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1. The Morphing Concept  

As electronic commerce often matches or exceeds traditional bricks-and-mortar 

commerce, firms seek to optimize their online marketing efforts. When feasible, these 

firms customize marketing efforts to the needs and desires of individual consumers, 

thereby increasing click-through-rates (CTR) and conversion (sales). When done well, 

such customization enhances consumer relationships and builds trust. 

A/B testing is a popular means to optimize marketing efforts. The firm compares 

two or more communications vehicles, say two banner advertisement or two website 

implementations. For example, potential consumers (website visitors) are randomly 

assigned to two banners—one might emphasize general brand image and one might 

emphasize the comparative advantage of a product’s features. The firm measures 

response in the form of CTRs or conversion to identify the better banner. The better 

banner is then used in day-to-day website operations. A/B testing can be used with 

multiple marketing instruments or with aspects of marketing instruments that are mixed 

and matched in an experimental design. A/B testing has proven effective and has 

increased the profitability of many marketing instruments. 

Morphing improves A/B testing in many ways. First, morphing uses optimal 

adaptive experimentation. For example, as the morphing system begins to observe 

consumer response it allocates sample to A versus B to learn efficiently. Morphing trades 

off learning about consumer response (learn) with using that knowledge to display the 

best banner for the consumers (earn). The learn-while-earning process allocates same to 

different banners to maximize long-term profits. For example, if a morphing system 

learns that a particular banner is unlikely to be the best banner, it ceases to assign 

consumers to see that banner. If a morphing system learns that a particular banner is 

especially promising it automatically and optimally allocates more consumers to that 

banner. 

Second, morphing automatically identifies the latent segment to which each 

consumer belongs. Morphing detects a consumer’s segment from the clicks that the 

consumer makes on the firm’s website (or from tracking the consumer prior to visiting 

the firm’s website). For example, a consumer with a more-verbal cognitive style might 
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click more often on text-based descriptions than on pictures, whereas a consumer with a 

more-visual cognitive style might click more often on pictures. Alternatively, a consumer 

who is beginning his or her search for automobiles might click on comparison charts 

while a consumer who is ready to buy might click on dealer-location or special-deal pull-

down menus. 

Third, morphing matches marketing instruments to each consumer’ segment, and 

does so optimally. Because morphing identifies latent segments automatically, morphing 

can use optimal experimentation for each segment to learn the best marketing instrument 

for that segment. For example, if the consumer has a verbal cognitive style, then the look 

and feel of the website can “morph” to feature more verbal content. If the consumer is in 

the buying stage for an automobile, then the website can help the consumer find dealers 

or cars with specific features. It might even offer an incentive for a test drive. 

Fourth, because morphing identifies the best marketing instrument for each 

segment from those that are tried, it provides rich information for further development 

and design of those instruments. Indeed, in our experience, this organizational learning 

has proven to be critical to enhanced outcomes for the firm. 

1.1 Morphing Overview 

In this chapter we review almost ten years of morphing experience. To date, most 

of the contributions have been proof-of-concept research projects, but, increasingly, firms 

are beginning to adopt and test morphing capabilities. We begin with a brief overview on 

the steps in a prototypical morphing application 

Morphing, as first proposed by Hauser, Urban, Liberali, and Braun (HULB, 

2009), consists of the following steps: 

1. Clicks on a website are monitored and, from those clicks, algorithms 

automatically infer the likelihood of the consumer segment to which the 

consumer belongs. 

a. Websites, banners, or other marketing materials may be designed 

so that they appeal (potentially) to different segments of 

consumers. 
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b. Consumers in a calibration study visit example websites and 

provide data by which to identify their segments. 

c. The calibration data provides a model of how browsing behavior 

differs by segment. 

2. Marketing materials, such as banners, are provided to consumers to 

maximize goals such as profit, sales, or click-through rates. 

a. The system learns as is goes. 

b. Learning is automatic and near optimal. 

c. The goal of learning is to match the marketing materials to the 

consumer’s segment to maximize the firm’s goals. 

Ideally, morphing targets and learns from each and every consumer and does so in 

real time. However, some systems now “batch” learning in the sense that the rules in the 

second step are updated periodically rather than for every consumer (e.g., Bertsimas and 

Mersereau 2007; Schwartz, Bradlow, and Fader 2016). Recently, morphing has been 

extended to automatically determine when is the best time to morph the marketing 

materials (e.g., Hauser, Liberali, and Urban 2014). 

1.2 Morphing Example 

Figure 1 illustrates the general concept of morphing with a stylized example from 

banner advertising. This concept is not limited to banner advertising; morphing applies to 

a wide range of marketing materials. For example, HULB morph the look and feel of the 

website. 

The set of numbers in the upper left of Figure 1 are the firm’s best guess at the 

segment to which the consumer belongs. These estimates are based on the consumer’s 

clickstream up to this point. For example, the firm might believe that this consumer’s 

cognitive style is most likely to be verbal-impulsive (65%), but there is a lesser chance 

that the cognitive style might be visual-impulsive (15%), verbal-deliberative (10%), or 

visual-deliberative (10%). The morphing algorithm uses Bayes Theorem to estimate these 

probabilities from the clicks that the consumer has already made on the website.  
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Figure 1: The Morphing Concept-An Example with Four Styles and Four Morphs 

(Stylized Illustration) 

 

We provide details on the method later; we provide here the intuition. Suppose 

that, in an earlier calibration study, we measured consumer’s cognitive styles using 

traditional methods. For example, we might ask the consumer to answer a banks of 

questions, the answers to which indicate the consumer’s cognitive style. Suppose further 

that we observed that consumers with verbal-impulsive cognitive styles clicked on 

action-oriented textboxes, but consumers with other cognitive styles clicked on other 

portions of the website. Then if we observe that consumer clicks on many textboxes and 

prefers short action-oriented descriptions rather than longer fact-based descriptions, that 

consumer may more likely to be verbal-impulsive than one of the other cognitive styles. 

The actual probability then is proportional to the percent of consumers with verbal-

impulsive cognitive styles (known from the calibration study) times the likelihood that a 

person who clicks on action-oriented verbal textboxes is verbal-impulsive (also known 

from the priming study). Because a website is likely to offer a large number of click 

choices, we describe each click by its characteristics to reduce dimensionality. The end 

result, which is updated when the consumer provides more clicks, are the percentages in 

the upper left corner of Figure 1. 

Before we describe the learn-while-earning aspect of morphing, it is easier if we 

consider a more traditional situation in which we have observed a large number of 

consumers of each cognitive style for each of the potential banners. For this situation, the 
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table in the lower right side of Figure 1 contains outcome probabilities for each banner-

segment combination. For example, if a consumer has a cognitive style that is “verbal-

impulsive” and that consumer is given the “Buy! verses Learn More” banner, the 

likelihood that that consumer would click on the banner is 0.10. If that consumer were 

given instead the “Emotional” banner, then the likelihood of a click would increase to 

0.20. These probabilities are based on prior consumers, with those cognitive styles, who 

have been shown each of the banners. If this were an A/B test, the banners would have 

been randomly assigned until we had sufficient precision on the outcome-probability 

estimates.  

If the firm had perfect information about the segment to which the consumer 

belonged and if it knew the outcome probability perfectly, the firm would select the 

banner with the highest outcome probability by looking up the highest outcome 

probability in the row corresponding to the consumer’s segment. For example, if the firm 

knew the consumer was visual-impulsive and it knew the outcome probabilities, it would 

provide the consumer with the “Emotional” banner because it has the highest outcome 

probability in the verbal-impulsive row.  

However, firms do not know the consumer’s segment with certainty. Instead, 

based on the consumer’s clicks, firms has estimates of the likelihood that the consumer 

belongs to each of the four cognitive-style segments. If the system had completed its 

learning, the best banner would be the banner that maximizes the firm’s immediate goals 

such as CTR. In Figure 1, the best banner for the consumer is the Emotional (in column 

3) because it has the highest expected reward given our estimate of the consumer’s 

cognitive style. We obtain that estimate by multiplying the probabilities the consumer 

belongs to each cognitive-style segment times the probabilities that a consumer in that 

segment clicks through when shown a given banner. For example, the likelihood that the 

consumer clicks through when given the Emotional banner is 0.17 obtained as 0.17 = 

0.65 x 0.20 + 0.15 x 0.13 + 0.10 x 0.10 + 0.10 x 0.13. 

Emotional is the best banner to provide to the consumer after the system has 

completed its learning, but Emotional may or may not be the best banner to provide to the 

consumer while the system is still learning the outcome probabilities. For example, it 
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might be best if the system were to occasionally try other banners so that it can learn 

probabilities for other banners. Furthermore, the system might be able to make the best 

decision even if it does not know the outcome probabilities with certainty. For example, it 

might be able to eliminate banners with extremely low outcome probabilities and not 

waste sample consumers on those banners. This is a dilemma. If the firm tries other 

banners it sacrifices its goals for the immediate consumer, but the system learns what is 

best for the next consumer and all subsequent consumers with the same cognitive style. 

The morphing system automatically assigns banners to consumers with (near) optimal 

experimentation by balancing the cost of experimentation with the value of learning 

about the outcome probabilities.  

The mathematics used to balance earning and learning are sophisticated, but the 

implementation is relatively straightforward using a mathematical concept called 

“Gittins’ indices (GIs).” At any given time there is a GI for each cognitive-style-banner 

combination. Each GI represents both the value the firm can gain from that consumer (the 

current best estimate of the outcome probability) and the option value to the firm for 

learning more about outcome probabilities. We provide more details later. Gittins (1979) 

proved that there is a rule based on GIs that provide optimal experimentation when 

consumers can be assigned to consumer segments without error. The rule is simple, 

provide the morph with the highest GI. Because the rule is optimal, a firm using GIs can 

expect higher profits than it would earn with naïve A/B testing.  

However, as Figure 1 indicates, we do not know the consumer’s segment with 

certainty. But we have probabilities, based on the consumer’s clicks, that the consumer 

belongs to a segment—e.g., a 65% chance that the consumer’s segment is verbal-

impulsive. Krishnamurthy and Mickova (1999) demonstrated that if one were to use GIs 

rather than the best estimates of outcome probabilities, then the multiple-latent-segment 

experimentation would be near optimal. This is exactly what is done in morphing. We 

replace the outcome probabilities with GIs and compute the expected value—the 

expected Gittins’ index (EGI). We assign to the consumer the banner with the highest 

EGI.  

Morphing has an additional advantage over standard A/B testing. Because the 
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system is always in learn-while-earning mode, the GIs automatically and near optimally 

pick up any changes in the underlying outcome probabilities. For example, if consumers’ 

tastes change and a banner is no longer as effective, the GIs will begin to shift 

automatically to take into account the option value of learning more about that banner. 

Similarly, if a new banner is added to the mix, the GIs for that banner start at prior 

beliefs, but the morphing system quickly and optimally learns the true outcome 

probability. 

Morphing uses information from prior consumers to learn the updated value of the 

outcome probabilities for each banner-segment combination. This value is updated after 

each user is exposed to a banner—after we observe whether or not the consumer clicks-

through or makes a purchase (conversion). The value of each banner-segment 

combination GI is based on our current estimate of the choice probability for that banner-

segment combination plus an option value that reflects the value of learning more about 

that banner-segment combination. As the system learns from many observations, the 

option value is decreases. For the banner that is best for a consumer segment, the value of 

the banner-segment combination converges to the predicted purchase value. For other 

banner-segment combinations, the system might cease to allocate sample because it is not 

profitable to do so, even considering the option value of learning. 

The rate at which convergence is achieved is an empirical question, and is based 

on the expected traffic of the website. For example, it is optimal for websites with 

millions of visitors per day to learn at a different rate than websites with only a few 

thousand visitors per day. In practice, the degree to which each individual observation 

changes beliefs about the best morph depends on how many observations we expect to 

observe during the relevant time period.  

Morphing is not limited to banners – it can be used to match consumers to website 

designs, call-center scripts, or any marketing instrument. For the remainder of this 

chapter, when it is clear in context, we use the general term “morph” instead of banner to 

reflect the generality of potential applications. 

Morphing is based on continuously improving initial knowledge about each 

consumer’s segment, using that information to assign the best morph for a consumer, and 
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learning from the outcome of the morph assignment. As shown in the next section, 

morphing has been applied in a variety of situations, including applications to improve 

performance for firms which had previously run randomized controlled experiments (A/B 

tests).  

2. Optimal Online Experimentation  

2.1 From Learn-Then-Earn to Learn-While-Earning: The Multi-Armed Bandit 
Problem 

Randomized controlled experiments are the cornerstone of causal inference. Firms 

run hundreds, or even thousands, of online randomized experiments every day, in what is 

often referred to as A/B testing. Typically, an A/B test is based on random assignment of 

treatments to website visitors and is continued until sufficient statistical power is 

achieved such that reliable conclusions can be made regarding the effect of a specific 

website configuration on sales or other variables of interest. For example, one firm may 

run an online A/B test to learn whether it is more effective to present information about 

its product in a 2- or 3-column format. The dependent variable is typically CTR or online 

purchase (conversion).  

Because of randomization and statistical power, traditional A/B tests tend to 

follow the learn-then-earn paradigm. During the testing phase the focus is on learn, i.e., 

estimating the effect of each treatment on consumer behavior. Once the estimates are 

obtained, the focus changes to outcome maximization (‘earn’), when the firm deploys the 

winning treatment on large scale.  

The traditional learn-then-earn paradigm of A/B testing has two major 

weaknesses. First, it is based on the responses of average consumers; it ignores 

heterogeneity in consumer preferences. It does not take into account that different 

consumers may respond differently to the marketing instrument(s) when the firm deploys 

the winning treatment (marketing instrument) to all consumers. When consumers are not 

all the same, ignoring individual differences can be costly. For example, in Figure 1 it is 

better that the verbal-impulsive consumer get an Emotional banner while the visual-

deliberative consumer get an Informative banner. 

Morphing addresses this issue using consumer segment probabilities (for latent 
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consumer segments) to handle heterogeneity when computing the optimal treatment for 

each consumer. Morphing enables each consumer (or each segment) to get the best 

morph based on the latest information about the behavior of the consumer’s segment. 

“Best” takes into account both learning and earning. 

Second, the learning phase in traditional A/B tests is inefficient, leading to wasted 

resources because it invests the same amount of resources on good and bad treatments. 

Typically, A/B tests assign the same sample size to each cell during the learning phase, 

which means that the precision of the estimates of good treatments is the same as the 

precision of the estimates of the bad treatments. However, as the firm learns quickly that 

a treatment is suboptimal, it wastes resources when it assigns more consumers to a 

suboptimal morph in order to make its estimate of the outcome probability more precise 

for that treatment. 

Morphing invests sample size in those cells that most clarify which marketing 

instruments to give to which consumers. Because traditional A/B testing continues to 

invest sample in learning about suboptimal treatments, the firm loses revenue every time 

a treatment is assigned to a cell that the firm already knows has a low probability of 

leading to a good outcome (click or conversion). In morphing, once the firm is confident 

that a marketing instrument is best for a consumer segment, it optimally assigns that 

marketing instrument to almost all subsequent consumers in the segment.  

Solving this learn-while-earning problem is not easy. Obtaining better estimates 

about the effect of marketing instruments (learn) is costly in the short-term, but leads to 

higher revenue on the long term. On the other hand, using current estimates to assign 

marketing instruments to consumers (earn) avoids the short-term cost of learning, but 

suffers from higher opportunity costs. The firm misses future sales because it does not 

learn which marketing instrument is really best for each consumer segment. For example, 

if there is no exploration, then, if current estimates suggest that a 3-column design does 

not have the highest conversion rate for a specific segment, the 3-column design will 

never be shown again to any consumers in that segment. This loss of future potential can 

loom large, particularly if some “shock” changes outcome probabilities. 

The learn-while-earning problem is at the heart of morphing. This problem is in 
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the class of “multi-armed bandit” problems. When segments are known, website 

morphing methods provide an optimal solution to this problem in real-time (HULB). 

When segments must be inferred, the solution is not provably optimal, but is extremely 

close to optimal. Morphing dynamically –and near optimally - allocates larger sample to 

the best treatment-segment combination based on the solution of the learn-vs.-earning 

formulation originally developed by Gittins (1979).  

2.2 From Learning about Designs to Learning about Consumers 

Adapting a website to each consumer involves a fundamental change in the 

philosophy of A/B testing. Typically, A/B testing assigns banners or website variations to 

consumers on a random basis. As a result, an A/B test identifies the marketing instrument 

that is best on average, not the marketing instrument that is tailored to each consumer. In 

some cases, the marketing instrument might be best for no one. For example, suppose 

that consumers are either Type X or Type Y and suppose there are three morphs, A, B, 

and C. Suppose that the outcome probabilities for Type X consumers are 0.9, 0.5, and 0.0 

for A, B, and C, respectively. Suppose they are 0.0, 0.5, and 0.9 for Type Y consumers. 

On average, the best morph is B, with average outcome probability 0.5. However, if we 

could assign A to Type X consumers and B to Type Y consumers, we would achieve an 

improved outcome probability of 0.9. Customization matters. 

Morphing changes the A/B testing logic fundamentally. Instead of testing 

marketing instruments that apply to all consumers, morphing learns and selects the best 

marketing instrument for each consumer. Instead of randomly assigning marketing 

instruments to a test or control treatment, morphing optimally assigns consumers to 

marketing instruments. As more and more consumers are run through a morphing system, 

the algorithm identifies the best allocation of morphs to consumers to maximize the 

outcome variable (such as conversion).  

Changing A/B test focus from A vs. B marketing instruments to a focus on 

consumers is a major shift for most firms doing A/B testing. The change in focus has two 

practical implications. First, most firms and A/B software assign incoming consumers 

randomly to test or control cells. The software is not designed to learn about consumers 
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and then assign consumers to different marketing instruments based on information about 

that consumer and the accumulated experience from other consumers. 

Second, morphing requires tracking consumer-level information. Most large firms 

today use software packages that act as a layer isolating managers from the raw data. 

Reports are produced automatically with summary statistics showing which marketing 

instrument is the best on average, and at which p-value. Obtaining reports based on 

individual consumers (instead of marketing instruments) requires access to and analysis 

of raw data, something that is often a formidable task for most firms. 

Morphing requires firms to change radically the way they design and run their 

A/B tests, and the way they use information about website visitors (consumers). In our 

illustration in Figure 1, we defined consumer segments by cognitive styles. This is 

illustrative only. We can define consumer segments by the stage in the buying process, 

interest in the category, cultural styles, cognitive styles, source (whether the consumer is 

coming from an online search or a referral), personas, devices (tablet, desktop/laptop or 

mobile), purchase tendencies, or any other variable that can be observed in a calibration 

study. 

2.3 Handling Consumer Differences: The Case for Cognitive Styles  

Although consumer segments can be defined in a variety of ways, one of the most 

frequent ways to segment website consumers is based on the way they interact with 

websites and other morphs. The way consumers respond to websites is heavily related to 

how they gather, process, and evaluate information—their cognitive styles (Hayes and 

Allinson 1998). A cognitive style reflects “individual differences in how we perceive, 

think, solve problems, learn and relate to others (Witkin, Moore, Goodenough and Cox 

1977, p. 15).” Examples of dimensions of cognitive styles include impulsive-deliberative, 

visual-verbal, and analytical-holistic (for more examples, please refer to the online 

appendix in HULB).  

If measured well, a consumer’s cognitive style is stable over time, so there are no 

history-dependent interactions (Markovian structure) which would make it difficult for 

the morphing algorithm to converge to true outcome probabilities. Decades of research in 

psychology suggest that people develop cognitive styles over the years, and that their 
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preferences for cognitive styles change slowly.  

Cognitive styles are easily interpretable and actionable from a managerial point of 

view. Designers can easily relate to cognitive styles, such as verbal-visual, to develop 

website designs, banners, or other marketing instruments that are likely to be suited well 

for one style rather than others. The more a morph is tailored to a specific style, the more 

likely a consumer using that cognitive style will relate to and feel comfortable with the 

way the website, banner, or other marketing instrument communicates with the 

consumer. Strong prior beliefs help morphing converge faster, but, even if the designers’ 

prior beliefs are wrong, morphing learns optimally the best morph-to-segment 

assignments based on consumer reaction. The GIs converge automatically to the best 

assignments based on consumer response even if the initial designers guess incorrectly.  

3. Learning Loops: Consumer Segments and Morph x Segment Assignments 

For ease of exposition we illustrate morphing with an application based on 

cognitive styles. 

The morphing process has two learning loops. In the first learning loop, the 

morphing system observes clicks from each consumer and, after sufficiently many clicks, 

updates its estimates of the probability that consumer belongs to each segment. In earlier 

versions (Morphing 1.0), the number of clicks was set exogenously. Later versions 

(Morphing 2.0) choose the number of clicks endogenously and near optimally for every 

consumer. 

In the second learning loop, the system learns the outcome probabilities across 

consumers in a segment as those consumers are exposed to morphs (treatments) and 

respond with successes (such as a click through or a purchase conversion) or failures (a 

non-click-through or a non-purchase). Figure 2 illustrates the process. For ease of 

exposition we reduced the number of cognitive styles from four in Figure 1 to two in 

Figure 2. The basic concepts apply to as many cognitive styles as can be defined, but 

when more cognitive styles are used, more data (consumers) are needed for the morphing 

system to work well. 

The process starts when a consumer comes to the website. At this point (typically, 
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on a landing page), the consumer may be exposed to a morph-independent stimulus. We 

observe the first click (or set of clicks). A click (or set of clicks) can be thought of as a 

choice among various links, all of which have cognitive cues. When the consumer 

chooses one of the links, we gain data about the consumer’s cognitive style. For example, 

one consumer may decide to go to the virtual advisor area of a website by clicking on a 

verbal description instead of clicking on an image. Using this information about the 

consumer’s click choices, the learning-about-the-consumer loop updates prior beliefs 

about the consumers’ cognitive style using the Bayes Theorem. The resulting posterior 

beliefs become the updated probabilities that the consumer has either an impulsive or a 

deliberative cognitive style.  

Figure 2: Morphing and Learning 

 

Next, the morphing system uses the information about the consumer’s cognitive 

style to look-up the GIs in an optimality table, as in the lower right of Figure 2. Recall 

that the GIs indicate the value of each morph (highest earn-vs.-learn value) for each 

segment. The GIs are larger than the expected outcome probabilities because they include 

the option value of learning. As we did for Figure 1, we use the probabilities that the 

consumer belongs to each segment to compute an expected Gittins index. We choose the 

morph with the highest expected Gittins index, breaking ties randomly. The consumer is 
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exposed to the morph with the highest Gittins index. For example, suppose that the 

learning-about-the-consumer loop predicts that there is an 80% probability that the 

consumer is deliberative. Then the expected Gittins’ index, EGI, for the third banner 

advertisement would be 0.00352 = (0.20)(0.11) + (0.80)(0.20). This is higher than the 

EGI for Banner 1 (0.00224), Banner 2 (0.00176), or Banner 4 (0.002704).  

The consumer continues to browse until he or she either clicks-through (if CTR is 

the outcome measure) or buys (if conversion is the outcome measure) or leaves the 

website without clicking-through or buying. Based on the observation of the consumer’s 

response to the third banner advertisement, the optimality table is updated accordingly as 

described in the next section. (Because there was still some uncertainty in identifying the 

consumer’s segment, the response probability for both the impulsive and deliberative 

cognitive styles would be updated, albeit the deliberative style more so than the impulsive 

style. There would be no updates for the first, second, and fourth banners.) 

Recall that the GIs are not outcome probabilities. If we were to assign morphs to 

consumers based on outcome probabilities, we would assign the morph with the largest 

expected outcome. Such a rule would never assign any other morphs and we would never 

improve our knowledge about outcome probabilities associated with those morphs. This 

non-assignment problem is known as the curse of serendipity, or lack of exploration. 

 The informal intuition behind Gittins’ solution to this dilemma is that the GIs 

summarize the value of earning-vs.-learning as an optimality index. In particular, a GI 

equals our estimate of the outcome probability augmented by the value of exploration. A 

GI is computed for every cognitive-style-morph combination and allows the system to 

explore and serve morphs to learn how to assign the best morph for each consumer. As 

morphs are served and outcomes observed, we ‘spend’ the exploration value. When all 

exploration value is spent, only the true outcome probability remains in the updated table. 

§4 presents a more formal description of this approach. An appendix provides the 

analytical expressions used to implement the expected Gittins index solution. 

3.1 Steps in a Morphing Project 

Prior to implementing the morphing algorithm in day-to-day operations, 

parameters must be estimated in a calibration study. See Figure 3. It is also feasible to use 
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data from ongoing day-to-day operations to updated the parameters further, however, to 

date, parameterization has always been based on a calibration study. 

Figure 3: Morphing Phases 

 

In a calibration study, a firm recruits a sample of consumers to answer questions 

before and after visiting the website(s). The firm observes respondents’ clickstreams on 

the website(s). Additional questions enable the firm to assign each consumer to the 

consumer’s cognitive style (or other segmentation scheme). Because we want variation in 

clickstreams, morphs are assigned randomly to respondents in the calibration study. The 

sample size for the calibration study is usually much smaller than would be typical for a 

randomized A/B experiment. One advantage of automatic learning is that, after the initial 

calibration study, new morphs can be inserted into the morphing system. The morphing 

system will automatically and near optimally allocate consumers to those morphs to learn 

consumer response to the new morphs. 

Calibration-study questions enable the morphing-system developer to estimate a 

model, conditioned on segment membership, which predicts consumers’ click-alternative 

choices as a function of the characteristics of the click alternatives. Once the model is 

calibrated, morphing uses standard Bayesian methods to estimate day-to-day consumers’ 

latent segment probabilities. Day-to-day operations use the Bayesian model and the GIs 

to control the amount and speed of learning. 
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4. The Analytics of Morphing  

The Morphing 1.0 algorithm was first published in HULB. The Bayesian updating 

effects a rapid assessment of consumers to segments. A dynamic program produces the 

GIs to select the best morph for a segment, An expectation over the GIs identifies the best 

morph. The Morphing 2.0 algorithm was published in Hauser, Liberali, and Urban 

(2014). In this section we provide the basic morphing concepts. An appendix provides the 

formal notation and equations. 

4.1 Learning the Consumer’s Segment from the Consumer’s Clicks 

The Bayesian model in morphing was motivated by a Bayesian advisor that 

identified which vehicle (car or truck) to recommend to a consumer (Urban and Hauser 

2004). The recommendation was based on that consumer’s answers to a series of 

questions about the potential consumer’s use of the vehicle. In our case, we use the 

consumer’s clicks on the website to identify the likelihood that the consumer belongs to a 

particular consumer segment rather than to identify the best recommendation. 

Let ݊ index consumers, ݎ index segments, ݉ index morphs, and ݐ index clicks for 

each consumer. At any point in the consumer’s visit to the website, the consumer has a 

choice of which click to make next. We characterize the probability of any click for a 

consumer with a particular cognitive style. To do this, we describe each click by a set of 

characteristics. For example, we might observe basic dimensions such as graphical vs. 

verbal, functional characteristics such as “use an analytic tool” or “read a post,” or 

website areas such as “virtual advisor” or “learning center.” HULB use eleven website 

characteristics for a broadband-sales website. 

In the calibration study, morphing analysis estimates a choice model that includes 

weights for each characteristic. Because we know the characteristics of all possible clicks 

every time a consumer makes a click, we compute the “utility” of a given click as a 

function of the to-be-estimated weights for the characteristics. A logit model assumes that 

the consumer maximizes his or her “utility” as given by the click characteristics and an 

error term. We use the calibration data and standard maximum-likelihood or Bayesian 

methods to estimate the weights. 
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After we estimate the weights, we use these weights in day-to-day website 

operation to compute the probability, for each cognitive style, that the consumer will 

choose a given click. In stylized symbols, we compute: ܾܲ݋ݎሼ݈ܿ݅ܿ݇	|	ܿ݁ݒ݅ݐ݅݊݃݋	݈݁ݕݐݏሽ. 

The likelihood of a particular clickstream is just the product of these probabilities 

multiplied for all the clicks made by the consumer. Equation 1 in the appendix provides 

details of the logit model likelihood. Note that, although we observe the clicks, we still 

need to compute the probability, as conditioned on cognitive style, for the next step in 

morphing. 

From the calibration study, or from the history of consumers visiting the website, 

we form prior beliefs about the segment to which the consumer belongs. For example, we 

might believe that 25% of all consumers are verbal-impulsive. Call this probability, 

 ሽ. We want to compute the probability of a cognitive style based݈݁ݕݐݏ	݁ݒ݅ݐ݅݊݃݋ሼܾܿ݋ݎܲ

on the observed click stream. We do this with Bayes Theorem recognizing that 

ሽ݉ܽ݁ݎݐݏ݈݇ܿ݅ܿ	|	݈݁ݕݐݏ	݁ݒ݅ݐ݅݊݃݋ሼܾܿ݋ݎܲ  ∝ 

ሽ݈݁ݕݐݏ	݁ݒ݅ݐ݅݊݃݋ܿ	|	݉ܽ݁ݎݐݏሼ݈ܾܿ݅ܿ݇݋ݎܲ        ∗  ሽ݈݁ݕݐݏ	݁ݒ݅ݐ݅݊݃݋ሼܾܿ݋ݎܲ

Where ∝ means proportional. To compute the actual probability we normalize the 

expression so that ܾܲ݋ݎሼܿ݁ݒ݅ݐ݅݊݃݋	݈݁ݕݐݏ	|	݉ܽ݁ݎݐݏ݈݇ܿ݅ܿሽ adds up to 1.0 when summed 

over cognitive styles. Equation 2 in the appendix provides details. Fortunately, Equation 

2 involves relatively fast calculations so that cognitive styles can be determined almost 

instantaneously between clicks on a website  

4.2 Learning How to Assign Morphs to Segments Optimally 

We represent our knowledge about outcome probabilities by a function that we 

can update quickly. In particular, we choose a “beta distribution.” The beta distribution 

has two parameters that depend upon the consumer’s segment, ݎ, and the morph, ݉. 

These parameters are ߙ௥௠ and ߚ௥௠. If ݌௥௠ is the probability that a consumer in segment 

 ,who was shown morph ݉, clicks through (or converts), then, for the beta distribution ,ݎ

the mean outcome probability is ܧሾ݌௥௠ሿ ൌ ௥௠ߙ௥௠/ሺߙ ൅  ௥௠ሻ. Larger values of theߚ

parameters mean less uncertainty in our beliefs about the outcome probabilities. 

The beta distribution allows fast updating. For example, if the cognitive style 
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where known, then ߙ௥௠ increases by 1.0 for every success (click-through or conversion) 

and ߚ௥௠ increases by 1.0 every time the consumer leaves without a “success,” e.g., 

without a click through or a conversion. 

 Assigning the optimal morph to the ݊௧௛ consumer is more complicated than 

simply maximizing the immediate reward. The GI includes the option value. It does more 

than simply maximize ܧሾ݌௥௠ሿ. Because each outcome improves our knowledge about 

 ௥௠, the updated distribution enables us to make better decisions in the future. The݌

dynamic decision problem balances immediate rewards with the knowledge gained that 

enables better decisions in the future. 

 This dynamic problem for this type of multi-armed bandit was first formulated in 

the 1940s and, for many years, considered to have no simple solution. However, in the 

late 1970s, John Gittins had a seminal insight that he could compare the decision problem 

for each “arm of a bandit problem” to an equivalent fixed outcome. He could then 

compare the equivalent fixed outcomes from many arms and choose the outcome that 

was best. The value of the fixed outcome became known as a Gittins’ index. The concept 

was generalized to many problems. Today, if a problem can be solved with indices, it is 

said to indexable. When cognitive styles are known, the morphing problem is indexable. 

 The basic dynamic program is formulated as a recursion known as a Bellman 

equation. The “state” of the problem is the current values of ߙ௥௠ and ߚ௥௠, as well as a 

discount factor, ܽ. The discount factor indicates how much the morphing algorithm 

should discount the future. For example, if a website has 100,000 visitors spread equally 

throughout the year, then HULB suggest that ܽ ൌ 0.999999. 

 The recursion recognizes that, for any given ݉ݎ combination, the best strategy is 

to choose the larger of the fixed outcome or to keep experimenting. Gittins’ proved that 

once the fixed outcome is chosen, the best strategy is to continue choosing the fixed 

outcome. (This makes sense, ߙ௥௠ and ߚ௥௠ are not changing if there is no 

experimentation. When there is no experimentation on an arm, choice among alternatives 

does not change and neither does the solution.) If the algorithm chooses to try that morph 

for that cognitive style, then we get to observe an outcome—either a success or a failure. 

But we know the likelihood of a success, ̅݌௥௠ ൌ  .௥௠ሿ݌ሾܧ
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 With probability, ̅݌௥௠, we observe a success and reap our reward, which we set to 

1.0. With probability 1 െ  ௥௠, we observe a failure and reap no reward. In each case we̅݌

get to continue playing the game with the updated ߙ௥௠ and ߚ௥௠. Equation 3 in the 

appendix provides the details. We provide here the recursion in words. Let ܸ indicate the 

value of continuing to play with a given set of parameters. Then, the recursion is: 

				ܸሺܿݐ݊݁ݎݎݑ	ߙ௥௠௡, ,௥௠௡ߚ ܽሻ 

ൌ max ൝
௥௠௡ܫܩ

1 െ ܽ
, ௥௠௡ሺ1̅݌	 ൅ ܸሺ݀݁ݐܽ݀݌ݑ	݀݁ݏܾܽ	݊݋	ݏݏ݁ܿܿݑݏሻ ൅

ሺ1 െ ሻ݁ݎݑ݈݂݅ܽ	݊݋	݀݁ݏܾܽ	݀݁ݐܽ݀݌ݑ௥௠௡ሻܸሺ̅݌
ൡ 

The first term reflects the value of continuing to ݐ ൌ ∞ with a discount factor of ܽ. In this 

equation we added the subscript ݊ to indicate that these values change after each 

consumer. To use the recursion, we solve the equation with an iterative search for all of 

the ߙ’s and ߚ’s we expect in practice. We table the GI’s so that the GI’s can be assessed 

quickly. 

When a consumer’s segment is not known with certainty, the dynamic program 

becomes a partially-observable Markov decision process (POMDP). In general POMDPs 

are difficult to solve, but this particularly POMDP has a near-optimal solution that runs in 

real time between clicks (Krishnamurthy	and	Mickova	1999). Specifically, the revised 

algorithm replaces the Gittins’ index with the expected Gittins’ index, EGI, as illustrated 

in §3. Equation 4 in the appendix provides the details.  

Finally, we update beliefs about the parameters of the beta distribution. The 

challenge is that we do not know the consumer’s latent segment with certainty. We only 

know the probabilities that the consumer belongs to each of the consumer segments. The 

true Bayesian updating formulae are no longer easy, but we can use a trick. When the 

segments are latent, we can update if we consider “fractional observations” using an 

analogy to the standard likelihood function. (Fractional updates represent a pseudo-

Bayesian updating that provides estimates that work extremely well for morphing. See 

formal analyses and simulations in Hauser, Liberali, and Urban 2014.)  

If we observe a success, conditioned on the consumer having seen morph ݉, we 

consider this as a fractional success for each latent consumer segment, ݎ. The fractional 
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of the success is probability that the consumer was in consumer segment ݎ. The binomial 

distribution is well-defined for fractional observations and naturally conjugate to the beta 

distribution, so we use the same formulae, except with fractional observations. Equation 

5 in the appendix provides the details. Updating occurs when the consumer leaves the 

website. The fractional-observation formulae enable the morphing algorithm to run in 

real time between a consumer’s clicks on the website. 

4.3 When do We Know Enough to Find the Optimal Morph? 

In Morphing 1.0, the algorithm morphed after a fixed number of clicks by the 

consumer on the website. For example, in HULB’s application to a BT Group website 

that sold broadband service, the a morph was considered after the 10th click. In Urban, et 

al. (2014)’s application to banner advertising on CNET, the banners were morphed after 

the 5th click. In both cases, the time to morph was set by the researchers’ judgment based 

on simulated performance. We can do better by choosing the click on which to morph. 

In choosing the time to morph, we address the tradeoff between exposure and 

precision. We gain greater exposure of the best morph to the consumer by presenting the 

optimal morph as early as possible in the consumer’s website visit. Doing so exposes the 

consumer to the best morph for the longest amount of time possible. We gain greater 

precision by identifying the best morph as late as possible in the consumer’s website 

visit, because doing so uses better consumer-segment estimates to find the best morph. 

To address this trade-off, Morphing 2.0 uses a second recursion. 

The generalized morphing algorithm, published in Hauser et al., (2014), solves an 

embedded dynamic program that enables the optimal trade-off between exposure and 

precision for each consumer. To formulate the dynamic program, the authors had to first 

address three issues in consumer response to morphing.  

First, to evaluate the impact of every morph that the consumer sees, the algorithm 

must explicitly track how long a consumer is exposed to each morph, and decide how to 

attribute credit to each morph seen. Second, the algorithm must allow the system to 

change morphs as often as necessary because, as more information on the cognitive style 

becomes available from clicks, beliefs about the true cognitive style become closer to the 
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true cognitive style. This introduces memory into the algorithm because the algorithm 

must keep track of how many clicks were made for each morph exposure for the 

consumers. This challenge recognizes that the optimal morph after many clicks may be 

different from what was thought to be the optimal morph when the algorithm had less 

information about the consumer cognitive style (fewer clicks). Third, if the algorithm 

allows multiple morph changes and allows the system to decide when to morph, 

consumers might experience cognitive load from seeing multiple morph. This cognitive 

load induces potential cognitive switching costs that must be modeled. By modeling 

switching costs, the algorithm only changes morphs if the gains from changing morphs 

are greater than the cognitive costs of switching morphs. 

4.3.1 Every Morph Seen Matters: the Attribution Problem  

If we allow a consumer to be exposed to more than one morph during a website 

visit(s), we need to attribute credit regarding the observation (a success or a failure) to 

each morph seen. For example, assume a consumer saw Morph A during the first five 

clicks, then saw Morph B during the last ten clicks, and then made a purchase. Which 

morph should get the lion’s share of the credit for this success? Should it be the first 

morph because “first impression lasts?” Or, should it be the second morph because it was 

seen for longer, or perhaps because of recency effects?  

We address this attribution problem by specifying attribution weights, ݓ௧’s, for 

each time period, ݐ, when computing value of a morph for consumer n. The weights, 

 ௧’s, are measured, judged, or estimated empirically in each application, and used asݓ

parameters of the model. Because ݓ௧ is applied to each morph seen at every time t, it 

spreads the credit through all morphs seen. To keep the number of ݓ௧’s small, we allow ݐ 

to index observation periods that may be one click or more than one click. We normalize 

the impact weights so that they sum to 1.0 over clicks (or observation periods).  

4.3.2 Changing Morphs: Switching Costs 

It is reasonable to expect that consumers may experience cognitive load if the 

website design changes too often or too dramatically. The costs of switching tasks have 

been extensively studied in psychology starting with Jersild (1927) and Spector and 
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Biederman (1976), and more recently in Meiran (2000). In marketing, switching costs are 

well-established (e.g., Weiss and Anderson, 1992; Jones, Mothersbaugh, and Beatty 

2000, 2002). Researchers have also studied how consumers react to switching costs when 

browsing websites (Balabanis, Reynolds and Simintiras, 2006, and Johnson, Bellman and 

Lohse , 2003). 

Additive switching cost are common in the multi-armed bandit literature and 

algorithms exist (e.g., Banks and Sundaram 1994; Dushochet and Hongler 2003; Jun 

2004), but additive switching costs require that we keep track of the timing of all 

switches for a consumer. This path dependence makes it more difficult to solve the 

optimization problem. Because of this difficulty, additive switching costs make 

algorithms infeasible for real-time morphing.  

On the other hand, a multiplicative switching cost can be factored out in a 

recursive equation that optimizes the time to morph. Multiplicative switching costs are 

more intuitive because their effect is proportional to the likelihood of purchase. Not only 

do multiplicative switch costs assure that all probabilities remain defined between zero 

and one, but we expect that the amount by which a low probability is lowered by a 

switching cost would be less than the amount by which a high probability is lowered by a 

switching cost. For example, suppose a switch lowers ݌௥௠௡ from 0.800 to 0.700. 

Comparable proportional cost would lower ݌௥௠௡ from 0.090 to 0.070 while a comparable 

additive cost would lower ݌௥௠௡ from 0.090 to less than 0.000. To date, we have not 

tested the multiplicative assumption, but it seems to be a more-reasonable representation 

of switching costs than an additive assumption. 

For both practical and theoretical reasons, we solve a problem with multiplicative 

switching costs and do so in real time. Specifically, we assume that a switch in a morphs 

lowers the consumer’s purchase probability. The switch lowers the purchase probability 

by a factor of ߛ where ߛ ൑ 1. In theory, ߛ can be determined by experimental means in a 

priming study. However, to date, ߛ has been set by managerial judgment. Hauser, 

Liberali, and Urban (2014) explore the sensitivity of ߛ between 0.80 and 1.00. 
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4.3.3 Putting it Together  

The tuning parameters, the switching factor (ߛሻ and the period-weights (ݓ௧’s), 

must be selected before the algorithm is used to morph a website (in day-to-day 

operations). The tuning parameters, require either managerial judgment or experiments 

during the calibration study. In a calibration study, segment membership is measured 

directly, therefore the true consumer segment is known among calibration respondents. 

To estimate tuning parameters, the calibration study would also assign switches randomly 

at different time periods. With sufficiently many observations in the calibration study, ߛ 

and the ݓ௧’s can be identified.  

Figure 4 illustrates the conceptual decision problem for the case where the 

consumer makes a purchase (or leaves the website) after four observation periods. 

Specifically, during the first observation period, the website displays a morph. The 

respondent makes clicks while exploring the website and we update our beliefs about the 

consumer’s segment, Using the new information, and anticipating more information from 

subsequent decision periods, we decide which morph to display in the second decision 

period if the consumer stays on the website. (The consumer may decide to leave after a 

decision period. For example, the consumer might leave after the ݐ௧௛ observation period 

with probability, ߰௧.) If the morph in the second period is different from the morph in the 

first period, the consumer incurs a multiplicative switch cost, ߛ. 

This process continues until the consumer reaches the fourth period at which time 

the consumer either purchases or leaves without purchasing. Figure 4 illustrates the 

process as if the consumer makes a decision after the fourth period. However, in practice, 

the consumer can make a decision at any period and/or continue beyond the fourth 

period. (The recursive equation in the appendix allows random exits.) 
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Figure 4: The When-to-Morph Problem (modified from Hauser, et al. 2014) 

 

 

In general, the when-to-morph decision problem is coupled with the learn-while-

earning decision problem where the learn-while-earning algorithm experiments with 

different morphs for each segment. For example, if we show morph ݉ to a consumer in 

the consumer segment ݎ for more data periods, we learn more about the response 

probability for that segment-morph combination (݌௥௠). Fortunately, the dynamics of the 

two decision problems happen on two very different scales. The “which-morph-for-

which-segment” learn-while-earning decision problem is solved from observations based 

on success over failure over thousands of consumers. On the other hand, the when-to-

morph decision problem is solved between clicks for one consumer at a time.  

Because of these differing dynamics we decouple the two problems. In particular, 

we use the Gittins’ indices (GIs) to represent the value of showing morph ݉ to a 

consumer in segment ݎ and we use the concept of the expected Gittins’ index (EGI) to 

decide the best morph. The GIs are updated between consumers and are held constant 

when the when-to-morph decision problem that is solved between clicks by the current 

consumer. 

Putting this altogether we obtain a recursive relationship that must be solved 
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between clicks for the current consumers. Unfortunately, this recursive relationship does 

not appear to be indexable. The conceptual recursive equation is the following, where ݐ 

indicates the observation period. To keep this recursion simple, we have not specified 

random exit. Equation 6 in the appendix provides greater details. 

௧ܸሺ݉௧
∗,݉௧ିଵ, ሻݏ݈݇ܿ݅ܿ 	

ൌ max
୫౪

൜ݓ௧ܫܩܧ ൅෍ ݐ݊݁݉݃݁ݏሼܾ݋ݎܲ ൌ ሽݏ ௧ܸାଵሺ݉௧ାଵ
∗ ,݉௧, ݐ݊݁݉݃݁ݏ|ݏ݈݇ܿ݅ܿ ൌ ሽݏ

௦
ൠ 

The equations that we used in Morphing 1.0 assumed that only the last morph 

seen by the consumer affects the probability of a successful outcome for that consumer. 

When we solve the when-to-morph dynamic program, we must generalize the fractional 

observation updating procedure. In particular, we keep track of which morph was shown 

to the consumer in each observation period. The fractional observation is now the 

probability (based on all observed clicks for that consumer) modified by the ݓ௧’s. For 

example, if the consumer saw morph ݉ଵ for the first period and morph ݉ଶ for the 

second, third, and fourth periods, then, if the ݓ௧’s are normalized to 1.0, the fraction 

assigned to morph ݉ଵ for segment ݎ is the (terminal) probability that the consumer is in 

segment ݎ times ݓଵ. The fraction assigned to morph ݉ଶ for segment ݎ is the (terminal) 

probability that the consumer is in segment ݎ times ݓଶ ൅ ଷݓ ൅  ସ. Equation 7 in theݓ

appendix provides details. 

4.4 On-going Extensions and Other Methods 

Shortly after the HULB was published, morphing was extended to handle 

longitudinal interventions. The extended algorithm was tested in a field experiment 

matching AT&T banner advertising with cognitive styles identified from clicks 

consumers made on CNET.com. See Urban et al., (2014). Other methods have been 

published addressing the application of multi-armed bandit ideas to morphing. Table 1 

summarizes a few of these applications. 

In general, we see that some methods, such as Thompson Sampling, focus on 

aggregate or batched data and on non-consumer-specific marketing instruments. 

Interestingly, Schwartz, et al. (2016) test alternative multi-armed bandit solutions in 
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counterfactual synthetic-data experiments and suggest that Gittins-based strategies often 

outperform Thompson-sampling-based strategies even in batched applications. Other 

heuristics also do well. The website morphing papers and Chung et al. (2009) learn at the 

level of the individual consumer to enable the system to match marketing instruments to 

consumers efficiently. 

Table 1: Examples of Multi-Armed Bandit Algorithms for Online Experimentation 

 

Focus  
(what is it 
learning 
about) 

General 
or 

industry-
specific 

Considerations on Optimality  

Hauser, et al. 
2009, Hauser, 
Liberali, and 
Urban 2014 

Urban, et al. 
2014 

Consumer General 

Optimal for indexable problems (know 
consumer segments). Near-optimal for 
partially observable consumer 
segments. 

Scott 2010, 
Schwartz, 

Bradlow, and 
Fader 2016 

Creative General 

Designed to run in batches. 
Asymptotically optimal. Arms pulled 
proportionally to posterior probability 
of being optimal. 

Bertsimas and 
Mersereau 2007 

Creative General 
Designed to run in batches. 
Lagrangian decomposition and 
asymptotic approximations. 

Chung et al., 
2009, 2015 

Consumer 
Industry-
specific 

Promotes explorative search with a 
rejuvenation heuristic step 

5. Applications of Morphing: Evidence from the Field 

The first application of morphing, as reported in HULB, was a research 

collaboration with the BT Group, formerly British Telecomm (BT). In this project, the 

data indicated that, had morphing been implemented system-wide, the lift in BT’s online 

sales of broadband plans would have increased by 20% – about $80 million in additional 

revenue. These data were analyzed further in Hauser, Liberali, and Urban (2014). Their 

counterfactual synthetic-data experiments suggested that the improved Morphing 2.0 

methods would have outperformed the original Morphing 1.0 methods by 69%. The gains 
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reflect the ability of Morphing 2.0 to handle switching costs, attribution, and the optimal 

time to morph. The Morphing 2.0 algorithm was applied to a website selling card loans in 

Japan. An initial study of 1,395 consumers provided data for counterfactual experiments 

that predicted a 63% improvement—substantially more than the Morphing 1.0 algorithm 

(Hauser, Liberali, and Urban 2014). 

Urban, et al. (2014) applied morphing to banner advertising. In a field experiment 

on CNET.com, banner morphing achieved a 97% lift in click-through rates for context-

matched banners relative to a no-morph control group. CNET.com is a high-traffic 

website that hosts display banner advertising; it was not feasible in the field experiment 

to track online sales (conversion). To examine the impact on conversion as well as click-

through rates, Urban, et al. ran a longitudinal field study with General Motors’ Chevrolet 

Division. The field experiment documented that matching banners to the stage of the 

consumer’s buying process, body-type preference, and cognitive style significantly 

increased click-through rates, brand consideration, and purchase likelihood relative to a 

control. 

We are aware of several morphing applications that are now being developed. For 

example, one application has begun a proof-of-concept test using traffic from a major 

telecomm provider in The Netherlands. The calibration study has been completed and the 

cognitive-style Bayesian loop has also been coded. This application includes four 

cognitive styles, three morphs, and several funnel-stage outcomes. It includes controls so 

that morphing can be evaluated.  

A second morphing application is being developed in collaboration with an online 

marketplace in The Netherlands. This application morphs the automotive section of the 

online market place, and uses two consumer-knowledge segments instead of cognitive 

styles. The online marketplace is expanding its assignment mechanism to allocate 

consumers to test and control using the morphing algorithm. A third application is 

starting at a disruptive financial-products-comparison portal with operations in various 

countries in Asia. While none of these applications have yet gone live, they indicate the 

feasibility of developing morphing websites and morphing banners across a wide variety 

of applications. 
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6. Design and Implementation Decisions in a Morphing Project 

Morphing methods substantially increase click-through and conversion rates 

because they fundamentally change the way website design, banner advertisements, and 

other marketing instruments are tested. Conversion managers and the IT teams involved 

in a morphing project benefit from the managerial and technical implications of such 

changes. This section provides an overview of key changes based on our experience with 

morphing projects in a variety of firms. 

6.1 From Managing Aggregate Data to Handling Consumer-Level Data 

Perhaps the most unexpected practical challenge companies face when 

considering morphing is the unprecedented need to handle data that is tagged to 

individual consumers. This operates on multiple levels.  

 Morphing requires that the firm track and update its estimate of the probability 

that each consumer belongs to a segment. These updates might be based on data 

from the firm’s website, but advanced applications base these updates on 

consumers’ activities on many channels such as clicks on the website, posts on 

social media, or call-center input.  

 Morphing requires that firms track, at least temporarily, which consumers are 

exposed to which morphs. Fortunately, the system needs only to maintain 

parameter updates and indices, not the entire morph-to-consumer history, but 

many websites must be modified to maintain even this level of information.  

 Morphing requires that consumers be assigned to A/B cells dynamically. It is no 

longer sufficient to assign consumers randomly to A/B cells. Rather morphing 

bases these (near-optimal) assignments based on balancing immediate profit and 

long-term learning.  

 Some firms may wish to test morphing itself versus a control such as random 

assignment or a fixed-morph control. In this case, random assignment of 

consumers to treatments occurs at a higher conceptual level. Consumers are 

assigned to strategies (morphing vs. a control) rather than marketing instruments. 

To the best of our knowledge, no off-the-shelf software has the capability of 

assigning consumers to strategies.  
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These four challenges require a major technological shift, because standard 

randomized-assignment code needs to be updated, reporting systems need to adapt, and 

firms need to rethink their policies on A/B testing. Morphing experiments identify which 

designs are best for which consumers, but, often, morphing also provides the organization 

with a new way to think about website, banner, and marketing-instrument design. 

Morphing provides a new way to manage click-through rates, conversion, and other 

funnel measures.  

6.2 Consumer Segments, Marketing Instruments, and Outcome Variables. 

Website morphing integrates three foundational elements of e-commerce: demand 

(e.g., consumer segments), supply (e.g., marketing instruments used by a firm), and 

online transactions (e.g., conversion, a request for information, or a click-through). This 

section provides an overview of what needs to be done for each element. 

Consumer segments. While cognitive styles remain one of the best segmentation 

variables, morphing can be applied to a variety of segmentation variables including 

country of residence, personas, source (referral or not), device being used (mobile, 

computer, etc.), stage in the buying process, etc. The only real requirements are that 

consumers do not switch segments during a session and that segments can be identified in 

the calibration study. 

Marketing instruments. Morphing can apply to any marketing instrument that can 

be tested with traditional A/B testing. Marketing instruments include website designs, 

banner advertising, call-center scripts, product recommendations, price levels, 

promotional coupons, etc. Marketing instruments (morphs) can also be defined at a 

higher level of abstractions, such as an advertising campaign that is implemented in 

several different online channels. For example, one morph for a telecomm firm could be a 

campaign focused on emotional content—the campaign might present its services as a 

way to keep close to family and friends. A second morph could be a campaign focused on 

informational content—the campaign might show how the quality of service is better than 

the competition. Both campaigns could run in parallel and be implemented in various 

media channels. Morphing would identify which segments of consumers relate best to 

which of the two campaigns. (Of course, in this case, consumers would need to be 
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tracked across channels.) Based on consumers’ clickstreams, elements of the best 

campaign can be targeted to the right consumers. The elements might even be channel 

dependent. 

Click-through rates, conversion rates, and other funnel measures. Click-through 

rates versus conversion rates are not conflicting goals, but they are often distant in time in 

the purchase funnel (e.g., Hongshuang and Kannan 2014). Analyses must be done 

carefully to infer causality when the temporal distance between exposure, consideration, 

and purchase is too long. Purchases in many categories do not happen immediately; 

purchases may happen weeks, or even months, after exposure to a marketing instrument. 

In the interim, there are often other changes in the website and in the environment that 

also affect sales. Either these changes must be modeled or managers must recognize the 

inherent uncertainty in end-of-the-funnel measures. Project leaders need to carefully 

clarify what are realistic optimization goals and then choose the outcome variable (funnel 

measure) accordingly. The choice of the outcome variable is crucial for the mechanics of 

morphing (what to optimize), for what firms learn, and for how the success of morphing 

is evaluated.  

6.3 A Roadmap to Implement Morphing  

 Each morphing project has several tasks and milestones that need to be achieved.  

1. Select the segmentation criteria, e.g., cognitive styles or other variables. 

2. Select the morphs, e.g., marketing instruments such as website design or 

banners. 

3. Select the outcome variable, e.g., click-through rates, awareness, trial, or 

conversion. 

4. Determine the webpages and links to monitor. Perhaps design the webpages 

so that segments are easy to identify (next-generation websites). 

5. Assess a categorization of each monitored link using a panel of judges for use 

in the Bayesian model (the website characteristics). 

6. Run a calibration study to observe consumer’s clicks and assign representative 

consumers to segments. In the calibration study consumers are assigned 

through direct questions. 



	

32

7. Using the data from the calibration study, estimate a model that predicts click 

preferences for each consumer segment. 

8. Pre-compute the click likelihoods, the probability of a click given the 

characteristics of the click (and competing clicks) and the consumer’s 

segment. Do this for each link and each consumer segment so that segment 

likelihoods can be obtained quickly with the Bayesian model. 

Coding 

9. Implement the consumer inference system. This is the real-time Bayesian-loop 

inference code running on the webserver.  

10. Define the control cell, e.g., random assignment, status-quo method, fixed-

morph, or best-guess? 

11. Decide whether to have a single test cell or multiple test cells. In a single-test-

cell design, morphing chooses the optimal morph to show. One could 

potentially decide to run two or more test cells in parallel, each running a 

different set of morphs, segments, and/or outcome variables. 

12. Adapt the existing A/B system to randomly assign (and keep track of) 

consumers to test and control cells. 

13. Implement the system that receives the morph assignments and selects the 

morph to serve to the current consumer.  

14. Adapt the reporting system to report consumer outcomes (click-throughs, 

conversions, or other funnel measures) based on the selected outcome 

variable. The system should report at the consumer-level for each morph the 

consumer received. A Morphing 2.0 system may also need to record the 

number of observation periods (sets of clicks) for each morph seen by the 

consumer. 

15. Implement code that delivers the best morph to a consumer based on the 

morphing optimization. 

6.4 Priors and Convergence 

There are two sets of priors used to initialize the morphing system. The first prior 

represents initial beliefs about the consumer segment, before any click is observed. This 
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is typically selected to be either flat (equal probabilities to each consumer segment) or 

equal to the observed percentages of consumer segments in the calibration study. The 

decision depends on sample size, precision, and reliability of the estimates in the 

calibration study. It is relatively easy to update this prior after sufficiently many 

consumers have been observed in day-to-day operations. This prior is important because 

it affects which consumers get which morphs. Often, inferences about a consumer’s 

segment must be made after a relatively few clicks by the consumer.  

The second prior is the prior beliefs about the outcome probabilities. The Gittins’ 

indices are calculated for the first customer based on priors that reflect the strength of our 

beliefs about the initial outcome probabilities for every morph-segment cell. Typically, 

the prior beliefs are based on observed outcomes of morph x segment probabilities in the 

calibration study. In some cases, the morphs may still be under development during the 

calibration study. In these cases, it is reasonable to start with flat priors (expected 

baseline click-through rate or another appropriate measure). Fortunately, in day-to-day 

operations, the performance of the morphing algorithm is relatively robust with respect to 

this prior on outcome probabilities. As consumers visit the website, the data on their 

clicks soon overwhelms the prior beliefs about outcome probabilities. 

Typically we expect to see a pattern of transition from learning to earning that is 

somewhat similar to Figure 5. Figure 5 applies to a single consumer segment in a website 

that receives approximately 100,000 annual visitors. It documents how the GI for each 

morph changes as more consumers are exposed to morphs and as more outcomes are 

observed. Notice that, after a few thousand visitors, all indices have converged to the true 

morph x segment outcome probabilities. When the segment is not known but inferred 

using probabilities of the consumer belonging to a segment, convergence is not as rapid, 

but still occurs. 

The rate at which the GIs converge is controlled by the discount factor, the 

volume of data, and accuracy of the cognitive-style posteriors. Applications with less 

concentrated cognitive-style posterior probabilities (probabilities that are closer to 

equally-likely) tend to converge more slowly than applications with concentrated 

probabilities (probabilities that are close to 0.0 or 1.0). Convergence is slower when 
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consumer segments must be inferred because fractional updating spreads outcome 

observations over multiple consumer segments. The right discount factor enables the GIs 

to be matched appropriately to the firm’s cost of capital. 

Figure 5: Convergence of Morphing Algorithm for a Cognitive Style (illustrative data 

from HULB) 

 

7. Do’s and Don’ts of Morphing and Organizational Impact 

Although morphing makes morph assignments in real time while consumers click 

on websites, firms may decide to update the outcome probabilities for morph x segment 

combinations in batches. While this is possible, project leaders should be aware that it is 

only by multiple iterations of updates on that table (see Figure 1) that the system will 

learn optimally. In extreme cases, the learning loop can be run offline, but an offline 

learning loop is not an efficient use of resources. An offline system learns from past data, 

but does not realize gains from optimal experimentation. Similarly, if the Bayesian loop 

is run offline, the morphing system does not have the ability to match morphs to 

consumer segments. 

Morphing tends to cross organizational silos in large, traditional corporations. A 

project typically requires efforts from the engineering team (to code the systems listed in 

the roadmap), sales teams (morphs are marketing instruments), web designers, reporting 
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(to develop the APIs that need to be integrated with cloud servers), and consumer 

experience teams. As in any project involving change, support form the highest level of 

the organization is crucial for success. If the firm does not have an established culture of 

A/B experimentation, morphing is likely to require additional steps. In such cases, our 

experience suggests that a pilot project can be implemented to optimize marketing-

instrument A/B testing without the Bayesian loop, or to allocate marketing instruments to 

consumers without the second learning loop (the GIs). After A/B or consumer-level 

testing has been completed successfully, the full system will be easier to sell within the 

organization.  

From a computational point of view, there are two major considerations. First, 

there is a need for real-time inference of consumer segments. Our formulae allow for 

rapid computation, but algorithms must be coded and implemented and may require re-

training so that the web developers gain experience with Bayes-based algorithms. 

Second, the performance of the data transfer between the morphing servers (based on the 

cloud) and the firm’s traditional webservers must be tested extensively to make sure 

performance is appropriate. Computations are designed to be rapid and the traffic that 

flows between servers is designed to be light (just a few bytes per click), but the 

connection between servers must have high levels of data reliability and speed. 

From a purely methodological point of view, the use of Gittins’ indices is based 

on a technical assumption – that the multi-armed bandit problem is indexable. 

Indexability in the canonical problem is usually expressed as a requirement that the arms 

of the multi-armed bandit are independent. For further details refer to Gittins et al. 

(2011). When the arms are not independent, the problem may still be indexable, but 

Gittins’ indices may no longer be optimal. (When the “arms” change by external means, 

the multi-arm bandits are called restless bandits. Indices such as Whittle’s index may 

need to be used—Whittle 1988.)  

Morphing is flexible, but designers should be aware of a key tradeoff. The 

dimensionality of the optimality table grows proportionally to the number of morphs 

times the number of consumer segments. Successful applications balance relevance and 

speed. Simulations are valuable because they provide benchmarks before the firm 
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chooses the number of consumer segments and the number of morphs. 

From the viewpoint of website development, webpages can be designed so that 

consumer segments are easy to identify. Links and other content can be planned in a way 

to maximize the information obtained from each click, reducing the number of clicks 

needed to learn the consumer’s segment. We call such websites generation 2 (Gen-2) or 

next generation (next-Gen) websites. 

8. Open Questions and Relevant Challenges 

Morphing theory and methods provide opportunities for further research in 

substantive, conceptual, and methodological areas. From a substantive point of view, 

there are opportunities for new applications of morphing using other marketing 

instruments, such as price levels, promotion types, retention policies, call centers, and 

product bundles. Morphing is also feasible when using different devices or combinations 

of devices, namely desktop computers, tablets, and smartphones.  

We are not aware of projects based on morphs built across media channels, but 

we believe that a consumer’s clicks across online channels may substantially improve 

consumer-segment inference. There is effort to measure media across multiple channels 

(Liberali et al. 2015), but that does not include morphing. There are opportunities for 

morphing to coordinate actions that blend direct human action, such as calls, with 

automated actions, such as product recommendations. Because morphing affects 

organizational culture, there are opportunities to explore the feedback from morphing 

results to the creative process at agencies. Creative teams responsible for the 

development of website designs and banners obtain new creative insights by 

understanding which consumer segments respond best to which marketing instruments. 

Morphing 2.0 provides a structure to model switching costs, attribution, and 

random exit. This structure opens opportunities in the measurement of switching costs, in 

the study of attribution, and in the modeling of exit probabilities. There are challenging 

issues in how to aggregate lessons learned over multiple A/B tests. Schwartz, et al. 

(2016) provide a means to address these issues within batch-processed A/B testing, but 

challenges remain for allocating marketing instruments to individual consumers in non-



	

37

batch modes. Advances in multi-armed bandit research provides many opportunities such 

as correlated-arms bandits (as in Keller and Oldale, 2003) and restless bandits (using the 

Whittle index as in Song, Zhang and Hauser, 2014).  

See Urban et al. (2009) for more managerial issues. The online appendix of 

HULB provides additional insights on the development of cognitive styles and the 

appendices in Hauser, et al. (2014) provide details on a number of technical issues, 

including fractional updating.  
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Appendix: The Equations of Morphing 

Let ݊ index consumers, ݎ index segments, ݉ index morphs, and ݐ index clicks for 

each consumer. Capital letters, ܴ, ܯ, and ௡ܶ denote totals. Let ܿ௧௡ denote the ݐ௧௛ click by 

݊௧௛ consumer and Ԧܿ௧௡ ൌ ሼܿଵ௡, ܿଶ௡, … , ܿ௧௡ሽ denote the vector of clicks up to an including 

the ݐ௧௛ click. At each click choice, the consumer faces ܬ௧௡ click alternatives as denoted by 

ܿ௧௡௝ where ݆ indexes click alternatives. Let ܿ௧௡௝ ൌ 1 if consumer ݊ clicks the ݆௧௛ click 

alternative on the ݐ௧௛click; ܿ௧௡௝ ൌ 0 otherwise. Let ݔԦ௧௡௝ denote the characteristics for 

click-alternative ݆ faced by consumer ݊ on the ݐ௧௛ click. Let Ԧܺ௧௡ be the set of ݔԦ௧௡௝’s up to 

an including the ݐ௧௛ click for all ݆ ൌ  ݊ ෤௧௡௝ be the utility that consumerݑ ௧௡. Letܬ	݋ݐ	1

obtains from clicking on the ݆௧௛ click alternative on the ݐ௧௛ click. Let ሬ߱ሬԦ௥ be a vector of 

click-alternative-characteristic preferences for the ݎ௧௛ consumer segment and ߳௧̃௡௝ be an 

extreme value error such that ݑ෤௧௡௝ ൌ Ԧ௧௡௛ݔ
ᇱ ሬ߱ሬԦ௥ ൅ ߳௧̃௡௝. Let Ω be the matrix of the ሬ߱ሬԦ௥’s. Let 

௠௡ߜ ൌ 1 if the ݊௧௛ consumer makes a purchase after seeing morph ݉; ߜ௠௡ ൌ 0 

otherwise. 

The likelihood that the ݊௧௛ respondent chooses clicks Ԧܿ
೙்௡ given the consumer 

belongs to segment ݎ is given by: 

(1) Pr൫ Ԧܿ
೙்௡|	ݎ௡ ൌ ,Ω,ݎ Ԧܺ௧௡൯ ൌ Pr൫ Ԧܿ

೙்௡|ݎ௡ ൌ ൯ݎ ൌෑෑ൭
expൣݔԦ௧௡௝

′ ሬ߱ሬԦ௥൧

∑ expሾݔԦ௧௡ℓ
′ ሬ߱ሬԦ௥ሿ

୎౪
ℓୀଵ

൱

௃೟೙

௝ୀଵ

೙்

௧ୀଵ

௖೙೟ೕ

 

We estimate Ω from the calibration study by forming the likelihood over all respondents 

and by using standard maximum-likelihood methods or Bayesian methods. Denote these 

estimates by Ω෡. 

In Morphing 1.0, we observe the consumer’s clickstream up to the ߬௢௧௛ click. The 

unconditional prior probabilities, Pr୭ሺݎ௡ ൌ  ሻ are observed in the calibration study orݎ

from website experience. Bayes Theorem provides: 

(2) 

௥௡ఛ೚ሺݍ Ԧܿఛ೚௡,Ω෡, Ԧܺఛ೚௡ሻ

≡ Pr൫ݎ௡ ൌ |ݎ Ԧܿఛ೚௡,Ω෡, Ԧܺఛ೚௡൯ ൌ
Pr൛ Ԧܿఛ೚௡หݎ௡ ൌ ,Ω෡,ݎ Ԧܺఛ೚௡൯Pr଴ሺݎ௡ ൌ ሻݎ

∑ Pr൛ Ԧܿఛ೚௡หݎ௡ ൌ ,Ω෡,ݏ Ԧܺఛ೚௡൯Pr଴ሺݎ௡ ൌ ሻோݏ
௦ୀଵ
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For ease of exposition, we temporarily add the ݎ subscript to ߜ௥௠௡ to indicate a 

situation in which the segment, ݎ, is known. Let ݌௥௠௡ be the probability that consumer 

݊	in segment ݎ, who experienced morph ݉, will make a purchase (or other success 

criterion). This probability is distributed: ௡݂ሺ݌௥௠௡|ߙ௥௠௡, ௥௠௡݌	~	௥௠௡ሻߚ
ఈೝ೘೙ିଵሺ1 െ

 Updating	௥௠௡ are parameters of the beta distribution.ߚ ௥௠௡ andߙ ௥௠௡ሻఉೝ೘೙ିଵ where݌

implies ߙ௥௠,௡ାଵ ൌ ௥௠௡ߙ ൅ ௥௠,௡ାଵߚ ௥௠௡ andߜ ൌ ௥௠௡ߚ ൅ ሺ1 െ  ௥௠௡ሻ. Normalizing theߜ

value of a purchase to 1.0, the expected immediate reward is ܧሾ݌௥௠௡|ߙ௥௠௡, ௥௠௡ሿߚ ൌ

௥௠௡ߙ௥௠௡/ሺߙ ൅   .௥௠௡ሻߚ

 Let ܩ௥௠௡ be the Gittins’ index for the ݉௧௛ morph for consumers in segment ݎ, let 

ܽ ൑ 1 be the discount rate from one consumer to the next, and let ܸீ ௜௧௧௜௡௦ሺߙ௥௠௡, ,௥௠௡ߚ ܽሻ 

be the value of continuing with parameters ܽ, ߙ௥௠௡, and ߚ௥௠௡. We table ܩ௥௠௡ by 

iteratively solving the Bellman equation. 

(3) 

ܸீ ௜௧௧௜௡௦ሺߙ௥௠௡, ,௥௠௡ߚ ܽሻ

ൌ max

ە
۔

ۓ
௥௠௡ܩ

1 െ ܽ
,

௥௠௡ߙ

௥௠௡ߙ ൅ ௥௠௡ߚ
ሾ1 ൅ ܸܽீ ௜௧௧௜௡௦ሺߙ௥௠௡ ൅ 1, ,௥௠௡ߚ ܽሿ

				൅	
௥௠௡ߚ

௥௠௡ߙ ൅ ௥௠௡ߚ
ܸܽீ ௜௧௧௜௡௦ሺߙ௥௠௡, ௥௠௡ߚ ൅ 1, ܽሻ
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ۘ
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When consumer segments are latent, we replace the Gittins’ index with the 

expected Gittins’ index, ܫܩܧ௠௡. 

௠௡ܫܩܧ (4) ൌ෍ݍ௥௡ఛ೚ሺ Ԧܿఛ೚௡,Ω෡, Ԧܺఛ೚௡ሻܩ௥௠௡ሺߙ௥௠௡, ,௥௠௡ߚ ܽሻ

ோ

௥ୀଵ

 

For latent segments, the updating equations are based on “fractional 

observations.” Details are available in Hauser, Liberali, and Urban (2014).  

(5) 
௥௠,௡ାଵߙ ൌ ௥௠௡ߙ ൅ ௥௡ݍ ೙்

ሺ Ԧܿ
೙்௡,Ω෡, Ԧܺ ೙்௡ሻߜ௠௡ 

௥௠,௡ାଵߚ ൌ ௥௠௡ߚ ൅ ௥௡ݍ ೙்
ሺ Ԧܿ

೙்௡,Ω෡, Ԧܺ ೙்௡ሻሺ1 െ  ௠௡ሻߜ

For the Morphing 2.0 extension, let ݓ௧ be the weight for observation period ݐ and 

let ߛ be the multiplicative switching cost. We add a ݐ subscript to morphs such that ݉௧௡ 

indicates the morph seen by consumer ݊ in the ݐ௧௛ observation period. To keep track of 
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morph changes, we define an indicator variable such that Δ௠೟೙
ᇲ ௧௡ ൌ 1 if we change to 

morph ݉௧௡′ for consumer ݊ in period ݐ; Δ௠೟೙
ᇲ ௧௡ ൌ 0 otherwise. Because the consumer 

may see many morphs, we drop the ݉ subscript from ߜ௠௡ such that ߜ௡ ൌ 1 if the 

consumer makes a purchase; ߜ௡ ൌ 0 otherwise.  

To determine when to morph, we solve a Bellman equation by backward 

recursion for each consumer. The immediate reward is the ߛ-discounted, weighted 

expected Gittins’ index. The expectation uses ݍ௥௡ሺ Ԧܿ௧ିଵ,௡,Ω෡, Ԧܺ௧ିଵ,௡ሻ because this inferred 

probability represents our expectations over all future clicks. The segment-conditional 

continuation reward is ఛܸ൫݉ఛ௡
∗ ,݉ఛିଵ,௡, Ԧܿఛିଵ,௡,Ω෡, Ԧܺఛିଵ,௡หݎ௧௥௨௘,௡ ൌ  ൯. It is computed byݏ

keeping track of morph changes for ߬ ൒  We take the expectation with respect to the .ݐ

probability of observing each consumer segment to obtain the unconditional reward. Let 

߰௧ be the probability of exit after the ݐ௧௛ observation period and let Ψഥሺܵ|ݐ െ 1ሻ ൌ

∏௡ሾܧ ሺ1 െ ߰௦ሻሿ
ௌ
௦ୀ௧ , Then the Bellman equation is: 

(6) 

௧ܸሺ݉௧௡
∗ ,݉௧ିଵ,௡, Ԧܿ௧ିଵ,௡,Ω෡, Ԧܺ௧ିଵ,௡ሻ

ൌ max
௠೟೙

ە
۔

ۓ ௧෍ݓ୼೘೟೙ߛ ௥௡൫ݍ Ԧܿ௧ିଵ,௡,Ω෡, Ԧܺ௧ିଵ,௡൯ܩ௥௠೟೙௡Ψഥሺݐ|ݐ െ 1ሻ
௥

൅

෍ ௦௡൫ݍൣ Ԧܿ௧ିଵ,௡,Ω෡, Ԧܺ௧ିଵ,௡൯ ௧ܸାଵ൫݉௧ାଵ,௡
∗ ,݉௧௡, Ԧܿ௧ିଵ,௡,Ω෡, Ԧܺ௧ିଵ,௡, .ݎ ݁. หݏ൯൧

௦
Ψഥሺݐ ൅ ሻݐ|1

ۙ
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We let ߟ௠௡௧ ൌ 1 if consumer ݊ saw morph ݉ during the ݐ௧௛ observation period; 

௠௡௧ߟ ൌ 0 otherwise. Generalized fractional-observation updating becomes: 

(7) 

 

௥௠,௡ାଵߙ ൌ ௥௠௡ߙ ൅ ௥൫ݍ Ԧܿ ೙்௡, Ω෡, Ԧܺ ೙்௡൯ߛ
ே೅೙ ൬෍ ௧ݓ௠௡௧ߟ

೙்

௧ୀଵ
൰  ௡ߜ

௥௠,௡ାଵߚ ൌ ௥௠௡ߚ ൅ ௥൫ݍ Ԧܿ ೙்௡, Ω෡, Ԧܺ ೙்௡൯ߛ
ே೅೙ ൬෍ ௧ݓ௠௡௧ߟ
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