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This paper examines the sensitivity of a linear program to simultaneous changes in matrix 
coefficients. Consider a linear program whose coefficient matrix depends linearly on a scalar 
parameter 0. Previous research has attempted to express the optimal objective value z(O) of the 
problem, as well as solutions to the primal and dual, as ratios of polynomial functions of 0 over 
a range of 0. Herein, we study properties of z(O) and the associated optimal basic feasible solution 
in a neighborhood about a fixed value 0 of 0. We obtain readily computable formulas for the 
Taylor series' (and hence all derivatives) of z(0) and of the primal and dual optimal basic solutions 
about the point /~ Furthermore, even under degeneracy, we show how to determine whether or 
not 0 is one of finitely many possible values of 0 for which derivatives of z(O) may not exist, by 
examining the lexicographic order of a certain matrix. This test also reveals whether or not the 
formulas given represent left-sided and/or right-sided derivatives of z(O) at 
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1. Introduct ion 

T h e  sub jec t  o f  th is  p a p e r  is the  sens i t iv i ty  o f  a l inea r  p r o g r a m  to  s i m u l t a n e o u s  

changes  in m a t r i x  coeff ic ients .  C o n s i d e r  t h e  s t a n d a r d  l inea r  p r o g r a m :  

P :  m a x  z = c .  x 

s.t. A x  = b, 

x~>0.  

W h e n  the  v e c t o r s  c a n d / o r  b are  p a r a m e t e r i z e d  by  a sca la r  p a r a m e t e r  0, we  ob t a in  

the  r im p a r a m e t r i c  p r o g r a m m i n g  p r o b l e m .  T h i s  p r o b l e m  has b e e n  t r e a t e d  ex tens ive ly ,  

a n d  the  c lass ica l  resu l t s  in this  a r ea  can  be  f o u n d ,  for  e x a m p l e ,  in  D i n k e l b a c h  [3] 

a n d  in G a l  [5, 6]. I n  th is  p a p e r ,  we c o n s i d e r  t he  p r o b l e m :  

P ( 0 ) :  m a x  z ( O ) = c . x  

s.t. A ~  = b, 

X~>0, 

whe re  A ~ = F + OG is an  m x n ma t r ix  p a r a m e t e r i z e d  by  0. 
1 
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The problem P(O) arises naturally in averaging constraints of  the form, 

Z , \ , '  X i  
/>0, t = l  . . . . .  T, X i L , '  ~ ' X i - [ - ~ i = k +  t Xi 

which after t ransformation becomes 

k 

(1 Olx + Z '> - (-O)xi-O, 
i=1  i = k + l  

t = l , . . . ,  T. 

This constraint says that the sum of the levels of  the first k activities in modelling 
period t must constitute at least 1000% of the sum of all activities levels in that 
time period. 

In addition, P(0)  arises naturally in blending constraints. For example,  suppose 
that xl, i = 1 , . . . ,  n, represent delivered tonnages of coal entering a powerplant  in 
period t, each with a heat content hi (in MBTU/ ton)  and a sulfur content si (in lbs. 
SOz/MBTU). Then if the powerplant 's  coal must have an average sulfur content of 
at most 0 lbs. SO2/MBTU in each period t, we have 

hi(O-si)xl>~O, t = l , . . . ,  T. 
i = l  

In each of these two applications, derivatives of  z(O), and derivatives of optimal 
primal and dual solution values, constitute valuable information concerning the 
sensitivity of  the underlying linear program to changes in O. 

The earliest result regarding P(O) was the formula for the derivative of  z(O) with 
respect to O, at 0 = ~ given by 

z'( O) = -~rGg, (1) 

where ~ and ~- are optimal solutions to the primal and dual of  P(O) at 0 = ~ In 
1956, Mills [14] obtained this formula for linear programs by examing saddlepoints 
of  the Lagrangian L(x, zr) = c . x -  1 r ( A ~  b); Golshtein [8] gave a corrected proof  
via saddlepoints, where it is required that the sets of optimal solutions to P(O) at 

be bounded. In 1959, Saaty [17] rederives (1) when P(O) is nondegenerate,  using 
the identity d B -  ] ( O ) / d O = - B -  ~ ( O )[ d B ( O ) / d O ] B- t  ( O ) , where B ( O ) is the basis matrix 
for P(O). 

Other research on P(0 )  has centered on the computation of z(0) as 0 varies over 
some prespecified range R. When the matrix G has only one nonzero row or only 
one nonzero column, the problem can be analyzed by methods from parametric 
analysis, see e.g. Kim [9] and Orchard-Hayes  [15]. However, when more than one 

row or column of  G is nonzero, and in particular if G is not sparse, the characteriz- 
ation of z(O) for 0 c R as well as the range of  optimality of a given basis becomes 
much more difficult. I f / 3  is a basis for P(O), and the basis matrix ( F +  OG)r is 
denoted by B(O), then 

B- l (  o ) = adj( B(  O) )/ det B( O), 
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each of whose coefficients is a rational function of 0, i.e. an expression of the form 
p(O)/q(O), where p(O) and q(O) are polynomials  in 0. The limits of  optimality of  
a basis B(O) will be those points where some coefficient of  the primal basic solution 
or reduced costs changes sign, or where the determinant of  B(O) is zero. In each 
case, the limit is the root of  the numerator  or denominator  of  a rational function 
of 0, i.e. the root of  a polynomial of  0. Building on the analysis of  P(O) through 
rational functions and roots of  polynomials, Weickenmeier [19] and Finkelstein and 

Gumenok [4] have developed parametric programming algorithms for P(0) .  
Another form of sensitivity analysis of  P(O) is the analysis of  the solution set of 

P(O) as a function of  0, denoted by X(O). At issue are conditions on P(O) which 
guarantee that the mapping X(O) satisfies certain continuity properties. Pertinent 

references include Dantzig et al. [2], Dinkelbach [3], Robinson [16], Lorenzen [13], 

Klatte [10, 1 l], Lommatzsch [12], and Gal [6]. 
The main concern of this paper is postoptimal analysis of  P(O) in a neighborhood 

of a given value of  0 = t~ without resorting to rational functions o f  0. In Section 2, 

we present formulas for the Taylor'series of  z(O) about 0 = 0, for all derivatives of 
z(O), and for the optimal primal and dual basic solutions, each of  whose terms is 
readily computable  from the problem data and the current basis inverse. These 
formulas are shown to be valid when P(O) is nondegenerate and has a finite optimum. 
However, degeneracy is prevalent in most large-scale linear programs,  either in fact 
or due to numerical round-off error. Hence, in Section 3, we show that the main 

results of Section 2 are valid for all but a finite number of values of  0 even in the 
case of degeneracy. We also present a test, based on the lexicographic order of a 
certain matrix, that determines whether or not the current basis yields left-sided 

and /o r  right-sided directional derivatives of  z(O) at 
This paper ' s  origins stem from my interest in computing z'(O) in a particular 

linear programming application of the sulfur blending constraint described above. 
In the study of  this sensitivity analysis problem, I have tried to follow the standard 

of George Dantzig's  work- - the  development of theory in the solution of practical 

problems. 

2. Postoptimal analysis at nondegenerate optimal solutions 

Consider the following parameterized linear program in standard form: 

P(O): maximize z( O) = c. x 

subject to (F+ OG)x= b, 

x ~ 0 ,  

where F, G are m • n matrices (with m <~ n), b, c are m- and n-vectors, respectively, 
and G ~ 0. Let R denote the real numbers a n d / ~  = R • {-co, +co}. z(O) is defined 
to be +co if P(O) is feasible and unbounded,  and z(O)=-co if P(O) is infeasible. 
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I f  we set A ~ F+ OG, P(O) and its dual,  D(O), are seen to be: 

P(O): maximize  z(O) = c. x 

subject  to A~ b 

x~>0; 

D ( 0 ) :  minimize  v(O)= ~'. b 

subject  to ~r- A ~ >1 c. 

Let fl c { 1 , . . . ,  n}. Let ~r~• and R" be the space  of  all real m x n matr ices  and real 

n-vectors,  respectively.  I f  M and y are a matr ix  and a vector,  M s or  Yt~ denotes  the 
submatr ix  or  subvec tor  whose columns or  c o m p o n e n t s  cor respond  to the elements 
of/3.  I f A g  is nons ingu la r  at 0, then/3  or A~ is a basis for  P(O). I f /3  is a basis for 
P(O), then the pr imal  basic  solution is given by  xt~(O)= (A~)-lb, x,~(O)= 0, where 

a = { 1 , . . . ,  n}\/3, and  the dual basic solut ion is given by 1r~(0) = ct3(Ag) -~. A basis 

/3 is pr imal  feasible at 0 if  xt3(O)>~O, dual  feasible at 0 if c-~'t3(O)A~ and 
opt imal  at 0 if  it is bo th  pr imal  and dual  feasible at 0. /3 is def ined to be  a 
nondegenera te  op t imal  basis at 0 if 7rt3 (0) A o _ c + x (0) > 0, where  x (0) = (xt3 (0), 
x,(O)). This co r responds  to both  pr imal  and  dual  nondegeneracy  at the opt imal  
solution. 

For  a given vector  y or  matrix M, we define Ilyll = m a x  lyjl and  IIMll = m a x  lm0t, 
the s tandard  s u p r e m u m  norm. An interval I in R is defined to be any  set o f  the 

fo rm (a, b), [a, b], [a, b),  or (a, b], where a, b ~ k .  The ith row o r j t h  co lumn o f  a 
matr ix  M is denoted  by  M~ or M.j, respectively.  A proper ty  • is said to be  true 
near  O if there exists e > 0  such that  P is t rue for  all 0 ~ ( 0 - e ,  O + e ) .  P is said to 
be true near  O- or  nea r  O+ if there exists e > 0 such that  ~ is true for  all 0 E ( O -  e, O], 
or  0 E [0, 0 + e), respectively.  

I f f l  is a basis for  P(O),  ( A ~ ) j '  = ( d e t ( a ~ ) ) - '  adj (A~)u, f rom which we see that  
each c o m p o n e n t  o f  ( A g ) - '  is given by p(O)/q(O), where p(O) and q(O) are poly-  

nomials  in 0 of  degree  less than or equal to m - 1 and m, respectively,  and  q(O) # 0. 
For  nota t ional  convenience ,  let B = Ag, where  t~ is a fixed value o f  0 and /3 is a 
given basis for  P(O);  thus,  B is a basis matr ix  at 0 = 

The main  result for  the nondegenera te  case is: 

Theorem 1. Let fl be a (unique) nondegenerate optimal basis for P( O). Let �9 and "5" 
be the (unique) primal and dual optimal solutions to P(O). Then for all 0 near O, fl 
is a nondegenerate optimal basis for P( O), and 

(i) z(O)= ~ ct3(O-O)'(-B-'Gt3)i~m 
i = 0  

_ ~ (i)! 
(ii) zk(O)-- ca(O-O)('-k)(-B-'G~)'~,~ f o rk=  1,. 

i=k ( i - k ) !  " "  
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where z k( O) is the kth derivative of z( O), 

(iii) x(O)=(xr (O-O)i(-B-1Gr162 
i 

is the unique optimal solution to P( O), 

(iv) ~'~(0)= ~ (O-ff) '6-(-a~B-t)  t 
i=0 

is the unique optimal solution to D( O), and 

(v) zk(#)=(k!)c~(-B-'G~)k2~, 

where B = A~. 

Note that when k= l, (v) states that z'(O)=-c~B-1Ga2=-6-G2, which is a 
restatement of  (1). Formula (l)  can also be justified on more intuitive grounds. At 
0 = 0, 2 and 7? are primal and dual optimal solutions to P(0)  and D(0) ,  and 
Oz/Obt = 6-i- As g is kept fixed, and 0 changes to 0 = O+ A, the new primal system 

satisfies: 

(F+(O+ A)G)2= b+ AG2. 

In order to regain the original system of equations, with a right-hand side of b, we 
must change b to b(A)= b -  AG2,. Using the chain rule for differentiation yields 

Oz ~ Oz Ob~ 
~--~m i='  ~ / / ~ - ~ m  i=l ~ 7r i ( - -GX) i  m - - 6 - 0 2 .  

This is not a rigorous proof, inasmuch as 2 and 6- are assumed to remain fixed as 

0 varies. 

Proof of Theorem 1. For all 0 near O, (A~) -1 exists and so 

0 0 --1 A~(A~) = (B+ ( 0 -  O)O~)(A~ -' = I. 

Premultiplying this system by B -1 and rearranging, we obtain: 

(A~) - t =  B - l -  ( 0 -  O)(B-1G~)(A~ -1. (2) 

By recursively substituting for (A~) -~ in this last expression, we obtain: 

(A~)- '  = ~ ( 0 -  O)'(-B-'G~)'B -1. 
i=0 

This series converges for all[O - O[ < e = (m II-B-I G t3 I1)-1. The series in (iii) follows 
from the fact that x~(O)= (A~)-lb. (i) follows from the equation z(O)= caxtj(O), 
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and (ii) and (v) derive from (i). Furthermore, 

7rz(O)=cz(A~ -'= ~ (O-@)'c~(-B-'Gz)~B -' 
i = 0  

= ~ (O-O)'c~B ~(-G~B 1), 
i = 0  

= G~B ), 
i = 0  

which is the series in (iv). Because [3 is a nondegenerate basis for P(@), ~ra (O)A ~ -  c + 
x(O)>O, and so for all 0 near O, ~r~(O)A~ as well, thereby showing 
that x(O) and ~r(O) are feasible and nondegenerate solutions to P(O) and D(O). [] 

(The series (2) can also be derived by appeal to the well known fact that 
dM-l /dt  = -M-l ( t ) (dM/dt )M-l ( t ) ,  where M(t) is a nonsingular matrix whose 

coefficients are functions of  t. This formula can be used to inductively prove that 
dkM-l( t)/ dkt = ( k[)( -M-l(  t)D)kM-l( t ), in the case when M ( t) -- C + Dt, thereby 

t obtaining the Taylor series M-~(t) = ~k=0 ( -- t-)k(-M-l(t-)D)kM-l(t-)" Substituting 
0 = t, O= F, A~ = M(0 ) ,  M(t-) = B, and G~ = D, we obtain (2).) 

Because most large-scale linear programming computer  codes compute  and record 
the primal and dual solutions and the basis inverse or the L -  U decomposit ion of 
the basis, each of  the terms of the series in (i)-(v) can readily be computed.  The 
computational burden of  computing the higher order terms of these series is probably 

excessive, unless B I G  is very sparse. (Even when G is sparse, B-1G may not be 
sparse.) 

From a theoretical point of view, the nondegeneracy hypothesis of  Theorem 1 is 
satisfied for P(O) except for a certain collection of problem data (b, c) which has 
measure zero. However,  as a matter of experience, most large-scale linear programs 
exhibit substantial degeneracy in the optimal basis, either in fact (primarily the 
result of  special structures) or due to numerical roundoff. It thus is necessary to 

examine the general (degenerate or nondegenerate) case of  P(O) if the formulas of  
Theorem l are to have practical significance. 

3. Postoptional analysis at degenerate or nondegenerate optimal solutions 

We begin this section with a few defintions. Let K = {OIP(O) is feasible and has 

a finite solution}, i.e. K is the set of  0 for which - o o < z ( 0 ) < + o o .  For each 

t i c { l , . . . ,  n}, with 1131---m, define R e ={0113 is an optimal basis for P(0)}. Each 
R e is called the 'critical region' for/3, see e.g. Gal [7] or Dinkelbach [3]. Finally, 
we define U = {0 lz(O)= +co} and V= {Olz(O)=-oo}. The following lemma, which 
has been obtained in a different formulation by Dinkelbach [3], will serve as a basis 

for the theorems of  this section. Its proof  is included here for completeness. 
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Lemma 1 (see Dinkelbach [3]) 

(i) U consists of  a finite union of intervals, 
(ii) Rt~ consists of  a finite union of intervals, for each potential basis/3, 

(iii) K consists of  a finite union of intervals, and 
(iv) V consists of  a finite union of intervals. 

Proof. For any given value of 0, we can assume that A has full rank, by appropriate 
addition of artificial variables, or deletion of rows, if necessary. Thus, if z(O)= +oo 
for some 0, there exists a basis fl such that x~(O)>1 O, and a column j ~/3 such that 
( A ~ A ~ <~ 0 and cj - 7rt3 ( O )A ~ > 0. Therefore, 

{olz(O)= + ~ } = U  U {01det(A~) #0} 
t3 j ~ / 3  

c~ {O[(A~ >I 0} c~ {O[(A~ ~ <~ 0} 

O --1 0 c~{Olcj-ct3(At3) A.j > 0}. 

Because det(A~) is a polynomial in 0 (of  degree of at most m), {0[det (A~)# 0} is 
a finite union of intervals. We can assume that if det(A~) # 0, then det(A~) > 0, by 
rearranging columns, if necessary, whereby { O[(A~)-'b ~ 0} = {0 [adj (A~)b >i 0, and 
each constraint of  this latter formulation is a polynomial. Hence this set is the 
intersection of  a finite union of intervals, which is a finite union of intervals. Similarly, 
{O[(A~ ~ <~ 0} = {Oladj(m~ ~ <~ 0}, each constraint of which is a polynomial in 

O - 1  0 0, so this set also is a finite union of intervals. Finally, {0] c~-c~(A~) A . j>0 } =  
{0 [ (det A~ > ct3 (ad j (a~)a~  which is also a finite union of intervals. Thus U is the 
union over all/3 of  the intersection of a finite union of intervals, which is itself a finite 

union of intervals. This proves (i). To prove (ii), note that 

Rt~ = {0 [det(A~) # 0, (A~ >- O, and  c l3(A~ ~ >1 C} 

= {0 [ det (a~)  # 0} c~ {O[adj(a~ >i 0} c~ {O Ice (adj(A~))OA ~ >1 c(det(A~)}. 

Using th.e logic employed above, we see that the latter formulation is the intersection 
of three sets, each of which is a finite union of intervals. (iii) follows from (ii) and 
the fact there are a finite number of bases, and (iv) follows from (i) and (iii). [] 

Let E be the union over all fl c { 1 , . . . ,  n} of the set of endpoints of the intervals 
of R~. E then is the set of 'breakpoints' of  the function z(O), i.e., E is the set of 
points at which a basis changes from primal or dual feasible to infeasible, or the 

basis matrix becomes singular. 
In view of Lemma 1, we have: 

Theorem 2. Let fl be an optimal basis for P( O). Let ~ and ~ be the primal and dual 
basic optimal solutions to P( O) corresponding to ft. Then, except for a finite number 
of values of O~ K, equations (i)-(v) of Theorem l are true for all 0 near O. 
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Proof of Theorem 2. For any O~ K\E, and any optimal basis /3 for P ( i ) ,  there is 
an open interval ( 0 - e ,  0 + e )  such that 13 is an optimal basis for P(O) for all 
0 c ( f f - e ,  i f+e) .  This being the case, the power series' of (i)-(v) of  Theorem 1 
converge. Since E is a finite union (over all fl c { 1 , . . . ,  n}) of a finite number of 
endpoints, E is finite, proving the theorem. [] 

We now turn our attention to the task of  determining for a given problem P(/~) 
if 0 is a breakpoint, i.e., an element of E. If P ( i )  has a non-degenerate solution, 
then t~ is not an element of E, and so the conclusions of Theorem 1 are valid. 
However, even if P(O) has a degenerate optimal basic solution, 0 need not be an 
element of  E. This possibility is illustrated in the following example, where Initial 

Tableau A is shown, followed by Tableaus 1-3, which illustrate four different bases 
and basic solutions by pivoting on the initial tableau. In these tableaus, the bottom 
row represents the objective function z(O). Note that this example is a transformation 
of  a rim parametric program, as Tableau 1 shows. 

Ini t ia l  T a b l e a u  A 

R H S  x I x 2 x 3 x 4 x 5 

1 1 0 0 0 0 
10 0 1 0 1 2 

0 - 0  0 1 1 3 

0 1 0 0 0 - 5  

T a b l e a u  1 

R H S  x 1 x 2 x 3 x 4 x 5 

1 1 0 0 0 0 
1 0 - 0  0 1 0 1 2 

0 0 0 1 1 3 

- 1  0 0 0 0 - 5  

T a b l e a u  2 

R H S  X 1 X 2 X 3 X 4 X 5 

l 1 0 0 0 0 
I 0 - 0  0 1 0 1 2 

- I 0 + 2 0  0 - I  I 0 t 

- I  0 0 0 0 - 5  

Basis R a n g e  o f  O p t i m a l i t y  

fll = { 1 , 2 , 3 } ,  0~<0<~ 10 

f12= {1, 3, 4}, 5 ~ 0 ~ 1 0  
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Tableau 3 

R H S x i x 2 x 3 x a x 5 

1 1 0 0 0 
0 0 0 1 1 

1 0 - 2 0  0 1 -1  0 

0 
3 /33 = {1, 2, 4}, 

- 1  

- 1  0 0 0 0 - 5  

0 ~ 0 ~ 5  

This example has degenerate optimal solutions for 0 ~< 0 <~ 10, yet the only break- 
points are E = {0, 5, 10}. For 0 <  0 < 10, there are multiple optimal solutions to the 
primal./3~ is optimal over the range 0 ~  < 0 <~ 10, yet the ranges of  optimality for 132 

and/33 are [5, 10] and [0, 5], respectively. As 0 decreases below 0, t31 and/33 become 
infeasible. 

We now show how to determine if ~i is a breakpoint or not (without pivoting 
beyond the final tableau) given the problem data (F, G, b, c) and an optimal basis 

/3 for P(0).  In order to demonstrate how this can be done, some more notation and 
a result f rom linear algebra are first presented. 

Let f'+(O) and f '_(O) denote the directional derivative o f f ( P )  in the plus and 
minus direction, i.e., 

f , ( O ) = l i m ( f ( O + h ) - f ( O ) )  ( f ( O ) - f ( O + h ) )  
h~O " h , f ' ( O )  =limo h " " 

Let ~ denote the lexicographic ordering for vectors and extended to matrices M, 
see e.g. Dantzig [1], where M ~ 0 if M~ ~ 0 for each row i of  M. Given a vector y, 
define M ~ 0 mod y if M~ ~ 0 whenever y~ = 0, and M -~ 0 mod y if M~. = ( 0 , . . . ,  0) 
whenever y~ = 0. The ordering ~> mod y corresponds to the lexicographic ordering 
when y = 0, otherwise it corresponds to the lexicographic ordering restricted only 
to those rows of M for which the corresponding components of  y are zero. The 

following intermediate results will be used in the analysis: 

Lemma 2 (see Veinott [18]). I f  D c R m xm is a matr ix  o f  rank r, M ~ ._R t• and  v ~ R m, 
then there exists a j <~ r such that M D l  v, M D 2  v, M D 3  v, . . . , are all linear combinations 

o f  M D t  v, . . . , MD~v.  

One version of this lemma is presented in [18]. It is proved here for completeness. 

Proof. The vectors Div,  i = 1 , . . . ,  all lie in the subspace L spanned by the columns 
of D. Thus, the vectors D ' v , . . . ,  Dr+~v cannot all be linearly independent,  where- 

by there exists j~< r such that DJ+~v is a linear combination of  D ~ v , . . . ,  DJv. We 

now show by induction that Div  is a linear combination of D l v , . . . ,  D Jr for all 
i =  1 , . . . .  Clearly, this is true for i =  1 , . . . , j + l .  Suppose it is true for k > ~ j + l .  
Then Dk~) = ~ = l  At Dlv,  and Dk+Iv ,~j+l  Dj+j = ~ = 2  At Dtv" But since is a linear combina- 

tion of D ~ v , . . . ,  D Jr, the result follows after premultiplication by M. [] 
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Lemma 3. For given matrices M 6~  t• D 6 ~  "~• and a vector v 6 ~  '~, let y ( e ) =  
Y.~=o eiMD~v f ~ all e near O, and suppose y(O) = My >I O. Define Qk and P~ to be the 
k-column matrices Qk = [ M D I v , . . . ,  MDkv]  and 

p k = [ M ( _ D ) ~ v  . . . . .  M ( - D ) k v ]  f o r k = l , . . . .  

Let r be the rank of D. 
Then 

(i) y(e)>~O for all e near 0 + if and only i fQr~>0mody(0 ) ,  
(ii) y(e)>~O for all e near O- if and only i f  P~>~Omod y(O), 

(iii) y(e)  >~ 0 for all e near 0 if and only if  Q~ ~ 0 mod y(0) and P~ >~ 0 mod y(0). 

Proof. Because y(0) ~> 0, y(e)  >10 for all e near 0 + if and only if the infinite matrix 
Q~ has a lexicographically nonnegative row i whenever y(0)~ = 0, i.e., whenever 
Q ~ >  0 mod y(0). However, in view of Lemma 2, Q ~  0 mod y(0) if and only if 

Q~>0 mody(0) .  This shows (i). (ii) follows from a parallel argument and (iii) 
follows from (i) and (ii). [] 

We are now ready to examine the question of  whether or not 0 is a breakpoint. 
For a given problem P(O) with an optimal basis/3, let ff and ~" denote the optimal 
primal and dual basic solutions for/3. Define the following m x k and n • k matrices, 
f o r k = l , . . . :  

2 k =[( -B- 'G~) '2m (-B-lO~)2~/3 . . . .  , (-B-I G~)k.~], 
I7 "k =[(B lGfl)l.~/3, (B-IG~)2.,~,..., (B-'G~)'.2"~], 
(Tk = ['fi '(-G~B ')A, # ( - G ~ B ) 2 A , . . . ,  ,fi'(-Gt~B-')kA], and 
0 ~ = [#(Gt~B-I)A, .fi-(Gt3B-')2A . . . . .  "fi'(Gt~B-')kA]. 

Theorem 3. Let fl be an optimal basis for P( O). Let ~, "#, ~;m, ~,,,, (7,~, and 1) ~ be 
defined as above. Then 

(i) O is not a breakpoint if and only if 3~ " ~> 0 mod xt3 and (7 " ~> 0 mod(#A - c), 
Y"  ~ 0 mod xt3, and /5"  ~ 0 mod(#A - c). 

(ii) If X~  ~> 0 mod xt3 and (7,0 ~> 0 mod(~'A - c), then/3 is an optimal basis for 
P(O) for all 0 near O+, and equations (i)-(v) of Theorem 1 are valid for all 0 near 
O+, with zk( �9 ) replaced by zk( �9 ). 

(iii) If IVm~>0 mod :~a and /)'~ ~>0 m o d ( # A -  c), then/3 is an optimal basis for 
P(O) for all 0 near O-, and equations (i)-(v) of Theorem 1 are valid for all 0 near 
O-, with zk( . )  replaced by zk( " ). 

ProoL We first prove (ii). Suppose .~m ~> 0 mod ~ and (Tr~ ~> 0 mod(~-A-  c). Let 
M = / ,  D = ( - B - ' G ~ ) ,  and v-- ~t~. Note that x~(O)=YT_o(O-~)iMD'v, and so by 
Lemma 3, x~ (0)/> 0 for all 0 near O+ if and only if Qr ~> 0 mod g~. However, Qr = )~r 
and .~r ~ 0 mod ~ if and only if .~m ~> 0 mod :~, since r <~ m. Thus fl is primal 
feasible for all 0 near 5 + if and only if .~m~ 0 mod ~ .  As regards the dual, let 
M = A ,  D = ( - G t 3 B - I ) ,  a n d  v= "?r. Note that ~ ' t3(0)A=~i:  o (0 -O) i (MDiv) t ,  and 

so by Lemma 3, rrt3(O)A-c>>-O for all 0 near O+ if and only if Qr~>0 m o d ( # A -  c). 
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The lat ter  is t rue i f  and  only  if  C'~ ~ 0 m o d ( ~ - A -  c). Thus /3  is dua l  feasible  for all 

0 near  0+, and  so is op t ima l  for P(O)  for  all 0 near  0§ whereby  equa t ions  ( i ) - (v)  

of  Theorem 1 are val id ,  with zk (  �9 ) r e p l a c e d  by zk( �9 ). 

The p r o o f  o f  (ii i)  para l le l s  that  of  (ii). (i) fol lows f rom (ii) a n d  (iii). [ ]  

Note  tha t  if  the  r ank  of  G is known,  it can be  used  ins tead  o f  m in the  above  

theorem.  

We close with an  example  of  'wors t  case '  behav io r  of  z(O).  T h e o r e m  3 states that  

the fo rmulas  o f  T h e o r e m  1 are val id  when  cer ta in  submat r ices  o f  ~ m ,  ipm, t~m, and 

/ ) "  are e i ther  ~ 0 ,  <~0, or  = 0. However ,  i f  it is not  true that  ,)~m >~ 0 m o d  ~ and  

(~" ~ 0 m o d ( ~ A -  c) '  nor  true t h a t '  ~.m ~ 0 rood ~ and s m ~ 0 m o d ( ~ A  - c) ' ,  then 

is an i so la ted  p o i n t  at which fl is an op t ima l  bas is ;  and  for  all  0 near  O and not  

equal  to ~ / 3  is not  an op t ima l  basis ,  whe reby  equat ions  ( i ) - (v )  m a y  be comple te ly  

false. This p h e n o m e n o n  is i l lus t ra ted in the  fo l lowing example ,  in which  init ial  

t ab leau  B is shown first, fo l lowed by  Tab leaus  I - I I I ,  which i l lus t ra te  different  bases  

and  bas ic  so lu t ions ,  ob t a ined  by p ivo t ing  f rom the ini t ial  t ab leau .  

Initial Tableau B 

RHS x 1 x z x 3 x 4 x 5 x 6 x 7 

1 1 0 0 0 0 0 0 
1 0 1 0 1 0 0 0 
1 1 - 0  0 1 0 - 1  0 0 
0 0 0 0 0 -1 -1 1 

0 0 0 0 0 0 1 -1 

Tableau I 

RHS x~ x2 X 3 X4 X 5 X6 X7 

1 1 0 0 0 0 0 0 
1 0 1 0 1 0 0 0 
0 0 0 1 0 -1 0 0 
0 0 0 0 -0  1 1 -1 

Basis Range of Optimality 

fll = {1, 2, 3, 6}, 0=0 

0 0 0 0 0 -1 0 0 

Tableau II 

RHS x I x2 X3 X4 X5 X6 

1 1 0 0 0 0 0 
1 0 1 0 1 0 0 0 
0 0 0 1 0 -1 0 0 
/9 0 O 0 0 1 1 -1 

- 0  0 - 0  0 0 -1 0 0 

X 7 

0 fl2={1,3,4,6}, 0/>0 
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Tableau III 
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RHS xl x2 x3 x4 x5 x6 x7 

1 1 0 0 0 0 0 0 f13 = {1, 2, 5, 7}, 
1 0 1 0 1 0 0 0 

- 0  0 0 - 1  0 1 0 0 
- 0  0 0 - I  0 0 - 1  1 

- 0  0 0 - 1  0 0 0 0 

0~<0 

For this particular problem, f12 is an optimal basis for 0/> 0, •3 is an optimal 
basis for 0 ~< 0, and/3~ is an optimal basis only for 0 = 0. For all 0, z(O) = 0, whereby 
z'(O) :- 1. However, at 0 =  0 with optimal basis/31, 7? = (0, 0, 0, - 1 )  and - # G g  = 0, 
thus yielding a wrong determination of z'(O). This occurs because 0 =  0 is a break- 
point of z(O), and because ~m ~> 0 but (~m ~< 0, whereby 0 is an isolated point for 
which fl~ is an optimal basis, i.e.,/31 is not an optimal basis for any 0 near 0, except 
0 = ~  

Note that the above example is just a transformation of the parametric program- 
ming problem: 

maximize z( O ) = Ox4- xs 

subject to x2+x4 = 1, 

X 3 -- X 5 ---- 0, 

X2, X3, X4, X 5 ~ O, 

which shows that even this seemingly well-behaved rim parametric programming 
problem can have a badly behaved breakpoint. 
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