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This paper presents a model and an analysis of the cost-flexibility tradeoffs involved in investing
in product-flexible manufacturing capacity. Flexible capacity provides a firm with the ability to
respond to a wide variety of future demand outcomes, but at the expense of the increased cost
of acquiring flexible manufacturing capacity, as compared with dedicated or nonflexible capacity.
We formulate the product-flexible manufacturing capacity investment decision as a two-stage
stochastic program. In the first stage, the firm must make its investment decision in manufacturing
capacity, before the resolution of uncertainty in product demand. In the second stage, after demand
for products are known, the firm implements its production decisions, constrained by the first-
stage investments.

The main contributions of this paper are threefold. First, we develop a model of the firm’s
flexible manufacturing investment decision that conceptually captures some of the key charac-
teristics of this complex decision problem. Second, with the aid of the model, we characterize the
necessary and sufficient conditions for a firm to invest in flexible capacity to protect efficiently
against uncertainty in demand for all of its products. Third, we explore the sensitivity of the firm’s
optimal capacity investment decision to key problem components, namely to the cost of flexible
and nonflexible production capacity, to the underlying distribution of product demand, and to
the level of risk.

(TECHNOLOGY INVESTMENT; FLEXIBLE MANUFACTURING SYSTEMS)

1. Introduction and Literature Review

Many firms are finding that their available tools for considering cost/benefit tradeoffs
for investments in flexible automation often contradict the intuition of their managers,
many of whom perceive significant benefits from acquiring flexible manufacturing systems
(FMS’s). Kaplan ( 1986 ) acknowledges that even a very careful application of discounted
cash flow techniques to evaluate a potential investment in flexible automation will not
capture the strategic benefits of flexibility. Kaplan proposes that managerial judgement
be applied to decide whether the strategic benefits of an investment in flexible automation
outweigh the difference, or gap, between the investment cost and the quantifiable benefits.

In this paper we attempt to narrow this technology evaluation gap, in which managers
have insufficient tools to support their investment decisions. We develop a model that
focuses on the economic tradeoffs between the acquisition costs of flexible capacity and
a firm’s ability to respond flexibly to future uncertain demand. We then use this model
to characterize the necessary and sufficient conditions for the acquisition of flexible ca-
pacity. We also use the model to examine the sensitivity of the firm’s optimal capacity
investment decision to the costs of capacity, to the distribution of demand, and to the
level of risk.

We focus our analysis on the use of flexible capacity to hedge against uncertainty in
future demand. Other motives for investing in flexible technology include developing
the ability to rapidly introduce new product models, reducing the need for interperiod
inventories, and expanding product scope to invade competitors’ markets. (Incorporating
all of these factors into one model would be quite difficult at this time.) We view our
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analysis as contributing to the theory necessary to develop realistic models for complete
analysis of FMS investment decisions.

The subject of the economics of flexibility has been of interest to economists for a long
time (see e.g., Stigler 1939, and the many references in Jones and Ostroy 1984 ), but has
become a significant interest in the management science community only recently, fol-
lowing the increasing viability of flexible, computer-controlled manufacturing systems.
This new interest has spurred a significant amount of work in a very short time. (See,
e.g., Stecke and Suri 1984, 1986, Adler 1985, Buzacott and Yao 1986, Fine 1990.)

Some recent work (Pindyck 1988, Majd and Pindyck 1987, Jones and Ostroy 1984)
explores flexibility only as it relates to the timing structure of capacity acquisition, in-
formation acquisition, and commitment of resources: A firm loses flexibility when it
makes an irreversible commitment. These papers do not deal with technologies that
exhibit flexibility per se. The work of Gaimon (1986, 1988) and Roth, Gaimon, and
Krajewski (1986) attempts to move in this direction. These model formulations do not
explicitly capture a technology’s flexibility characteristics; however, they attribute char-
acteristics often associated with the acquisition of flexible technology (e.g., greater revenue
resulting from broader product mix capabilities and lower operating costs due to econ-
omies of scope) to the flexible automation that is acquired.

Our work, as well as Burstein (1986), Kulatilaka (1988), Fine and Li (1988), Fine
and Pappu (1988), Caulkins and Fine (1988), and Graves (1988), considers explicitly
the use of a flexible production technology. Burstein presents a deterministic, dynamic,
two-product, mixed integer programming model with flexible automation that is subject
to technological improvement over time. He characterizes optimal technology acquisition
policies. Kulatilaka’s model is a stochastic, dynamic program that analyzes optimal use
of a flexible technology that can be utilized and switched among a variety of operating
modes, depending on the outcome of demand in each period. Fine and Li explore how
the dynamics of the life cycles of multiple products affect incentives for investing in
flexible capacity that exhibits economies of scope in investment costs. Fine and Pappu
use a game-theoretic model to show how the existence of flexibility can intensify com-
petition among firms. Caulkins and Fine analyze flexible capacity as a substitute or
complement to seasonal inventories. Graves analyzes the interaction between safety stocks
and flexible manufacturing capability.

Another recent strand of the flexibility literature (Karmarkar and Kekre 1987; Vander
Veen and Jordan 1987) explores the relative advantages of buying many small machines
for dedicated use versus buying fewer large machines to be used flexibly. The analysis
focuses on the tradeoff between the differences in investment costs for the different options
and the inventory and changeover costs (in added capacity needs) required for the latter
option.

Finally, the option pricing models from the finance literature (see, e.g., the survey by
Mason and Merton 1985) can be used for analyzing investments under uncertainty.
Although these models have been available for over ten years, and are used extensively
in the analysis of investments in financial securities, they do not seem to have taken hold
in the capital budgeting procedures of most corporations. One reason for this may be
the perceived complexity of the model underlying the option pricing formula. (However,
the work of Kulatilaka 1985, 1988 may speed the adoption of these techniques for eval-
uation of flexible automation.)

§2 presents our model formulation and observations on its solution. In §3 we present
results on the necessary and sufficient conditions for purchasing flexible capacity, namely:
Flexible capacity should be acquired when the expected value of its best usage in each
possible future state, summed over all states, exceeds its costs. §4 examines the sensitivity
of the optimal net revenue and the optimal capacity investment levels for flexible and
nonflexible technologies to the costs of various capacity purchase options. Our results
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indicate that as a function of capacity acquisition costs, optimal net revenues are convex
and nonincreasing, and optimal capacity levels are monotone. We also show some subtle
but important cross-elasticity results regarding changes in optimal capacity levels to
changes in capacity costs. §5 explores ( via a numerical example) the sensitivity of optimal
investment in FMS capacity to negatively and positively correlated demand, and to the
level of risk in the demand distribution. Our results indicate that negatively (positively)
correlated product demands enhance (detract from) the value of flexible capacity and
that the level of demand riskiness does not always affect monotonically the optimal
quantity of flexible capacity. We provide concluding remarks in §6.

2. Model Formulation

We formulate our product-flexible capacity investment model as a two-stage stochastic
program. In the first stage the firm makes its technology investment decisions. It then
observes a random variable that affects demand, and in the second stage, makes its
production decisions. The model structure enables us to focus on an important charac-
teristic of flexible manufacturing technologies: The lead time for adjusting the usage of
a flexible technology is much shorter than the lead time for investing in and installing
new or upgraded facilities. The underlying simplification employed here is that we only
consider one period of production after the technology acquisition stage. The relaxation
of this simplifying assumption is considered by Caulkins and Fine (1989), who develop
a dynamic production model with interperiod inventories. In essence, the model presented
here rolls all future production and inventory decisions into one future period, as is also
done, for example, by Stigler (1939) and Jones and Ostroy (1984).

We model the capacity investment problem as a single firm optimization problem.
We assume that the firm can sell n different product families, indexed by j =1, ..., n.
The firm has n + 1 types of capacity available to it: dedicated jcapacity, forj =1, ...,
n, each of which can manufacture only members of its own product family, and flexible
capacity (indexed by F) that can produce any or all of the # product families. (In essence,
dedicated (or nonflexible ) capacity incurs an infinite cost of product changeover whereas
flexible capacity incurs zero changeover cost.)

We denote by K forj = 1,. .., nand Krthe amounts of dedicated and flexible capacity
purchased by the firm. Let r;(K;), j = 1, ..., nand r(Kr) denote the acquisition costs
for these technologies. In practice, r (+)and/or rg(+) may typically be concave or linear,
or even discontinuous. For each j, we assume rp(K) > ri(K) > 0 for K > 0. That is,
acquiring K units flexible capacity costs more than acquiring K units of any one type of
dedicated capacity.

After making its capacity investment decisions, the firms learns information about the
state of the world for market demand for its product families. There are k possible states

- of the world; state / occurs with probability p; (p; > 0 for all i and 3, p; = 1). For each
realization /, the firm chooses production levels for each product family, subject to the
capacity constraints imposed by the investment decisions. We denote by Y;; the total
quantity of product j produced on the dedicated j capacity if state i occurs, and by Z;
the total quantity of product j produced in state i on the flexible capacity.

Given that state | is realized, the firm’s revenue R;(+) from product j is a function of
Xy =Y, + Z;, the total quantity of product j to be manufactured and sold. We use
primes to denote derivatives of R;(-).

The firm incurs a cost C;(Y})) for producing Y;; units of product j using dedicated j
capacity and C;r(Z;) for producing Z;; units of product j using flexible capacity. The cost
functions Cj(-) and C;r( - ) in practice may be convex, linear, concave, or neither.

The following then is a model of the product-flexible manufacturing system (PFMS)
investment problem:
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maximize —re(Ke) — 2 r(Kp), +2 pi 2 {R(Y,; + Z;)— Ci(Y,)— Cir(Zy)},
j i i
Ke, Ky j=1,...,n, YinZys i=1,....k,j=1,...,n
subject to: Y;—K; <0, j=1,...,n; i=1,...,k,

ZZU_KFS(L i=17"-7k3
J

Kr>0, K;=0, Y;=0, Z;j=0; i=1,...,n; I=1,...,k.

We assume that for all / and j, that the revenue function R;( - ) is differentiable, strictly
concave, and has a unique, finite, positive maximand, QE- .(These assumptions all hold,
for example, when the firm faces a downward-sloping linear demand curve.) If we also
assume that the capacity acquisition cost functions r¢(+) and r,(-) and the production
cost functions Cj(+) and Cjr(+) are increasing and continuous, then it is straightforward
to show that this problem has an optimal solution. However, because the objective function
of the model is not necessarily convex there may be more than one optimal solution,
there may be isolated optimal solutions, and the set of optimal solutions may be discon-
tinuous and otherwise badly behaved in the problem parameters. In the interests of
gaining insight into the PFMS investment problem, we therefore will need to make a
number of simplifying assumptions about the model that will make the model more
amenable to analysis.

We therefore assume that capacity acquisition costs are linear, i.e., 7 ( Kr) = r-Krand
r{K;) = r;K;,and that rp> r; > 0, j = 1, ..., n. That is, flexible capacity costs more
per unit than any one dedicated capacity. We further assume that all variable production
costs are linear and are technology independent, i.e., Cir(x) = Ci(x) = Cj- x,j=1,...,
n. For technologies where most of the variable costs are materials costs, this assumption
is reasonable. For example, when the investment problem is to compare the alternatives
of dedicated, highly-automated capacity with flexible, highly-automated capacity, the
labor content for either technology is very low, so the material costs will dominate and
the variable costs will be very similar for the two technologies. The principal cost difference

' between the two technologies lies in the up-front investment costs, captured by r;, j = 1,

...,nand rg.
These assumptions yield the following PFMS model formulation:
maximize ~rrKr ~ 2, 1;K; +2 0 2 {R(Yy+ Zy)— Ci- (Y + Z) },
j i j
{KF,Ig;j: 1,...,}’1}
{Yis Zyi=1,...,k,j=1,...,n}
subject to Y;-K; <0, i=1,...,k j=1,...,n, (A\y)
ZZU_KFSO, izl,...,k, (’Y,)
J
Y;=0, i=1,...,k, ji=1,...,n, (s4)
Z;=0, i=1,...,k j=1,...,n, (1)
K =0, j=1,...,n, (1))
Kr=0. (v)

(The Karush-Kuhn-Tucker (K-K-T) multipliers appear to the right of each constraint.)
It is straightforward to show that there is an optimal solution to this model.
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3. Necessary and Sufficient Conditions for Purchasing Flexible Capacity

LetKE(KI,...,K,,,Kp)and(Y,Z—)E(Y',j,Z_;j'i= I,...,k,j=1,...,n)denote
an optimal solution to the above model. The strict concavity of the revenue functions
assures that any optimal solution is unique in the quantities X;=Y;+ Z;. (With more
than two products, there is no guarantee of uniqueness of the optimal solution in the
capacity decisions. The next section and the Appendix further discuss this issue.) The
nonuniquenes_s in )_’,-,— and Z;; separately can arise, for example, if there is excess flexible
capacity (2; Z; < Kr) and excess dedicated J capacity ( )—’,-,- < Ifj) in state i. In such a case

Xj;, the optimal quantity of product Jin state i, can be produced in more than one way.
We first observe:

PROPOSITION 1 ( Existence and Uniqueness of Solutions to the PEMS Problem).

1. The model PFMS has a solution K, ¥, 7.

2. The production quantities X; = Z;; + Y, are unique.

3. Ifthere are only two products (n = 2), the optimal investment decision K is unique.
4. For three or more products (n = 3) there is no guarantee that K is unique.

PROOF. See the Appendix.

LEMMA 1 (Shadow Values at Optimality). Let K, ¥, Z be an optimal solution to the
PFMS model. The following multipliers are optimal shadow values on the capacity con-

straints:
(a) ij:Pi[R?j(_Yzy+Z_y)—C}]+,i= L ....k;j=1,...,n,
(b) yi=max;(X;),i=1,..., k.

PROOF. See the Appendix.

The quantity )—\,-j, the shadow value of the dedicated capacity constraint, is the marginal
value of production of product j in state i. Part (b) of Lemma 1 states that the shadow
value of flexible capacity in state i is equal to the maximum, over all products j, of the
shadow values of the dedicated capacities in state i. Because the flexible capacity can be
used to produce any of the »n products, it will be used, in each state #, for the product
that yields the highest marginal profit. This intuition leads us to our next result, on
necessary and sufficient conditions for purchasing a positive amount of flexible capacity.

Before turning to that result, we must first consider the PEMS problem when K is
unavailable or has an extremely large cost, ie., rp >> r;, for all j. In the absence of
flexible capacity, the firm faces »n of the following independent decision problems of how
much j-capacity to purchase:

k
P(j): maximize -1, K+ 2 pi[R{(Yy) — C;+ Y]
K.Yy i=1

subject to: Y;,—K <0 (A,

Y;20 (si),

Ki=0 (v)).
These subproblems P(j), forj = 1, ..., n, are amenable to easy solution. In fact, when
the revenue functions are quadratic (i.e., demand curves are linear), the problems P(})
have closed-form solutions. (See Freund and Fine 1986.)
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THEOREM 1 (Necessary and Sufficient Conditions for Purchasing FMS Capacity).
Let the independent subproblems P(j) be solved with solutions K;, Y;, and let \};, s7;,
v}" be the optimal K-K-T multipliers for the subproblems P(j),i=1,...,k,j=1,...,
n. Then, for the PEMS problem,

(a) Kr> 0 whenever Z; max; (\}}) > rg

(b) K = 0 is optimal whenever ., max; (\}) < rr.

(Note. At equality, i.e., 2; max; (\};) = rp, Kr > 0 and Kr = 0 can each be optimal,
because we cannot guarantee a unique solution. However, with only two products the
value of K is unique (Proposition 1, part 3), so the condition 2; max; (\}}) > rp is
necessary and sufficient for Kg > 0.)

PROOF. See the Appendix.

Theorem 1 is of interest because it permits one to test at what cost flexible capacity
becomes economical by analyzing only the easy-to-solve subproblems P(j). Furthermore,
the results (a) and (b) are quite intuitive: Flexible capacity should be acquired when the
expected value of its best usage in each state, summed over the states, exceeds its cost.

This insight is not particularly surprising given the model formulation. However, it is
the model formulation, in our opinion, that makes this intuition easy to understand, and
consequently of potential use to managers focusing on the flexible capacity acquisition
decision.

This potential usefulness is illustrated by the following example: We are aware of a
major U.S. corporation that, as part of its capacity planning process, identifies possible
future states of the world, assesses the likelihood of each state, and then sets its capacities
and technology plans under the assumption that the most likely state will occur. If one
accepts the objective of maximizing expected profits, our model provides a clearly superior
approach: the prescribed capacity and technology acquisition decision optimizes net ex-
pected benefits by explicitly hedging against the different possible states of the world.
Insurance against events other than the most likely one is achieved at minimum cost.

4. Properties of the Optimal Value Function and the Optimal Capacity Levels

In this section we explore the sensitivity of the optimal value function and the optimal
capacity levels to changes in the per unit costs of capacity. We first examine the sensitivity
of the optimal value function of the PFMS problem to the capacity costs, r;, for j = 1,
...,nandrp. Letr=(r,,...,r,, rr) € R" ! and let z*(r) be the optimal value function
of the PFMS problem for a given vector  of unit capacity costs. The following Lemma
characterizes basic properties of the optimal value function z*(r).

LEMMA 2 ( Characterization of the Optimal Value Function). For the PFMS problem,
1. z*(r) is convex inr.
2. z*(r) is nonincreasing in r; for j = 1, . .., n, and is nonincreasing in rr.

3. IfK;is unique at r, then 9z*(r)/dr; = —K;,j=1,...,n. If Kpis unique at r, then
Bz*(r)/a_rp= pr. o B _ ~ ~
4. IfK =(K,, ..., K,, Kr) is not unique at r; then —K = (=K, ..., —=K,, =Kr) is

a subgradient of z*(r) at r.

PROOF. See the Appendix.

(Note that part 3 of Lemma 2 is a slight generalization of the envelope theorem (see,
e.g., Varian 1978) to the case in which z*(r) is not necessarily differentiable.)

The result that z* (r) is nonincreasing in r is quite intuitive; decreased costs of capacity
acquisition increase the maximum profit the firm can earn. The convexity of z*(r)
suggests that as the cost of acquiring advanced manufacturing technology continues its
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decline, firms will enjoy increasingly large profit improvements. Part 3 of the Lemma
tells us exactly how rapidly the profit improves as capacity acquisition costs decline. Such
a result is clearly useful for evaluating potential returns to reductions in the acquisi-
tion costs.

Our next result shows the sensitivity of the optimal capacity decisions to changes in
the capacity costs. As was shown in Proposition 1 of the previous section, the uniqueness
of the optimal capacity levels can only be guaranteed when the model is restricted to two
product families (# = 2). Therefore our results concerning the sensitivity of the optimal
capacity decisions are of necessity limited to the case of two product families. Nevertheless,
there are a number of settings in which the two-product families capture quite well the
essence of the problem application.

The automobile industry provides two examples: Automobile companies planning
their plant capacity for the manufacture of auto chassis and transmissions have significant
concern over the future demand mix of front-wheel-drive and rear-wheel-drive vehicles.
The natural interpretation of our model for this problem is to determine the economic
viability of building plants flexible enough to produce both front-wheel-drive and rear-
wheel-drive chassis and transmissions in light of the demand mix uncertainty, relative
to the option of building only dedicated front-wheel-drive and /or rear-wheel-drive plants.

A similar application, mentioned by Gold (1982) for Ford Motor Company’s auto-
mobile engine plants, arises in the production of six and eight cylinder engines. In this
case, uncertainty about future oil prices (which influence the demand for fuel efficiency
in automobiles) makes holding flexible capacity a potentially valuable option.

Finally, with slight modification, our model formulation can handle uncertainty about
the supply of factors of production rather than (or in addition to) uncertainty about
demand. (This extension is easily accomplished by making the variable production costs
depend on the states.) For this modification, the electric power industry (which faces
uncertainty concerning the relative prices of oil and coal) could potentially employ the
model with the restriction to two energy supply options.

The next result shows the sensitivity of the optimal capacity decisions to changes in
the capacity costs for two-product-family case. For ease of exposition, we hereafter denote
the two product families by 4 and B, with respective capacity acquisition costs r, and
rp. In addition, we denote the flexible capacity quantity K by K4p and the per unit cost
of flexible capacity 77 as r 45.

THEOREM 2 (Sensitivity of the optimal capacity levels to the acquisition costs). For
the two-product PEMS problem, if K(r) > 0, then
(1) (A) Ky is strictly decreasing in r
(B) Kg is strictly decreasing in rp,
(AB) K,g is strictly decreasing in r 45,
(2) (AB) K, is strictly increasing in r 45, Kg is strictly increasing in r 45,
(A) Kyp is strictly increasing in r,,
(B) Kup is strictly increasing in rg,
(3) (A) Kgis strictly decreasing in r 4,
(B) K4is Strictly decreasing in rpg,
(4) (A) K4+ K, is decreasing in r 45,
(B) Kp + K4z is decreasing in r 4z,
(5) (A) K4+ K4 is decreasing in r,,
(B) Kyp + Kpis increasing in r,,
(6) (A) Kp+ K, is decreasing in rg, and
(B) K3 + K, is increasing in ry.

PROOF. See the Appendix.
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Statements (1) and (2) of the theorem are quite intuitive. As r 45, the cost of flexible
capacity, decreases (relative to r4 and rp), the firm substitutes flexible capacity for the
two types of dedicated capacity ((1)(AB) and (2)(AB)). An increase in 4, the cost of
dedicated 4 capacity, leads the firm to decrease the amount of 4 capacity acquired
((1)(A4)), and replace it with flexible capacity ((2)(4)). Statement (3)(A) provides further
insight: Because the increase in r 4 leads to an increase in flexible capacity, the firm will
also decrease its dedicated B capacity because the flexible capacity substitutes for it as
well as for the 4 capacity. (Of course, symmetric results hold when we switch the roles
of 4 and B in this discussion.) Statement (3) is a useful result for sharpening one’s
intuition about the model formulation and the flexible capacity decision problem. Most
readers will find this “ripple substitution” effect sensible and intuitive once it is presented
to them. However, it is our experience that, without the aid of the model and its analysis,
many people do not have a well-developed intuition with respect to this phenomenon.

Whereas statements (1), (2), and (3) of the theorem provide directional properties
of the optimal capacity levels, statements (4), (5), and (6) sharpen the results by providing
a ripple result on relative magnitudes of these effects. For example, statements (1 )(AB),
(2)(AB), and (4)(A4) together imply that, with an increase in r 45, the magnitude of the
decrease in K,z is greater than the magnitude of the increase in K 4. Furthermore, state-
ments (1)(A4),(2)(A4),(3)(A), and (5) imply that with an increase in r 4, the magnitude
of the decrease in K, exceeds the magnitude of the increase in K 5, which in turn, exceeds
the magnitude of the decrease in K. Thus for a perturbation in r, the ripples decrease
in size from dedicated A capacity to flexible capacity to dedicated B capacity.

Although not immediately generalizable to the n product case, these results aid our
understanding of how a change in the cost parameter for one type of technology can
have implications for a firm’s entire optimal technology portfolio. The existence of a
flexible technology serves to integrate and render more complex an investment problem
that otherwise would break into independent, easily-solvable components. If the flexible
technology did not exist, a change in r . would not affect the optimal K. In compensation
for the added complexity however, flexible capacity expands the feasible region for pro-
duction opportunities, allowing firms to hedge better against future stochastic demand
variability.

For the two-product-family PFMS problem with quadratic revenue functions, Figure
I illustrates how the existence of flexible capacity influences the feasible region for the
post-demand-realization production problem. This is explained as follows. For i = 1,
..., k, let the expected revenue functions satisfy

PiR4(Xi) = —a; X1y + biXi and PiRip(Xig) = —c Xip + d i Xip.

Regalling that the variable production costs are C4 and Cpg, we let b; = b, — C,, and d,
= d; — Cp so that the objective function for the two-product-family PFMS problem with
quadratic revenue functions is

k
14Ky — rpKp — rapKap + 2 [—aiX % + biXyy — ;X ip + diXip).

i=1

Conceptualizing the PFMS problem as a two-stage mathematical program, consider
the second stage, the selection of production levels X;; = Y; + Z;, fori=1,..., kand
j=A,B. Let /\;,»j be the production level for product j in state i that maximizes profits,
assuming no capacity constraints. For the quadratic problem, these production levels are
easily derived as X,y = b;/2a; and X, = d;/2c;. For each state i, we can plot the point
(b;/2a;, d;/ 2 ¢;) on a two-dimensional product-space graph like Figure 1, which is divided
into six regions that depend upon the values of K, Kz, and K,p. This figure is useful
for describing how to optimally allocate scarce capacity in high-demand states. Region
1 corresponds to the feasible production region, given the capacity constraints. In the
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FIGURE 1. The Six Regions into Which the Unconstrained Optimal Production Quantities May Fall.

demand states for which (X4, X;p) falls in this region, there is no capacity shortfall. If
(X4, Xip) falls in Regions 2, 3, 4, 5 or 6, then capacity is allocated to the products as
suggested by the arrows in the figure. For example, suppose that (X4, X;5) is at the point
labeled “G” in the figure. Then following the arrows, we see that the optimal capacity
allocation is to allocate all feasible capacity to product B. Production of Bis (Kz + K.45)
and production of 4 is K. (See Chakravarty 1987 for a related perspective. See Freund
and Find 1986 for further mathematical details.)

One consequence of our model formulation is that the optimal capacity investment
and production policy often dictates that one product be manufactured on two different
technologies: the dedicated technology and the flexible technology. Mathematically, this
result obtains, in part, because for each technology, we have assumed capacity acquisition
costs are proportional to the amount of capacity purchased; there is no lump-sum fixed
cost to procure any technology. This assumption is clearly unrealistic in some cases. If
capacity acquisition costs were concave in the amount of capacity purchased, then, for
sufficiently large economies of scale, it would be optimal to acquire either flexible capacity
or dedicated capacity, but not both. However, in many cases, even the presence of such
economies of scale in capacity procurement would not prevent the optimal policy from
dictating that a single product be produced with two different technologies. ( This outcome
is observed in the electric power generating industry, where firms produce one homo-
geneous good: electricity; with several different technologies: nuclear, gas, coal, oil, hy-
droelectric, and wind power.)

For our model, the policy of using two different technologies for producing one type
of product has a natural interpretation. For each product, think of demand as broken
up into a “base” or certain amount and a ““swing” or uncertain amount. Clearly the firm
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will choose to cover its assured, base demand for each product with the less-costly, ded-
icated capacity. Some amount of the swing demand for each product, because it is less
certain, can be secured by the flexible capacity, which, provided that there is some negative
correlation among the products’ swing demands, can protect efficiently against the un-
certain demand for all of the products.

5. Sensitivity of Solutions to Correlation and Variability in Demand

In this section we explore, with a two-product numerical example, how changes in the
probability distributions of demand affect the optimal capacity decisions and the optimal
value function. We also explore how the changes in the distribution of demand affects
the threshold cost of flexible capacity, defined as the largest possible value of the unit
cost r 45 such that buying a positive amount of flexible capacity is optimal. We focus our
inquiry on two issues: ( 1) How does the correlation between the demand distributions
for the two products affect the firm’s optimal policies and profits, and (2) how does the
riskiness of the probability distributions affect policies and profits?

For our two-product symmetric example, we assume r4 = rg = 10, r 45 = 15, and that
the firm faces quadratic profit functions,

biuXiy — X sz and bigXip — X 123,

respectively for products 4 and B. We assume that b;, and b;p can each take on three
values: 50, 100, and 150; corresponding to an outcome of low, medium, and high product
demand and profitability. Thus we have nine possible states of the world: all of the
possible pairs of (4,4, b;z). We represent the probability distributions by the nine-vector
{pi;i=1,...,9} and with the three-by-three matrix:

bw = 50 bzg = 100 b]B = ]50

b]A =50 D1 D2 D
by, = 100 Ds Ds Ds
bya = 150 D7 Dy Dy

We first consider the case where the demands for the two products are perfectly neg-
atively correlated. That is, let py = p» = ps = pe = ps = po = 0, and parameterize the
distribution with the variable p, so that p; = p; = p and ps = 1 — 2p. Thus varying p
over the range [0, 0.5], traces all of the symmetric, three point probability distributions
with mean 100 and correlation coefficient —1. The variable p determines the riskiness
of the probability distribution: p = 0 represents zero riskiness; p = 0.5 represents maximal
riskiness. (See Rothschild and Stiglitz 1970, 1971 for motivation and analysis of this
definition of riskiness.)

Because of the symmetry between the two products, the optimal solution always has
the property that K, = K. For the negative correlation case with 745 = 15, Table 1
shows the optimal K, K5, and objective function value as a function of p. Figure 2
shows, as a function of p, the threshold value of 45, labeled 745, at which the optimal
quantity of flexible capacity purchased first exceeds zero. For example, when p = 0.1,
K. =0ifr 5> 15.555and K. > 0if ryp < 15.555. From Table 1 we see that over the
range of p from 0.1 to 0.5, the optimal quantity of flexible capacity increases in the
riskiness of the distribution. It also shows that the flexible capacity is replacing nonflexible
capacity over this range (though not one-for-one), and that increased riskiness yields
higher expected profits. The benefit from the increased likelihood of the high demand
state outweighs the detriment of the companion increase in the likelihood of the low
demand state. Figure 2 reinforces the message of Table 1: the threshold value of rs
increases in p. As the level of risk increases, the threshold cost of flexible capacity increases,
though not above r 45 = 20. This is because when r 45 =20 = r 4 + rp, it is never optimal
to invest in flexible capacity, regardless of the level of risk.
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TABLE |
Results for Negative Correlation Case When rys = 15

P K., Kg K Optimal Objective Value Fap
0.00 45.00 0.00 4,050 10.00
0.05 46.05 0.00 4,092 12.89
0.10 43.75 6.25 4,141 15.56
0.15 34.52 23.81 4,226 17.94
0.20 29.17 33.33 4,333 20.00
0.25 25.00 40.00 4,450 20.00
0.30 24.17 41.67 4,571 20.00
0.35 23.57 42 .86 4,693 20.00
0.40 23.13 43.75 4816 20.00
0.45 22.78 44.44 4,939 20.00
0.50 22.50 45.00 5,062 20.00

From this example, we see flexible capacity playing the role that we would intuitively
expect: Increased riskiness stimulates the need for flexible capacity when demand is
negatively correlated between two products.

For the positive correlation example, we assume p, = p; = De =Ds=pr=pg =0, py
= po =p,and ps = 1 — 2p. Again, p parameterizes the riskiness of the distribution, but
now the two products’ demands are perfectly positively correlated. Table 2 summarizes
our results, as p ranges from 0 (no risk) to 0.5 (maximum risk ). For this example, 7,z
= 10 for all values of p € [0, 0.5]. As long as flexible capacity costs more per unit than
the nonflexible capacity, no flexible capacity will be purchased. Increased risk leads to
larger purchases of dedicated capacity, but no purchase of flexible capacity. Although
perhaps surprising at first, the intuition behind this outcome is quite straightforward:
Because the demands for the two products move in lockstep, flexible capacity can only
be useful if it can produce one product more cheaply than the dedicated capacity can.
There will never be an opportunity to take advantage of the flexibility characteristic of
the flexible capacity. Since we assume throughout the paper that r 45 > r and r 3 > rp,
flexible capacity will never be acquired when the two products’ demands are perfectly
positively correlated.

20 -~

10 —

|
I
I
|
|
I
I
|
I
I
T

T T T T Ll
o1 =2 3 4 5 P

FIGURE 2. Threshold Value of 74z, Negative Correlation Case.
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TABLE 2
Results for Positive Correlation Case When r g = 15

P K, K K. Optimal Objective Value Fag
0.0 45.06 0 4,050 10
0.1 47.22 0 4,139 10
0.2 50.00 0 4,250 10
0.3 58.33 0 4417 10
0.4 62.50 0 4,625 10
0.5 65.00 0 4,850 10

These two cases illustrate the intuition that the need for flexible capacity increases
relative to the level of risk in the presence of negatively correlated demand, and is constant
(at level zero) regardless of the level of risk, in the presence of positively correlated
demand. Based on these two cases, one might expect that, when the two products’ demands
are uncorrelated, the optimal quantity of flexible capacity would be nondecreasing in
the level of risk. However, this is not always the case, as our third example illustrates.

This final example examines the case where the two products’ demand distributions
are independent (i.e., zero correlation ). We again parameterize the riskiness of the dis-
tribution by p € [0, 0.5], and represent the three-by-three probability matrix by

blg: 50 bZB: 100 bgH: 150

by = 50 p? p(1 —2p) P’
bry =100 p(1—2p) (1-2p)? p(l~2p)
sy = 150 p? p(1—2p) P’

Note that for the valid values of p, 0 < p < 0.5, the above distribution has b, and bg
uncorrelated. Also, p = 0 corresponds to zero risk, p = 0.5 corresponds to maximum
risk, and the level of risk is increasing in p. Table 3 and Figures 3 and 4 summarize the
results for this example. From Figure 3 we observe that as a function of p, K5 increases
from zero at p = 0, hits its maximum at p = 0.33, and then decreases to zero at p = 0.5.
From Figure 4, we see that 7,3 = 10 when p = 0, increases to 18 at p = 0.2, and then
decreases to 15 at p = 0.5.

Although casual intuition suggests that the need for flexible capacity should increase
relative to the level of risk (and hence the value of p), this last case shows that this line
of reasoning is not always correct. This case shows that the need for flexible capacity is
a complex function of the level of demand in each of the future states, and of the probability
distribution governing these future states. Indeed, the example points to the fact that the

TABLE 3
Results for Independent Distributions Case When rqg = 15

P K4, Kg Kis Optimal Objective Value Fap
0.00 45.00 0.00 4,050 10.00
0.05 46.05 0.00 4,092 21.75
0.10 47.22 0.00 4,139 15.00
0.15 45.10 6.26 4,196 16.75
0.20 44.28 10.81 4,266 18.00
0.25 45.69 13.10 4,347 17.50
0.30 47.30 14.26 4,436 17.00
0.35 49.01 14.54 4,531 16.50
0.40 54.17 10.42 4,630 16.00
0.45 60.41 4.49 4,737 15.50
0.50 65.00 0.00 4,850 15.00
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FIGURE 3. Optimal Value of Kz, Uncorrelated Case.
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FIGURE 4. Threshold Value of 745, Uncorrelated Case.

direction of correlation in demand and the level of risk do not by themselves constitute
enough information to predict the sensitivity of the need for flexible capacity to either
of these parameters.

6. Concluding Remarks

Our model can be used for several purposes. The formulation and theoretical results
are useful for improving one’s intuition about the economics of cost /flexibility tradeoffs
for the product-flexible manufacturing system investment decision problem. Our results
help to explain when the expected return from flexible capacity is likely to exceed its
cost (Theorem 1), how optimal profits change when acquisition costs change (Lemma
2), and how optimal capacity investment levels respond to changes in the technology
acquisition costs (Theorem 2). In addition, our ripple effect in Theorem 2 illuminates
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how the existence of flexible capacity links together otherwise independent investment
problems.

A second use to which our model can be put is to help shrink the “justification gap”
mentioned in our opening paragraphs, by generating estimates of the value of flexibility
provided by the flexible technology. A final use for the model is to increase our under-
standing of the advantages of investing in flexible resources in domains other than the
FMS acquisition decision problem. Our model captures cost-flexibility tradeoffs for in-
vestment in any type of flexible resource, not only flexible manufacturing systems. In
particular, our model can be recast to capture the economics of the common components
stocking problem studied by Baker (1985), Baker et al. (1986), Gerchak and Henig
(1986) and Gercak et al. (1986). Investing in common components before final demand
is known is similar to investing in flexible capacity before demand is known. (Note the
likeness between Figure 1 in this paper and Figure 3 in Baker et al. or Figure 6 in Baker.)
In ongoing research we are exploring an equivalence between the two problems and the
results gained from this insight.

The perpetual adoption of new technology by industry plays a critical role in the
economic growth of firms and nations. (See, e.g., Rosenberg 1982 and Schumpeter 1975.)
At any point in time, firms face a wide range of options about their investments in
technologies and innovations. In the 1980’s, computer-controlled, flexible manufacturing
systems have emerged as one potentially viable technology for competing in industries
that were traditionally characterized by high volume repetition manufacturing, but have
more recently been subjected to greater competition and environmental volatility. The
aim of this research has been to present a model to help support work in the development
of tools to assess the cost/benefit tradeoffs for investment in these product-flexible man-
ufacturing systems.'

! The authors gratefully acknowledge the helpful comments of Gabriel Bitran, Steve Graves, Tom Magnanti,
seminar participants at Stanford, Yale, Columbia, M.1.T., and ORSA/TIMS, two anonymous referees, and an
associate editor. The first author received financial support for this work from Cullinet Software, Incorporated
and Coopers and Lybrand, Incorporated.

Appendix. Mathematical Properties of the PFMS Model

PROOF OF PROPOSITION 1. 1. The problem is always feasible since K = 0, Y = 0, Z = 0 is feasible. The
quantities Y;; and Z; can be bounded by QF. Therefore, K; can be bounded by Q7% and K can be bounded
nQ’;. Because the objective function is continuous, it will attain its optimum in this bounded region.

2. Uniqueness of the production quantities follows from the strict concavity of Ry(-).

3. This result can be proved by contradiction, using the K-K-T conditions.

4. The following counterexample shows the nonuniqueness of K when 7 = 3. Let k, the number of possible
future states, be three. Let C; = 0 forj = 1,2, 3;letpy =p = P2 = 1, and let the revenue function for each
state and product be given by R;(X;) = 3b; — (3/2)X % (a strictly concave quadratic function), where the
values of b;; are given below.

Value of by
i
j 1 2 3
1 17 1 22
2 19 21 1
3 1 19 19
Furthermore, let r; = 10,1, = 9,13 = 11, and rp = 15. Note that rz> r;forj = 1,2, 3, and re<r +r+ s,

as assumed in the model.
The following two solutions are both optimal for this instance of the model. (We leave verification of this
claim to the reader.)
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Solution #1
(K, K3, K3)=(5,6,7), Kp =17,

Value of Y}, Value of Z;
i i
J 1 2 3 j 1 2 3
1 5 1 5 1 8 0 11
2 6 6 1 2 9 10
3 1 7 7 3 0 7 6
Solution #2
(Ky, K>, K3) = (6,7, 8), Kp = 15,
Value of Yj; Value of Z;;
I i
J 1 2 3 J 1 2 3
1 6 i 6 1 7 0 10
2 7 7 | 2 8 9 0
3 1 8 8 3 0 6 5
_ PROOF OF LEMMA 1. The K-K-T conditions for the PFMS model state that if Kr, K, j=1,...,n,and
Yi, Zy, i :_1, cees k,j=1,..., nare optimal values for the problem, then there exist nonnegative K-K-T
multipliers N, 5, 8, i= 1, ...,k j=1,....n%,i=1,...,k @,j=1,..., nand v such that

D pilR(Yy+ Z) = Gl =N — §yi= 1. kj=1,....n,
(ii) pi[R;-,(Yij+Zi,)—C}]=§i—t,],i= l,....,k,j=1,...,n,
(iii) rr= 2%, 7.+ T,

(iv) r;= 2% ,>\,]+u},j—1 n,

v) Y,,s,J~OZ,,t,, 01v1 k,j=1,...,n,

(vi) 9Kr =0, uJK, 0,j=1,...,n

(vii) (Y, —K)=0,i= 1,,..,k,j: I,...,n,

(viti) ¥(Z5 Z; — Kr)=0,i=1,... k.

Note that because the model is a convex program, and it is possible to find a feasible solution with alil
constraints satisfied at strict inequalities, then the Slater condition holds, and so conditions (i)-(viii) are both
necessary and sufficient for optimality in the model (see Avriel 1976).

Suppose K, ¥, Z are an optimal solution to the model. Let A;, i = 1,...,kj=1,...,n%,i=1,...,k,
be defined as in (a) and (b) of Lemma 1.

Define the following multipliers as well:

S=DnlRAY;+Zy) -Gl i=1,....k,  j=1,...,n,

=3 - pIRUT, 4 Z) =Gl =Lk j=1.m,

k
lz_]:rj_zxi]’jzlv"'>n’
i=1

ST}
it

rr ‘_Yl'

o

We must show that all of these multipliers, namely the X, ¥;, 5y, 1, @, D, satisfy conditions (1)-(viii) above.
All multipliers are nonnegative, with the possible exception of i; and ©. Also, K-K-T conditions (i)-(iv) are
clearly satisfied. It remains to show that #; > 0, ¥ = 0, and the complementary slackness conditions (v)—(viii)
are satisfied.

Let )\U, s,,, i» Vi> Uj, and D be any optimal K-K-T multlphers Then, because ( Y,, + Z;) is unique, we must
have )\,, s,, = A,, §;; and by definition of \; and §j;, then )\,, Ni» S; = §;. Similarly, we can show that ¥,
> 7, t; = ;. Thus since ¥;§; = 0, so must Y;§; = 0, since §; < §j. Similarly, complementary slackness
conditions (v), (vii), and (viii) hold. Also & = r; — X X; < r;— T, \; = I, s0 & = 0, and by parallel logic,
0= 0 as well. It only | remains to show that condition (vi) holds

If K; = 0, then &;K; = 0. So suppose K; > 0. Then # = 0. If 7, > 0, then X; > X; for some i. For that i, §;
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> 0. since A; — §, = X, — 5,. Hence )7,1= 0. But A,(¥; — K;) = 0, whereby K, = 0, a contradiction. Thus i
= 0. By similar logic, we derive that if K > 0. then 7 = 0.

PROOF OF THEOREM 1. The optimality conditions for the subproblem P() state that there exist nonnegative
multipliers Ay, §j;, 1 satisfying

k
r= 2 N+,
i-1

P:(R:/( }711) - Cj) = Xf} - S—i/?
57,=0, MNi(Y;—K)=0. and @K =0,

whenever_]f,,_?,, i=1,....k, solve P(j},j = 1,..., n. Furthermore, it is easy to show that the optimal
solution K,»,_ Yy, i = L..., k is unique for each subproblem, j = 1, ..., n. Let us define ¥, = max; (};)
and define 1; = ¥; — A;. Then these multipliers, together with Z;; = 0, i=1,..., k,j=1,...,n Kz =0,

satisfy the optimality conditions (i)-(viii) of the PFMS problem, so long as %, 4; < rg, i.e., so long as
2, pi max; (\;) < rg. This shows part (b).

The proof of part (a) follows from the above remarks and the uniqueness of the v, i = 1, ..., k, given in
the proof of Lemma 1.

PROOF OF LEMMA 2. We will actually demonstrate a stronger result that extends the well known envelope
theorem (see Varian 1978) to the nondifferentiable case, and which will imply the conclusions of Lemma 2 as
a special case. Consider the program:

P(r): maximize —rx + f(x)
subject to xeC,

where f(-) is a concave function of x, and x is an n-vector, and C C R" is a closed nonempty convex set. Let
d(r) be the optimal value of this program parameterized over the n-vector r. The PFMS problem is a special
case of this problem, with x = (K, K1, ..., Ky, Y11, ..., Yius Z11, - - ., Zin), €tc. We assume that P(r) attains
its optimal value, for any value of r. This is clearly the case, by Proposition 1, for the PFMS problem.

PROOF OF LEMMA 2, PART 1. It suffices to show that d(r) is a convex function. Let r, and r, be distinct
values of 7, and let r = pr, + gr,, where p> 0, g = 0, and p + ¢ = |. We must show that d(7) < pd(r,) + qd(r,).
Let X be an optimal solution to P(7). Thus d(7) = —#X + f(X). Because X is feasible, i.e. X € C, we have

d(r)z —nx+ f(X),  d(n)=-ni+[f(X)

Combining these two inequalities with weights p and g, we obtain pd(r,) + gd(r)) = — (pry + gr2)X + f(X)
=d(F).

PROOF OF LEMMA 2, PARTS 3 AND 4. We first show that —x is a subgradient of d(r) at 7. Note that, for any
r,dry= —rx+ f(X)= —rX + d(F) + rx = d(F) + (—X)(r — F). Thus —X is a subgradient of d(r) at r = .
The proof will be complete if we can show the converse: if —x is a subgradient of d(r) at r, then X is an optimal
solution to P(r). If this converse is true, then the uniqueness of the optimal solution will mean the subgradient
—x is unique. Hence —x is the gradient of d(r), and dd(r)/dr; = —X; for all j.

We now proceed to prove the converse. Let us define

—f(x) if xX€EC,

§(x) = [+oc it x¢C

Then g(x) is a closed convex function. Its convex conjugate (see, e.g. Avriel 1976) is given by g*(r)
= max, {rx — g(x)}, and it is easy to verify that d(r) = g*(—r). Suppose —X is a subgradient of d(r).
Then X is a subgradient g*(—r), and by conjugate duality (see Avriel, Theorem 5.4), —r is a subgradient of
g(x)at x = X. Thus g(X) = g(X) — r(x — X) for all x € C. Thus X € C, so this inequality can be stated —f(x)
> —f(X) — r(x — x) for all x € C. Thus —rx + f(X) = f(x) — rx for all x € C. Thus X solves P(r).

PROOF OF LEMMA 2, PART 2. This follows directly from the fact that z*(r) is convex, and all of its subgradients
at all values of r are nonpositive, by part 4 of the Lemma.

PROOF OF THEOREM 2. For the case when all the revenue functions are quadratic, this theorem is proved
in Freund and Fine (1986). Its extension to nonquadratic, but strictly concave, revenue functions makes sense
on intuitive grounds and is a straightforward extension of the quadratic case. Herein, we outline how the proof
in Freund and Fine (1986) can be modified for general strictly concave revenue functions.

Theorem 2 is concerned with local behavior of the optimal capacity function K(r), for r = 0. The region {r
€ R*|r= 0} can be partitioned into a finite number of dense regions, such that in each region a certain set of
the constraints in the PFMS problem is active, i.e.. binding, at the optimal solution. The interiors of these
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regions will be dense in R*, and for any point 7 in the interior of one of these regions, we can compute the
matrix M of optimal capacity/cost partial deviatives exactly as in the quadratic case in Freund and Fine ( 1986),
replacing the values given in Table 2, Freund and Fine, of —2a; by —R};(¥;, + Z.), etc. This shows how to
prove Theorem 3 for all values of r in the interior of the different optimal active set regions. However, it is

straightforward to show that K(r) is a continuous function, and so by continuity the result is true for all values
of r.
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