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Why is Platform Pricing Generally Highly
Skewed?

Richard Schmalensee

Abstract
Bolt and Tieman (2008) suggested the prevalence of profit function non-concavity may

account for the widespread use of skewed pricing by two-sided platform businesses. In both the
Rochet-Tirole (2003) and Armstrong (2006) models, however, skewed pricing may simply reflect
substantial differences between side-specific demand functions; non-concavity is not necessary.
In the Rochet-Tirole (2003) model, ubiquitous high pass-through rates, which seem implausible,
are required for non-concavity to be prevalent. In the Armstrong (2006) model, non-concavity is
not sufficient for skewed pricing. In both models, non-concavity is associated with strong indirect
network effects; in the Armstrong (2006) model, such effects are also associated with dynamic
instability.

KEYWORDS: platform, non-concavity, skewed, pricing

Author Notes: Richard Schmalensee, Massachusetts Institute of Technology. I am indebted to two
anonymous referees, the editor, and, especially, Glen Weyl for extremely valuable comments on
earlier versions of this paper. Of course, only I can be blamed for any shortcomings that remain.



 

 

Two-sided platform businesses (often labeled two-sided markets) 
commonly set price at or below marginal cost to one of the groups they serve, and 
some groups may even pay a zero price even though positive costs are incurred to 
serve them – see, e.g., Evans (2003) or Evans and Schmalensee (2007) for lists of 
examples. Thus Suarez and Cusumano (2009, p. 84) speak in generic terms of 
“the subsidy side” and “the money side” of such businesses.  It is thus a bit 
surprising that the usual first-order conditions for profit maximization in standard 
models of multi-sided platforms do not immediately reveal why such highly 
skewed pricing should be the norm.   
 A recent paper by Bolt and Tieman (2008) shows that the second-order 
conditions for a maximum are violated in the Rochet-Tirole (2003) two-sided 
platform model if the demands of the two sides have constant elasticities.1  In this 
example, the first-order conditions identify a saddle-point of the profit function, 
not a maximum, and profits are maximized at a corner solution, at which all 
potential participants on one side of the market actually participate.  Bolt and 
Tieman suggest that this outcome may be general, so that the prevalence of highly 
skewed pricing in multi-sided platforms could be explained by the prevalence of 
such non-concave profit functions.   
 This note investigates the plausibility of that intriguing suggestion in the 
canonical two-sided platform models of Rochet and Tirole (2003) (Section 1) and 
Armstrong (2006) (Section 2) and, in the process, explores the association 
between non-concavity and strong indirect network effects in these models.2  
While Bolt and Tieman (2008) define highly skewed pricing as arising when all 
potential participants on one side of the market actually participate, I use here 
what I think is a more generally useful definition: one price is at the lower bound 
of the set of feasible prices – typically either zero or marginal cost.  Few would 
disagree that pricing by network broadcast television is highly skewed, for 
instance, since all revenue comes from advertisers, even though some potential 
viewers don’t in fact watch television. 
 Section 3 summarizes our main results and conclusions: it seems more 
likely that pervasive highly skewed pricing by platform reflects generally 
substantial differences between demand functions on the two sides of the business 
rather than pervasive profit function non-concavities.  
  
 
 

                                                 
1 See Hermalin and Katz (2004) for a closely related result. 
2 Rochet and Tirole (2006) present a more general model that includes both these models as 
special cases and in which both access and intereractions may be priced.  See Weyl (2010) for an 
extensive analysis of that model. 
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1. The Rochet-Tirole (2003) Model 
 
In this model, the monopoly’s objective function can be written as 
 
(1)      1 2 1 2 1 1 2 2( , ) ( ) ,P P P P C D P D P     

 
where the Pi are the per-transaction prices charged to each of the two participating 
groups, C is the constant marginal cost of executing a transaction, and the Di are 
(partial) demand functions.  This model may be most directly relevant to payment 
cards, with the volume of transactions proportional to the product of the number 
of merchants accepting a particular card brand and the number of consumers 
carrying cards of that brand and the participation decisions of merchants and 
consumers assumed to depend only on the per-transaction prices they face.3 
 Assume that both demand functions in (1) exhibit declining marginal 
revenue.  Then, using subscripts to indicate partial derivatives of the profit 
function, it is straightforward to show that for i = 1,2, ii < 0 so that the point at 
which i = 0 maximizes  with respect to Pi, treating Pj, j  i, as constant.  We 
can then define the functions 
 

(2)        ˆ ( ) arg max ( , ) arg max , 1, 2, .
i i

i j i j i i i j
P P

P P P P D P P P C i j i          

 
These yield a natural summary measure of the strength of indirect network effects 
in this model, based on the geometric mean sensitivity of the optimal prices each 
side to the price on the other side: 
 

(3)    2

121 2

2 1 11 22

ˆ ˆ
.P

dP dPT dP dP
          

 

 
But TP < 1 is one of the second-order conditions for a stationary point of , a 
point at which the first-order conditions are satisfied, to be a local maximum.  
Thus, if the demand functions exhibit declining marginal revenue, a necessary and 
sufficient condition for concavity of the profit function is that average indirect 
network effects, as measured by TP, not be too strong. 
 To be more precise, it is easy to show that the second derivatives of the 
profit function (1) can be written as follows, where primes indicate derivatives of 
the demand functions: 
 

                                                 
3 See, for instance, Schmalensee (2002). 
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(4a)   1 2 (1/ ) 0, 1,2,ii iMD D i and       

(4b)   12 21 1 2 0,MD D where        

(4c)  2 2
1 2( ), ( ) / [2( ) ], 1,2.i i i i iM P P C and D D D D i          

   
That is, i is the pass-through rate on side i, the amount by which a monopolist 

with constant marginal cost and facing demand curve Di would optimally increase 
price in response to a small unit increase in marginal cost (Weyl and Fabinger 
(2009)).   
 A close look at equation (2) makes it clear why pass-through rates 
determine the strength of the indirect network effects in this model: an exogenous 
increase in Pj affects the optimal value of Pi, i  j, exactly as an equivalent 
decrease in unit cost, C.   It follows immediately from (4) that 1 2 ,PT    and we 

have immediately 
 

Proposition 1 (Weyl (2009, 2010): If both demand functions in the 
Rochet-Tirole (2003) model exhibit declining marginal revenue, a 
stationary point of (1) is a saddlepoint if and only if 1 2 1.     If  

 has a unique stationary point satisfying this condition, its 
maximum must occur on the boundary of the feasible set, and 
pricing must therefore be highly skewed.  
 

 For log-linear demand curves, 1,   while for linear demand curves 
1/ 2.    Most economists seem to think that pass-through rates below one are 

more common than pass-through rates above one, though Weyl and Fabinger 
(2009) argue that there is not much evidence supporting that belief.  Proposition 1 
indicates that pass-through rates above one must nonetheless be pervasive if 
saddle-points are to be the norm in situations well-modeled by the Rochet-Tirole 
(2003) model.   
 To examine the plausibility of this outcome, suppose that pass-through 
rates are determined by independent draws from a uniform distribution over [0, 
2], so that the average rate is above most economists’ expectations.  Then the 
probability that the product of two such draws will exceed unity is only about 
0.40.  While it is true that evidence on pass-through rates is scarce, it does not 
seem plausible that the pervasiveness of skewed pricing in two-sided markets is 
explained by the unusually frequent occurrence of pass-through rates above unity 
in those markets. 
 On the other hand, highly skewed pricing can easily arise when the profit 
function is concave when demand functions differ substantially.  Suppose, for 
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example, that individual h in group i, i =1,2, will participate in the market under 
consideration if and only if ,h

i iP   where the h
i are uniformly distributed 

between 0 and Ai > 0.  If the number of potential participants in group i is Ni, the 
two demand functions can be written as 
 

(5)      ˆ( ), 1, 2,i i i i i i i iD P N b P b P P i      

 

where bi = Ni/Ai and îP  is the choke price at which demand on side i falls to zero, i 

= 1,2.   The first-order conditions for maximizing expression (1) in this case 
signal a regular unconstrained optimum, but they imply P1   0 if  and only if 
 

(6)     1 2
ˆ ˆ2 .P P C    

 
Condition (6) requires substantial differences the demand functions of the two 
groups.  But, particularly when marginal cost is low, the required demand 
differences do not seem implausible for groups as different those linked by two-
sided platforms in practice (though, as above, there is little or no relevant hard 
evidence).  Consider merchants and shoppers, for instance.  In any case, if 
condition (6) is satisfied and, as is usually the case, negative prices are infeasible, 
the optimum of (1) will involve highly skewed pricing with P1 = 0 and Q1 =N1.  
We have thus proven by example 
 

Proposition 2: Non-concavity is not necessary for highly skewed 
pricing in the Rochet-Tirole (2003) model. 
 

2. The Armstrong (2006) Model 
 
In the Armstrong (2006) model, participation is priced but transactions are not, 
and participation, Q, is influenced via indirect network effects by participation on 
the other side, as well as the participation price, P.  We can write the demand 
functions for participation by the two sides as 
 

(7)     , , , {1,2}, .i i i jQ D P Q i j i j    

 
We assume these functions are decreasing in price and non-decreasing in other-
side quantity.   
 It is instructive to consider a natural measure of the (geometric) average 
strength of indirect network effects in this model: 
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(8)    1 2

2 1
.D dDS Q dQ

       
 

 
This quantity is a natural focus of empirical work on demand systems with 
network effects.  It is not directly related to the concavity of the profit function in 
this model, however, but rather to the stability of equilibria in a family of myopic 
disequilibrium dynamic systems in the in the spirit of Rohlfs (1974): 
 

(9)    sgn sgn , , , {1, 2}, .i
i i j i

dQ D P Q Q i j i jdt
          

 

 
Proposition 3 (Evans and Schmalensee (2010)):  An equilibrium of 
(9) is stable if and only if S < 1 at that point.  If S  1, the 
equilibrium is a saddlepoint.  
 

This result may serve to limit the set of empirically relevant profit function 
maxiuma.  Profit maxima are necessarily equilibria of (9).  Such maxima that lie 
the interior of the feasible set of quantities and for which S  1 do not seem likely 
to be observed in practice.4  Also, when demand functions are linear, equilibrium 
quantities are decreasing in prices if and only if S < 1; see equation (20) below. 
 It is generally most convenient in this model to solve the demand 
functions (7) for prices, so the profit function can be written as 
 

(10)       1 2 1 1 1 2 1 2 2 2 1 2, , , .Q Q Q d Q Q C Q d Q Q C            

 
The Ci are the constant side-specific unit costs of participation.  It is useful to 
recognize that the problem of maximizing (10) is formally identical to the 
problem of maximizing the profit of a monopolist selling complements.  Note that 
if prices are constrained to be positive or not to be below marginal costs, the 
boundary of the feasible set of quantities may be affected by constraints on prices 
and thus may contain points at which participation is incomplete on both sides.  
 In general the second-order conditions for this model involve second 
derivatives of the di with respect to other-side quantities and are consequently 

                                                 
4 Weyl (2010) shows that any pair of non-negative quantities can in general be sustained by what 
he terms insulating tariffs: schedules that make the price to each side conditional on the level of 
participation on the other side.  (See also White and Weyl (2010) for a model of platform 
competition with insulating tariffs.)  Price schedules of this sort do not seem common in practice, 
however, but, as noted below, prices that rise over time as participation grows may serve a similar 
purpose if (9) holds. 
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difficult to interpret.5  Declining marginal revenues are no longer sufficient for the 
ii to be negative, for instance.  When those quantities are negative, however, we 
can define conditionally optimal quantities as above: 
 

(11)    ˆ ( ) arg max ( , ), 1, 2, .
i

i j i j
Q

Q Q Q Q i j i     

 
With this definition, the third second-order condition for a stationary point of (10) 
to be at least a local optimum becomes a condition on the (geometric) average 
indirect network effect: 
 

(12)    2

121 2

2 1 11 22

ˆ ˆ
.Q

dQ dQT dQ dQ
          

 

 
We have immediately 
 

Proposition 4: If 11 < 0 and 22 < 0 at a stationary point in the 
Armstrong (2006) model, a necessary and sufficient condition for 
that point to be a local maximum is TQ < 1.  If TQ  1, the 
stationary point is a saddlepoint. 
 

As in Proposition 1, if the unique stationary point is a saddlepoint, profit is 
maximized on the boundary of the feasible set.  It is clear that the measures S and 
TQ of average indirect network effects are not in general equal, since S involves 
first derivates only, while TQ involves a variety of second derivatives, but it is also 
clear that they are not unrelated.   Considering both sheds light on the sources of 
non-concavities and their role in this model. 
 In order to obtain further insight into the determinants of non-concavity 
and the relations between these two measures of average indirect network effects, 
it is useful to consider two examples.  Suppose first that the Di are log-linear: 
 

(13)    , , , {1,2}, ,ji
i i j i i jD P Q P Q i j i j     

 
where the s, s, and s are positive constants.  It is immediate that S = 12 here.  
Then straightforward but tedious analysis of first- and second-order conditions 
yields 
 

                                                 
5 See Theorem 4 in Weyl (2010) and its discussion in the paper’s online appendix. 
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Proposition 5: If demands in the Armstrong (2006) model are 
given by (13) with  1, 2 > 1, then  i < i  ii < 0 at a 
stationary point, i = 1,2.  If both these conditions are satisfied, then 
if 1,2 < 1, then TQ < 1 (and S < 1), while if 1, 2  1, then TQ  1 
(and S  1). 
 

Thus indirect network elasticity on side i must be weaker than the corresponding 
price elasticity in order for i = 0 to indicate a conditional maximum of  rather 
than a conditional minimum.  If the profit function is well-behaved in this sense 
and if both network elasticities are less than (greater than or equal to) one, then 
both TQ and S are less than (greater than or equal to) one. 
 A second, somewhat more tractable example is obtained by assuming that 
typical individual h on side i, i =1,2, participates if and only if  
 
(14)    , , 1, 2 , ,h

i i i jP Q i j i j       

 
where the i are positive constants.  Let Ni > 0 be the maximum number of 
potential participants on side i, and assume the h

i are uniformly distributed 

between 0 and i, with i > Ci  i = 1,2. Under these assumptions the demands for 
participation are given by 
 

(15a)       , , , {1,2}, ,i i j i i i i jD P Q N B P G Q i j i j        

 
where 
 
(15b)   , , 1, 2.i i i i i i iB N and G N i        

 
In this example, S = G1G2. 
 Solving equations (15) for prices yields 
 

(16a)    , , , {1,2}, ,i i i j i i i i jP d Q Q b Q Q i j i j           

 
where 
 
(16b)   1 , 1, 2.i i i ib B N i    
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The firm’s profit function can then be written as 
 
(17)     1 1 1 1 1 2 1 2 2 2 2 2 1 2 ,Q b Q Q C Q b Q Q C             

 
Using subscripts to indicate partial differentiation as above, the first-order 
conditions for maximization of Π are 
 
(18)       1 2 2 0, , 1, 2 , ,i i i j i iC Q b Q i j i j            

 
and the second-order necessary conditions for (18) to yield a maximum are 
 
(19a)    2 0, 1,2,ii ib i         

 
and 
 

(19b)    
   2 2

12 1 2

11 22 1 2

1.
4QT
b b

  
  
 

 

 
Condition (19b) says that the arithmetic mean of the cross-quantity effects on 
price must be less than the geometric mean of the own-quantity effects.6  Using 
(16b) to re-write this condition, we can re-write this condition in a form that is 
easier to compare with S = G1G2 and obtain 
 
 Proposition 6: The point satisfying (18) maximizes  if and only if  

   2 1
1 2

1 2

1
1

2Q

B B
T G G

B B

 
   

 
 

If TQ  1, that point is a saddlepoint, and  is maximized on the 
boundary of the feasible set of quantities.  TQ < 1 is sufficient for S 
< 1.  It is also necessary for S < 1 if and only if the two demand 
functions are identical. 
 

Once again, both the concavity of the profit function and stability of the general 
dynamic adjustment process are associated with limits on the importance of 
indirect network effects.   

                                                 
6 For an interpretation of this condition in terms of profits with and without two-sidedness, see the 
discussion of Proposition 4 in the online appendix to Weyl (2010). 
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  To see if non-concavity of the profit function is necessary for highly 
skewed pricing, let us assume concavity and solve (15) for both quantities as 
functions of both prices, to obtain 
 

(20)   , , {1,2}, .
1

i i j i i i j j
i

N G N B P G B P
Q i j i j

S

  
  


 

 
 If the profit function is concave, Proposition 6 implies S < 1, so these demand 
functions are well-behaved.  Suppose, to avoid clutter, that C1 = C2 = 0.  Then 
there is highly skewed pricing with concavity if (a) TQ < 1 and (b) 1  0 when 
2 = 0 and P1 = 0, as long as the solution involves non-negative quantities.  The 
second condition (b) can be written as 
 

(21)     1 2 2 1 2 2 1 2 1 2 2 12 0.N B G G B G B N G B G B        

 
It is immediate (and not surprising) that G2 > 0 is necessary for this condition to 
be satisfied.  Substituting the optimal value of P2 when P1 = 0 then establishes 
that Q1  N1 if and only if D1 = 0, which in turn implies Q1 = N1.  It is then easy to 
find numerical values that satisfy (19b) and (21) with D1 = 0.  One example is N1 
= N2 = 100, B1 = 20, B2 = 10, and G2 = 0.8.  Thus non-concavity is not necessary 
for highly skewed pricing in this example. 
 To see whether non-concavity is sufficient for highly skewed pricing in 
this example, suppose demand and cost functions on the two sides are identical 
and TQ > 1.  Dropping subscripts on cost and demand parameters, if Q1 = Q2 = Q, 
equation (17) becomes 
 

(22)       2 .Q C Q b         

 
Since TQ > 1 implies  > b, this expression is convex in Q and profits are either 
maximized at Q = 0 or Q = N.  If 
 
(23)        0,a C N b     

 
the maximum occurs at Q = N.  It is straightforward to show that if (23) is 
satisfied and if, say, Q2 = N, then profits are maximized by setting Q1 = N also.  
Thus even though the profit function is maximized on the boundary of the feasible 
set of quantities, pricing is symmetric, not skewed: 
 
(24)    * *

1 2 ( ).P P N b      
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We have thus completed the proof by example of  
 

Proposition 7: Non-concavity is neither necessary nor sufficient 
for highly skewed pricing in the Armstrong (2006) model. 
 

 When the profit function is non-concave and the demand functions are 
identical in this example, S > 1, profit maxima in the interior of the feasible set are 
necessarily unstable equilibria of dynamic processes satisfying (9) and thus, as 
argued just below Proposition 3, unlikely to be observed.  But this is not an 
interior equilibrium in the set of feasible quantities.  Again in the spirit of Rohlfs 
(1974), as long as  
 
(25)     , , 1, 2 , ,i i j iP Q bQ i j i j       

 
Di > Qi, i = 1,2, and, by (9), both quantities are increasing.  Once the point Q1 = 
Q2 = N, is reached, it can be maintained by setting prices just below the level 
given by (24), so that all participants have strictly positive surplus.  
 
3. Conclusions 
 
In the Rochet-Tirole (2003) model, Section 1 showed by example that non-
concavity is not necessary for highly skewed pricing.  Such pricing can arise from 
substantial differences in the demand functions on the two sides of the market.  
Following Weyl (2009, 2010), high pass-through rates are sufficient for non-
concavity and skewed pricing, but it seems implausible that high pass-through 
rates are in fact ubiquitous in platform markets.   
 In the more complex model of Armstrong (2006), Section 2 showed that 
strong network effects are associated both with non-concave profit functions and 
with instability of a broad class of disequilibrium adjustment processes.  In this 
model, non-concavity was shown by example to be neither necessary nor 
sufficient for highly skewed pricing. 
 In short, the analysis here strongly suggests that highly skewed pricing by 
two-sided platforms is not prevalent because profit is generally maximized at 
corner solutions for these businesses, but rather because the demand 
characteristics of the two groups involved generally differ substantially.  
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