Mathematical Programming Study 24 (1985) 1-13 http://doi.org/10.1007/BFb0121039
North-Holland

POSTOPTIMAL ANALYSIS OF A LINEAR PROGRAM UNDER
SIMULTANEOUS CHANGES IN MATRIX COEFFICIENTS

Robert M. FREUND

Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, USA

Received 22 February 1984
Revised manuscript received 26 October 1984

Dedicated to Professor George B. Dantzig on the occasion of his 70th birthday.

This paper examines the sensitivity of a linear program to simultaneous changes in matrix
coefficients. Consider a linear program whose coefficient matrix depends linearly on a scalar
parameter 6. Previous research has attempted to express the optimal objective value z(8) of the
problem, as well as solutions to the primal and dual, as ratios of polynomial functions of # over
arange of 6. Herein, we study properties of z(8) and the associated optimal basic feasible solution
in a neighborhood about a fixed value § of §. We obtain readily computable formulas for the
Taylor series’ (and hence all derivatives) of z(8) and of the primal and dual optimal basic solutions
about the point §. Furthermore, even under degeneracy, we show how to determine whether or
not @ is one of finitely many possible values of @ for which derivatives of z(#) may not exist, by
examining the lexicographic order of a certain matrix. This test also reveals whether or not the
formulas given represent left-sided and/or right-sided derivatives of z(8) at 8.
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1. Introduction

The subject of this paper is the sensitivity of a linear program to simultaneous
changes in matrix coefficients. Consider the standard linear program:

P max z=c¢-Xx
st.  Ax=0b,
x=0.

When the vectors ¢ and/or b are parameterized by a scalar parameter 6, we obtain
the rim parametric programming problem. This problem has been treated extensively,
and the classical results in this area can be found, for example, in Dinkelbach [3]
and in Gal [$, 6]. In this paper, we consider the problem:

P(6): max z(8)=c-x
st.  A’x=b,
x=0,

where A? = F+ 0G is an m X n matrix parameterized by 6.
1
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The problem P(8) arises naturally in averaging constraints of the form,

k t
0 X
k Ztl_lnl 120, t=l,...,7:
Lici Xit X Xi

which after transformation becomes

k n

Y(U-6)xi+ ¥ (-0)xi=0, t=1,..., T
i=1 i=k+1

This constraint says that the sum of the levels of the first k activities in modelling

period t must constitute at least 1000% of the sum of all activities levels in that

time period.

In addition, P(6) arises naturally in blending constraints. For example, suppose
that x;, i=1,..., n, represent delivered tonnages of coal entering a powerplant in
period ¢, each with a heat content h; (in MBTU/ton) and a sulfur content s; (in Ibs.
SO,/MBTU). Then if the powerplant’s coal must have an average sulfur content of
at most 6 Ibs. SO,/MBTU in each period ¢, we have

Y h(0-s)xi=0, t=1,..., T
i=1

In each of these two applications, derivatives of z(#), and derivatives of optimal
primal and dual solution values, constitute valuable information concerning the
sensitivity of the underlying linear program to changes in 6.

The earliest result regarding P(8) was the formula for the derivative of z(6) with
respect to 6, at # = 6, given by

2(8) = —#Gx, (1)

where X and 7 are optimal solutions to the primal and dual of P(8) at 6=6. In
1956, Mills [14] obtained this formula for linear programs by examing saddlepoints
of the Lagrangian L(x, w) = ¢ x — m(A°x — b); Golshtein [8] gave a corrected proof
via saddlepoints, where it is required that the sets of optimal solutions to P(8) at
8 be bounded. In 1959, Saaty [17] rederives (1) when P(8) is nondegenerate, using
theidentitydB~'(6)/d6 =—B'(0)[dB(8)/d6]B~'(9), where B(8)is the basis matrix
for P(6).

Other research on P(0) has centered on the computation of z(6) as 6 varies over
some prespecified range R. When the matrix G has only one nonzero row or only
one nonzero column, the problem can be analyzed by methods from parametric
analysis, see e.g. Kim [9] and Orchard-Hayes [15]. However, when more than one
row or column of G is nonzero, and in particular if G is not sparse, the characteriz-
ation of z(6) for 6 R as well as the range of optimality of a given basis becomes
much more difficult. If B is a basis for P(#), and the basis matrix (F+6G); is
denoted by B(#), then

B7'(68) =adj(B(6))/det B(9),



Robert M. Freund / Constraint matrix sensitivity analysis 3

each of whose coefficients is a rational function of 6, i.e. an expression of the form
p(6)/q(6), where p(8) and q(6) are polynomials in 6. The limits of optimality of
a basis B(#) will be those points where some coefficient of the primal basic solution
or reduced costs changes sign, or where the determinant of B(8) is zero. In each
case, the limit is the root of the numerator or denominator of a rational function
of 8, i.e. the root of a polynomial of 6. Building on the analysis of P(8) through
rational functions and roots of polynomials, Weickenmeier [19] and Finkelstein and
Gumenok [4] have developed parametric programming algorithms for P(6).

Another form of sensitivity analysis of P(6) is the analysis of the solution set of
P(0) as a function of 6, denoted by X (#). At issue are conditions on P(8) which
guarantee that the mapping X(6) satisfies certain continuity properties. Pertinent
references include Dantzig et al. [2], Dinkelbach [3], Robinson [16], Lorenzen [13],
Klatte [10, 11], Lommatzsch [12], and Gal [6].

The main concern of this paper is postoptimal analysis of P(#) in a neighborhood
of a given value of 6 = 6, without resorting to rational functions of 6. In Section 2,
we present formulas for the Taylor series of z(6) about 6 = 6, for all derivatives of
2(9), and for the optimal primal and dual basic solutions, each of whose terms is
readily computable from the problem data and the current basis inverse. These
formulas are shown to be valid when P(8) is nondegenerate and has a finite optimum.
However, degeneracy is prevalent in most large-scale linear programs, either in fact
or due to numerical round-off error. Hence, in Section 3, we show that the main
results of Section 2 are valid for all but a finite number of values of 8 even in the
case of degeneracy. We also present a test, based on the lexicographic order of a
certain matrix, that determines whether or not the current basis yields left-sided
and/or right-sided directional derivatives of z(0) at 6.

This paper’s origins stem from my interest in computing z'(#) in a particular
linear programming application of the sulfur blending constraint described above.
In the study of this sensitivity analysis problem, I have tried to follow the standard
of George Dantzig’s work—the development of theory in the solution of practical
problems.

2. Postoptimal analysis at nondegenerate optimal solutions

Consider the following parameterized linear program in standard form:
P(6): maximize z(8)=c-x
subject to (F+0G)x=b,
x=0,

where F, G are m X n matrices (with m < n), b, ¢ are m- and n-vectors, respectively,
and G #0. Let R denote the real numbers and R = Ru {—00, +00}. z(8) is defined
to be +oo if P(6) is feasible and unbounded, and z(6) =~ if P(8) is infeasible.
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If we set A®=F+6G, P(0) and its dual, D(8), are seen to be:

P(0): maximize z(8)=c-x
subject to A°x=5b

x=0;
D(6): minimize v(8)==x-b

subject to 7- A’=c.

Let B<{1,..., n}. Let R™*" and R" be the space of all real m X n matrices and real
n-vectors, respectively. If M and y are a matrix and a vector, M, or yg denotes the
submatrix or subvector whose columns or components correspond to the elements
of B. If Aj is nonsingular at 6, then 8 or A] is a basis for P(6). If B is a basis for
P(8), then the primal basic solution is given by xz(8) = (A3)7'b, x,(6)=0, where
a={l,...,n}\B, and the dual basic solution is given by m4(8) = c4(Ag)™". A basis
B is primal feasible at 6 if x5(8)=0, dual feasible at 6 if c~1rB(B)A6$O, and
optimal at @ if it is both primal and dual feasible at 6. 8 is defined to be a
nondegenerate optimal basis at 0 if 73(8)A° —c+x(6)>0, where x(8)=(x5(6),
x,(8)). This corresponds to both primal and dual nondegeneracy at the optimal
solution.

For a given vector y or matrix M, we define |y|| =max |y;| and ||M{ = max |m,],
the standard supremum norm. An interval I in R is defined to be any set of the
form (a, b), [a, b], [a, b), or (a, b], where a, beR. The ith row or jth column of a
matrix M is denoted by M, or M., respectively. A property P is said to be true
near 8 if there exists £ >0 such that P is true for all 0 (8 —¢, 6+ ¢). P is said to
be true near 6~ or near §" if there exists £ > 0 such that P is true for all § € (8 — &, 6],
or 0€[8, 6+¢), respectively.

If B is a basis for P(8), (A);'=(det(A3))™" adj (A3),, from which we see that
each component of (A%)™! is given by p(8)/q(8), where p(8) and q(8) are poly-
nomials in @ of degree less than or equal to m — 1 and m, respectively, and ¢(6) # 0.
For notational convenience, let B=Ag, where 8 is a fixed value of 6 and 8 is a
given basis for P(8); thus, B is a basis matrix at 6 = 6.

The main result for the nondegenerate case is:

Theorem 1. Let 8 be a (unique) nondegenerate optimal basis for P(8). Let % aniz’ T
be the (unique) primal and dual optimal solutions to P(8). Then for all 0 near 6, 8
is a nondegenerate optimal basis for P(6), and

() 2(60)= % c(0-0)(-B"Gy)%,

(i) zM(9)= ;zok ——(i(_i);)! cs(0—8)O(-B'Gp)%s  fork=1,...,
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where z*(8) is the kth derivative of z(0),

(iii)  x(8) =(x5(9), x.(6)) = (i, (6—6)'(—B7'Gp)'%s, 0)

is the unique optimal solution to P(#),

(iv) w(8)=Y (6—0)'7(-GgB™")
i=0
is the unique optimal solution to D(8), and
(v) zk(g_) = (k!)cﬁ(_B_lGB)ka,
where B = Ag.

Note that when k=1, (v) states that z'(8) =—cgB~'Gzx = —7GX, which is a
restatement of (1). Formula (1) can also be justified on more intuitive grounds. At
6=20, * and 7 are primal and dual optimal solutions to P(8) and D(8), and
9z/0b; = 7. As X is kept fixed, and 6 changes to 6 = 6+ A, the new primal system
satisfies:

(F+(6+A4)G)x=b+ AGx.

In order to regain the original system of equations, with a right-hand side of b, we
must change b to b(4)= b~ AGX. Using the chain rule for differentiation yields

m 3z9b;, ™ _ N
a__,-g.E—,-a__,-; 7:(—Gx); = — 7Gx

This is not a rigorous proof, inasmuch as ¥ and 7 are assumed to remain fixed as
0 varies.

Proof of Theorem 1. For all 8 near 8, (A})™' exists and so
AS(AL)'=(B+(0-6)Gs)(Ag) ' =1

Premultiplying this system by B™' and rearranging, we obtain:
(A5)'=B~'=(6-6)(B™'Gs)(Ap)". (2)

By recursively substituting for (A3)~" in this last expression, we obtain:

(A5 = go (6-8)(~B"'G,)'B~".

This series converges for all |§ — 8] < & = (m||—B~'Gg||)™". The series in (iii) follows
from the fact that xz(8)=(Ap})'b. (i) follows from the equation z(8) = cgxg(6),
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and (ii) and (v) derive from (i). Furthermore,
7TB(0) = CB(AZ)_I = Z (0_ 0—)1‘01.;(_B—IGB)I.B‘1
i=0

= EO (0—6)'cgB '(-GzB ")’

i=

I
18

(6—6)'7(—GzB™"),

i=0

which is the series in (iv). Because B is a nondegenerate basis for P(8), ms(6)A°— ¢+
x(8)>0, and so for all 8 near 6, m3(8)A° —c+x(68)> 0 as well, thereby showing
that x(6) and 7(0) are feasible and nondegenerate solutions to P(8) and D(6). O

(The series (2) can also be derived by appeal to the well known fact that
dM™'/dt=-M""'(t)(dM/dt)M~'(t), where M(t) is a nonsingular matrix whose
coeflicients are functions of t. This formula can be used to inductively prove that
d*M (1) d*t = (k) (~=M ' (t)D)*M (1), in the case when M(t) = C + Dt, thereby
obtaining the Taylor series M (1) =¥ _, (t—D)*(—M~'(f)D)*M (7). Substituting
0=1,0=1 Aj=M(6), M(7)=B, and G, = D, we obtain (2).)

Because most large-scale linear programming computer codes compute and record
the primal and dual solutions and the basis inverse or the L— U decomposition of
the basis, each of the terms of the series in (i)-(v) can readily be computed. The
computational burden of computing the higher order terms of these series is probably
excessive, unless B~ 'G is very sparse. (Even when G is sparse, B~'G may not be
sparse.)

From a theoretical point of view, the nondegeneracy hypothesis of Theorem 1 is
satisfied for P(#) except for a certain collection of problem data (b, ¢) which has
measure zero. However, as a matter of experience, most large-scale linear programs
exhibit substantial degeneracy in the optimal basis, either in fact (primarily the
result of special structures) or due to numerical roundoff. It thus is necessary to
examine the general (degenerate or nondegenerate) case of P(8) if the formulas of
Theorem 1 are to have practical significance.

3. Postoptional analysis at degenerate or nondegenerate optimal solutions

We begin this section with a few defintions. Let K ={6 | P(0) is feasible and has
a finite solution}, i.e. K is the set of @ for which —0<z(8)<+0c0. For each
B<{l,...,n}, with |8|=m, define R; ={6#|B is an optimal basis for P(8)}. Each
R; is called the ‘critical region’ for B8, see e.g. Gal [7] or Dinkelbach [3]. Finally,
we define U ={8|z(6) = +0} and V ={86|z(8) = —}. The following lemma, which
has been obtained in a different formulation by Dinkelbach [3], will serve as a basis
for the theorems of this section. Its proof is included here for completeness.
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Lemma 1 (see Dinkelbach [3])
(1) U consists of a finite union of intervals,
(il) Rg consists of a finite union of intervals, for each potential basis B,
(iii) K consists of a finite union of intervals, and
(iv) V consists of a finite union of intervals.

Proof. For any given value of 8, we can assume that A has full rank, by appropriate
addition of artificial variables, or deletion of rows, if necessary. Thus, if z(8) =+
for some 6, there exists a basis 8 such that x;(8) =0, and a column j¢£ 8 such that
(Af)'AY<0 and ¢;— m4(0)A%> 0. Therefore,

{9]2(6)=+oo}=Léj % {6]det(AZ) # 0}

n{8](A5)'b=0}n{0](A5) A% =0}
m{()‘cj— CB(AE)‘1A3>0}.

Because det(Aj%) is a polynomial in 8 (of degree of at most m), {0|det(Ap) # 0} is
a finite union of intervals. We can assume that if det(Ap) # 0, then det(A}) >0, by
rearranging columns, if necessary, whereby {8](A})'b=0}={0|adj(A})b=0, and
each constraint of this latter formulation is a polynomial. Hence this set is the
intersection of a finite union of intervals, which is a finite union of intervals. Similarly,
{6](A))"A% <0} ={6]adj(A}) A’ <0}, each constraint of which is a polynomial in
6, so this set also is a finite union of intervals. Finally, {6|¢;—cs(A5) 'A%>0}=
{6](det A}))c;> cs(adj(A})A%)} whichis also a finite union of intervals. Thus U is the
union over all B of the intersection of a finite union of intervals, which is itself a finite
union of intervals. This proves (i). To prove (ii), note that

R, ={6|det(A})#0,(A2)'b=0,and cz(A}) 'A° = c}
={0]det(A5) # 0} {68]|adj(A5)b =0} N {8 cs(adj(Ag)) 0A°® = c(det(Ag)}.

Using the logic employed above, we see that the latter formulation is the intersection
of three sets, each of which is a finite union of intervals. (iii) follows from (ii) and
the fact there are a finite number of bases, and (iv) follows from (i) and (iii). O

Let E be the union over all B8<{l1,..., n} of the set of endpoints of the intervals
of Rg. E then is the set of ‘breakpoints’ of the function z(#8), i.e., E is the set of
points at which a basis changes from primal or dual feasible to infeasible, or the
basis matrix becomes singular.

In view of Lemma 1, we have:

Theorem 2. Let B be an optimal basis for P(6). Let X and 7 be the primal and dual
basic optimal solutions to P(0) corresponding to B. Then, except for a finite number
of values of 0 € K, equations (i)-(v) of Theorem 1 are true for all 8 near 6.
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Proof of Theorem 2. For any # e K\E, and any optimal basis 8 for P(8), there is
an open interval (§—¢, §+¢) such that B is an optimal basis for P(8) for all
6c(6—¢, 0+¢). This being the case, the power series’ of (i)-(v) of Theorem 1
converge. Since E is a finite union (over all B<{1,..., n}) of a finite number of
endpoints, E is finite, proving the theorem. [

We now turn our attention to the task of determining for a given problem P(#9)
if 8 is a breakpoint, i.e., an element of E. If P(#) has a non-degenerate solution,
then @ is not an element of E, and so the conclusions of Theorem | are valid.
However, even if P(6) has a degenerate optimal basic solution,  need not be an
element of E. This possibility is illustrated in the following example, where Initial
Tableau A is shown, followed by Tableaus 1-3, which illustrate four different bases
and basic solutions by pivoting on the initial tableau. In these tableaus, the bottom
row represents the objective function z(8). Note that this example is a transformation
of a rim parametric program, as Tableau 1 shows.

Initial Tableau A

RHS x, X, X3 X4 Xs
i 1 0 0 0 0
10 7} 1 0 1 2
0 -6 0 1 1 3
0 1 0 0 0 -5
Tableau 1
RHS X, X, X3 x4 x5 Basis Range of Optimality
1 i 0 0 0 9 B,={1,2,3}, 0=<6=<10
10-¢6 0 1 0 1 2
9 0 0 1 1 3
-1 0 0 0 0 =5
Tableau 2
RHS x; X, X3 X4 X5
1 1 0 0 0 0
10—-96 0 1 0 1 2 B>={1,3,4}, 5<6=<10
-10+2¢ 0 -1 1 i
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Tableau 3
RHS X, X, X3 X4 Xs
1 1 0 0 0 0
'} 0 0 1 1 3 B;={1,2,4}, 0<8<5
10-20 0 1 -1 0 -1
-1 0 0 0 0 -5

This example has degenerate optimal solutions for 0 < 6 < 10, yet the only break-
points are E ={0, 5, 10}. For 0< 8 < 10, there are multiple optimal solutions to the
primal. 8, is optimal over the range 0= 8 < 10, yet the ranges of optimality for 8,
and B; are[5, 10] and [0, 5], respectively. As 8 decreases below 0, 8, and 8; become
infeasible.

We now show how to determine if  is a breakpoint or not (without pivoting
beyond the final tableau) given the problem data (F, G, b, c) and an optimal basis
B for P(8). In order to demonstrate how this can be done, some more notation and
a result from linear algebra are first presented.

Let f,.(8) and f7(8) denote the directional derivative of f(#) in the plus and
minus direction, i.e.,

(f(0+h)—f(0)) f(0)—f(0+h))
. , .

f(8) =lim f’—(0)=1,§g01< h
Let > denote the lexicographic ordering for vectors and extended to matrices M,
see e.g. Dantzig [1], where M =0 if M, >0 for each row i of M. Given a vector y,
define M >0 mod y if M, >0 whenever y;=0, and M =0 mod y if M, =(0,...,0)
whenever y; =0. The ordering > mod y corresponds to the lexicographic ordering
when y =0, otherwise it corresponds to the lexicographic ordering restricted only
to those rows of M for which the corresponding components of y are zero. The

following intermediate results will be used in the analysis:

Lemma 2 (see Veinott [18]). If D€ R™ ™ is a matrix of rank r, M e R”™ and ve R™,
then there exists a j < r such that MD'v, MD?v, MD?v, . . ., are all linear combinations
of MD'v, ..., MD'p.

One version of this lemma is presented in [18]. It is proved here for completeness.

Proof. The vectors D'y, i=1,..., all lie in the subspace L spanned by the columns
of D. Thus, the vectors D'v,..., D"™'v cannot all be linearly independent, where-
by there exists j=<r such that D’*'v is a linear combination of D'v,..., D’v. We
now show by induction that Dv is a linear combination of D'v,..., D’v for all
i=1,.... Clearly, this is true for i=1,...,j+1. Suppose it is true for k=j+1.
Then D*v=¥’_, ,D'v, and D*"'v=Y1"" A,D'v. But since D’*' is a linear combina-
tion of D'v, ..., D’v, the result follows after premultiplication by M. U
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Lemma 3. For given matrices M eR"™™, DeR™ ™ and a vector vcR™, let y(g)=
Yo, €' MD'v for all & near 0, and suppose y(0) = Mv = 0. Define Q* and P* to be the
k-column matrices Q¥ =[MD'v, . .., MD*v] and

P*=[M(-D)'v,...,M(-D)*v] fork=1,....

Let r be the rank of D.
Then
(i) y(e)=0 for all € near 0" if and only if Q" >0 mod y(0),
(i1) y(e)=0 for all € near 0~ if and only if P" >0 mod y(0),
(iii) y(e)=0 for all € near 0 if and only if Q" > 0 mod y(0) and P> 0 mod y(0).

Proof. Because y(0)=0, y(e)=0 for all £ near 0" if and only if the infinite matrix
Q” has a lexicographically nonnegative tow i whenever y(0); =0, i.e., whenever
Q*>0mod y(0). However, in view of Lemma 2, Q¥ 0 mod y(0) if and only if
Q"= 0mod y(0). This shows (i). (ii) follows from a parallel argument and (iii)
follows from (i) and (ii). O

We are now ready to examine the question of whether or not 8 is a breakpoint.
For a given problem P(8) with an optimal basis B, let £ and = denote the optimal
primal and dual basic solutions for 8. Define the following m X k and n X k matrices,
fork=1,...:

X =[(-B7'Gp)'%, (-B"'Gg)°%g, ..., (—B7'Gp)*%s1,

}:f" =[(B™'Gg)' %3, (B™'Gy)’%g, ..., (B7'Gp)*%5],

C*=[7(-GsB A, w(—G;'B)A,..., #(-GzB™")*A], and

D*=[#(GsB™")A, #(GsB™'VA,..., #(GzB ") Al

Theorem 3. Let B be an optimal basis for P(9). Let %, #, X™, Y™, C™ and D™ be
defined as above. Then

(i) 6 is not a breakpoint if and only if X™ >0 mod Xg and C™">0mod(7A-c),
Y™ >0 mod %, and D™ >0 mod(7#A—c).

(ii) If X™ >0 mod Xg and C™ >0 mod(#A — c), then B is an optimal basis for
P(#0) for all 6 near 6", and equations (i)-(v) of Theorem 1 are valid for all 9 near
6", with z*(-) replaced by z%(-).

(iii) If Y™ >0 mod X5 and D™ >0 mod(#A — c), then B is an optimal basis for
P(#0) for all 6 near §~, and equations (i)-(v) of Theorem 1 are valid for all 8 near
6, with z*(+) replaced by z*(-).

Proof. We first prove (ii). Suppose X" >0 mod %; and C™ >0 mod(7A —c). Let
M =1, D=(-B™'Gy), and v =%, Note that x5(8) =Y., (86— 8)'MD'y, and so by
Lemma 3, x5(8) =0 for all § near 6" if and only if Q"> 0 mod %5 However, Q"= X"
and X">0 mod %; if and only if X™ >0 mod X, since r<m. Thus B is primal
feasible for all  near 6" if and only if X™ >0 mod X,. As regards the dual, let
M=A, D=(—-GgzB™"), and v= Note that mz(0)A=Y, ,(0—8)(MD'v)’, and
so by Lemma 3, m3(8)A — ¢ =0 for all 6 near §* if and only if Q"> 0 mod(#A — ¢).
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The latter is true if and only if C™ >0 mod(#A — c). Thus B is dual feasible for all
6 near 6", and so is optimal for P(0) for all § near 6", whereby equations (i)-(v)
of Theorem 1 are valid, with z*(-) replaced by z%(-).

The proof of (iii) parallels that of (ii). (i) follows from (ii) and (iii). O

Note that if the rank of G is known, it can be used instead of m in the above
theorem.

We close with an example of ‘worst case’ behavior of z(8). Theorem 3 states that
the formulas of Theorem 1 are valid when certain submatrices of X™, Y™, C™, and
D™ are either >0, <0, or =0. However, if it is not true that ‘X™ >0 mod Xg and
C™ >0 mod(#A — ¢)’ nor true that *Y” >0 mod %5 and D™ >0 mod(#A — c)’, then
0 is an isolated point at which 8 is an optimal basis; and for all 6 near 8 and not
equal to 8, B is not an optimal basis, whereby equations (i)-(v) may be completely
false. This phenomenon is illustrated in the following example, in which initial
tableau B is shown first, followed by Tableaus I-III, which illustrate different bases
and basic solutions, obtained by pivoting from the initial tableau.

Initial Tableau B

RHS X, X, X3 X, Xs X X5
1 1 0 0 0 0 0 0
1 i 0 1 0 0 0
1 1-6 0 1 0 -1 0 0
0 0 0 0 -1 -1 1
0 0 0 0 0 0 1 -1
Tableau 1
RHS X, X, X3 X, X X¢ x;  Basis Range of Optimality
1 1 0 0 0 0 0 0 Bi={1,2,3,6}, 6=0
1 0 1 0 1 0 0 0
0 0 0 1 0 -1 0 0
0 0 0 0 -9 i 1 -1
0 0 0 0 0 -1 0 0
Tableau II
RHS X, x5 X3 X4 Xs X X
1 1 0 0 0 0 0 0 B.={1,3,4,6}, 6=0
1 0 1 0 1 0 0 0
0 0 0 1 0 -1 0 0
0 0 0 0 0 1 1 -1
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Tableau I1I

RHS X, Xy X3 X4 X5 Xg X
1 1 0 0 0 0 0 0 B3={1,2,5,7}, 0=<0
1 0 1 0 1 0 0 0

-0 0 0 -1 0 | 0 0

-0 0 0 -1 [ 0 -1 l

-6 0 0 -1 [/ 0 0 0

For this particular problem, 8, is an optimal basis for §=0, B, is an optimal
basis for 8 <0, and B, is an optimal basis only for § =0. For all 6, z(8) = 6, whereby
Z'(6) = 1. However, at § =0 with optimal basis 8, #=(0,0,0, —1) and —7Gx =0,
thus yielding a wrong determination of z'(8). This occurs because 8 =0 is a break-
point of z(#), and because X™ >0 but C™ <0, whereby 6 is an isolated point for
which B, is an optimal basis, i.e., 8, is not an optimal basis for any 8 near 0, except
6=4.

Note that the above example is just a transformation of the parametric program-
ming problem:

maximize z(6)=0x,— X5
subjectto X, + x4 =1,
Xy —Xxs=20,
X5, X3, X4, X5 =0,

which shows that even this seemingly well-behaved rim parametric programming
problem can have a badly behaved breakpoint.
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