , / l+23")=-rgk(3" ) .  [] (5.13) 
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Proof of Theorem 5.1. (i) Suppose y >/1/r  2. Then define d = (yr 2) -~ = ( U - off)~ cVd, 
and notice that k ~ 1. Then from (5.9), cTd~  > U-cVg ,  i.e., cT(~+ d)i> U. Thus, as 
c~ ~ k, In( U -  cV(ff+ ad) )  ~ -co. As a consequence of (5.7), (5.8), and Theorem 2.1, 
~ + c ~ d c X  for all a c [0, ~). I f C P  is bounded from below, then Ai(ff+ c~d) ~ b; for 
every i =  1 , . . . ,  m, as a ~ k ,  i.e., A d = g  and ~ = 1, which implies that X is 
unbounded,  which in turn implies that the w-center of H(X) cannot exist, contradict- 
ing the hypothesis of the Theorem. Thus CP is unbounded from below. (ii) Suppose 
y< 1/r 2. Then 

F(.~ + o~d)- F(.~) 

{U--cT(ff+_~a).] ~ w i l n ( b , - A i ( x + a d ) ~  
= l n \  U--cTff I --,=, ~ -  / 

=ln(1 - -~ r2y) - -  ~ w; ln(1 -c~(S-1Ad)i)  (from 5.9) 
i--I 

F20/2 
<~ -r2ay q 

2(1 -o~) 

(from Proposition A.1 of the Appendix and Lemma 2.1) 

( +o~ 2 '~ 
- -  r2\ + 2(]-S [] 

Lemma 5.1 and Theorem 5.1 suggest the following algorithm for solving CP: At 
each iteration, CP is projectively transformed to C P =  CPy, x of  (5.6) where y = 
ATS lw (of (4.1)), which transforms the current point ~ to the w-center of the 
transformed Constraint set (Theorem 4.1). Then the algorithm steps a length a in 
the direction d of (5.7)-(5.8) that maximizes the transformed objective function 
vector Y over the inner ellipsoid EIN, where c~ is given by (5.11). The specialization 
of this algorithm to solving LP is detailed in [8]. The remainder of this section treats 
the specialization of this methodology to solve the w-center program Pw. 

Recall that program Pw given by (2.6) is the special case of CP where c = 0 and 
U--  1 (5.3). The algorithm for solving Pw then is as follows: 

Algorithm WP(A, b, M,  g, w, x °, e). 
Step 0 (Initialization). 

~ X °, 

# = m i n i { w l , . . . ,  Wm}, 

r = 4 # / ( 1  - #) ,  

R = x/(1 - # ) / # ,  

F* = +oo. 
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Step I (Projective transformation to w-center). 

g= b -AS, 

y = AV~-lw, 

A = a - g y  T, b=b-gyT~,  

(~=-y ,  U=I--yTX). 

Step 2 (Optimization over inner ellipsoid). Solve the program: 

EP: maximize --yTd 

subject to  dT~ITs -1WS-1Ad <~ r 2, 

Md =0. 

The optimal solution is given by 

d= - a y / ~ - - - ~ y ,  

where 

0 = / ~ i T g - 1 W S - I / ~  and 
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(5.14) 

(5.15) 

d = [0  -1-  O - ' M T ( M O - ' M  T)-~M()-']. (5.16) 

If EP is unbounded from above, stop. Pw is unbounded. 
Step 2a (Update upper bound on F*). 

Set 3' = 3,(X) = (--yTd)/r2. (5.17) 

If 3">~l/r 2, stop. Problem Pw is unbounded, and 

d is a ray of X. (5.18) 

If 3,<1, F*~min  F*,Fw('Y)+3"+ . (5.19) 

If 3'~<~, F*~min{F*,  Fw(~)+(O.82)r23"2}. (5.20) 

Step 3 (Take step in the set Z). 

= 1 - 1 / 4 i - - 4 ~ ,  

ZNE w ~- X + Og~ 

Step 4 (Transform back to the set X). 

ZNE w -- 
X N E W =  X-~- 1 + y T ( g N E W - - . ~  ) " 

Step 5 (Stopping criterion). 

Set X = XNEW. If Fw(X) >I F * -  e, stop. (5.21) 

Otherwise, go to Step 1. 
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The data for the problem is the data (A, b, M, g) of the constraint set X, the vector 
w of  positive weights that satisfy eVw = 1, an initial feasible solution x ° of Pw, and 
an optimality tolerance e > 0. We can assume without loss of generality that the 
constraint set X satisfies condition (A) of (3.10) by prior knowledge of the bounded- 
ness of X or by adding the null constraint OXx <~ 1 to the system (A, b). In Step 0, 
the value of ~ is initialized and the constants ~, r, and R of (2.8) are computed. In 
Step 1, the value o f y  of (4.1) is computed, and the constraint set data is transformed 
according to (3.4). In addition, we have from (5.3) and (5.5) that 

= - y  and t~ = 1 -y'r)7. (5.22) 

In Step 2, the inner ellipsoid program of (5.7) is solved via (5.8) for the transformed 
data. In Step 2a, the upper bound F* is updated. The bounds given in (5.19) and 
(5.20) will be proven in Section 6. (The unboundedness criteria of (5.16) and (5.18) 
will be proven below in Lemma 5.3.) In Step 3, the stepsize o~ is computed according 
to (5.9) and (5.11). Note that the computation of y from (5.9) is 

~Td - y T d  

, y = ( u _ ~ T ~ ) r 2  r 2 , 

as is stated in (5.17). In Step 4, the new value of z = Z N E  W (in the transformed set 
Z)  is transformed back to the set X via the projective transformation h(z) = hy, x(z) 
of (3.9). In Step 5, the optimality tolerance criterion is checked. 

Lemma 5.1, Theorem 5.1 and Corollary 5.1 combine to yield the following: 

Lemma 5.2 (performance of  Algorithm WP). At each iteration of Algorithm WP, 

Fw(XyEw) ~> Fw('2) + rZ(1 + y -x/1 +2y ) ,  

where y = y(g)  is defined in (5.17). [] 

Remark 5.1 (use of line-search). Steps 3 and 4 can be augmented by a line-search 
of the objective function Fw(x), without affecting the conclusion of Lemma 5.2. 
Because the projective transformation g ( . )  preserves directions from ~ one can 
perform the line-search in the space X directly. Specifically, one can replace the 
computation of a in Step 3 and all of Step 4 by finding a value 6/> 0 for which 
Fw(Y~ + 6d) is approximately maximized. As shown in Todd and Burrell [26], there 
will be only one local maximum of F,,()7 + 6d) for 6 ~> 0. The search could be started 
with 8 = a / (1  + ~yTd), where o~ is given in Step 3, which corresponds to the value 
of  ~ in (5.11). 

Remark 5.2 (interpretations of y). The quantity y in (5.9) is closely related to the 
length of the Newton step; see [10]. Let YN denote the norm of the Newton step 
for problem Pw at the point ~, using the norm defined by Hessian of the objective 
function at ~. Then (y/YN) ~ 1 as ~ -~ ~, where ~ is the optimal solution to problem 
Pw; see [10]. 
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Lemma 5.3 (detecting unboundedness in Algorithm WP). 
(i) I f  Algorithm WP stops via (5.16), then Pw is unbounded. 

(ii) I f  Algorithm WP stops via (5.18), then Pw is unbounded. 
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Proof. (i) If program EP of (5.14) has no solution, there exists a vector d for which 
dTOd = O, Md = 0, and -yVd > 0 (where 0 is defined in (5.15)). Thus Ad = 0, i.e., 
Ad = gyTd. If X is bounded, then d = 0, contradicting -y 'rd > O. 

(ii) In this case, from Lemma 5.1 and Theorem 5.1(i), program ~ is unbounded 
from below, and so program CP is unbounded from below. [] 

However, Algorithm WP does not always detect unboundedness; see Remark 7.4. 
Finally, we note that program CP of (5.1) can be reduced to the special case (2.6) 

of program Pw under the projective transformation 

z = x / ( U -  c~x) ,  

as is done in Bayer and Lagarias [4] for linear programming. Because algorithm 
WP is invariant under projective transformation (this is established by straightfor- 
ward arithmetic), algorithm WP can be used to solve the more general program CP 
with all of the properties presented in this section (and in Sections 6 and 7 as well). 

6. Linear and superlinear convergence of Algorithm WP 

The purpose of this section is to establish the following four results regarding 
Algorithm WP for solving the w-center problem Pw. 

Lemma 6.1 (optimal objective value bounds). At Step 2a of Algorithm WP: 
(i) I f  y < 1, Pw has an optimal solution ~, and 

2 

Fw(~)<Fw(,y)+yq Y ~  
2(1 - y)" 

(ii) I f  y <<- ½, then Fw(~) <~ Fw(£) + (0.82)r272. 

Lemma 6.1 validates the upper bounds computed in (5.19) and (5.20) of the 
algorithm. 

Lemma 6.2 (local improvement). At  Step 2a of Algorithm WP: 
(i) I f  y >~ ~, Fw (XNEw) >1 Fw (g) + (0.0069) r 2. 

(ii) I f  3/<~ ~, then F~(XNzw) >/Fw(Y~) + (0.44) r272. 

Lemma 6.3 (linear convergence or fixed improvement). At each iteration of Algorithm 
WP, at least one of the following is true: 

(i) Fw(XNEw) ~ Fw(~) + (0.0069)r 2. 
(ii) Fw(:~ ) - Fw(XNEw) <~ (0.46)(Fw(:~) - Fw(g)), where :~ is the w-center of X. 
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Lemma 6.3 states that each iteration achieves either constant improvement (i) or 
linear convergence (ii) with a convergence upper bound constant of 0.46. The next 
theorem states that this upper bound constant will go to zero in the limit, thus 
establishing superlinear convergence. 

Theorem 6.l. I f  program Pw is bounded, then Algorithm WP exhibits superlinear 
convergence. 

The proofs of these results will make use of the following functions, defined 
below for convenience. 

k ( y ) = l + y -  I~/TT2T, y~>0, (6.1) 

j (O)=k(O) /O  2, 0 > 0 ,  (6.2) 

h - ln(1 + h) 
p(h)  h2 , (6.3) 

q ( h ) = ~ ( l + h p ( h ) - ~ / l + ( h p ( h ) ) 2 ) ,  h > 0 ,  (6.4) 

(q(h))  2 
v(h) =p(h)  h > 0, (6.5) 

2(1 - q ( h ) ) '  

m(h)  = k(q(h)) ,  (6.6) 

n(h)  =j (q(h) ) .  (6.7) 

Inequalities relating to these functions can be found in Propositions A.4-A.9 of the 
Appendix. We first will prove Lemma 6.1(i). The proof of Lemma 6.1(ii) is more 
involved. 

Proof of Lemma 6.1(i). Under the projective transformation g ( x ) =  gy,~(x) where 
y = ATS-lw,  ~ is the w-center of the system Z = (A,/~, M, g) and problem Pw (2.6) 
is transformed, as in Lemma 5.1, to the program 

Pw: maximize f f 'w(Z)=-- ln ( l+yT(z - -£ ) )+ ~ w~ln(/~i--/t~z) 
z,t i--1 

subject to Az + t =/~, 

t > o, (6.8)  

M z  = g, 

-- yT z < 1 _ yT.~. 

Because ~ is the w-center of Z, then 

wi ln(/~, - ,4iz) ~< ~ w, ln(~) =/Tw(ff), (6.9) 
i = 1  i = l  
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for  all z ~ Z. Also, because  ~ + d maximizes  --yTz over  the el l ipsoid E~N of  the Z 
poly tope  (defined in Theo rem 2.1), then ff + d R / r  maximizes  --yTz over  the outer  
ell ipsoid EouT of  the Z po ly tope  (also defined as in Theo rem 2.1). Because Z c  
E o u v , - - y T z  <~ _ y T ( ~ +  dR~r) for all z c Z. Put ano the r  way, 

-yV(z  - 2) <~ 3' for  all z c Z. (6.10) 

This follows because  - y V d R / r  = -yVd / r2= 3'. There fore  

/3~(z) = - l n ( l + y V ( z - f f ) ) +  ~ wg ln(/~g-,4~z) 
i = 1  

<~ - l n ( 1  + y V ( z -  if)) + ~'w(X) ( f rom 6.9) 

3, 2 
~< y q I- F~(~)  ( f rom Propos i t ion  A.2). 

2(1 - 3') 

Therefore ,  f rom the equivalence  of  Pw and Pw under  the project ive t r ans fo rmat ion  
g (x )  = gy,,(x) and L e m m a  5.1, Fw(x) - F~(~) <~ 3" + 3'2/(2(1 - Y)) for  all x e int X. [] 

The p r o o f  of  L e m m a  6.1(ii) will follow as a consequence  of  the fol lowing three 
lemmas.  

L e m m a  6 . 4 .  

g = b - A ~ ,  and suppose ~ ~ X satisfies: 

(3~ -- x ) T A T s - I  Wg-~ A( ~ - ~) = f12. 

Then 

Let h > 0 be a given parameter. Suppose ~ is the w-center of X, let 

-P(  h ) fl2 
w i l n ( b i - A i ~ ) -  ~ w, lngi<~ l._p(h)hr¢ I 

i = l  i = 1  

where r is defined in (2.8) and p(h) is defined in (6.3). 

if[3 <~ hr, 

if fl >1 hr, 

P r o o f .  First observe that  

m 

w i l n ( b i - A f i ) - ~ ,  wilngi = ~ wi ln( l+vi ) ,  
i = 1  i - -1  i - - 1  

where v = S - 1 A 0 7 -  ~). Then  note that  wVv = wTS-1A(~-  9~) = 77VM07-  9~) = 0, for  
some 7? e •k, f rom (2.7d). Also vTWv = f12. There fore  (vr/Cl)VW(vr/¢l) = r 2, and so 

f rom Propos i t ion  2.2, [vir/fl[<~ 1, i.e., 

Iv, l<-~/r, i = l , . . . , m .  (6.11) 

We now prove  the two cases of  the l emma.  
Case 1 ([3<~hr). In  this case ]vil~<h. F rom Proposi t ion  A.7, l n ( l+v i )<~  

vi-p(h)(v~) 2. Summing  over  i yields 

rn 

W i ln(1 + vi) <~ wXv - p ( h ) v T W v  = - p ( h ) ~  2. 
i = 1  
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Case 2 (fl >1 hr). In this case, from Proposition A.3 (with a = ( hr/ fl), b = vi), 

~ wi ln( l+vi )<~( f l )  ~ wi ln(  l+rh ) 
i=1 i=1 f l  vi " 

However, from (6.11), (rh/fl)v~ ~ h, and so from Proposition A.7, 

~ w~ln( l+v~)~ \hr] \ /3  wry - -  
i=l 

r2h2 v XWvp(h)) /3T 

= - f l f l 2 p ( h )  = -p(h)hrfl. [] 

Lemma 6.5. Let ~ be the current iterate of Algorithm WP and let g, y, b, A, Q, and 3" 
be as defined in Steps 1, 2, and 3. Suppose ~ is the optimal solution to Pw, and let 

= g(~) = gy,~(~). Suppose 

( ~ -  g ) v ( ~ ( 2 -  ~) =/3 2. (6.12) 

I f  h > 0 is a given parameter and 3' < 1, then 

g ,~2r2 2 

] - P ( h ) fl g + flr3" q ;(---~3" ) 
F w ( ; ) - F w ( ' 2 ) ~  

! ~ 2 r 2  2 
|_p(h)hrf l+/3ry + p r y_= 
v 2 (1 -3 ' )  

if fl <~ hr, 

if fl >1 hr. 

Proof. Let PW be the projectively transformed equivalent program of  Pw, i.e., program 
(6.8). Then it suffices to show that Fw(w)-Fw(X) is less than or equal to the 
expressions in parentheses, by Lemma 5.1. 

From Lemma 6.4, 

~, " " "  ~ (6.13) w~ ln(b~ - Aiz) - wi ln(g~) ~< - p  if/3 <~ hr, 
i:~ ~:~ (-p~n)nr/3 if fl>~hr. 

It thus remains to show that 

-In(1 + yX(~_ X)) ~< fir3' 4 - -  
f12r23'2 

2(1 -3 ' )  

Let cl = ~ - £ .  Then from (6.12), +dr/fl satisfies the constraints of EP (5.14), so that 

+yTdr/fl <~yXd = 3"r 2 (from 5.17), 

and consequently 

]y~d[ ~< 3'r~. (6.14) 
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Furthermore, because of (6.12), from Theorem 2.1, we conclude that 

/3<~R=l /r ,  i.e., rfl ~< 1. 

Finally, we obtain 

3,2r2/32 
ln(1 q-yT(z - -~ ) )  -~ ln(1 + y T d )  ~ ln(1 - yrfl) >1-3,rfl- 

from Proposition A.2, (6.14), and (6.15). [] 

2 ( 1 - 3 , ) '  

407 

(6.15) 

Lemma 6.6. Under the hypothesis of  Lemma 6.5, 

i f  3,<-q(h), thenfl<~hr, 

where q(h) is defined in (6.4). 

Proof. Suppose/3 > hr. Then from Lemma 6.5, 

F~(~) - Fw(~) ~ f (  y, /3), (6.16) 

where 

f (  % /3 ) = - p (  h )hr/3 +/3ry q 
/32r2,y2 

2(1-3 , )"  

Note that f(3,, 13) increases in 3, for/3 > 0 and 0 ~< 3, < 1. Straightforward calculation 
reveals that f(3,,/3) = 0 if 

3, -  
1 + hp(h) -x/1 + (hp(h)) 2 - 2hp(h) + 2hp(h)/3r 

2 - ~  

> 1 + hp(h) - , / 1  + (hp(h)) 2 
- q ( h ) ,  

2 

because 0<~rfl<~l from (6.15). Thus if 7<~q(h), f (3, , /3)<O, contradicting the 
optimality of £ in (6.16). Therefore if 3' <~ q (h), ,8 <~ hr. [] 

Proof of Lemma 6.1(ii). We will actually prove a stronger result, namely: 

I f 0 < h ~ < l ,  and y<~q(h), thenFw(~)-Fw(~)<~ y2r2, (6.17) 

where v(h) is defined in (6.5). (ii) will follow by substituting h = 0.93. Then q(h) >~½, 
and (1/4v(h))<~ 0.82. To prove (6.17), observe that if y<~ q(h),  from Lemma 6.6, 
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/3 ~ hr, and so from Lemma 6.5, 

Fw( ~) - Fw( 2) <- -p (  h )/32 + /3r7 4 - -  
~2r272 

2(1 - 7 )  

<~_p(h)/32 + /3ry+ fl272 
2(1 - y )  

72 
= - ( p ( / )  2(1-_-- T-S)/32 +/3rT. (6.18) 

However, (p (h ) -  72/(2(1-  Y))) ~ v(h) because y <~ q(h), and so from Proposition 
A.9, (p(h) -y2/ (2(1-y) ) )>~v(h)>O for h~<l, so that the bound of (6.18) is a 
concave quadratic in/3. The maximum possible value of the bound is then given 
by/3 = ry / (2p(h) -  72/ (1-  Y)), which yields from (6.18), 

r272 r2T 2 
F~(x)-F~(YO<~4p(h)_272/(l_y)<-4v(h---- S. [] 

Proof of Lemma 6.2. (i) We will actually prove a stronger result, namely: 

I f 0 < h < ~ l ,  and 7 ~ q ( h ) ,  thenFw(XNEw)-Fw(~)>~m(h)r 2, (6.19) 

where re(h) is defined in (6.6). (i) will follow by setting h =0.923. Then q(h)<~½, 
and re(h)~> 0.0069. To prove (6.19), observe from Lemma 5.2 and Theorem 5.1 that 

Fw(XNEw) /> Fw(g) + r2(1 + 7 -x/1 + 27) 

= Fw(g) + r2k(7) (see (6.1)) 

>~ Fw(g) + rZk(q(h)) = Fw(g) + r2m(h), (6.20) 

from Proposition A.8. 
(ii) We will prove a stronger result, namely: 

I f 0 < h ~ < l ,  and y<~q(h), then Fw(XNEw)-Fw('X)>~n(h)r2y 2, (6.21) 

where n(h) is defined in (6.7). (ii) will follow by setting h =0.929. Then q(h)>~½ 
and n(h)>~ 0.44. To prove (6.21), observe from (6.20) that 

Fw(XNEw) ~> Fw( 2) + r2k( 7) 

Fw(2)+r~](O)72 for0<~ 7<~ 0 (from Proposition A.5) 

=- Fw(Y,)+ r~](q(h))y 2 (substituting q(h) = 0). 

=-Fw(f)+n(h)r272 (from (6.7)). [] 
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P r o o f  of Lemma 6.3. Let h = 0.929. (i) follows f rom (6.19) if 3' >~ q(h). 
Now suppose 3,4 q(h). Then from (6.17) and (6.21), 

Fw(-~)--Fw(XNEw) Fw(XNEw)--Fw(~) n(h)r23,  2 
- 1  <~1 

F~(~)-Fw(g) Fw(2~)-Fw(g) (1/4v(h))r23, 2 

= 1 -4n(h)v(h)~0.46 .  [] 
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P r o o f  o f  Theorem 6.1. It suffices to prove that as h ~ 0, the convergence  constant  

o f  (6.22) goes to zero. This constant  is 

1-4v(h)n(h)  = 1 - 4 ( p ( h )  q(h)2 
- (1 - q(h))] (j(q(h))). 

From Proposi t ions A.4, A.6, and A.8, p(h)~1 ,  q(h)~ O, and j (q (h ) )~  1, as h -  0. 

Thus 

1-4v (h )n (h )~ l -4 (1 ) (1 )=O as h ~ 0 .  [] 

Remark 6.1 (monoton ic  decrease o f  y).  One natural  quest ion to ask regarding 

Algori thm WP is whether  the values o f  3' generated at each iteration are monotoni -  

cally decreasing. We have: 

Propos i t ion  6.1. Suppose 3"1 and 72 are two successive values of  y generated by 
Algorithm WP. Then if y 1 <1, 72< ~ (0.92)71. 

Proof .  Let Xl and x2 be the successive iterates o f  Algori thm WP that  generate the 

values o f  y = 71 and 3' = 3'2, respectively, and let x3 be the iterate value o f  x after 

x2. Let h = 0.93. Then 3'1 <~ q(h). Suppose 3'2 does not  satisfy 3,2<~ q(h). Then from 
(6.17), (6.19), and (6.21), 

1 1 2 2 

Fw(x 3 ) i> Fw(x 2 ) >~ Fw(x 1 ) + n( h )3,~r 2, 
(6.24) 

Fw(~)/> Fw(X 3) ~> Fw(x 2 ) + m(h)r 2. 

Combining  the above inequalities yields 

( ~ )  72>I m(h)+ n(h)3, 2, 

i.e., 

.~/ m(h) 
3'1 ~ ~/ 4v(h)- n(h)" 

(6.22) 



410 R.M. Freund / Projective transformations 

However, Yl <~ q(h), which is a contradiction at h = 0.93. Thus Y2 <~ q(h). This being 
the case, from (6.21) we obtain 

Fw(X 3) - Fw(x 2 ) >1 n( h )y~ (6.25) 

which in combination with (6.23) and (6.24) yields 

,y2~(,/1/(4v(h))--- '(h)~Tl~O.92,y1. [] 
\ ~  n(h) ] 

7. The improving direction is the Newton direction 

In this section, we show that the direction d of Step 2 of Algorithm WP is a positively 
scaled projected Newton direction. As a byproduct of this result, the computation 
of d in Step 2 can be carried out without solving equations involving the matrix 
(~ = ,~v~-~ WS ~A, which will typically be extremely dense. Vaidya's algorithm for 
the center problem [28] corresponds to computing the Newton direction and perfor- 
ming an inexact line-search. Algorithm WP specializes to Vaidya's algorithm when 
the algorithm is augmented with a line-search; see Remark 5.1. Furthermore, this 
establishes that Vaidya's algorithm then will exhibit superlinear convergence. 

Let ~ be the current iterate of Algorithm WP, let ~ = b - A ~ ,  y=AVS-~w and 
, 4 = A - ~ y  v as in Step 1 of Algorithm WP, and let Q=AvS-1WS-1A,  and 0 = 
~v~  1WS 1~. By assumption, A has full rank, so that Q is nonsingular and positive 
definite. Let Fw(x) be the weighted logarithmic barrier objective function of Pw 
given in (2.6). Then the gradient of Fw(')  at ff is given by -y ,  i.e., VFw(f f )=-y ,  
and the Hessian of Fw(" ) at ff is given by - Q ,  i.e., ~72Fw(x ) = - Q .  Thus the projected 
Newton direction dN at ~ is the optimal solution to 

maximize -yVd -½dTQd 
(7.1) 

subject to Md =0, 

and the Newton direction dN together with Lagrange multipliers ~'y is the unique 
solution to 

QdN - MT'/7"N = - y ,  
(7.2) 

MdN = O. 

Because Q has rank n and M has rank k, we can write the solution to (7.2) as 

dy = - Q - '  y + Q-'  MTzcN, (7.3) 

where 

¢rN =- (MQ 1MT)-IMQ-~y. 
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Theorem 7.1 (positive scaled Newton direction). Let dN be the Newton direction 
given by (7.3), and let t~ = ~Tg-1W~-~ ~. Then Q is positive semi-definite and: 

(i) I f  d~OdN> O, then dN is the direction of Step 2 of Algorithm WP. 
(ii) l f  d~Qdy = O, then the direction dN gives a nontrivial ray entirely in X, problem 

EP of Step 2 of Algorithm 2 is unbounded from above, and Pw is unbounded from above. 

Proof. Consider the scaled vector 

d = d N r / ~ .  (7.4) 

(i) Let rrN be as given in (7.3), # =  7rN/(l+yTdN), and 

/3 = ~ / ( 2 r ( 1  + yTdN) ). 

Then d, #, /3 satisfy the K - K - T  conditions of program EP, namely d T 0 d  = r 2, 
Md = 0, and - y  = 2/3t~d- M T ~ ,  fl > 0, SO long as 1 + yTd N > 0. It thus remains to 
show that 1 +yTdN> 0. Note first that t~ = Q--yyT, where Q = A T s  -1 WS-1A. By 

hypothesis, we have 

0 < dTQdN = dT(Q --yyT)dh 

= dTNQdN-- (yTdN)2 = --yTdN -- (yTdN)2, (7.5) 

which implies yTdN> --1, i.e., 1 +yTdN> O. 
(ii) Suppose aLOdN = o. In view of (7.5), we have yTdN =--1, and dLOdN = O, 

and MdN = 0. Thus program EP is unbounded,  and as in the proof  of Lemma 5.3, 
dN gives a nontrivial ray of X. [] 

Remark 7.1 (simplified computation of d). The formula (7.4) is better than (5.15) 
to compute d because it avoids inverting the possibly very dense matrix t~. 

Remark 7.2 (relation of Algorithm WP to Vaidya's algorithm). Theorem 7.1 shows 
that d is just a positive scale of the Newton direction dN. Suppose Algorithm WP 
is implemented with a line-search replacing Steps 3 and 4. Then because the 
projective transformations g(x) and h(z) given by (3.8) and (3.9) preserve directions 
from 2, the algorithm's direction in the space X will be dN. Therefore, when using 
a line-search, the algorithm is just searching in the Newton direction. This is precisely 
Vaidya's algorithm [28], when all weights wi are identical. And because the com- 
plexity analysis of Sections 5 and 6 carries through with or without a line-search, 
we see that Vaidya's algorithm exhibits superlinear convergence. 

Remark 7.3 (an extension of a theorem of Bayer and Lagarias). In [4], Bayer and 
Lagarias have shown the following structural equivalence between Karmarkar's 
algorithm for linear programming and Newton's method: First one can projectively 
transform the problem of minimizing Karmarkar's potential function over a poly- 
hedron X to finding the (unbounded) center of an unbounded polyhedron Z, where 
Z is the image of X under a projective transformation that sends the set of optimal 
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solutions to the linear program to the hyperplane at infinity. Then the image of 
Karmarkar ' s  algorithm (with a line-search) in the space Z corresponds to performing 
a line-search in the Newton direction for the center problem in the transformed 
space Z. Theorem 7.1 generalizes this result. It states that if one is trying to find 
the center of  any polyhedron X (bounded or not), then the direction generated at 

any iteration of the projective transformation method (i.e., Algorithm WP) is a 
positive scale of  the Newton direction for the barrier function (2.6). Thus, if one 
determines step-lengths by a line-search of the objective function, then the projective 
transformation method corresponds to Newton's  method with a line-search. 

Another important relationship between directions generated by projective trans- 
formation methods and Newton's  method can be found in Gill et al. [13]. 

Remark 7.4 (detecting unboundedness in Algorithm WP). Algorithm WP will not 

always detect unboundedness via (5.16) or (5.18). This is shown in an example of 
Section 4 of  Bayer and Lagarias [4]. In that example,  X = {x c R2[Xl ~> --1, xl ~< --1, 

1 1 1 (~, 7). They x2 ~> 0,}, w = (7, 3, ~), and the starting point of  the Algorithm WP is x ° = 1 2 
show that Newton's  method (with a line-search) never produces a ray of X. As a 
consequence of Theorem 7.1, Algorithm WP (with a line-search) will never detect 

unboundedness for this example. 

Finally, we point out that the objective function Fw(x) of program Pw is a 
self-concordant function in the notation of Nesterov and Nemerovsky [20], who 
present a general analysis of  Newton's  method in this context; see in particular 

Theorem 1.2 of [9]. 

Appendix: Inequalities related to logarithms 

Proposition A.1. ln(1 + a)  ~< a. 

Proof.  Follows from the concavity of the logarithm function. [] 

Proposition A.2. I f  [c~ I <~ 6 < 1, then ln(1 + a ) / >  a - ~2 / (2 (1  - 6)) .  

Proof.  See, e.g., Todd and Ye [27]. [] 

Proposition A.3. I f  0 < a <~ 1 and [bl < 1, then ln(1 + b) ~< ( l / a )  ln(1 + ab). 

Proof.  ln(1 + ab) = ln (a (1  + b) + (1 - a ) (1 ) )  i> a ln(1 + b) + (1 - a ) ln(1)  = a In(1 + b), 

where the inequality follows from the concavity of  the logarithm function. [] 

Consider the functions k ( y ) , j ( O ) , p ( h ) , q ( h ) , v ( h ) , m ( h ) ,  and n(h) defined 

in (6.1)-(6.7). 
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Proposition A.4. (i) j (  O) is decreasing in O. (ii) l imo~oj(  O) =½. [] 

Proposition A.5. k (3/)/> j (0)  72 for  0 <~ y <~ O, 

Proof .  Fo l lows  f rom P r o p o s i t i o n  A.4(i) .  [] 

Proposition A.6. (i) p ( h )  is decreasing in h. (ii) l i m h ~ o p ( h ) =  1 7. []  

Proposition A.7. ln(1 + x)  ~ x - p ( h ) x  2 for  - 1  < x <~ h. 

Proof .  Fo l lows  f rom P r o p o s i t i o n  A.6(i) .  []  

Proposition A.8. (i) q(h)  is increasing in h. (ii) l imh~0 q ( h ) =  0. (iii) 0 < q ( h ) <  0.30 

for  all h > 0. (iv) q(h)  is a concave function. [] 

Proposition A.9. (i) v(h)  is decreasing in h. (ii) v(h)  > 0 for  h <~ 1. 

Proof .  (i) Fo l lows  f rom P r o p o s i t i o n  A.6( i ) ,  A.8( i ) ,  a n d  A.8(i i i ) .  A s s e r t i o n  (ii) fo l lows 

f rom (i) a n d  di rect  subs t i t u t i on .  [] 
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