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Leveraging the Power of Images in Managing Product Return Rates 

In online channels products are returned at high rates. Shipping, processing, and refurbishing are 

so costly that a retailer’s profit is extremely sensitive to return rates. Using a large dataset from a 

European apparel retailer, we observe that return rates for fashion items bought online range from 13% 

to 96%, with an average of 53% – many items are not profitable. Because fashion seasons are over 

before sufficient data on return rates are observed, retailers need to anticipate each item’s return rate 

prior to launch. We use product images and traditional measures available prelaunch to predict 

individual item return rates and decide whether to include the item in the retailer’s assortment. We 

complement machine-based prediction with automatically extracted image-based interpretable features. 

Insights suggest how to select and design fashion items that are less likely to be returned. Our illustrative 

machine-learning models predict well and provide face-valid interpretations – the focal retailer can 

improve profit by 8.3% and identify items with features less likely to be returned. We demonstrate that 

other machine-learning models do almost as well, reinforcing the value of using prelaunch images to 

manage returns. 

Keywords: machine learning, image processing, deep learning, product returns 
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1. Introduction 

Online retailers are challenged by the high cost of product returns. Processing and refurbishing 

the returned item is so costly that large retailers such as Amazon and Walmart allow customers to keep 

the item, because it often costs more to ship and process the returned product than the product is worth 

(Wall Street Journal 2022). Nick Robertson, founder of the UK’s largest fashion retailer, ASOS, stated that 

a 1% drop in ASOS’ return rate could increase the firm’s bottom line by an impressive 30% (Thomasson 

2013).  

In the $500 billion fashion industry, return rates are high, and vary greatly by item. The products 

upon which we focus are fashion items. For our focal retailer, a large European apparel retailer, we 

observe item return rates averaging 53% ranging from 13% to as high as 96% for some items. This is in 

contrast with the 3% return rate in the same retailer’s offline channel, with the same set of items. Even 

with high margins, the items on the higher end of this return-rate spectrum generate a net loss for the 

firm’s online store. In fashion, as in many industries, the product return rate is key input into any product 

management strategy. The problem in the fashion industry is that fashion seasons are short and return 

deadlines are generous. By the time an item’s return rate is observed, the fashion season is well 

underway or almost over. To effectively manage item assortment in light of returns, it is critical that the 

retailer is able to predict item return rates using only data available prelaunch.  

In this paper, we address this problem by leveraging image processing methods. We 

demonstrate that item images improve predictions of return rates, that policies based on predictions can 

improve profit, and that data-based insights are face valid, internally consistent, and suggest which items 

are returned at high and low rates. To do so, we develop a modeling framework to predict and interpret 

how product images relate to their return rates. Machine learning models produce accurate predictions 

of an item’s return rate based on features of the product image and other characteristics available 

prelaunch. For example, including deep-learning image features in gradient-boosted regression trees 
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(GBRT) predicts 13.5% better than a model based on traditional features alone. Using this model and the 

derived policy to decide on which items to display results in a profit improvement net of returns by 8.3% 

relative to displaying all items in the online channel. SHAP values (that relate automatically-interpretable 

image-based  features to return rates) suggest how the firm might design (or otherwise source) items 

less likely to be returned.  

We tested a variety of alternative machine-learning models and features to suggest which do 

well and which do not on our data. Among those tested are deep-learning features, human-coded 

features, hand-crafted automated pattern and color features, and automatically-generated image-based 

interpretable features. We find that many machine-learning models do well on our data providing 

evidence for the value of item images for managing item assortments.  

Our contribution is to show that incorporating item images into models helps a firm decide, prior 

to launch, which products to include in its online store based on profitability net of returns. The 

approach is fully automated, scalable, and implementable prior to product launch, and an improvement 

on current practice that does not incorporate product images. The approach has the advantage that it 

can be easily implemented by a retailer for each fashion collection.  

The remainder of the paper is organized as follows. We begin by reviewing relevant literature on 

managing product returns and leveraging image data (§2). §3 describes the data and provides empirical 

(model-free) evidence that image data predict returns. §4 demonstrates that image-based features 

improve predictions, explores alternative models, and develops a model-based policy for selecting which 

items to display/not-display in the online store. §5 complements the predictive model with 

automatically-generated image-based interpretable features which provide insights on how to source 

and design items. We conclude with a summary, limitations, and suggested future research (§6).  

2. Related Literature 

We build on and contribute to two streams of literature: managing product returns and 
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leveraging image data.  

2.1. Managing Product Returns  

A rich literature in marketing and operations investigates firm strategies for managing product 

returns. One such strategy is to manage returns by optimizing the leniency of the return policy (such as 

fees, prices, or deadlines). Anderson et al. (2009) develop an individual-level model of purchase and 

return and use it to optimize the return costs for customers. Moorthy and Srinivasan (1995) suggest that 

a return policy is a signal of item quality. Shulman et al. (2011) show that the optimal policy (strict vs. 

lenient) balances sales and returns. See also Davis et al. (1998), Wood (2001), Bower and Maxham-III 

(2012), and Janakiraman et al. (2016).  

Another approach for managing returns focuses on managing customers and understanding 

their return behavior. For example, Petersen and Kumar (2009, 2015) describe customer return behavior 

and how it affects future spending and how this can be accounted for in lifetime value calculations to 

target more profitable customers. Sahoo, Dellarocas, and Srinivasan (2018) study how product reviews 

decrease return rates by reducing consumers’ uncertainty. Other studies link product returns to factors 

such as prices and price discounts, marketing instruments, free shipping promotions, the use of an app, 

or even the weather (e.g., Conlin et al. 2007, El Kihal et al. 2021, Narang and Shankar 2019, Petersen and 

Kumar 2009, 2010, Shehu et al. 2020, El Kihal and Shehu 2022). Other than at the broad category level 

(Hong and Pavlou 2014), the literature has not explored the characteristics of products related to high 

return rates.  

Rather than focusing on return policies, managing (and “firing”) customers, or prices and 

marketing strategies, our research focuses on the products (items) themselves. Not only is this a gap in 

the literature, but it is clearly complementary to return policies, managing customers, prices, and 

marketing strategies. We focus on which items to display/not-display and item features that lead to high 

or low return rates. Not displaying an item is mathematically equivalent to charging an infinite price. 
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With new data, future research might explore softer strategies such as setting a very high price. Pricing 

research is not feasible with our data and beyond the scope of this paper. We observe prices and use 

prices as traditional product features, but we do not observe the demand curve and cannot optimize 

prices. 

2.2 Leveraging Image Data  

Images have always been an important part of firms’ marketing efforts. Over the past two 

decades, technical advances and the rise of digital platforms have created an abundance of visual data. 

Together with the development of image processing tools and advanced modeling techniques, these 

data have created unique research opportunities in marketing. For example, researchers have analyzed 

images in consumer reviews (Zhang and Luo 2022), user-generated digital content (Hartmann et al. 2021; 

Liu et al. 2018; Klostermann et al. 2018; Dzyabura and Peres 2021), firm logos (Dew et al 2022), and 

seller images on digital platforms (Zhang et al 2021). For a detailed review of published and ongoing 

research, see Dzyabura et al. (2021).  

He and McAuley (2016), Lynch et al. (2015), and McAuley et al. (2015) demonstrated by example 

that images are valuable for making recommendations regarding clothing styles, substitutes, and 

personalized rankings. Shi et al. (2021) use machine learning to identify garments and classify fashion-

item features from street snapshots, runway photos, and online stores. They use these tools to interpret 

fashion dynamics and conclude that machine learning can identify fashion features not discussed in 

fashion magazines. They do not use the fashion features to predict item sales or item returns. 

The literature supports that images contain valuable information in many product categories, 

and specifically in fashion. Although images have not been used to forecast return rates for specific 

items, they have been proven valuable for other tasks. The literature also suggests that machine learning 

can identify independent variables (“features”) that are used to forecast dependent variables (in our 

case return rates for each item). 
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3. Data Description and Empirical Evidence that Image-based Data Predict Return Rates 

To study product returns, we chose an industry that is particularly challenged by high return 

rates – women’s apparel. We obtain transaction data from a major European mono-brand retailer-

manufacturer. We augment the transaction data with a study in which human judges label images from 

the retailer’s two largest categories (dresses and shirts).  

3.1. Retailer Transaction Data 

The women’s apparel retailer has a network of 39 retail stores in Germany complemented by a 

large online operation that accounts for 30.5% of its sales. All items appear in both channels and are 

always sold for the same price in the two channels. The retailer has a lenient return policy mandated by 

law: customers can return any purchased item for any reason within 14 days, without providing the 

reason. By the retailer’s policy, items must be returned in the same channel in which they were 

purchased. 

We use data on 1,231,055 transactions, including sales and returns, that occurred in online 

channels during the observation period from September 1st, 2014 until August 31st, 2016 (two full 

consecutive years). We exclude non-apparel items such as perfume, gift cards, or accessories. We 

observe returns for all orders made within the observation period. The data also include offline sales but 

returns are rare in the offline channel (with a 3% offline return rate for the focal retailer). 

For each transaction, we observe the date, the channel (online/offline), item identifiers, and 

which items were returned. For each item, we observe the category (e.g., dresses), price, and four-to-six 

images. The images were taken by the same studio, using standardized procedures, resulting in 

consistent image quality. In our primary analysis, we include only the front image of each item, which is 

the most informative and always the first image displayed to the customer on the retailer’s website. (A 

model using all images performs only marginally better – Online Appendix B.) The images display the 

item by itself (not on a model or a manikin) against a white background. We include only items for which 
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we have images (97% of items) and which were sold at least 20 times. (Varying this threshold did not 

change our findings – Online Appendix B.) On average, an Item fills 55% of the image (standard deviation 

13%). The fill-rate mostly depends on the item category (for example, dresses are likely to be larger than 

shirts). Among all the item images, 99% have the same size (2200 x 1530 pixels). Figure 1 contains 

example images of four items.  

Figure 1. Examples of Images of Four items 

(a) (b) (c) (d) 

    

 The resulting data contain 4,585 distinct items from fifteen different apparel categories, as 

categorized by the retailer. Return rates for items sold via the online channel lie within 13–96% (56% 

average for this subsample, slightly above the overall average of 53%). These rates are well above return 

rates in the offline channel (3%) where consumers can touch, feel, and try on items. The processing and 

refurbishing costs of returns from the online channel, our focus, is well above returns from the offline 

channel (return-cost data are proprietary). For the interested reader, data on consumer characteristics 

complement our focus on displaying/not-displaying and designing items. For example, evening shoppers 

return more than morning and daytime shoppers; middle of the week shoppers return less than 

beginning and end-of-the-week shoppers; and price discounts are positively related to return rates. 

These data are only observed postlaunch and cannot be used to manage item returns prelaunch, hence 

postlaunch data are not used by our models. For completeness we provide these data in Online 

Appendix B. 
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3.2. Data Augmentation with Human-Coded Features (HCF) 

The number of items per fashion season is large and fashion seasons change rapidly. We seek an 

automated way for the firm to manage assortments. It would be prohibitively expensive, and the firm 

may not have the time between fashion seasons, to ask humans to code the item images. Nonetheless, 

to explore whether or not image data are sufficient without human-coded data, we asked human judges 

to code illustrative fashion features in the two largest categories. These data provide evidence that 

image features are predictive of return rates and provide a benchmark with which to evaluate the 

predictive ability of the automatically-generated image-based interpretable features studied in §5. The 

automatically-generated fashion features are curated to apply across categories and, hopefully, subsume 

many specific fashion features such as the human-coded features for dresses and shirts.  

We conducted a study in which human judges labeled 2,392 images from the largest two 

categories of items (dresses and shirts). Four independent judges, blind to the purposes of the study, 

labeled each clothing item with respect to symmetry (symmetric vs. asymmetric), pattern (solid, floral, 

striped, geometric/abstract), and additional details (text, metallic/sequin, graphic, lace). Three of the 

judges coded sleeve length (short, medium, long, sleeveless), and the presence of belts and/or zippers. 

The human-based label for an image is equal to 1 if the majority of the judges indicate attribute 

presence, and equal to 0 otherwise. Ties were uncommon and broken by across-item percentages. On 

average, judges agreed with the majority vote for 91.7% of the judgments. 

3.3. Model-Free Motivation: Observable Variables and Image Data Relate to Return Rates 

Non-image variables. Return rates are related to observable variables. For example, return rates 

vary by category as illustrated by Figure 2a. Dresses, the largest category in our data, are returned on 

average 72% of the time while cardigans are returned 37% of the time. Seasonality and price are the 

other variables used by the retailer that are related to returns (evidence in Online Appendix B). 

Color. A minimal use of images is the color of the item. For example, consumers can more easily 
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imagine themselves in common conservative colors such as blacks, blues, and greys, but often want to 

try fashion colors such as pinks, purples, and pastel colors. To examine whether return rates vary by 

image data, we begin with the color labels (twelve color bins) that the retailer uses to categorize each 

item. The bins are not perfect, for example, “pink” includes many shades of pink and a single color does 

not fully summarize multi-colored patterns or highlights. Nonetheless, Figure 2b suggests that color 

labels are related to return rates. 

We will show that color labels augment traditional models based on category, price, and 

seasonality. We will also demonstrate that we can do even better with more comprehensive image 

features and models that account for interactions and non-linearities (and that are regularized). 

Figure 2. Online Return Rates by Category and Color – Retailer’s Traditional Classifications 
 

(a) Return Rates by Category    (b) Return Rates by Color Labels

 
  
 

 Human-coded features (HCFs). HCFs are not designed to be scalable to all items in all categories 

for every fashion season. But they are valuable as indicators that image features are related to return 

rates. Figure 3 displays the correlations of the HCFs with return rates. Asymmetrical items are associated 

with higher return rates, compared with symmetrical items. Items with patterns (floral, striped, or 

geometric/abstract) have lower return rates compared with items without a pattern (solid items). 
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Among the additional details, lace details, metallic/sequin details and belts seem to be associated with 

higher return rates, while the presence of a zipper and text or graphic details is associated with lower 

return rates. Finally, the length of sleeves is negatively correlated with the return rate. When we regress 

the item return rate on the HCFs features, we get similar insights. Details are in Online Appendix B. 

Figure 3. Relationship between the Human-coded Features (HCFs) and Return Rates

 

Figure 3 motivates the hypothesis that image-based features relate to return rates. Likely the 

relationship is more complex than simple correlations—the HCFs likely interact with each other and with 

the traditional measures such as fashion category. In the next section, we explore models to handle 

complex interactions. Because the HCFs do not scale, §5 develops more general and more 

comprehensive automatically-generated image-based interpretable features. Model-free evidence, §5.2, 

confirms that the interpretable features are correlated with return rates. §5 also explores model-based 

methods, called SHAP values, that relate the interpretable features to return rates. 

4. Prediction: Using Prelaunch Image Data to Predict Return Rates 

 The previous section suggests that images (image features) augment traditional measures when 
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predicting return rates. We seek a good predictive model to support the retailer’s decisions on which 

items to sell in its online store (display/not-display). For the retailer’s policy, we focus on the profitability 

of individual items rather than the number of units per se. If an item is not profitable, then the retailer’s 

decision whether or not to sell it does not depend upon the forecasted number of units sold. 

Consistently with the managerial goal, we summarize return behavior by a return rate for each item. The 

return rate per item varies between 0% and 100%. 

Let 𝑟𝑟𝑖𝑖 be item 𝑖𝑖's return rate, defined as the ratio of the number of returned units (𝑁𝑁𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) to 

the number of purchased units of the item (𝑁𝑁𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎): 

(1)                                                              𝑟𝑟𝑖𝑖 ≡
𝑁𝑁𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑁𝑁𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

. 

To manage product returns using predictions of 𝑟𝑟𝑖𝑖 we make three modeling decisions. The first decision 

is which features to extract from the images. The second decision is which model to use to predict 𝑟𝑟𝑖𝑖 as a 

function of the image features and the traditional variables. The third decision is the display/not-display 

policy used by the retailer—the policy is a function of the return rate and the model’s predictive ability. 

We begin by defining the criteria we use to evaluate predictive models.  

4.1. Criteria to Evaluate Predictive ability 

Our primary criterion is the out-of-sample 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 , calculated on all items (𝑖𝑖) in our sample (𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎). 

For ease of presentation, we multiply 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2  by 100. 

(2)    𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 = 1 −  

∑ �𝑟𝑟𝑖𝑖−𝑟̂𝑟𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�

2
𝑖𝑖∈𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎

∑ �𝑟𝑟𝑖𝑖−𝑟̂𝑟𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�

2
𝑖𝑖∈𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎

, 

where 𝑟̂𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the out-of-sample item return rate predicted by our model. We use twenty-fold cross-

validation to generate out-of-sample predictions for each point in a sample. We randomly divided our 

sample into twenty non-overlapping folds, where we used 75% of folds to train the model, 20% to 

validate the model (optimized over a set of hyperparameters, Appendix), and the remaining 5% to 

compute out-of-sample predictions. By assigning different folds to training, validating, and testing the 
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model, the cross-validation procedure allows us to construct out-of-sample predictions for all points in 

the sample. 

To ensure reliable estimates of item return rates, we exclude items that were sold fewer than 

twenty times. We obtain the same results if we screen the data to require a minimum threshold of either 

10 or 30 unit sales. The retailer’s decisions are item-by-item because in the online store items are 

displayed singly and interactions are uncommon. This is one way in which managerial decisions differ 

from the offline store where items are displayed together and interactions are common. The models do 

not improve when we use 𝑁𝑁𝑖𝑖,𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 to weight the data for each item. Details in Online Appendix B. 

Because other policies might depend on other criteria, we examine the robustness of our 

methods to different performance measures: we supplement 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2  with mean absolute deviation 

(MAD) and 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 . 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2  is a common measure used in marketing that is based on information theory 

(and probabilities) and measures the amount of (Shannon’s) information explained by the model relative 

to that explainable by perfect predictions (Hauser 1978). Although derived for classification (0 vs. 1), 

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2  applies to more continuous measures such as 𝑟𝑟𝑖𝑖. It differs from 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2  and MAD because it uses 

logarithms rather than squared or absolute error. Although derived from information theory, 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2  is 

sometimes called a pseudo-𝑅𝑅2. Other classification metrics, such as area under the curve (AUC), are 

derived for a 0 vs. 1 outcome. The extension of AUC to continuous measures is proportional to MSE and 

would be redundant with 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2  (Hernández-Orallo 2013, Theorem 7 & Corollary 8).  

4.2. Baseline Predictions (Item’s Category, Seasonality, and Price) 

 Before we explore the use of images to manage returns, we explore non-image baseline 

predictions that use information routinely collected by the retailer. For each item in its inventory, the 

retailer observes the seasonality (month), the item category (e.g., dresses), and price. For price, we use 

the average price at which the item was sold. Other measures, such as price relative to average category 

price, do not improve predictions. For the purposes of this analysis, we treat price as exogenous to the 
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decision on whether or not to display an item in the online store. Our data do not contain sufficient 

information on the demand curve to optimize price. We demonstrate that profitability is improved when 

price is exogenous. Future research with improved data could include price optimization in policies to 

improve profitability further. 

 We can choose a variety of prediction models with which to predict return rates as a function of 

image and non-image features. These methods vary from simple regression to highly nonlinear functions 

obtained with machine learning. In our data, we obtain the best predictive ability using gradient boosted 

regression trees (GBRTs). Bagging methods (random forest) and LASSO do not predict as well as a GBRT, 

although image-feature-based models using these methods provide incremental predictive ability 

relative to models based on non-image features alone. Details are in Online Appendix B. 

Table 1 reports the predictive ability of the baseline model. To address the variance in the 

estimated 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2  due to randomness of the division into folds, we generated twenty-five different sets 

of cross-validation folds (each set including twenty folds); we report the average and standard deviations 

of the estimated 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 . 

4.3. Improving Predictions with Images (Baseline Plus Color Labels) 

 Empirical model-free evidence in §3.3 suggests that color labels are related to return rates. Color 

labels are minimal image-based features and can be used without image-processing. Table 1 shows that 

color labels improve predictions slightly relative to the baseline. While the improvement is small, the 

color-label model is further evidence that there is information in images. We show next that deep-

learning image features improve predictions substantially beyond predictions obtainable with the 

retailer’s color labels. 
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Table 1. Baseline and Color-Label-Model Predictions 

Model Non-Image 
Features 

Image 
Features 

Out of Sample 
𝑼𝑼𝟐𝟐 ∗ 𝟏𝟏𝟏𝟏𝟏𝟏 

Out of Sample 
MAD ∗ 𝟏𝟏𝟏𝟏𝟏𝟏 

Out of Sample 
R2 

R2 Improvement 
over baseline 

Non-Image 
Baseline 

Category, 
seasonality, 

price 
None 

52.75 
(0.27) 

8.59 
(0.01)  

41.31 
(0.18) –  

Color-labels 
added to 
baseline 

Category, 
seasonality, 
price, and 

color labels 

None 53.56 
(0.28) 

8.48 
(0.01) 

42.50 
(0.20) 2.88% 

Note: Models use LightGBM and differ only with respect to the set of features included. Standard deviations are 
reported in parentheses. 
 
4.4. Predictions Using Deep-Learning Image Features 

Images are more than just color. Consider the three items in Table 2. The first item, the white 

top, is easily categorized and a common color; the color-label model does well. The second item, the top 

with stripes, is multicolored and hard to categorize by color; the color-label model does less well. The 

third item, the dress, is readily categorized as pink, but the color-label model does not do well, likely 

because the pink is not a prototypical pink and because the dress’s shape does not work well for 

everyone.  

Table 2. Return Rates and Color-Label Predictions for Three Apparel Items 

 

   
Actual Return Rate minus 

Color-label Prediction +1.0% – 12% +15.2% 

Note: Actual return rates are not included for confidentiality reasons. 

To improve upon the color-label-based benchmark, we examine image-processing features 
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identified with a convolutional neural network (CNN). In our data, CNN-based features predict better 

than other image-based features. We examine the predictive ability of other image-based features in 

§4.5 and more interpretable automatically-generated image-based features in §5.  

The information in apparel images is more complex as illustrated by the shape of the pink dress 

in Table 2. Other dresses might feature floral patterns or complicated geometric shapes. Deep-learning 

algorithms have the advantage that they learn feature representations automatically and can be 

modified for particular applications. To explore the potential of deep learning for image-based 

predictions of apparel return rates, we use an established CNN. Through a series of nonlinear filters and 

transformations, the CNN learns highly complex nonlinear transformations to map an image to a set of 

deep-learning features. The tradeoff is that, while good for prediction, the CNN features are difficult to 

interpret. The CNN features likely capture the information provided by more-specific features (including 

the HCFs), but without interpretability, we do not gain insight into which features are associated with 

high return rates. For greater detail on each transformation and for an application of a CNN to 

unstructured marketing data, see Zhang and Luo (2022).  

Our 4,585 images are not sufficient to train a deep CNN from scratch, thus we use the second-to-

last pre-output layer of the Residual Neural Network (ResNet; He et al. 2015). ResNet won the 2015 

ImageNet Large Scale Visual Recognition Challenge and was trained on the ImageNet data set (1.3 million 

images in roughly 1,000 categories). The ResNet network has 152 layers, making it one of the deepest 

networks yet presented on ImageNet. The second-to-last layer of the network contains 2,048 features. 

(The last layer is the output layer.) The 2,048 deep-learning features were used directly in the GBRT. 

In Table 3, we see substantial improvement when using deep-learning features relative to the 

baseline and color-label models. This improvement in predictive ability leads to a substantial 

improvement in profit when using the display/not-display policy (§4.6). Because the 2,048 deep-learned 

features are likely to encode well the image information, we expect little or no improvement when we 
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add other machine-learned features to the deep-learning features (see next section). Returning to the 

images in Table 2, the GBRT based on deep-learning features predicts return rates better for the hard-to-

predict items. The GBRT/CNN model predicts a return rate for the striped top within 4.7% of the true 

rate (color-label predictions are within 12%), and a return rate within 5.6% for the pink dress (color-label 

predictions are within 15.2%).  

Table 3. Predictions Using Deep Learning Image-Processing Features 

Model Non-Image 
Features 

Image 
Features 

Out of Sample 
𝑼𝑼𝟐𝟐 ∗ 𝟏𝟏𝟏𝟏𝟏𝟏 

Out of Sample 
MAD ∗ 𝟏𝟏𝟏𝟏𝟏𝟏 

Out of Sample 
R2 

R2 Improvement 
over baseline 

Non-Image 
Baseline 

Category, 
seasonality, 

price 
None 

52.75 
(0.27) 

8.59 
(0.01)  

41.31 
(0.18) –  

CNN Features 

Category, 
seasonality, 
price, color 

labels 

Deep-
learning 

56.70 
(0.26) 

8.15 
(0.02) 

46.88 
(0.19) +13.48% 

Note: Models use LightGBM and differ only with respect to the set of features included. Standard deviations are 
reported in parentheses. 
 

The ResNet CNN is not the only image-processing model that does well on our data, but it is the 

best of those tested. For example, the VGG19 CNN does almost as well with an 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 = 46.84. This and 

the robustness analyses (§4.5) suggest that the 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 = 46.88 from ResNet CNN is sufficient to 

demonstrate the value or prelaunch image-based features. Future research might explore custom deep-

learning models or alternative pretrained models.  

The results in Table 3 represent the performance of the model estimated on the entire data set 

including all product categories. We also explored per-category models for categories with sufficiently 

many sales and found that predictions in all five largest categories benefit from images, e.g., predictions 

in “Shirts” improves from 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 = 14.78 to 24.08 and predictions in “Dresses” improves from 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 = 28.11 to 31.13. All per-category models are in Online Appendix B. Machine-learning models 

are notoriously data hungry—the best predictions are obtained with a model that merges data from all 

categories.  
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4.5. Robustness of Incremental Predictive Ability Due to Image Features 

 Robustness of the basic hypothesis. Our basic hypothesis is that automated image-based 

features improve predictions and enable retailers to make more profitable display/not-display decisions. 

Table 3 is based on a particular set of image-based features (CNN) and a particular predictive model 

(GBRT). We have already summarized that for our data (1) the GBRT predicts best, but other machine-

learning models are feasible, (2) alternative deep-learned image-based features are feasible, (3) the 

results are robust to evaluative criteria, (4) robust to precision weighting by the number of units 

purchased per item and (5) alternative data screening (minimum threshold of 10 or 30 rather than 20 

items). The basic insights also hold for (6) dimensionality reduction of the 2,048 CNN features with 

various forms of principal component analysis (PCA) and (7) measures of uniqueness and distance from 

prior fashion seasons – details in Online Appendix B.  

 (Black box) automated pattern & color features. We test one more level of robustness. 

Researchers in machine learning often use automated pattern & color features as an alternative to deep-

learning image-based features. Such color & pattern features might improve return-rate predictions. 

RGB color histograms provide one popular automated color feature. Figure 4 Illustrates an RGB coding of 

the color of an example fashion item as heavily based on red, but with mid-level peaks in green and blue. 

The number of bins in Figure 4, 256 x 256 x 256 ≈ 16 million, is too large for a GBRT. For feasibility we 

use 5 x 5 x 5 = 125 bins. To capture patterns, we use Gabor filters. Gabor filters use frequency-domain 

transforms to isolate the periodicity and the direction of that periodicity with sinusoidal waves 

(Manjunath and Ma 1996). Although Gabor filters are difficult to interpret, they might improve 

prediction. See Liu et al. (2020) for an application.  
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Figure 4. Example RGB Color Histogram Encoding of an Apparel Item 

  
 

 These automated pattern & color features do not predict as well as CNN-based features 

(𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐 = 𝟒𝟒𝟒𝟒.𝟐𝟐𝟐𝟐). Adding these features to a model based on CNN features and color labels is 

redundant (does not improve predictions, 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐 = 𝟒𝟒𝟒𝟒.𝟖𝟖𝟖𝟖). Alternative automated color features (HSV 

features, ORB features) do not change the basic message – details in Online Appendix B. Although 

automated pattern & color features provide an alternative to CNN features in the predictive model, they 

do not enhance interpretability. We examine more interpretable features in §5. 

Results for human-coded features (HCF). The HCFs improve predictions relative to the non-

image baseline (6.85% for dresses and shirts), but do not predict as well as the models with automated 

CNN-based features (9.92% dresses and shirts)1. Given the added time and cost of HCFs, the CNN 

features appear to be a better choice for the predictive model. The interpretable features in §5 are 

curated to generalize the HCFs. §5 suggests they predict better than the HCFs. 

 Summary of robustness tests. The GBRT/CNN model appears to be robust to alternative 

predictive models, alternative deep-learning image-processing features, alternative performance 

metrics, alternative data cleaning, dimensionality reduction, and the use of automated pattern & color 

features. The GBRT/CNN model appears to be a reasonable proof-of-concept. It is of course possible that 

                                                 
1 We re-estimated all models for the two categories for which HCFs were coded (dresses and shirts). The absolute 
predictive ability, but not the relation among models, varies when we limit the data to the two largest categories. 
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some retailers will adopt alternative models or image-based features for reasons outside our analysis. 

The performance of many alternative models reinforces the basic hypothesis that image-based features 

help manage returns. 

4.6. The Relationship between a Model’s Predictive Accuracy and Profitability  

 Because all items are already inventoried for the bricks-and-mortar stores (§3.1), the marginal 

fixed costs for displaying the items online are minimal. As long as we do not compromise overall variety, 

we can consider removing (not displaying) items that have negative expected profits based on the 

predicted return rate, 𝑟̂𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and a measure of the uncertainty in 𝑟̂𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. For the remainder of this 

section, we simplify notation and use 𝑟̂𝑟𝑖𝑖 as shorter notation for 𝑟̂𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 𝑟𝑟𝑖𝑖 continues to denote the true 

return rate. 

We make online display/not-display decisions item by item. Because our estimate, 𝑟̂𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, is 

independent of the number of items sold, 𝑁𝑁𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, and because fixed costs are negligible for 

displaying an item, we focus on profit per item sold.  

This section evaluates whether we should not display items with negative expected profit per 

sale or whether we should take the precision of the model into account. For example, perhaps we should 

be more aggressive with a model that predicts better. On the other hand, if predictions were no better 

than random noise, perhaps we should be more cautious about not displaying any items. 

There are inventory costs for carrying an item, but those are well-studied, present no new 

insight, and can easily be added to the profit-maximizing model. The firm’s allowable-return policies are 

set by law and considered fixed for this analysis. To a first order, we ignore interactions among items and 

assume that the small percentage of items removed does not affect the demand for the remaining items. 

Fortunately, our the policy in our empirical application removes a small fraction of items. To the extent 

that removing some items increases demand for other items, the increased demand improves profits 

further. To the extent that removing some items decreases overall demand for the online store, profits 
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might decrease—an issue we do not have the data to address.  

 Naïve policy that ignores uncertainty in predictions. The return costs for returned items consist 

of two components: a flat processing cost for shipping and handling the return (𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓) and a cost that is 

proportional to price of the item (𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣) because returned items must be discounted or discarded if they 

are damaged or out of season. Let 𝑝𝑝𝑖𝑖  be the price of item 𝑖𝑖 and 𝑐𝑐𝑖𝑖 be the item’s cost. If 𝑟𝑟𝑖𝑖 were known, 

the profitability of item 𝑖𝑖, 𝜋𝜋𝑖𝑖 , would be given by: 

 (3)    𝜋𝜋𝑖𝑖 = (1 − 𝑟𝑟𝑖𝑖)(𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖) − 𝑟𝑟𝑖𝑖(𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑖𝑖𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣). 

The retailer’s exact costs are proprietary. For illustration, we used a fixed return cost 𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓  of 

5.31€ (iBusiness 2016) and a variable return cost 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣 of 13.1% of an item's price (Asdecker 2015). The 

naïve policy using these illustrative costs would imply that 27.2% of the items in our data are 

unprofitable. The naïve policy would remove these items. However, the predicted profit from the naïve 

policy is not achievable because our predictions are uncertain. The naïve policy would overestimate true 

profits as a 25% improvement. The naïve policy would also violate the assumption that a small 

percentage of items is not displayed. Figure 5 illustrates this naïve policy. “Profitable” products are 

retained (shown as blue in Figure 5) and the “unprofitable” products not displayed (shown as pink in 

Figure 5).  
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Figure 5. Distribution of Items’ Profitability in Our Data  

 

Policy taking uncertainty into account. Our empirical model produces imperfect predictions of 

the return rates, 𝑟̂𝑟𝑖𝑖. We assume that 𝑟̂𝑟𝑖𝑖 is unbiased. This implies that our estimate of profitability, 𝜋𝜋�, has a 

mean equal to the true profits with a variance based on the uncertainty in the predicted return rate. In 

symbols, 𝜋𝜋�𝑖𝑖 | 𝜋𝜋𝑖𝑖 ~ 𝒩𝒩(𝜋𝜋;  𝜎𝜎12). We examine whether the retailer’s decision depends on the ability of the 

model to accurately predict return rates, that is, we examine whether the policy depends on 𝜎𝜎12.  

Because decisions are made for each item, 𝑖𝑖, we temporarily drop the item subscript, 𝑖𝑖. We 

assume the retailer’s prior beliefs about profits are normally distributed across items: 𝜋𝜋 ~ 𝒩𝒩(𝜇𝜇𝑜𝑜;  𝜎𝜎𝑜𝑜2). 

Let 𝒫𝒫 be a policy such that the retailer displays the item if 𝒫𝒫 = 1 and does not display the item if 𝒫𝒫 = 0. 

Let 𝜙𝜙 ≡ (𝜋𝜋� ,𝜇𝜇0,𝜎𝜎02,𝜎𝜎12), then the uncertainty-dependent policy is based on solving the following 

mathematical problem: 

  (4)    max
𝒫𝒫(𝜙𝜙)∈[0,1]

𝔼𝔼[𝒫𝒫(𝜙𝜙) ∗ 𝜋𝜋 + �1 −𝒫𝒫(𝜙𝜙)� ∗ 0]. 

 The policy that maximizes the mathematical expression in Equation 4 is a threshold policy given 
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by Equation 5. Equation 5 yields intuitive policies as 𝜎𝜎𝑜𝑜2 and 𝜎𝜎12 approach zero (perfect information) or 

infinity (no information) and that expected profits using the policy decrease in 𝜎𝜎12.2  

(5)    𝒫𝒫(𝜙𝜙) =  �
1 𝑖𝑖𝑖𝑖 𝜋𝜋� ≥ −𝜇𝜇𝑜𝑜

𝜎𝜎12

𝜎𝜎𝑜𝑜2
,

0 𝑖𝑖𝑖𝑖 𝜋𝜋� < −𝜇𝜇𝑜𝑜
𝜎𝜎12

𝜎𝜎𝑜𝑜2
.
 

 Assuming that the retailer has positive priors, we added the thresholds for uncertainty-based 

policies to Figure 5.  (1) For perfect predictions (𝜎𝜎12 = 0), launch all items for which 𝜋𝜋� > 0. (2) For good 

predictions (𝜎𝜎12 small), launch only items for which 𝜋𝜋� exceeds the threshold. And (3), when predictions 

are extremely noisy (𝜎𝜎12 large), launch almost all items even those with expected negative profits. As 

predictive uncertainty 𝜎𝜎𝑖𝑖2 increases, the uncertainty-based policy screens out fewer items and achievable 

profits decline. The dependency on 𝜎𝜎𝑖𝑖2 motivates MSE and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2  as appropriate criteria with which to 

judge the predictive model. The better the 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 , the better is the achievable profit.  

Using our data, we simulate the model-based policies (see Table 4). When the GBRT/CNN model 

is used to determine the data-based display/not-display policy, the retailer chooses not to launch 7.13% 

of the items. The expected profits increase by 8.29% relative to launching all the items. Even compared 

with the non-image baseline, the improvement in profits is important to fashion retailers with many 

items in many categories over many fashion seasons. This is especially true for fashion items that are 

high-priced and high-volume. The potential for profit improvement is even greater if retailers were able 

to source and/or improve items at the design stage. To that end, we next examine interpretable 

features, both image and non-image, that are associated with high and low return rates. 

                                                 
2 Derivation of the threshold policy, a proof that expected profits decrease in 𝜎𝜎12, and limiting cases as 𝜎𝜎𝑜𝑜2 and 𝜎𝜎12 
approach zero or infinity are provided in Online Appendix A. 
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Table 4. Expected Profit Improvement Using Different Predictive Models  

Model Features Percent Items not 
Launched 

Profit Improvement vs. 
Launch All Items 

Non-image baseline Category, seasonality, 
and price 

5.98% 
(0.11) 

6.81% 
(0.18) 

Color labels added to 
baseline 

Category, seasonality, 
price, and color labels 

6.26% 
(0.13) 

7.16% 
(0.19) 

CNN Features Category, seasonality, 
price, CNN from image 

7.13% 
(0.12) 

8.29% 
(0.23) 

 

5. Generating Interpretable Insights  

 The retailer might improve its profits further if it were to use information available in images to 

make decisions when sourcing or designing new fashion items. To help the retailer’s buyers source items 

and to help the retailer’s designers design new items, we complement the predictive model with an 

interpretable model that identifies item features that are linked to high and low return rates. To deal 

with large assortments and rapid fashion seasons, we seek automatically-extracted image-based 

interpretable features that do not require consumer tests, surveys, or experiments. When the retailer 

can invest in HCFs, the HCFs enhance interpretability to the extent they help buyers and designers 

visualize the image-based features. 

5.1. Automatically-extracted Image-based Interpretable Features 

Each of the proposed image-based features is based on insights, experience, and expectations 

from the fashion industry. We seek features that are interpretable by the retailer’s buyers and designers 

but can be generated at scale automatically. Automatic generation allows the retailer to use the features 

for large assortments in every fashion season. We extract features related to color (color clusters, color 

dominance, brightness, horizontal and vertical color asymmetry), pattern (pattern direction, pattern 

complexity), shape (shape asymmetry, shape ratio, shape triangularity), and item uniqueness 

(uniqueness). These features are chosen to be as general as feasible and, hopefully, subsume more-
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specific image-based features such as the HCFs. We describe each of these features in detail below and 

provide examples in Figure 6. These features illustrate the type of automatically-generated features that 

are feasible. At the end of this section, we examine whether this set of features captures sufficient 

variation in return rates. 

Color clusters. To visualize the basic color composition of an item, we use weighted K-means 

clusters in RGB-pixel space. For each item’s image, we calculate the proportion of pixels closest to the 

mean of the color cluster (thirty clusters in our data). Unlike the retailer’s color labels, the color clusters 

are more-nuanced and data-driven. 

Color dominance. Some items have many colors but none dominate; other items have a 

dominant color with patterns, say flowers, of different colors. Color dominance is the maximum value of 

a color share for the item.  

Brightness. The perceived brightness of an apparel item affects sales and return rates. Brightness 

might be partially redundant with color clusters, but that is an empirical question. Brightness is defined 

as the average intensity of the image after converting it to greyscale. Brightness varies over a garment. 

For example, if an item has a uniform color, the brightness variation is close to zero; if the item has a 

complex pattern of light and dark stripes, the brightness variation is larger. Computationally, we use the 

standard deviation. Both brightness and brightness variation are allowed to enter the model. Figure 6i 

illustrates fashion items with low and high brightness and brightness variation. 
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Figure 6. Examples of Automatically-extracted Image-based Interpretable Features 

(i) Illustration of Items with High and Low Brightness and Brightness Variation

 
(ii) Illustration of Pattern Direction  
      (Sobel X- and Y- Directions) (iii) Illustration of Pattern Complexity 

 
 

  (iv) Illustration of Shape Ratio 
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Pattern direction. Gabor pattern features had moderate success in predicting returns (§4.5), but 

they are very difficult to interpret. Pattern direction and pattern complexity are more interpretable. 

Pattern direction is summarized by applying a Sobel filter to each direction (X for horizontal and Y for 

vertical) to the greyscale images (Gonzalez and Woods 2018). This is equivalent to a partial derivative 

with respect to movement orthogonally along either the horizontal or vertical axis. For example, 

horizontal stripes have a high derivative in the vertical direction and vertical stripes a high derivative in 

the horizontal direction (see Figure 6ii).  

Pattern complexity. Some apparel items have checkered patterns (high derivative in both the 

horizontal and vertical directions), while others have more complex patterns. To represent pattern 

complexity, we extract edges from the image using the Canny edge detector and we extract straight lines 

using Hough transformations (Duda and Hart 1972). Each line is represented by the orthogonal distance 

from the top left corner of the image to the line and by the angle of the line relative to the X-axis. Two 

features are extracted: pattern complexity is the standard deviation of the angles of the extracted lines; 

the other feature is the number of extracted lines. Pattern complexity is extracted if there are more 

than twenty lines, otherwise it is set to zero. All such meta-parameters are tuned. Figure 6iii illustrates 

(a) an item with high pattern complexity (lines of varying angles) and (b) an item with low pattern 

complexity (horizontal stripes with a zero angle). 

Asymmetry. The HCF analysis suggests that asymmetric items have higher return rates (review 

Figure 3). Shape asymmetry, horizontal color asymmetry, and vertical color asymmetry are likely to 

affect return rates. Dresses, shirts, and other apparel items are naturally asymmetric vertically. To 

extract shape asymmetry, we compare the left half of the image to the mirror image of the right half of 

the image. The percentage of non-overlapping pixels indicates shape asymmetry. For example, if the 

item is perfectly symmetric horizontally, then there will be no non-overlapping pixels; if the fashion item 

is highly asymmetric, there will be many non-overlapping pixels. To extract horizontal color asymmetry, 
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we use KL-divergence to compare the RGB histograms for the right and left halves of the image. Vertical 

color asymmetry compares the top and bottom halves. 

Geometric shape. In fashion, the shape of an item is likely to be important in predicting return 

rates. For example, long dresses are often bought for more formal wear where fashion fit might be 

extremely important, while shorter dresses are bought for more casual wear where the consumer is less 

discerning. Shape ratio, the ratio of median width to the median height, captures both sleeveless and 

item-length phenomena. Because the GBRT allows interactions between the shape ratio and category, 

the impact of this variable can vary by category such as dresses (length matters more) versus shirts 

(sleeves matter more). Figure 6iv provides examples of high and low shape ratios for dresses and shirts. 

Shape triangularity, the ratio of the median width of the bottom 25% of the item to the median width of 

the top 25% of the item, differentiates many fashion items. For example, an A-line dress has high shape 

triangularity while a pencil dress has a shape triangularity close to 1. Because triangularity is easy to 

visualize, for brevity we do not provide examples in Figure 6. 

Uniqueness. Uniqueness might contain information not otherwise captured by the 

automatically-extracted image-based interpretable features. For consistency with the GBRT/CNN model, 

we define uniqueness as the Euclidean distance between the CNN-learned features of the item and the 

category mean of the CNN-learned features. Although uniqueness did not improve the GBRT/CNN 

predictive ability, the lack of improvement may have been because the CNN features already contain a 

(black-box) measure that captures uniqueness.  

5.2. Model-Free Evidence Motivates the Use of Interpretable Features 

 Before we examine formal models, we examine whether or not the proposed automatically-

extracted image-based interpretable features are related to return rates. Figure 7a reports the 

correlations between return rates and the interpretable features (other than color clusters). Figure 7b 

reports the return rates for the top five and bottom five color clusters. These model-free analyses 
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motivate a more-complex machine-learning model. 

Figure 7. Model-Free Evidence: Correlations of Return Rates and Interpretable Image-based Features  

(a) Correlations of Return Rate and features  (b) Return Rate by Selected Color Clusters

    

Note: For illustration, we use in (b) the largest color cluster present in the product image.  

5.3. Summarizing the Marginal Effect of the Interpretable Features  

Our analyses in §4 suggest that features (image and non-image) interact and that a GBRT (or 

another machine-learning model) is a good model with which to predict return rates. For comparison to 

the CNN-based predictive model, we estimate a GBRT model with automatically-extracted image-based 

interpretable features added to non-image features. Interpreting the impact of features in a tree-based 

model with hundreds of trees is challenging. The machine-learning literature uses the SHAP (SHapley 

Additive exPlanations) framework to interpret the marginal impact of each feature on the predicted 

target variable (Lundberg & Lee 2017). The SHAP value is based on Shapley values from game theory and 

enables us to interpret feature impacts in an arbitrary black-box model. The SHAP value for feature 𝑗𝑗 for 

item 𝑖𝑖 (denoted as 𝜙𝜙𝑖𝑖𝑖𝑖) indicates the marginal change in the predicted return rate 𝑟̂𝑟𝑖𝑖 due to a change in 

the value of interpretable feature 𝑗𝑗 while taking into account all other features in the model. 

Mathematically, the predicted value 𝑟̂𝑟𝑖𝑖 of the model for item 𝑖𝑖 could be decomposed as 𝑟̂𝑟𝑖𝑖 = 𝑟𝑟 + ∑ 𝜙𝜙𝑖𝑖𝑖𝑖𝑗𝑗  

(where 𝑟𝑟 is the average return rate for all items). By computing SHAP values for all items, we obtain a 



30 
 

sample of SHAP values that can interpreted as the marginal impact on predicted 𝑟̂𝑟𝑖𝑖 given a random set of 

all feature values. 

To determine the relative importance of each interpretable image feature, we use the mean 

absolute SHAP value, 𝐹𝐹𝑗𝑗 = 𝐼𝐼−1 ∑ �𝜙𝜙𝑖𝑖𝑖𝑖�𝑖𝑖 , where 𝐼𝐼 is the number of items and we sum 𝜙𝜙𝑖𝑖𝑖𝑖 over all items 𝑖𝑖 

for feature 𝑗𝑗. Intuitively, 𝐹𝐹𝑗𝑗 measures how far on average the given feature 𝑗𝑗 pushes the predicted value 

of 𝑟̂𝑟𝑖𝑖 from the sample mean 𝑟𝑟. For ease of interpretation, we use Pareto charts that rank the features by 

𝐹𝐹𝑗𝑗 and display the most impactful features first.  

To illustrate the use of SHAP values, Figure 8 ranks the color cluster centers by their impact on 

the predicted return rate, 𝐹𝐹𝑗𝑗, from highest to lowest, measured by the average absolute SHAP value 

within the cluster. Figure 8 provides more nuanced interpretations on an item’s color composition than 

do retailer pre-defined color labels. For example, prototypical red has a high impact, but other shades of 

red have a low impact. Some shades of blues have a high impact, but the prototypical blue has a low 

impact.  

Figure 8. The Effect of Color Clusters on Return Rates (Clusters Ranked by 𝐹𝐹𝑗𝑗) 
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5.4. Automatically-Extracted Image Features and Return Rates 

Figure 9 provides the Pareto Chart for the automatically-extracted image-based interpretable 

features. We address non-image features in §5.6. Figure 9 reports mean-absolute SHAP values for all 

features. We aggregate the impact of color clusters by the sum of their SHAP values. Online Appendix B 

provides more detail on color clusters  

The 𝐹𝐹𝑗𝑗 do not indicate the direction of the impact of a feature, nor do the 𝐹𝐹𝑗𝑗 illustrate variation 

across items. For example, a feature may have the same 𝐹𝐹𝑗𝑗 value if it is high on a few items and low on 

many, or just moderate for all items. Figure 9 complements 𝐹𝐹𝑗𝑗 with the correlation between SHAP values 

and standardized feature values to indicate the direction of impact on predicted return rate and to 

suggest whether the feature affects many items (high correlation) or just a few items (low correlation). 

See Online Appendix B for the directionality and variation of impact of color clusters. 

Figure 9. Pareto Chart of SHAP Values for the Automatically-Extracted Image Features

 

Consistent with experience in fashion apparel, color clusters have the greatest impact on return 

rates. Shape ratios are the next most important and the direction is as expected. More formal items 

(lower shape ratio) have higher return rates than more casual items (higher shape ratio). As expected, 
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shape ratio has different interpretations for different categories (captured in Figure 10 below). 

Sleeveless dresses (lower shape ratio) are returned more often, consistent with the implications of the 

HCFs (see §3.2). Interestingly, horizontal stripes are important and are associated with low return rates, 

while vertical stripes are much less important. Pattern complexity is important and positively correlated 

with return rates, while uniqueness is negatively correlated with return rates. Uniqueness was 

redundant with the CNN features in the predictive model (§4.5), but provides incremental predictive 

ability in a model with interpretable features (Figure 9). 

The brightness features are less important, likely because some brightness information is 

extracted by the color clusters. However, bright products have higher return rates while products with a 

high variation of brightness (many contrasting colors) have lower return rates. Interestingly, brightness 

has low impact on predicted return rate, but high correlation. When we examine variation among items 

(Figure 10), this is explained because the SHAP values tend to be small in magnitude, but consistent in 

their impact on return rates. 

To provide further insight to buyers and designers about the variation in SHAP values within 

items, we use a method known as “bee-swarm charts” to visualize the SHAP values, 𝜙𝜙𝑖𝑖𝑖𝑖 for all items 𝑖𝑖 for 

all features 𝑗𝑗. A bee-swarm chart details, for each item, the impact on return rate predictions of high vs. 

low values of the feature. Features are ranked by the mean absolute SHAP values, 𝐹𝐹𝑗𝑗.  

Figure 10 provides the variation in impact (bee-swarm chart) for the automatically-extracted 

interpretable image-based features.  For example, on average items with higher values of the shape ratio 

are less likely to be returned, but this relation is not homogeneous. Buyers and designers can examine 

the detailed points, each of which corresponds to an item, to determine the impact of that item’s shape 

ratio for that item. This can be done for any of the automatically-extracted interpretable image-based 

features, including color clusters. (Online Appendix B provides bee-swarm charts for color clusters.) 
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Figure 10. The Impact of Automatically-Extracted Interpretable Image-based Features (Bee-swarm chart)  

 

5.5. Using the Interpretable Features to Source or Design Fashion Items 

By combining the insights from Figures 6 through 10, we can predict items that are likely or not 

likely to be returned. For example, shirts with higher shape ratios, horizontal stripes, and darker colors 

(red dots to the left in the bee-swarm chart) are less likely to be returned. Shirts with lower shape ratios, 

solid colors (no horizontal stripes or patterns), and a pinkish color (cluster 24) are more likely to be 

returned (blue dots to the right in the bee-swarm chart). Examples of such shirts and dresses are shown 

in Figure 11. For confidentiality, we do not provide the predicted or actual return rates, but they are 

consistent with the expectations from the interpretable model.  
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Figure 11. Illustration of Combining Interpretable Image Features on Expected Return Rates  

 

Note: We expect that Shirt (a) and Dress (a) have low return rates and Shirt (b) and Dress (b) to have high return rates. The data 
confirms these expectations. 

5.6. Non-image Features and Return Rates 

 Item category, price, and seasonality are all important features. With mean absolute SHAP 

values of 2.89, 2.78, and 1.37, respectively, they are, on average, more impactful than the automatically-

generated image-based interpretable features. Non-image features are best included in the GBRT model 

from which SHAP values are computed, both as controls and because of their interactions with the 

automatically-extracted image-based interpretable features. The non-image features also provide 

valuable diagnostic information. Online Appendix B provides greater detail on the non-image features, 

e.g., sales and return rates by category. 

5.7. Comparison of Predictive Models: Deep-learned vs. Interpretable Features 

Recognizing the tradeoff between predictive ability and interpretability, we expect an 

interpretable-feature GBRT model to predict better than either the non-image baseline or the color-label 

model, but we do not expect the model to predict as well as the GBRT/CNN model. This is indeed the 

case: a GBRT model based on the automatically-extracted image-based interpretable features has an 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 = 45.81, which is less than that the 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2 = 46.88 for the GBRT/CNN model. Both predictive 
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abilities are well above the non-image baseline and the rudimentary image (color-label) model. 

Predictive ability is slightly better than the more-difficult-to-interpret automated-pattern-&-color-

features model (Table 1) and better than the model based on HCFs (§4.5).  

Our automatically-generated image-based interpretable features were curated carefully to 

provide insight while predicting return rates, but such choices are not unique. Retailers and researchers 

may wish to explore other interpretable features or combinations of HCFs and interpretable features. 

6. Discussion and Further Research 

Product returns generate considerable costs for online retailers – a large and growing retail 

channel. We propose that images, available prior to a fashion season, enable retailers to select which 

fashion-items to display online. We demonstrate, by example, that image-based features in a machine-

learning model provide substantial incremental predictive ability relative to models based on traditional 

measures available to the retailer prior to launch. The predictive ability appears to be robust to a large 

number of variations. The display policy depends on the accuracy of the predictions and demonstrates 

that increased profits are feasible.   

We augment predictions with automatically-extracted image-based interpretable features that 

can be used quickly and repeatedly for every fashion season and that scale to large assortments and 

many categories of items. The interpretable model sacrifices a small amount of predictive ability to 

provide diagnostic information valuable to the retailer’s buyers and designers. Both the predictive and 

interpretable models, once developed and trained, run quickly and scale well. 

Our application focuses on fashion-item returns in the apparel industry. This industry is 

important by itself, but we expect the approach to apply more broadly. Incorporating product images 

has the potential to improve predictive accuracy prior to product launch and generate important insights 

for design in industries such as hospitality, furniture, real estate, and even groceries.  

Our analyses are illustrative and ceteris paribus. Researchers might explore (1) policies in which 
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items are displayed online but not offline, (2) the implications on overall demand (online and offline) of 

not displaying items online, (3) interactions among items, (4) policies in which online items can be 

returned offline and thus increase offline traffic, (5) analyses that combine prelaunch features with 

postlaunch features, (6) how item features and prices jointly affect return rates, and (7) models that 

predict and provide insight jointly about sales and returns. 
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Appendix. Tuning of Hyperparameters of the GBRT Model 

We tuned the hyperparameters of the GBRT model with a grid search over the set of parameters 

presented in Table C.1. The criterion was predictive ability in the validation sample. The model was then 

tested using the held-out out-of-sample predictions. For each iteration of the grid search, we stopped 

adding additional regression trees after the accuracy on the validation sample did not improve for 

twenty-five consecutive trees. 

Table C.1. Grid for the GBRT Hyperparameters 

LightGBM 
parameter name Set of tested values Parameter Description 

n_estimators [3000] Maximum number of boosting trees 
learning_rate [0.025, 0.01, 0.05] Shrinkage rate 
max_depth [7, 9, 11] Maximum depths of the regression tree 
num_leaves [32, 48] Maximum number of leaves in one regression tree 
reg_lambda [0, 5] Weight of L2 regularization 
reg_alpha [0, 5] Weight of L1 regularization 
colsample_bytree [0.5] Random subset of features to be used in one regression tree 

Note: Parameters not listed in the table take default values in LightGBM package 
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Online Appendix A. Proof that the Profit-Maximizing Policy is a Threshold Policy, that the 
Threshold Policy is Intuitive, and that Profits are Decreasing in Predictive Uncertainty. 

Result 1. Suppose (1) the firm’s prior on the profitability of an item, 𝜋𝜋, is normally distributed, 

𝜋𝜋 ~ 𝒩𝒩(𝜇𝜇0;  𝜎𝜎02), (2) the firm observes an estimate of profitability 𝜋𝜋�|𝜋𝜋 ~ 𝒩𝒩(𝜋𝜋;  𝜎𝜎12), and (3) the firm 

seeks a policy to decide whether to put an item online or not. Then the profit maximizing policy, 𝒫𝒫(𝜙𝜙), is 

a threshold policy: 

(A1)    𝒫𝒫(𝜙𝜙) =  �
1 𝑖𝑖𝑖𝑖 𝜋𝜋� ≥ −𝜇𝜇𝑜𝑜

𝜎𝜎12

𝜎𝜎𝑜𝑜2

0 𝑖𝑖𝑖𝑖 𝜋𝜋� < −𝜇𝜇𝑜𝑜
𝜎𝜎12

𝜎𝜎𝑜𝑜2

 

The policy in Equation A1 is intuitive. For example,  

● If predictions are perfect, then 𝜎𝜎12 = 0 and the policy reverts to that of perfect prediction; launch 

those items for which 𝜋𝜋�  ≥ 0. 

● If the model has no predictive ability, then 𝜎𝜎12 → ∞ and the policy reverts to the prior mean, 𝜇𝜇𝑜𝑜; 

launch all items if and only if the prior mean is positive. 

● If there is no uncertainty in the prior, then 𝜎𝜎𝑜𝑜2 → 0 and the policy again reverts to the prior 

mean; launch all items if and only if the prior mean is positive. 

● For finite values of 𝜎𝜎12 and 𝜎𝜎𝑜𝑜2, the ratio, 𝜎𝜎12/𝜎𝜎𝑜𝑜2, modifies the amount by which the predicted 

profits must exceed prior beliefs in order to launch. 

Proof of the threshold policy: The firm solves the following optimization problem: 

(A2)  max
𝒫𝒫(𝜙𝜙)∈[0,1]

𝔼𝔼[𝒫𝒫(𝜙𝜙) ∗ 𝜋𝜋 + �1 −𝒫𝒫(𝜙𝜙)� ∗ 0] = max
𝒫𝒫(𝜙𝜙)∈[0,1]

𝔼𝔼[𝒫𝒫(𝜙𝜙) ∗ 𝜋𝜋] 

 where 𝜙𝜙 ≡ (𝜋𝜋� , 𝜇𝜇0,𝜎𝜎02,𝜎𝜎12) is the set of all known parameters; 𝜋𝜋�|𝜋𝜋 ~ 𝒩𝒩(𝜋𝜋;  𝜎𝜎12) and 𝜋𝜋 ~ 𝒩𝒩(𝜇𝜇0;  𝜎𝜎02) 

Using the law of iterative expectations, we rewrite the initial maximization problem (A2) as: 

(A3)  max
𝒫𝒫(𝜙𝜙)∈[0,1]

𝔼𝔼[𝒫𝒫(𝜙𝜙) ∗ 𝜋𝜋] = max
𝒫𝒫(𝜙𝜙)∈[0,1]

𝔼𝔼�𝒫𝒫(𝜙𝜙) ∗ 𝔼𝔼[𝜋𝜋|𝜙𝜙]� = max
𝒫𝒫(𝜙𝜙)∈[0,1]

𝔼𝔼�𝒫𝒫(𝜙𝜙) ∗ 𝔼𝔼[𝜋𝜋|𝜋𝜋�]� 

The last step relies on the assumption that 𝜎𝜎0,𝜎𝜎1, 𝜇𝜇0 are observable. 
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Because 𝔼𝔼[𝜋𝜋|𝜙𝜙] is a function of observables, 𝜙𝜙, we can denote 𝔼𝔼[𝜋𝜋|𝜙𝜙] = 𝑓𝑓(𝜙𝜙). Equation (A3) is 

rewritten as: 

(A4)     max
𝒫𝒫(𝜙𝜙)∈[0,1]

𝔼𝔼[𝒫𝒫(𝜙𝜙) ∗ 𝑓𝑓(𝜙𝜙)] 

Equation (A4) implies that the optimal policy 𝒫𝒫∗(𝜙𝜙) has the following form (ℐ(∙) is an indicator 

function): 

(A5)    𝒫𝒫∗(𝜙𝜙) = ℐ(𝑓𝑓(𝜙𝜙) ≥ 0) = ℐ(𝔼𝔼[𝜋𝜋|𝜙𝜙]) ≥ 0) 

We show in the following that, for the case of normal priors, this policy would have a threshold 

form. [Note that the optimal policy in Equation (A5) does not depend on the normality assumption 

profitability; the policy is easily generalized to other distributions.] 

Because 𝜋𝜋� is normally distributed conditionally on 𝜋𝜋 and since the prior is also normally 

distributed, the posterior is normally distributed. Using standard formulae, we write: 

(A6)    𝜋𝜋|𝜋𝜋�~𝒩𝒩�𝜋𝜋�𝜎𝜎 0
2+𝜇𝜇0𝜎𝜎12

𝜎𝜎 0
2+𝜎𝜎12

;  𝜎𝜎 0
2𝜎𝜎12

𝜎𝜎 0
2+𝜎𝜎12

� and 𝜋𝜋�~𝒩𝒩(𝜇𝜇0;  𝜎𝜎 0
2 + 𝜎𝜎12) 

From (A6), it follows that: 

(A7)   𝔼𝔼[𝜋𝜋|𝜙𝜙] = 𝜋𝜋�𝜎𝜎 0
2+𝜇𝜇0𝜎𝜎12

𝜎𝜎 0
2+𝜎𝜎12

⇒ 𝒫𝒫∗(𝜙𝜙) = ℐ(𝔼𝔼[𝜋𝜋|𝜙𝜙] ≥ 0) = ℐ �𝜋𝜋� ≥ −𝜇𝜇0 ∗
𝜎𝜎12

𝜎𝜎02
� 

Which is the threshold policy.  

Result 2. Under the assumptions of Result 1, the optimal expected profit is: 

(A8)   Π∗ = �1 −Φ�−𝜇𝜇0
𝜎𝜎𝜈𝜈
�� ∗ 𝜇𝜇0 + 𝜎𝜎𝜈𝜈 ∗ 𝜑𝜑 �−

𝜇𝜇0
𝜎𝜎𝜈𝜈
� 

Where Φ(⋅) and 𝜑𝜑(⋅) are the standard normal CDF and PDF respectively, and 𝜎𝜎𝜈𝜈 = 𝜎𝜎02

�𝜎𝜎 0
2+𝜎𝜎12

 . 

Proof: By substituting the optimal policy from (A7) and conditional expectation from (A8) to (A2), we 

rewrite the expected optimal profit as: 

(A9) Π∗ = 𝔼𝔼 �ℐ �𝜋𝜋� ≥ −𝜇𝜇0 ∗
𝜎𝜎12

𝜎𝜎02
� ∗ �𝜋𝜋�𝜎𝜎 0

2+𝜇𝜇0𝜎𝜎12

𝜎𝜎 0
2+𝜎𝜎12

�� = 𝔼𝔼[ℐ(𝜈𝜈 ≥ 0) ∗ 𝜈𝜈] = ℙ[𝜈𝜈 ≥ 0]𝔼𝔼[𝜈𝜈|𝜈𝜈 ≥ 0] 
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where 𝜈𝜈 = 𝜋𝜋�𝜎𝜎 0
2+𝜇𝜇0𝜎𝜎12

𝜎𝜎 0
2+𝜎𝜎12

 ~ 𝒩𝒩�𝜋𝜋�𝜎𝜎 0
2+𝜇𝜇0𝜎𝜎12

𝜎𝜎 0
2+𝜎𝜎12

; 𝜎𝜎04

�𝜎𝜎 0
2+𝜎𝜎12�

2 (𝜎𝜎 0
2 + 𝜎𝜎12)�~𝒩𝒩�𝜇𝜇0; 𝜎𝜎04

𝜎𝜎 0
2+𝜎𝜎12

�~𝒩𝒩(𝜇𝜇0;𝜎𝜎𝜈𝜈2)  

Because 𝜈𝜈 is normally distributed, (A9) can be rewritten using the formula for the expectation of 

the truncated normal distribution: 

(A10)    Π∗ = �1 −Φ�−𝜇𝜇0
𝜎𝜎𝜈𝜈
�� ∗ 𝜇𝜇0 + 𝜎𝜎𝜈𝜈 ∗ 𝜑𝜑 �−

𝜇𝜇0
𝜎𝜎𝜈𝜈
�  

Result 3. The expected profit under the optimal policy is a decreasing function of 𝜎𝜎12. 

Proof: Taking the derivative of (A10) with respect to 𝜎𝜎12: 

(A11)  −𝜇𝜇0 ∗ 𝜑𝜑 �−
𝜇𝜇0
𝜎𝜎𝜈𝜈
� �− 𝜇𝜇0

2𝜎𝜎02�𝜎𝜎02+𝜎𝜎12�
1
2
� − 𝜎𝜎02

2�𝜎𝜎02+𝜎𝜎12�
3
2
𝜑𝜑 �− 𝜇𝜇0

𝜎𝜎𝜈𝜈
� +

𝜎𝜎02

�𝜎𝜎02+𝜎𝜎12�
1
2

 𝜑𝜑′ �−𝜇𝜇0
𝜎𝜎𝜈𝜈
�  �− 𝜇𝜇0

2𝜎𝜎02�𝜎𝜎02+𝜎𝜎12�
1
2
�  = � 𝜇𝜇02

2𝜎𝜎02�𝜎𝜎02+𝜎𝜎12�
1
2
− 𝜎𝜎02

2�𝜎𝜎02+𝜎𝜎12�
3
2

+

𝜎𝜎02

�𝜎𝜎02+𝜎𝜎12�
1
2
�𝜇𝜇0�𝜎𝜎0

2+𝜎𝜎12�
1
2

𝜎𝜎02
�  �− 𝜇𝜇0

2𝜎𝜎02�𝜎𝜎02+𝜎𝜎12�
1
2
��𝜑𝜑 �−𝜇𝜇0

𝜎𝜎𝜈𝜈
� = � 𝜇𝜇02

2𝜎𝜎02�𝜎𝜎02+𝜎𝜎12�
1
2
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3
2
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1
2
��𝜑𝜑 �−𝜇𝜇0

𝜎𝜎𝜈𝜈
� = − 𝜎𝜎02

2�𝜎𝜎02+𝜎𝜎12�
3
2
𝜑𝜑 �−𝜇𝜇0

𝜎𝜎𝜈𝜈
�  

Because 𝜑𝜑(⋅) > 0 and − 𝜎𝜎02

2�𝜎𝜎02+𝜎𝜎12�
3
2

< 0, the expected profitability is decreasing function of 𝜎𝜎12 and 

therefore an increasing function of model accuracy.   
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Online Appendix B. Supporting Tables and Figures 

Table B.1. Improvement in Predictive Accuracy Varying Minimum Threshold on Online Sales 

Model Non-Image Features Image 
Features Out of Sample R2 Improvement over 

baseline 

CNN Features with 10 as 
threshold for online sales 

Category, seasonality, 
price, color labels 

Deep-
learning 

43.14 
(0.20) +12.75% 

CNN Features with 20 as 
threshold for online sales  

Category, seasonality, 
price, color labels 

Deep-
learning 

46.88 
(0.19) +13.48% 

CNN Features with 30 as 
threshold for online sales 

Category, seasonality, 
price, color labels 

Deep-
learning 

51.23 
(0.17) +12.08% 

Note: Improvements are calculated for baseline models estimated on the corresponding samples. Standard 
deviations are reported in parentheses. 
 

Table B.2. Tests of Uniqueness, Precision (variance of 𝑁𝑁𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), and Distance from Prior Collections 

Model Non-Image Features Image Features  Out of Sample R2 
Improvement over 

CNN Features Model 

CNN Features 
Category, seasonality, 

price, color labels 
Deep-learning 46.88 

(0.19) 
0.00% 

CNN Features 
(including 
uniqueness) 

Category, seasonality, 
price, color labels, 
image uniqueness 

Deep-learning 46.82 
(0.23) 

-0.13% 

CNN Features 
(including vs. 
last year) 

Category, seasonality, 
price, color labels, 
image uniqueness 

Deep-learning 44.55 
(0.39) 

-0.60% (see note) 

CNN Features 
(precision 
weighting) 

Category, seasonality, 
price, color labels, 
variance weighting 

Deep-learning 
 

46.77 
(0.26) 

 

-0.23% 
 

Notes: The sample of items included when estimating the last-year model exclude products sold only in the first 
year of the data. A GBRT/CNN model for the same items yields 44.85 (0.33). The –2.8% is relative to this model. 
Standard deviations are reported in parentheses.
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Table B.3. Improvement in Predictive Accuracy Using Alternative Prediction Models 

Model Non-Image Features Image 
Features Out of Sample R2 Improvement 

over Baseline 

GBRT (CNN Features) Category, seasonality, 
price, color labels Deep-learning 46.88 

(0.19) +13.48% 

Bagging Methods (CNN 
Features) 

Category, seasonality, 
price, color labels Deep-learning 45.35 

(0.14) +9.78% 

LASSO (CNN Features) Category, seasonality, 
price, color labels Deep-learning 44.11 

(0.32) +6.78% 

Note: Standard deviations are reported in parentheses. 

Table B.4. Predictions for the two Largest Categories (Dresses and Shirts)  

Model Non-Image Features  Image 
Features  Out of Sample R2 Improvement 

over Baseline 

Non-Image 
Baseline Category, seasonality, price None 

57.94  
(0.27) –  

Color-labels Category, seasonality, price, 
and color labels None 

59.79 
(0.24) +3.19% 

Automated 
Color Features 

Category, seasonality, price, 
color labels RGB 

60.86 
(0.22) +5.04% 

Automated 
Color and 
Patterns 

Category, seasonality, price, 
color labels RGB + Gabor 61.91 

(0.31) +6.85% 

Human-coded 
features 

Category, seasonality, price, 
color labels, human-coded 

features 
Human-coded 61.91 

(0.27) +6.85% 

CNN Features Category, seasonality, price, 
color labels Deep-learning 63.69 

(0.19) +9.92% 

Note: Standard deviations are reported in parentheses. 

Table B.5. Improvement in Predictive Accuracy Using an Alternative CNN 

Model Non-Image Features Image Features Out of Sample R2 Improvement 
over Baseline 

ResNet CNN (this paper) Category, seasonality, 
price, color labels Deep-learning 46.88 

(0.19) +13.48% 

VGG-19 CNN Category, seasonality, 
price, color labels Deep-learning 46.84 

(0.18) +13.39% 

Note: Standard deviations are reported in parentheses. 
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Table B.6. Improvement in Predictive Accuracy Using PCA (nonlinear and linear tested; linear shown) 

Model Non-Image Features Image Features Out of Sample R2 Improvement 
over Baseline 

Color Features Category, seasonality, 
price, color labels RGB 43.48 

(0.18) +5.25% 

Color and Patterns Category, seasonality, 
price, color labels Gabor 41.37 

(0.33) +0.15% 

CNN Features Category, seasonality, 
price, color labels Deep-learning 46.55 

(0.21) +12.68% 

Note: Standard deviations are reported in parentheses. 

Table B.7. Predictions Using Automated Pattern & Color Image-Processing Features  

Model Non-Image Features Image Features  Out of Sample R2 Improvement 
over Baseline 

Non-Image 
Baseline 

Category, seasonality, 
price None 

41.31 
(0.18) –  

Color Features Category, seasonality, 
price, color labels RGB 

44.06 
(0.20) +6.66% 

Pattern 
Features 

Category, seasonality, 
price, color labels Gabor 44.34 

(0.23) +7.33% 

Color and 
Patterns 

Category, seasonality, 
price, color labels RGB + Gabor 45.28 

(0.18) +9.61% 

CNN Features Category, seasonality, 
price, color labels Deep-learning 46.88 

(0.19) +13.48% 

CNN Features 
all images 

Category, seasonality, 
price, color labels Deep-learning 47.48 

(0.22) +14.93% 

Notes: All models use LightGBM and differ only with respect to the set of features included. Standard deviations 
are reported in parentheses. 
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Table B.8. Improvement in Predictive Accuracy Using Alternative Image-Feature Extraction Methods 

Model Non-Image Features Image 
Features Out of Sample R2 Improvement over 

Baseline 

RGB Features Category, seasonality, 
price, color labels RGB 44.04 

(0.20) +6.61% 

HSV Features Category, seasonality, 
price, color labels HSV 44.30 

(0.14) +7.24% 

ORB Features  Category, seasonality, 
price, color labels ORB 43.53 

(0.25) +5.37% 

Note: Standard deviations are reported in parentheses. 

Table B.9. Online Sales and Return rates, Offline Sales and Return Rates, and Model-Predicted Online 

Return Rates by Product Category (based on all sales). Models estimated for categories 

with at least 400 items with ≥ 20 sales. 

Category 
Online 
Sales 

Online 
Returns  

Online 
Return 

Rate  

Offline 
Sales 

Offline 
Returns 

Offline 
Return 

Rate  

Number 
of 

Products 
≥ 𝟐𝟐𝟐𝟐 
Sales 

Predictive 
Accuracy 

Online, Out 
of Sample R2 
(Benchmark) 

Predictive 
Accuracy 

Online, Out 
of Sample R2 

(Main) 

Dresses 96,754 69,626 71.96% 45,923 1,615 3.52% 759 28.11 
(0.65) 

31.13 
(0.83) 

Shirts 80,586 39,379 48.87% 299,313 7,007 2.34% 1,213 14.78 
(0.59) 

24.08 
(0.77) 

Blouses 43,413 23,292 53.65% 104,778 2,667 2.55% 687 4.33 
(0.96) 

15.78 
(1.00) 

Pants 36,183 21,209 58.62% 103,353 3,264 3.16% 496 -1.10 
(1.16) 

-0.17 
(1.25) 

Knit 31,893 15,708 49.25% 137,227 3,889 2.83% 511 1.80 
(1.24) 

17.35 
(1.13) 

Jackets 21,304 12,228 57.40% 24,385 876 3.59% 302   
Blazer 13,190 7,627 57.82% 27,748 993 3.58% 166 - - 
Cardigans 11,315 4,167 36.83% 16,462 507 3.08% 69 - - 
Skirts 9,252 5,259 56.84% 26,884 746 2.77% 135 - - 
Coats 5,170 3,238 62.63% 1,299 49 3.77% 88 - - 
Bolero 4,867 3,367 69.18% 0 0 0.00% 41 - - 
Sweatshirts 3,862 2,170 56.19% 6,126 191 3.12% 56 - - 
Jumpsuits 1,902 1,303 68.51% 462 10 2.16% 27 - - 
Top 1,543 728 47.18% 0 0 0.00% 27 - - 
Leather 614 287 46.74% 809 34 4.20% 8 - - 
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Table B.10. Online Sales and Return rates, Offline Sales and Return Rates, and Model-Predicted Online 

Return Rates by Color Labels† Models estimated for color-label categories with at least 

400 items with ≥ 20 sales. 

Color 
Category 

Online 
Sales 

Online 
Returns  

Online 
Return 

Rate  

Offline 
Sales 

Offline 
Returns 

Offline 
Return 

Rate  

Number 
of 

Products 
≥ 𝟐𝟐𝟐𝟐 
Sales 

Predictive 
Accuracy 

Online, Out 
of Sample R2 
(Benchmark) 

Predictive 
Accuracy 

Online, Out 
of Sample R2 

(Main) 

Blue 84,947 49,054 57.75% 217,457 5,658 2.60% 1056 45.28 
(0.28) 

50.06 
(0.47) 

Grey 67,381 39,320 58.35% 92,119 2,787 3.02% 951 34.06 
(0.58) 

36.36 
(0.54) 

White 48,751 26,913 55.21% 118,060 3,154 2.67% 743 23.25 
(0.60) 

23.79 
(0.87) 

Red 42,708 25,749 60.29% 81,625 2,294 2.81% 542 45.80 
(0.62) 

50.90 
(0.79) 

Brown 41,540 23,557 56.71% 84,227 2,446 2.90% 590 19.09 
(0.77) 

24.72 
(0.95) 

Black 32,444 19,305 59.50% 67,663 2,028 3.00% 411 41.01 
(0.53) 

42.57 
(0.83) 

Green 10,550 6,581 62.38% 19,815 466 2.35% 144 - - 
Pink 3,539 2,118 59.85% 8,588 249 2.90% 53 - - 
Orange 3,054 1,865 61.07% 7,701 202 2.62% 53 - - 
Yellow 1,670 1,017 60.90% 2,356 64 2.72% 23 - - 
Violet 938 617 65.78% 2,273 66 2.90% 14 - - 
Several 318 151 47.48% 84,314 2224 2.66% 5 - - 
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Figure B.11. Return Rate by Postlaunch Time of Purchase, Day of the Week and Month 

 
 

  
Table B.12. Product Return Rates and Price Discounts 

Dependent Measure: Return rate 
 Model 1 Model 2 Model 3 Model 4 

Proportion discounted 0.080*** 0.086*** 0.088*** 0.078*** 
 (0.008) (0.007) (0.007) (0.007) 
Price (log10) 0.228*** 0.221*** 0.214*** 0.279*** 
 (0.012) (0.012) (0.012) (0.008) 
Intercept -0.156*** -0.113*** -0.083** 0.028** 
 (0.044) (0.041) (0.041) (0.015) 
Category Controls Yes Yes Yes No 
Color Controls Yes Yes No No 
Seasonality Controls Yes No No No 
# observations 4585 4585 4585 4585 
Adjusted R-squared (model) 0.434 0.414 0.403 0.258 

    Note: Standard errors are heteroskedasticity robust (*𝑝𝑝 ≤ 0.1, **𝑝𝑝 ≤ 0.05, ***𝑝𝑝 ≤ 0.01). R-squared is in-sample 
 



51 
 

Table B.13. Interpreting the Effect of Human-coded features (HCF) on Item Return Rates  

  Regression Model SHAP Values 
Asymmetric  0.022*** 0.92 
 (0.008)  
Floral -0.038*** -0.90 
 (0.010)  
Striped -0.063*** -0.95 
 (0.009)  
Geometric/abstract -0.020*** -0.89 
 (0.007)  
Lace details  0.010 0.85 
 (0.008)  
Metallic/sequin details  0.008 0.82 
 (0.006)  
Graphic details  0.008 0.34 
 (0.013)  
Text details  0.036* 0.69 
 (0.021)  
Short Sleeves -0.020*** -0.81 
 (0.006)  
Medium Sleeves -0.032*** -0.84 
 (0.008)  
Long Sleeves -0.032*** -0.87 
 (0.007)  
Belt 0.025*** 0.88 
 (0.010)  
Zipper -0.027** -0.80 
 (0.012)  
Intercept  0.039  –  
 (0.026)  
Price (log10)  0.256*** – 
 (0.014)  
Category Controls Yes Yes 
Color Controls Yes Yes 
Seasonality Controls Yes Yes 
# observations 1,972 1,972 
Adjusted R-squared (model) 0.628 – 

Notes: Standard errors are heteroskedasticity robust (*𝑝𝑝 ≤ 0.1, **𝑝𝑝 ≤ 0.05, ***𝑝𝑝 ≤ 0.01). Products included if 
sales  ≥ 20. 
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Figure B.14. Impact of Color Clusters on Return Rates  

 

Figure B.15. The Impact of Non-Image Features  

(a) Price and Category    (b) Seasonality 
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