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Abstract

An Euler equation is a difference or differential equation that is an intertempo-
ral first-order condition for a dynamic choice problem. It describes the evolution
of economic variables along an optimal path. It is a necessary but not sufficient
condition for a candidate optimal path, and so is useful for partially characterizing
the theoretical implications of a range of models for dynamic behavior. In models
with uncertainty, expectational Euler equations are conditions on moments, and
thus directly provide a basis for testing models and estimating model parameters
using observed dynamic behavior.

An Euler equation is an intertemporal version of a first-order condition characterizing
an optimal choice as equating (expected) marginal costs and marginal benefits.
Many economic problems are dynamic optimization problems in which choices are

linked over time, as for example a firm choosing investment over time subject to a convex
cost of adjusting its capital stock, or a government deciding tax rates over time subject
to an intertemporal budget constraint. Whatever solution approach one employs — the
calculus of variations, optimal control theory or dynamic programming — part of the so-
lution is typically an Euler equation stating that the optimal plan has the property that
any marginal, temporary and feasible change in behavior has marginal benefits equal to
marginal costs in the present and future. Assuming the original problem satisfies certain
regularity conditions, the Euler equation is a necessary but not sufficient condition for
an optimum. This differential or difference equation is a law of motion for the economic
variables of the model, and as such is useful for (partially) characterizing the theoreti-
cal implications of the model for optimal dynamic behavior. Further, in a model with
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uncertainty, the expectational Euler equation directly provides moment conditions that
can be used both to test these theoretical implications using observed dynamic behavior
and to estimate the parameters of the model by choosing them so that these implications
quantitatively match observed behavior as closely as possible.
The term ‘Euler equation’ first appears in text-searchable JSTOR in Tintner (1937),

but the equation to which the term refers is used earlier in economics, as for example (not
by name) in the famous Ramsey (1928). The mathematics was developed by Bernoulli,
Euler, Lagrange and others centuries ago jointly with the study of classical dynamics of
physical objects; Euler wrote in the 1700’s ‘nothing at all takes place in the universe in
which some rule of the maximum . . . does not appear’ (Weitzman (2003), p. 18).
The application of this mathematics in dynamic economics, with its central focus on
optimization and equilibrium, is almost as universal. As in physics, Euler equations
in economics are derived from optimization and describe dynamics, but in economics,
variables of interest are controlled by forward-looking agents, so that future contingencies
typically have a central role in the equations and thus in the dynamics of these variables.
For general, formal derivations of Euler equations, see texts or entries on the calculus

of variations, optimal control theory or dynamic programming. This entry illustrates by
means of example the derivation of a discrete-time Euler equation and its interpretation.
The entry proceeds to discuss issues of existence, necessity, sufficiency, dynamics systems,
binding constraints, and continuous-time. Finally, the entry discusses uncertainty and
the natural estimation framework provided by the expectational Euler equation.

The Euler equation: Consider an infinitely-lived agent choosing a control variable
(c) in each period (t) to maximize an intertemporal objective:

P∞
t=1 β

t−1u (ct) where u (ct)
represents the flow payoff in t, u0 > 0, u00 < 0, and β is the discount factor, 0 < β < 1.
The agent faces a present-value budget constraint:

∞X
t=1

R1−tct ≤W1 (1)

where R is the gross interest rate (R = 1+ r where r is the interest rate) andW1 is given.
By the theory of the optimum, if a time-path of the control is optimal, a marginal

increase in the control at any t, dct, must have benefits equal to the cost of the decrease
in t+ 1 of the same present value amount, −Rdct:

βt−1u0 (ct) dct − βtu0 (ct+1)Rdct = 0.

Reorganization gives the Euler equations

u0 (ct) = βRu0 (ct+1) for t = 1, 2, 3... (2)

This set of Euler equations are nonlinear difference equations that characterize the evo-
lution of the control along any optimal path. We considered a one-period deviation; several
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period deviations can be considered, but they follow from sequences of one-period devi-
ations and so doing so does not provide additional information (u0 (ct) = β2R2u0 (ct+2)).
These equations imply that the optimizing agent equalizes the present-value marginal flow
benefit from the control across periods.
The canonical application of this problem is to a household or representative agent:

call c consumption, u utility, and let W1 =
P∞

t=1R
1−tyt, the present value of (exogenous)

income, y. In this case, equations (2) imply the theoretical result that variations in
income do not cause consumption to rise or fall over time. Instead, marginal utility grows
or declines over time as βR ≷ 1; for βR = 1, consumption is constant.
Existence, necessity and sufficiency: In general, to ensure that the Euler equation

characterizes the optimal path, one typically requires that the objective is finite (in this
example, u0 > 0) and that some feasible path exists.
Further, since Euler equations are first-order conditions, they are necessary but not

sufficient conditions for an optimal dynamic path. Thus, theoretical results based only
on Euler equations are applicable to a range of models. On the other hand, the equa-
tions provide an incomplete characterization of equilibria. In the example, only by using
the budget constraint also, can one solve for the time-path of consumption; its level is
determined by the present value of income.
Dynamic analysis: More generally, complete characterization of optimal behavior

uses the Euler equation as one equation in a system of equations. For example, replacing
the budget constraint (equation (1)) with the capital-accumulation equation

kt+1 = f (kt)− ct + (1− δ) kt (3)

where k is capital, f (k) is output, f 0 > 0, f 00 < 0, f(0) = 0, limk→0 f
0 > β−1 − (1− δ),

and limk→∞ f 0 < β−1 − (1− δ), and adding the constraints k1 given, kt ≥ 0, and ct ≥ 0,
gives the basic Ramsey growth model. The constant real interest rate of equation (2) is
replaced by the marginal product of capital in the resulting Euler equation

u0 (ct) = β (1− δ + f 0 (kt+1))u
0 (ct+1) . (4)

Equations (3) and (4) form a system of two differential equations with two steady-states
that has been widely studied as a model of economic growth. Linearization shows that
the interesting (k > 0) steady state is locally saddle-point stable, and there is a unique
feasible convergence path that pins down the dynamic path of consumption and capital.
Binding constraints: The above Euler equations are interior first-order condi-

tions. When the economic problem includes additional constraints on choice, the re-
sulting Euler equations have Lagrange multipliers. Consider adding a ‘liquidity con-
straint’ to our example: that the household maintain positive assets in every period s:Ps

t=1R
1−tyt−

Ps
t=1R

1−tct ≥ 0 for all s. In this case, the program is more easily solved in
a recursive formulation. Equation (2) holds with a single Lagrange multiplier, λt+1 ≥ 0,
on the constraint that assets are positive in t + 1 since prior to t + 1 assets levels are
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unaffected by the choice of ct and in period t+1 the present value of future consumption
is unchanged by the one-period deviation considered:

u0 (ct) = βRu0 (ct+1) + λt+1.

The multiplier λt+1 has the interpretation of a shadow price. When the constraint
does not bind, λt+1 = 0, the interior version of the Euler equation holds, and the marginal
benefit marginal cost interpretation is straightforward. When the constraint binds, the
interpretation still holds, but almost tautologically: the change in utility of an extra
marginal unit of consumption in t is equal to the change in utility from the marginal
decreases in consumption in t + 1 plus the shadow price (in terms of marginal utility)
of marginally relaxing the constraint on ct. For example, if βR = 1 and yt = ȳ ∀t 6= 2
and y2 =y

¯
< ȳ, then λt+1 = 0 ∀t 6= 2, λ3 = u0

³
y
¯
+Rȳ

1+R

´
− u0 (ȳ) > 0, and c1 = c2 =

y
¯
+Rȳ

1+R
,

ct = ȳ ∀t ≥ 3. This example illustrates that, relative to the unconstrained equilibrium
(ct = ȳ− r

¡
ȳ − y

¯

¢
), the constraint can postpone consumption (t = 1, 2 relative to t ≥ 3),

create a causal link from an increase in income to consumption (t = 2 to 3), and can lower
consumption in unconstrained periods (t = 1).
Continuous time: In general, continuous-time models have differential Euler equa-

tions that are equivalent to the difference-equation versions of their discrete-time coun-
terparts. In the example, replacing t + 1 with t + ∆t, ct+∆t = ct + ∆ct, β = 1 − ρ∆t,
R = 1 + r∆t, expanding u0 (ct +∆ct) around ct, and letting ∆t→ 0 gives:

ċt
ct
= σt (r − ρ)

where σt = − u0(ct)
ctu00(ct)

. While the marginal-costs-marginal-benefit interpretation of the

equation is less obvious in continuous time, it is still clear that consumption rises over
time according to the difference between the interest rate (r) and the discount rate (ρ),
and more obvious that the strength of this response is governed by σt, which for this
reason is called the elasticity of intertemporal substitution.
Generalized Euler equations: Dynamic games can also lead to ‘generalized’ Euler

equations. For example, Harris and Laibson (2001) considers a modification of the ex-
ample as a game among agents at different times who disagree because their preferences
are not time consistent due to hyperbolic discounting. At any s, an agent has objective:
u (ct) + β

P∞
τ=1 δ

τu (cs+τ), where 0 < δ < 1. Defining recursively Wt+1 = R(Wt − ct), the
generalized Euler equation is

u0(ct) = R

∙
βδ

µ
∂ct+1 (Wt+1)

∂Wt+1

¶
+ δ

µ
1− ∂ct+1 (Wt+1)

∂Wt+1

¶¸
| {z }

“Effective discount factor”

u0(ct+1).
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where ct+1 (Wt+1) is the optimal consumption choice made in t+1 as a function of Wt+1.
The effective discount rate is a function of the (endogenous) marginal propensity to con-
sume wealth in t+ 1.
Uncertainty: Models that contain uncertainty lead to expectational Euler equations.

Add to the discrete-time example that the agent believes income ys for s > t to be
stochastic from the perspective of period t. The Euler equation becomes

u0 (ct) = βRÊ [u0 (ct+1) |It] (5)

where Ê [.|It] represents the agent’s expectation given information set It. The stochastic
version of the consumption Euler equation has an analogous interpretation to that under
certainty: the household equates expected (discounted) marginal utility over time.
Taking a second-order approximation to marginal utility in t + 1 around ct and re-

organizing gives

Ê

∙
ct+1 − ct

ct
|It
¸
= σt

¡
1− (βR)−1

¢
+ 1

2
φtÊ

£
(ct+1 − ct)

2 |It
¤

where φt = − ctu000(ct)
u00(ct)

is the coefficient of relative prudence (see for example Dynan (1991)).
It is now expected consumption growth that rises with the real interest rate and falls with
impatience. Additionally, for φt > 0, risk leads to precautionary saving: higher expected
consumption growth (much like liquidity constraints). Finally, actual consumption growth
is also driven by the realization of uncertainty about current and future income.
Testing and estimation: An expectational Euler equation is a powerful tool for

testing and estimating economic models in large samples, because, along with a model
of expectations, it provides orthogonality conditions on which estimation can be based.
Only randomization, as under experimental settings, delivers such a clean basis for esti-
mation without near-complete specification of an economic model, including the sources
of uncertainty.
Considering our main example, define εt+1 = u0 (ct+1) − (βR)−1 u0 (ct). Hall (1978)

pointed out that equation (5) implies that Ê [εt+1zt|It] = ztÊ [εt+1|It] = 0 for any zt in the
agent’s information set, It. Under the assumption of rational expectations, mathematical
expectations can be used in place of the agent’s expectations. Thus, this equation predicts
that observed changes in discounted marginal utility are unpredictable using It, or that
marginal utility is a Martingale, a strong theoretical prediction that Hall (1978) tests.
Hansen and Singleton (1983) use a version of the stochastic Euler equation with a portfolio
choice as the basis for estimation (and testing) of the parameters of the representative
agent’s parameterized utility function.
Since these papers (and others), large-sample testing and estimation of Euler equations

under the assumption of rational expectations has played a central role in the evaluation
of dynamic economic models. Most research applies the Generalized Method of Moments
(GMM) of Hansen (1982) using the restrictions on the moments of time series implied
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by the expectational Euler equation. Considering a J × 1 vector of zt’s, zt, and, based
on our example, define the column vector g (ct+1, ct, zt) = (βRu0 (ct+1)− u0 (ct)) zt, so
that we have the J moment restrictions E [g (ct+1, ct, zt)] = 0J×1. For example, letting
u0 (ct) = c

−(1/σ)
t and assuming that second moments exist and the model is covariance

stationary, the time-series average of g (ct+1, ct, zt) should converge to E [g (ct+1, ct, zt)]
for the true σ, β,and R The GMM estimates of σ, β,and R are those that minimize the
difference (according to a given metric) between the observed empirical moments and
their theoretical counterparts, 0J×1.
This general approach has the advantage that complete specification of the model is

not necessary. In our example, the stochastic process for income need not be specified
nor the stochastic process for consumption determined (which can be quite demanding
in terms of computer programming and run-time). That said, more complete specifica-
tion can give more theoretical restrictions and thus more power in asymptotic estimation.
Gourinchas and Parker (2002) for example uses numerical methods to bring more theoret-
ical structure to bear in estimation. Further, more complete specification can allow one
to use small-sample distribution theory and thus avoid the approximations inherent in
using asymptotic distribution theory for inference in finite samples. A recent cautionary
example is provided by the literature showing that standard asymptotic inference can be
highly misleading in large samples with ‘weak instruments.’
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