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ABSTRACT 

Objectives: We present a population-level system dynamics model that quantifies the energy 

imbalance gap responsible for the U.S. adult obesity epidemic among different gender and racial 

subpopulations. 

Methods: Our system dynamics model divides the U.S. adult population into six subpopulations 

based on gender and race/ethnicity; and each subpopulation is further divided into 14 body mass 

index (BMI) classes. Transition rates between these classes are defined as a function of 

metabolic dynamics of individuals within each class according to existing validated models of 

body weight dynamics. The energy intake in each BMI class at any point in time within the last 

four decades is then estimated as a multiplication of the equilibrium energy intake of individuals 

in that class by an energy gap multiplier. Through calibration, the energy gap multiplier for each 

gender/race/BMI group is estimated by matching simulated BMI distributions for each 

subpopulation against data from NHANES using maximum likelihood estimation. 

Results: For all subpopulations obesity continues to increase but at different rates. None of the 

subpopulations shows a negative or zero energy gap, suggesting that the obesity epidemic 

continues to worsen, albeit at a slower rate. In the past decade the epidemic has clearly slowed 

for non-Hispanic whites, is starting to slow for non-Hispanic blacks, but continues to accelerate 

among Mexican-Americans. 

Conclusions: The differential energy balance gap across subpopulations and over time suggests 

that public health interventions should be tailored to the needs of specific subpopulations. These 

findings also raise important public health questions regarding the factors that underlie different 

energy gap trajectories across different subpopulations.
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INTRODUCTION 

The energy imbalance gap (EIG) is an important factor in the development of obesity and a key 

target of public health interventions to reduce obesity (1). The EIG captures the average daily 

excess energy intake, defined as total energy intake minus total energy expenditure for some unit 

of time, and is a critical control parameter in the energy system; it governs the speed of change in 

body mass (2). A related concept, maintenance energy gap (MEG), captures the increased energy 

intake needed to maintain higher average bodyweights compared with an initial (e.g., the early 

1970s) distribution of bodyweight (i.e., heavier individuals expend more energy as a result of 

their body mass and hence need higher energy intake to keep their weight in equilibrium) (3, 4). 

MEG captures the extent of change in energy intake that is needed to turn back the obesity 

epidemic, and as such relates to the long-term accumulation of energy imbalance in the BMI 

distribution and is often larger than the EIG (3). Previous studies have pointed to the importance 

of quantifying both the EIG and MEG to explain the magnitude of changes required to reverse 

the obesity epidemic, provide intervention targets, and estimate the contribution of different 

drivers of obesity (3-6), but concerns have also been raised about the effectiveness using overly 

simplified models of the EIG as tools to design obesity interventions (1). 

Estimating the EIG at the population level requires the use of models that can capture the 

feedback relationships between body weight and different body tissues that store and expend 

energy (e.g., fat mass vs. fat free mass) as well as non-linear changes over time (7). For example, 

the models must account for differential mortality rates by weight class to avoid under-

estimation of the EIG due to higher mortality among the very obese. To date, the literature has 

focused on estimates of the EIG and MEG for entire populations averaged over long time 

horizons (3-6, 8, 9). These estimates lack detail on changes in the EIG and MEG over time and 
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across subpopulations and weight groups. Correct specification of these variations is essential 

because people of different gender and racial/ethnic subpopulations or BMI classes may be 

affected differentially by the environment and may respond differently to interventions (7). 

There is also evidence that secular trends may be diverging among demographic subpopulations 

in the United States (10). As such, there is a clear public health need for models that are able to 

distinguish finer trends and provide more nuanced EIG and MEG estimations to develop and test 

targeted interventions.  

We use system dynamics (SD) modeling to address the limitations of previous EIG models and 

leverage those estimates to also calculate MEG trends for different subpopulations. While SD 

methodology is increasingly used in public health research to explain the complex etiology of 

health and disease (11-16) and to test intervention effectiveness (17-20), we provide one of the 

first applications of SD to the population dynamics of EIG and MEG over time as an important 

first step for the design of obesity prevention interventions targeting specific subpopulations. 

Many SD applications have been based solely on simulated agents or artificial populations. To 

inform public health practice, models can be strengthened by connecting what we know about 

the biology of obesity from clinical and lab-based studies to population dynamics in a way that is 

explicitly linked to existing empirical data. We use an innovative method (21) to connect a 

validated individual-level model of weight dynamics (22) to population-level obesity dynamics 

and estimate the EIG associated with different gender and race/ethnicity subpopulations, without 

the need to simulate a large number of individuals explicitly (16). Finally, we calculate the MEG 

values using the EIG and population BMI profile dynamics. This allows us to address three key 

questions: 1) How can the dynamics of the average EIG help explain observed changes in the 

prevalence of obesity in the U.S. adult population in the past four decades?; 2) How do these 
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dynamics differ across different gender, race/ethnicity, and BMI groups?; and 3) How have 

MEG values changed over the past four decades across different subpopulations? 

METHODS 

To estimate the EIG among adults in the US, we carried out three main steps: a) Developing a 

population-level SD model which captures BMI distribution and obesity prevalence; b) 

Modeling the EIG; and c) Calibrating the SD model using the data from National Health and 

Nutrition Examination Surveys (NHANES) (23) to estimate the EIG that is consistent with the 

prevalence shifts of obesity in the past four decades by gender, race/ethnicity, and BMI groups. 

We then calculated the MEG trajectories using the estimates from steps one to three. 

Developing the Population Level SD Model of BMI Distribution 

We used nationally representative data from NHANES for adults aged 20-74 from 1971 through 

2010 and matched that using our SD model to estimate the EIG across gender (male/female) and 

racial/ethnic (Mexican-American, non-Hispanic White, non-Hispanic Black) subpopulations. For 

each subpopulation, we used the method developed and validated by Fallah-Fini et al. (21) to 

efficiently simulate the dynamics of population BMI distribution over time. Underlying this 

method is an established individual-level model of body weight dynamics derived from previous 

work by Hall et al. (22). This novel method allows us to model BMI distribution dynamics based 

on a validated individual-level model of body weight dynamics (22), while avoiding the 

computational costs that would render calibrating a detailed agent-based model infeasible for the 

problem at hand. 

This method approximates the BMI distribution for each of J gender and racial/ethnic 

subpopulations by disaggregating each subpopulation into M classes corresponding to distinct 
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BMI ranges, e.g., people with BMI between 15 and 18, 18 and 20, and so on. In this study, we 

used 14 BMI classes after careful evaluation of a range of possible values of M. A representative 

individual for each of the BMI classes is modeled explicitly. These individuals represent average 

BMI of people in the corresponding BMI classes.  

We use Hall et al. (2009)’s model of human metabolism and body-weight change (22) to capture 

the dynamics of weight gain and loss for representative individuals over time when exposed to 

some average EIG. The rate of change in the weight of each representative individual is then 

used to formulate the rates by which population moves across different BMI classes. As a result, 

to represent a population of P individuals, we only need to explicitly model the representative 

individuals for the M different BMI classes and the corresponding population flows, rather than 

P explicit individuals. Given that we model the U.S. adult population, P is hundreds of millions 

whereas M is 14.  

This method accurately estimates the BMI distribution and its changes over time (21), cuts the 

computational costs by over a million times compared to the equivalent agent-based model and 

allows us to calibrate the model and estimate the EIG for different subpopulations efficiently. An 

online appendix provides more details on this method along (Appendix A) with fully 

documented SD models (Appendix C); Fallah-Fini et al. (21) provide additional details and 

validation on this methodology.  

Figure 1 summarizes our model’s overall structure in which the population stock-flow structure 

is broken by BMI classes. To make sure our model is demographically representative of the U.S. 

adult population, we modeled both the rate of transition from childhood into adulthood as well as 

the deaths. To capture the former, we calculated the rate of 19-year-olds entering into the 

simulated (adult) population in different BMI classes for different gender and race/ethnicity 
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subpopulations using the weighted population fractions from each successive NHANES wave 

(NHANES I to 2009-2010) (23), and interpolated for intervening years for which direct 

population estimates from NHANES did not exist. We also used the CDC’s census and vital 

statistics data (24) to capture the overall death rates. In calculating the death rates from each BMI 

class we took into account the differential mortality due to very low/high BMI using the 

mortality adjustment curves developed by Gray (1989) (25) for males and females. Further detail 

regarding the calculation of mortality rates is available in the online appendix (Appendix B). 

Figure 1 about here 

Modeling the Energy Imbalance Gap 

The energy intake and expenditure data from the NHANES food frequency and physical activity 

questionnaires are not precise enough to estimate the EIG precisely and reliably. Instead, we 

indirectly estimate the EIG using our model by inferring from observed changes in BMI (3, 4, 6). 

The EIG associated with representative individual of any BMI class k in any subpopulation j at 

any time t (represented by ∆𝐸𝐼𝑘
𝑗
(𝑡)) was defined as a function of the equilibrium energy 

expenditure (𝐸𝐸𝑘
𝑗∗

(𝑡)) of that representative individual calculated at time t (i.e., the energy 

required for normal activity and maintenance of the body) and an “energy gap multiplier” 

(represented by 𝜇𝑘
𝑗
(𝑡)) for subpopulation j and BMI class k (Equation 1).  

∆𝐸𝐼𝑘
𝑗(𝑡) = 𝐸𝐼𝑘

𝑗(𝑡) − 𝐸𝐸𝑘
𝑗∗

(𝑡) = 𝐸𝐸𝑘
𝑗∗

(𝑡) ∗ 𝜇𝑘
𝑗
(𝑡)   (1) 

The equilibrium energy expenditure of each representative individual was equal to the energy 

expenditure necessary for maintaining the body weight and was calculated using Hall et al.’s 

model of body weight regulation (22). Energy intake for each representative individual was then 

calculated by adding the energy gap to the equilibrium energy expenditure for that individual. 

Essentially, the BMI distribution for a subpopulation will remain in equilibrium if the energy gap 
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multiplier is zero. A multiplier above zero will lead to BMI growth and one under zero will 

reduce the BMI for that group. 

The energy gap multiplier 𝜇𝑘
𝑗
(𝑡) was defined as a function of three main components 

representing (1) the effect of time on energy intake of individuals; (2) the effect of BMI of 

individuals; and (3) the effect of the interaction between BMI of individuals and time. Equation 

(2) shows the structure of the equation associated with energy gap multiplier 𝜇𝑘
𝑗 (𝑡). 

𝜇𝑘
𝑗 (t) =  Time effect

𝑗 + BMI effect𝑘
𝑗
 + Interaction effect𝑘

𝑗
  

where     Time effect
𝑗
 = β1+β2Time

𝑗
 + β3(Time

𝑗)2 + β4(Time
𝑗)3 

               BMI effect𝑘
𝑗

= β5𝐵𝑀𝐼𝑘
𝑗
 + β6(𝐵𝑀𝐼𝑘

𝑗
)β7  

               Interaction effect𝑘
𝑗
 = β8Time

𝑗𝐵𝑀𝐼𝑘
𝑗
 

  (2) 

The Time and BMI variables used in Equation (2) were normalized with respect to their 

maximum values. The BMI effect measures the relationship between the levels of individual 

BMI and daily EIG. Our approach differs from traditional regression based approaches in several 

important ways. We specify a general model that allows very flexible, non-linear relationships 

with time and BMI in the model. Parameters are not estimated using a standard closed-form 

equation but through a process of calibration.  

Model Calibration and Parameter Estimation 

Data from NHANES (23) provide information about the distributions of BMI for different 

subpopulations over time. A good population-level model should be able to closely replicate 

those distributions observed in the past after taking into account the sampling errors. Parameter 

estimation and hypothesis testing can be pursued by matching the simulated BMI distributions to 

those observed empirically. We followed this basic intuition for parameter estimation. 

Specifically, the parameters forming the energy gap multiplier 𝜇𝑘
𝑗
(𝑡) were estimated such that 
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the BMI distributions over the past four decades generated by the model for each subpopulation j 

got as close as possible to the subpopulation’s BMI distribution according to data from 

NHANES.  

We used a maximum likelihood method for estimating the unknown model parameters. Let 

P1j(t), P2j(t), …, PMj(t) be the probabilities of an individual in subpopulation j falling within BMI 

classes 1 to M based on our simulation model of the U.S. adult population. If a random sample of 

nj(t) people is drawn from this subpopulation (in our case the NHANES samples), the probability 

that we observe x1j(t),…, xMj(t) individuals in BMI classes 1,…,M of the sample is given by the 

multinomial distribution as below: 

The model was initialized using BMI distributions from the first survey in which data for that 

subpopulation is available (1971 for Whites and Blacks; 1988 for Mexican-Americans). The 

model was then simulated through 2010 and the likelihood of observing the BMI distributions in 

NHANES sample was calculated according to Equation (3). The overall log-likelihood function 

summed up the logarithm of these likelihood values across different survey waves (NHANES I, 

NHANES II, NHANES III, 1999-2000, 2001-2002, 2003-2004, 2005-2006, 2007-2008, 2009-

2010). A nonlinear optimization method was used to find the parameters for energy gap 

multiplier that maximized the likelihood function. Those parameters inform the calculation of 

gender, race/ethnicity, and BMI-specific EIG values.  

We repeated this process for the different gender and racial/ethnic subpopulations to provide 

subpopulation specific estimates of the EIG. All simulations and optimizations were conducted 

in Vensim™ (26) software. Data processing was conducted in Stata™ (27). Full SD model 

P (𝑥1𝑗(t), … , 𝑥𝑀𝑗(t)) =
𝑛𝑗!

𝑥1𝑗(t)! ∗ … ∗ 𝑥𝑀𝑗(t)!
𝑃1𝑗(t)𝑥1𝑗(t) ∗ … ∗ 𝑃𝑀𝑗(t)𝑥𝑀𝑗(t)

   (3) 
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documentation is available based on standard model reporting criteria (28) and provided in an 

online appendix (Appendix C). 

RESULTS 

Estimated Energy Imbalance Gap 

Using the SD model described above and data from NHANES (23), we estimated the EIG among 

U.S. adults across different demographic subpopulations over the past four decades. The 

estimated EIG represents the average daily imbalance between energy intake and energy 

expenditure needed to produce observed changes in BMI distributions. These results explain, in 

part, the shifting prevalence of obesity in the U.S. The results reported here are obtained using 

the calibrated parameters reported in Table 1. 

We estimated the EIG associated with each BMI class in each demographic subpopulation 

separately over time; results are shown in Figure 2. For each subpopulation, we also calculated 

the average energy gap across different BMI classes weighted by the population in that class 

(Figure 3). These figures are heat maps that are color coded for intensity (green shows small or 

negative values for estimated EIG, yellow shows intermediate values, and red shows larger 

values). An EIG value of zero suggests that group is in equilibrium and its BMI distribution is 

not changing. A positive value, present for most subpopulations and times, indicates increasing 

obesity; a negative value suggests those subpopulations are losing weight on average. The 

pattern that emerges across BMI classes and subpopulations over time suggests clues about the 

processes that result in disparities in obesity rates.  

It is important to note that we could have stable BMI distributions over the population while the 

energy imbalance gap is positive. In essence, the energy imbalance gap leads to both changes in 
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BMI distributions over time, and the gap between the BMI distribution of individuals entering 

the population versus those leaving it (through death). 

Figure 2 about here 

Figure 3 about here 

Table 1 about here 

Patterns of EIG with Respect to Time  

For both non-Hispanic Whites and non-Hispanic Blacks, Figure 2 demonstrates an increase in 

the estimated EIG in NHANES III (late 1980s-early 1990s) in comparison with NHANES I 

(early 1970s) and NHANES II (late 1970s). The increase in the magnitude of the EIG continues 

over the next two survey waves (i.e., 1999-2000 and 2001-2002), followed by a gradual drop in 

the estimated energy gap in the last four waves (i.e., 2003-2004 till 2009-2010). However, none 

of these groups showed a negative or zero EIG, suggesting that obesity continues to increase, 

albeit at a slower rate.  

The magnitude of the drop in the energy gap was larger in non-Hispanic Whites in comparison 

with non-Hispanic Blacks, so that despite the slowdown, the EIG of the latter group is by 2010 

growing at rates higher than the peak trends for non-Hispanic Whites by 2010 (see Figure 3). On 

the other hand, Mexican-Americans showed an increase in the estimated EIG over all periods 

(i.e., NHANES III till 2009-2010) and no drop in EIG was observed. The current EIG for this 

subpopulation was as large as the peak for non-Hispanic Blacks and still increasing.  

Overall women showed a larger EIG than men. However, non-Hispanic White men had a larger 

energy surplus in the past three decades, suggesting a more rapid pace of the obesity epidemic. 

For all subpopulations EIG trends continued to accelerate over the first three decades (1970-
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1990). The general trend over the past decade has been slowing for non-Hispanic Whites, is 

starting to slow for non-Hispanic blacks, and is accelerating among Mexican-Americans. 

Patterns of EIG across Different BMI Classes 

If individuals in different BMI classes had similar energy gaps, then the obesity trend would 

have resulted in an even shift of the entire distribution to the right. The observed patterns suggest 

the epidemic operates at varying paces across BMI classes. Among non-Hispanic Whites the 

magnitude of the energy gap in the overweight, obese, and severely obese groups was larger than 

that for the underweight and normal weight classes over time. Among non-Hispanic White men, 

the two tails of the distribution (BMI<18 and BMI>40) showed larger energy surpluses than their 

neighboring classes (18<BMI<20 and 30<BMI<40); among non-Hispanic White women, the 

trend was the reverse; the peak was observed among the very (but not extremely) obese class 

(35<BMI<40).  

For non-Hispanic Blacks, the magnitude of the energy gap was relatively high across all BMI 

classes in both genders. The peak surplus was observed in the overweight and obese classes. 

Last, among Mexican-Americans, the energy gap was initially larger in the overweight and obese 

classes. In the past decade, this pattern has gradually shifted: the underweight, normal, and 

overweight classes began to show a larger energy gap in comparison to the obese and severely 

obese classes. 

Estimated Maintenance Energy Gap 

The small EIG estimated above is the persistent excess daily energy intake over energy 

expenditure required to drive the weight gain over time. However, we require a substantially 

larger change to reverse the obesity trends (3, 5). This change can be measured by the MEG. 

Figure 4 shows the magnitude of MEG associated with different subpopulations, compared with 
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the first date for which data is available. For example, comparing the BMI distribution in 2009-

2010 with the NHANES I data (early 1970s), the magnitude of the MEGs associated with non-

Hispanic White males (solid line) and females (dotted line) were estimated at 190 kcal/day and 

163 kcal/day, respectively. Similarly, the corresponding numbers for non-Hispanic Black males 

and females (represented by different dashed lines) were estimated as 213 kcal/day and 233 

kcal/day, respectively. These numbers characterize challenges facing public health efforts to 

reverse obesity rates back to the 1970s values for non-Hispanic Whites and Blacks. For 

Mexican-American males and females, the magnitude of change required to reverse obesity rates 

back to those of the early 1990s were estimated as 122 kcal/day and 100 kcal/day, respectively. 

The MEGs associated with the past four decades estimated in our model are comparable with the 

220 kcal/day MEG estimated by Hall et al. (2011) (3) for U.S. adults when comparing data 

between 1978 and 2005. 

Another important insight gained from Figure 4 is the increase in health disparities by race and 

ethnicity over the past ten years. The difference between the MEGs associated with non-Hispanic 

White females and non-Hispanic Black females has increased in the past decade. Similar trends 

are observed between MEGs associated with non-Hispanic White males and non-Hispanic Black 

males in the past five years. This observation is consistent with concerns that disparities persist 

or may be worsening for disadvantaged minority groups compared to Whites (29). 

Figure 4 about here 

Validation of Results 

Figure 5 shows the empirical BMI distribution at the start of the simulation (i.e., NHANES I for 

the non-Hispanic Blacks and non-Hispanic Whites and NHANES III for Mexican-Americans) 

along with empirical and simulated BMI distribution at the end of the simulation period (i.e., 
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2009-2010). The significant shifts in the BMI distributions are indicative of the progression of 

the obesity epidemic across different subpopulations. The model started from the initial 

empirical distributions, and without access to additional data, closely replicated the observed 

distributions three to four decades later.  

Figure 5 about here 

We used the one-sample Kolmogorov-Smirnov test to evaluate whether there was a statistically 

significant difference between the BMI distribution of the sample obtained from NHANES data 

and the BMI distribution generated by the SD model for each subpopulation in each wave of the 

survey. Table 2 shows the values of the test statistics as well as the 95% significance level to test 

the null hypothesis that NHANES sample data has been drawn from the same BMI distribution 

generated by the SD model. The null hypothesis is rejected only when the value of test statistics 

is larger than the critical value. Out of 50 possible tests, only one was rejected at the 95% 

confidence level, suggesting there is minimal difference between the empirical distributions and 

those generated by the model. This increases our confidence in the ability of the model to capture 

the key changes in energy gap responsible for generating the observed trends in BMI.  

Table 2 about here 

DISCUSSION 

Systems dynamics models offer a tool for researchers modeling complex public health issues 

such as the obesity epidemic. By combining nationally representative surveillance data with a 

state-of-the art model of individual-level energy metabolism, we demonstrate a SD modeling 

approach that characterizes the dynamic EIG patterns that underlie the rise in obesity over the 

past four decades. We demonstrate how these dynamics differ across different gender, 

race/ethnicity, and BMI groups. We also show how those estimates can be leveraged to calculate 
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MEG trends for different subpopulations. This model can be used as a base model to test 

hypotheses about the population drivers of the obesity epidemic and to conduct simulations 

testing the effects of different public health interventions on the prevalence of obesity among 

different demographic groups.  

Our results are comparable to those documented by previous studies. According to Hall et al. (3), 

the EIG underlying the development of obesity in US adults in the past three decades is about 30 

kJ or 7.2 kcal per day. Swinburn et al. (4) report that an increase in total energy intake of 5.5% 

per decade (i.e., average increase of 0.55% per year), would have been needed to drive the 

observed average weight gain for US adults since the early 1970s. Hill et al. (5) estimate that 15 

kcal/day of positive energy balance can explain the median weight gain (about 1 to 2 lb/year) of 

US adults in the past two decades. However, our results show more nuanced and detailed energy 

gap trends than previously published studies (3-5).  

A key finding is that the pattern of EIG change over time is heterogeneous across demographic 

groups. Our results suggest an earlier onset of energy surplus among non-Hispanics. We also 

show differences between non-Hispanic Blacks and non-Hispanic Whites in rates of decline in 

energy surplus in the past decade that may have exacerbated subpopulation disparities in obesity.  

These findings confirm the persistence of health disparities during the past ten years as reported 

by May et al. (2013) (29).  

The relatively large EIG across all BMI groups among non-Hispanic Blacks suggests that 

interventions targeting only the obese and severely obese groups are less likely to succeed at the 

population level because of the driving energy surplus among those in the lower BMI classes. In 

contrast, among non-Hispanic Whites, lower BMI classes face a slower upward pressure while 

obese and severely obese BMI classes show a much larger EIG. The trend for Mexican-
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Americans is striking; the energy surplus is high among all BMI classes and shows no sign of 

abating. Widespread and significant behavioral changes are needed to decrease the EIG and slow 

the obesity epidemic in this subpopulation. These findings are consistent with the report by 

Ogden et al. (2010) (30) that, despite a leveling of the trend in overweight adults, there has been 

a substantial increase in extreme obesity in the past 20 years and illustrate that the recent 

stabilization of this trend reflects differences in trends among demographic groups. 

The EIG poses a significant challenge to public health researchers because it is driven by major 

economic and social trends with significant inertia (31, 32). The current EIG trajectories provide 

some indication of the near future. First, as a matter of basic energy balance law, population 

groups will continue to gain weight until their average EIG is zero; only then will the obesity 

epidemic abate. Furthermore, a decline in obesity will require negative EIG values, which we did 

not find for any subpopulation or period in our study.  

While there is some evidence that obesity trends may be leveling off (33), our results suggest the 

plateau may not be as close as anticipated and that, to increase effectiveness, public health 

interventions should target specific subpopulations. In 2010 all groups demonstrated positive 

energy gaps, with non-Hispanic White women being closest to a real plateau, followed by non-

Hispanic White men. If the EIG decline has continued among these groups over the last three 

years, they may currently be approaching peak population obesity. Should the decline in EIG 

continue over the coming years, a gradual decline in BMI and obesity is conceivable. However, 

our results suggest that the EIG for the other two racial/ethnic subpopulations remains high, 

suggesting potential for a widening of obesity disparities. Non-Hispanic Blacks show a slower 

decline in EIG than non-Hispanic Whites. If this decline continues, it will take another 10-20 

years to reach the peak obesity prevalence. The trends for Mexican-Americans show an 
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increasing EIG and thus continued acceleration in the obesity epidemic. Without effective, 

targeted policies and interventions, if processes similar to those that have slowed the growth of 

the EIG in other race/ethnic subpopulations are to change the trends for Mexican-Americans, 

another 2-3 decades may pass before we see obesity peak in this subpopulation. 

CONCLUSION 

Despite reports of a plateau in population-level obesity prevalence in the U.S. (29, 30, 34), we 

have demonstrated substantial variation in the EIG, an important factor in the development of 

obesity, across multiple subpopulations. This highlights the need for an analytic tools, such as 

the SD model described here, that allow public health researchers to isolate EIG and MEG 

differences in separate subpopulations, rather than in the entire population (3-6, 8, 9). A national 

trend toward slowing or flat increases in average BMI may mask continued increases among the 

most obese (30). Our model is able to test hypotheses about how policy or environmental 

changes may contribute to this uneven progress. Our model can also be used to determine the 

extent by which the reported obesity plateau is a compositional phenomenon, an artifact of 

higher transition of less obese adolescence to adult population, or the first wave of higher 

mortality in the most obese.  

Our results demonstrate the strengths of a multidisciplinary, systems science approach to the 

study of energy imbalance and suggest several areas for future public health research. First, 

while we have demonstrated heterogeneity in the EIG and MEG trends, the behavioral and 

environmental factors that explain these trends have not been identified. This is a ripe area for 

further research using system dynamics models that allow for different social and environmental 

mechanisms to be measured and tested. Another fruitful direction is to assess the differential 

impact of public health interventions on subgroups and BMI classes in order to identify those 
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interventions that may have the greatest potential impact and design for subgroups. Future public 

health research should focus on understanding the differences in EIG among multiple 

subpopulations to inform the design and testing of future interventions to address the 

subpopulation differences underlying the obesity epidemic.  
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Figure 1: Overall Structure of the SD Model for Replicating Population-Level Prevalence of 

Obesity among US Adults in Different Gender/Race Subpopulations (Adopted from Fallah-Fini 

et al. (21)) 
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Figure 2: Energy imbalance gap over time estimated for different gender, race/ethnicity, and 

BMI groups 
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Figure 3: Weighted average energy imbalance gap estimated for different subpopulations 
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Figure 4: The simulated maintenance energy gap associated with different subpopulations (re-

scaled to start from zero) 
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Figure 5: BMI distribution associated with first available wave of NHANES data (dotted) data 

in comparison with empirical (dashed) and model outcomes (solid) in 2009-2010 
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Table 1: Estimated parameter values for different subpopulations 

 Time Effect Parameters BMI Effect Parameters 

Interaction 

Effect 

Parameter 

Subpopulations 𝛽1 β2 𝛽3 𝛽4 β5 𝛽6 𝛽7 𝛽8 

White 
Female -0.0036 0.0003   0.0296  -0.0317 0.0181   -0.1470   7.8743 -0.0004   

Male -0. 0999 -0.0034 0.0263 -0.0270 0.0588 0.0570 -0.3421 0.0095 

Black 
Female 0.0440 0.0007 0.0174 -0.0182 -0.0459 -0.0088 -0.8185 0.0059   

Male 0.0306 0.0060 0.0032 -0.0060 -0.0513 -0.0819 -0.1860 0.0010 

Mexican-

American 

Female -0.0127 0.0431 0.0165 -0.0243 0.0967 -0.0964 1.1851 -0.0602 

Male 0.0999 -0.0073 0.0993 -0.0301 0.0876 0.0391 -0.6908 -0.0008 
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Table 2: The results of Kolmogorov-Smirnov test over time for different subpopulations   
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