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Key Takeaways

e The key challenge to prediction is to maximize the utility of available data without
detrimentally overfitting the data.

e One approach for doing so is to expand the prediction model by applying non-linear
functions to transform the original predictive variables into a much larger set of
variables, and then to reduce the dimensionality of the expanded set of variables by
applying regularized regression.

e An alternative solution for maximizing the utility of data is to curate the observations

and predictive variables for each individual prediction task using a model-free technique
called relevance-based prediction.



Abstract

The key challenge to prediction is to maximize the utility of data without overfitting the
observed data to the detriment of future predictions. The authors describe two techniques for
addressing this challenge. The first technique, proposed by Kelly, Malamud, and Zhou (2024), is
referred to as a high-complexity model (HCM). This approach applies non-linear functions to
transform the original predictive variables into a much larger set of variables. It then applies
regularized regression to guard against overfitting. The second technique, called relevance-
based prediction (RBP), described by Czasonis, Kritzman, and Turkington (2020, 2022a, 2022b,
and 2023), is a model-free approach that identifies the optimal combination of observations
and predictive variables for each individual prediction task. Whereas a single high complexity
model uses many variables to address all prediction tasks, relevance-based prediction relies on
relatively few variables but considers many combinations of observations and variables to
address all prediction tasks. The authors compare these alternative techniques.



THE VIRTUE OF TRANSPARENCY:

HOW TO MAXIMIZE THE UTILITY OF DATA WITHOUT OVERFITTING

Formal data-based prediction originated circa 1795 when Carl Friedrich Gauss introduced linear
regression analysis to predict astronomical motion. This technique survives today as the most
widely used approach for data-based prediction. However, there are many prediction tasks
that involve complicated relationships between the predictive variables and outcomes which
demand more sophisticated methods than linear regression analysis. These complicated
relationships are driven by conditionalities in which the nature of the relationship shifts as
conditions change. The key challenge to prediction is to extract as much information as
possible from a sample of data that potentially has many conditional relationships in a way that

does not overfit the observed data and thereby harm the effectiveness of future predictions.

It is generally assumed from principles of classical statistics that overfitting arises when
the number of predictive variables is too large relative to the number of observations. Kelly,
Malamud, and Zhou (2024) describe and illustrate a technique for maximizing the utility of data
that persuasively belies the common view that proliferation of predictive variables leads to
overfitting. Their approach, referred to as a high-complexity model, hereafter referred to as
HCM, uses nonlinear functions to transform the original predictive variables into a much larger
set of variables and then applies regularized regression to guard against overfitting.! The
premise of this approach is twofold: if enough transformations are included, the expanded
model will capture every conditional relationship in the data sample; and by applying

regularized regression, the model will only rely on a smaller set of useful transformations.



Czasonis, Kritzman, and Turkington (2020, 2022a, 2022b, and 2023) propose an
alternative solution for maximizing the utility of data without overfitting. Rather than build a
single comprehensive model of many variables to address all prediction tasks, their approach,
called relevance-based prediction and hereafter referred to as RBP, curates the observations
and predictive variables for each individual prediction task. RBP therefore uses many different
model-free prediction routines all composed from relatively few variables in contrast to Kelly,

Malamud, and Zhou who use a single model composed of many variables.

We proceed as follows. We first provide detailed descriptions of the HCM and RBP
approaches, offering a synthesized view of multiple articles on both topics along with further
extensions and perspectives. Then we construct a simple illustration using a contrived set of
HCM nonlinear transformations to show in a transparent way how these different techniques
render similar predictions by applying similar weights to observations. We then extend this
illustration to demonstrate that the near equivalence of these results holds when we expand
the number of predictive variables to a much larger set of randomly produced nonlinear
variable transformations. We then conduct a simulation to expand our understanding of these

different techniques. We conclude with a summary.

High-Complexity Models

As described by Kelly, Malamud, and Zhou (2024), HCMs use non-linear functions to transform a
model’s original set of predictive variables into a much larger set to extract as much information

as possible from the available data. HCMs then apply linear regression analysis along with



regularization techniques to reduce the model’s dimensionality to guard against overfitting. Let

us investigate this process in more detail within the context of linear regression analysis.

Suppose we wish to predict an unknown value of y, using any given values of an M-
dimensional row vector x;. To inform our predictions, we observe N historical outcomes y;
which we stack into a column vector, Y, and we observe N corresponding row vectors of x;,
consisting of M predictive variables which we stack into a matrix X. Without any loss of
generality, let us assume that all variables have been recentered to have average values of zero:

1,Y = 0 and 1),X = 0.

A classical linear regression model using ordinary least squares gives the following

prediction.
yt,linear = xt(XIX)_lxly (1)

In Equation 1, the operator ' denotes matrix inverse. The solution is identical if we

transform X into normalized z-scores by dividing each variable by its standard deviation: Z =

XQ;ila/; and z; = xtQ;ila/;, where O = X'X(N — 1)1 is the covariance matrix of X and Qg4

contains the diagonal elements of Q with zeros elsewhere.
yt,linear = Zt(Z,Z)_lz,Y (2)

We can write the same expression in terms of the correlation matrix P = Z'Z(N — 1)t

in which case the entire expression is divided by N — 1.

yt,linear = ZtP_lz,Y(N - 1)_1 (3)



Further, because correlations are symmetric, we can carry out principal components
analysis to decompose P into eigenvectors V (columns) and eigenvalues D (diagonal entries in a

square matrix).
P =VvDV' (4)

Expanding the inverse P~1, which only requires inverting the diagonal matrix D, we have

the following equivalent expression.
yt,linear = Zt(VD_lvl)Z’Y(N - 1)_1 (5)

These transformations are equivalent to performing linear regression analysis on the
principal component transformations of Z: Il = ZV and ; = z,V. We obtain the same linear
regression solution because principal components are linear transformations that retain all the
linear information in the data. The covariance matrix of the predictive variables Il is equal to D,

a diagonal matrix of the variances (eigenvalues) of the uncorrelated principal components.
yt,linear = n-tD_ll'[’Y(N - 1)_1 (6)

To summarize, we perform two linear multiplicative transformations on X, first to
normalize the variables, and second to project them as values on principal component vectors.

Therefore, instead of performing linear regression analysis on X, we perform it on a new set of

-1/2
diag

-1/2

the same number of variables I1 = XQ Vandm, = xtﬂdiagV. Linear regression predictions

Yt linear are invariant to this transformation.

Representing observations in terms of principal component transformations I has useful

properties:



1. Itretains all the linear information in Z in as many or fewer variables because linear
regression predictions are invariant to principal component transformation.
2. The principal component variables do not share any linear information because they are
uncorrelated.
3. The principal components can be organized in order of their linear information content.
In cases with more variables than observations (M > N), the principal components
compress all the linear information in centered zero-average variables Z into a maximum of N —
1 variables, which is the maximum amount of linear information that N centered observations

can contain.? The eigenvalues of any additional principal components are equal to zero. The

-1/2
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transformation is now I, = XQ;/ Veup and ey = X diag Vsub where Vg,,;, includes only
the eigenvectors corresponding to nonzero eigenvalues. We can express this solution in terms

of the truncated diagonal matrix of eigenvalues, D},
Vttinear = ZtVsust_uleS’ubZ'Y (7)

The same expression can be written in terms of the full eigenvector transformation but
with the Moore-Penrose pseudo inverse D™ in place of the traditional matrix inverse D~1. The
Moore-Penrose pseudo inverse in this setting simply computes the reciprocal of the nonzero

diagonal eigenvalues but leaves zero values as zero, achieving the same effect as truncation.
~ _ +y71 71
YVtlinear = ZtVD V'Z'Y (8)

This information compression is useful because we can perform standard linear
regression analysis on the compressed subset of transformed II variables, which is not possible

on the original set of more than N variables. The linear regression solution obtained this way



provides equivalent predictions to the method of ridgeless regression (see Hastie, Montenari,
Rosset, and Tibshirani, 2022). Ridgeless regression performs the same information
compression for cases where M > N by invoking ridge regression, which adds a penalty

CIIB113 = ¢B’'P to the squared error loss function of OLS corresponding to the solution
Veriage(§) = z.(Z'Z + {I)71Z'Y, and uses it to approach the unpenalized solution, which does
not inherently have a unique solution, by taking the limit as { = 0 from above. We can think of

this solution as retaining all the linear information in Z.

Now consider a case in which Z contains significantly fewer variables than observations
(M < N). Linear regression analysis is limited in its capacity to explain Y. Instead of using the
variables in Z, HCMs generate nonlinear transformations of them for use in a new expanded
linear regression. Each transformation of the observation z; forms a new variable s;; = f.(z;).
The transformation functions f; could take any form, mapping z; to a real number. Though
there are an infinite number of possible functions, there is a limit to how much information they
can collectively convey about Z, because Z does not contain infinite information. To put it
differently, many or most of the f; transformations will contain overlapping information about
the data. HCMs could use principal component transformations, as discussed earlier, to
condense the linear information in the transformed variables S into a subset of principal
components which we call Q. No matter how many nonlinear transformations we use, there is
a maximum of N — 1 condensed Q variables. For intuition on the overlapping information,
consider an extreme case with just two observations. Every function will either generate a
higher value for observation 1, a higher value for observation 2, or the same value for both.

Regardless of what the values are, any functions that have higher values for observation 1 are



linearly redundant because they are perfectly correlated. There are only a few distinct ways to

differentiate between two observations. The same intuition applies to larger N.

To summarize the foregoing discussion, HCMs expand a prediction model with many
nonlinear transformations of the original predictive variables to extract as much information as
possible from a sample of data that may contain many conditional relationships. HCMs then
reduce the dimensionality of the covariance matrix by applying ridgeless regression or
equivalently by applying principal components analysis to guard against overfitting the data.
Kelly, Malamud, and Zhou also consider the use of ridge regression on S with a nonzero
regularization parameter ¢ to further mitigate the risk of overfitting, which is similar but not
identical to retaining a subset Qg,,; of principal components of S. In addition to the method and
degree of regularization, HCM predictions also depend on the method of nonlinear
transformation and the number of random transformations. In practice the optimal calibration
choices are not known in advance but may be chosen using cross-validation routines that

evaluate average efficacy on holdout samples synthesized from the observed data.

Next, we describe RBP, which also seeks to maximize the utility of data without

overfitting but in a very different way.

Relevance-Based Prediction

As described by Czasonis, Kritzman, and Turkington (2020, 2022a, 2022b, and 2023), RBP is a
model-free prediction technique that forms a prediction as a relevance-weighted average of

observed outcomes in which relevance has a precise statistical meaning.® Although RBP gives



the same prediction as linear regression analysis if it is applied across all observations, it usually
gives a more reliable prediction if it is applied to a subset of relevant observations. When RBP
is applied to a subset of relevant observations, it is called partial sample regression. RBP also
depends crucially on fit, which measures the average alignment of relevance and outcomes
across all pairs of observations that go into a prediction task. Fit assesses the expected
reliability of individual predictions before they are rendered. The final feature of RBP is grid
prediction which forms a composite prediction as a reliability-weighted average of many

predictions given by different combinations of observations and predictive variables.
Relevance

Relevance is a statistical measure of the importance of an observation to forming a prediction
given a chosen set of predictive variables. It is composed of two components, similarity and

informativeness.
rie = sim(xy, %)+ (info(x;, %) + info(x,, ) (9)

If a prediction is formed from a single predictive X variable, which we may call 4,

similarity and informativeness are measured as squared z-scores.

sim(xi, Xea) = — % (xia — xca)?/0%, (10)
info(xia, Xa) = (x;4 — %4)* /0%, (11)
info(xea, X4) = (Xea — X4)% /0%, (12)

10



In these equations, x;4 is the value of the predictive variable A for observation i, x4 is
the value of the variable for a chosen prediction circumstance, X, is the average of all the

observations of variable 4, and Oy, iS the standard deviation of all the observations of A.

If we instead form a prediction from more than a single predictive variable, we must use
the more general Mahalanobis distance® to measure multivariate similarity and

informativeness.

sim(x;, x;) = — % (x; = %) 0 — xp)' (13)
info(x;, ¥) = (x; — Q™ (x; — X)’ (14)
info(x,x) = (x, —x)Q (x, — %)’ (15)

In these equations, x; is a vector of the values of M predictive variables for a prior
observation, x; is a vector of the values of the predictive variables for a specific prediction task,
X = 1515 XN~1is the average of the predictive variables across all observations, and Q71 is the
inverse covariance matrix of all the observations of the variables. The vector (x; — x;)
measures how distant the observations are independently from the circumstances of the
prediction task. By multiplying this vector by the inverse of the covariance matrix, we capture
the interaction of the predictive variables, and at the same time we standardize the distances
by dividing by variance. By multiplying this product by the transpose of the vector (x; — x;) we

consolidate the outcome into a single number.

Notice that for our measure of similarity we multiply by negative 1/2. The negative sign
converts a measure of distance into a measure of similarity. We multiply by 1/2 because the

average distance between observations is twice as large as the observations’ distances from the

11



average of all observations, which means that pairwise comparisons, including the comparison
of a prior observation to the prediction circumstance, are measured in units that are twice as
large as distances from average. When we measure informativeness, we retain its positive sign,
and we have no need to multiply by 1/2. By measuring informativeness as a difference from
average, we are claiming that unusual observations contain more information than common
observations, which follows from Claude Shannon’s information theory.®> Finally, note that we
also measure the unusualness of the current observation. We do so to center our measure of
relevance on zero, Y¥ , r;; = 0. All else being equal, observations that are like current
circumstances but different from average circumstances are more relevant than those that are

not.

This definition of relevance is not arbitrary. We know from the Central Limit Theorem
that the relative likelihood of an observation from a multivariate normal distribution is
proportional to the exponential of a Mahalanobis distance. We also know from information
theory that the information contained in an observation is the negative logarithm of its
likelihood. Therefore, the information contained in a point on a univariate or multivariate

normal distribution is proportional to a Mahalanobis distance.

We can also justify the non-arbitrariness of relevance by considering a limiting case of

the predictions it yields. RBP forms a prediction as a weighted average of prior outcomes for Y.

Ve = Z%V=1 Wit Vi (16)

12



If we define weights in terms of relevance as follows, which admits the relevance-
weighted average of every prior outcome in the observed data sample, the result is precisely

equivalent to the prediction that results from linear regression analysis.®

1 1

Wit linear = N + Tit (17)

Owing to this equivalence, the theoretical justification given by Gauss for linear
regression analysis applies as well to RBP. In most cases, however, we can produce a more
reliable prediction by taking a relevance-weighted average of a subset of relevant observations,

which is called partial sample regression.

Partial Sample Regression

Partial sample regression censors the influence of observations that are less relevant than a

chosen threshold, which leads to the following definition of prediction weights.

1, A% _
Witpsr = 3 T — (8(rie)1ie — @Tsup) (18)
(1 ifre=r
S(Tit) - {O lf Tie < r (19)
12 = of,full — ﬁZ?’zlriZt (20)

Jrz,partial ﬁ Z{\I:l 5(Tit)7'i2t
In Equations 18 through 20, n = ¥:¥_, 5(r;,) is the number of observations that are fully
retained (not censored), ¢ = n/N is the fraction of observations in the retained sample, and
_ 1 . . .
Toub = ;Zﬁvzl & (1. )1y is the average relevance value among the retained sample. Itis

important to note that w;; ., depends crucially on the prediction circumstances x;. Relevance

is reassessed for each prediction circumstance which further affects the identification of the

13



retained subsample and introduces nonlinear conditional dependence of the prediction y; on
the prediction circumstances x,. The scaling factor A2 compensates for a bias that would
otherwise result from relying on a small subsample of highly relevant observations. In the case
of linear regression analysis, where n = N, we have A% = 1. Lastly, note that partial sample
regression weights always sum to 1.” The question that now emerges is how to select the

censoring threshold r*, which leads to fit.
Fit

Fit is a crucial component of RBP. It reveals how much confidence we should have in a specific
prediction task, separately from the confidence we have in the overall prediction system. In
addition, it provides a principled way to evaluate the relative merits of alternative calibrations

for each prediction task.

Consider, for example, a pair of observations that are used, in part, to form a prediction.
Each observation has a weight and an outcome. We are interested in the alignment of the
weights of the two observations with their outcomes. We must first standardize them by
subtracting the average value and dividing this difference by standard deviation — in essence,
converting them to z-scores. We then measure their alighment by taking the product of these
standardized values. If the product is positive, their relevance is aligned with their outcomes,
and the larger the product, the stronger the alignment. We perform this calculation for every
pair of observations in our sample. We should also note that all the formulas we have thus far
considered for weights rely only on relevance, which in turn relies only on the x;s, the x;, and
the x. They do not make use of any of the information from observed outcomes. To determine

fit, however, we must consider outcomes (the y;s).

14



. 1
fltt = WZL Z] ZWitZthZinyj (21)

Equation 22 intuitively describes fit as the squared correlation of relevance weights and
outcomes, which conceptually matches the notion of the conventional R-squared statistic. As

we soon show, this connection of fit to R-squared is critically important.

fite = p(wy, 3’)2 (22)

Although we compute fit from the full sample of observations, the weights that
determine fit vary with the threshold we choose to define the relevant subsample. As we focus
the subsample on observations that are more relevant, we should expect the fit of the
subsample to increase, but we should also expect more noise as we shrink the number of
observations. The fit across pairs of all observations in the full sample implicitly captures this
tradeoff between subsample fit and noise by overweighting observations that are more

relevant and underweighting observations that are less relevant accordingly.

Like relevance, fit is not arbitrary. In the case of linear regression with n = N, the
informativeness-weighted average fit across all prediction tasks in the observed sample equals

the classical R-squared statistic.®
1 . N
R? = — ¥ info(x, Dfit, (23)

This convergence of fit to R-squared reveals an intriguing insight. R-squared is the result
of some good predictions, some average predictions, and some bad predictions; that is, some
predictions with high fit, some with average fit, and some with low fit. R-squared reveals the

average reliability of a prediction model. It reveals much less about the reliability of specific

15



prediction tasks, which can vary substantially. Fit is much more nuanced. It gauges the
reliability of a specific prediction task in a non-arbitrary way, as demonstrated by its
convergence to R-squared. Fit is the fundamental building block of R-squared. To compute fit,
we must know the weight of each observation in a prediction. These weights are inherent to
RBP, but they are not available in model-based prediction algorithms which rely exclusively on

calibrated parameters rather than weighted observations to form predictions.

Grid Prediction

We have thus far shown how to form a prediction as a relevance-weighted average of
outcomes (y;s). And we have shown how we can use fit to measure the reliability of a specific
prediction task. But we have left unanswered the question of how to determine the threshold
for the subsample of relevant observations. We have only noted that a partial sample
regression prediction depends on the choice of a parameter, r*, which is the censoring
threshold for relevance. In addition, we have implicitly assumed up to this point that the full
menu of predictive variables is used to measure relevance and form a partial sample prediction.
However, it is possible that a subset of the predictive variables will render a better prediction
for a specific task. The efficacy of observations for a given prediction task depends on the
predictive variables, and the efficacy of the predictive variables depends on the observations.
These choices are codependent. We, therefore, turn to the last key feature of RBP, which is
grid prediction. But before we show how to form predictions that consider a range of

alternative calibrations, we must first describe an enhanced version of fit called adjusted fit.

Partial sample regression using relevance is more effective to the extent there is strong

alignment between relevance and outcomes, as measured by fit. It is also more effective to the

16



extent there is asymmetry between the fit of the weights formed from the retained subsample
of observations and the fit of the weights formed from the complementary set of censored
observations. In the presence of asymmetry, we trust the more relevant sample based on
principle. In the absence of asymmetry, the full sample relationship is linear, and linear
regression analysis, which is a special case of RBP, will suffice. Therefore, to compare properly
the efficacy of two predictions formed from different values of r*, we need a way to measure

not only fit but asymmetry.

We measure asymmetry between the fit of the retained and censored subsamples as
shown by Equation 24. The (+) superscript designates weights formed from the retained
observations while the (—) superscript designates weights formed from the censored
observations. Asymmetry recognizes the benefit of censoring non-relevant observations that
contradict the predictive relationships that exist among the relevant observations. This

assessment also inherently considers the relative sample sizes of the complementary groups.

asymmetry, = %(p(wt(ﬂ,y) - p(wt(_), y))z (24)

To calculate adjusted fit, we add asymmetry to fit and multiply this sum by K, the
number of predictive variables included in the prediction, as shown by Equation 25.
Multiplication by the number of predictive variables allows us to compare predictions based on
different numbers of predictive variables. It corrects a bias that would otherwise occur,
whereby adding a pure noise variable decreases fit in proportion to the increase in the number
of variables, even if the predictions themselves do not change (consider, for example, the case

of a full sample linear regression analysis with a large sample of observations). Another way to
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view the intuition for K is that we are more likely to observe a spurious relationship from
prediction weights based on any one variable in isolation than we are based on a collection of

many variables.

adjusted fit, = K(fit, + asymmetry,) (25)

We now return to the question of how to form a prediction given uncertainty in the
calibration of r* and variable selection, which are codependent choices. To address this issue,
we could consider every possible calibration that combines a choice of r* with a choice of a
subset of variables and select the prediction with the greatest reliability as measured by
adjusted fit. It is important to note that the assessment of reliability using adjusted fit is made
before the prediction is rendered and the subsequent outcome is known and that the

assessment of reliability is specific to the prediction task.

However, instead of selecting one optimal calibration for a given prediction task, it may
be more prudent to compute a composite prediction as a reliability-weighted average of the
predictions from all possible calibrations. Equation 26 defines reliability weights, 1, as the
adjusted fit for a parameter calibration, 6, divided by the sum of all adjusted fits across all

parameter calibrations.

adjusted fitg

l/)9 - Ygadjusted fitg (26)
Equation 27 describes the composite prediction.
Vegria = 2o VPoTeo (27)
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Exhibit 1 gives a visual representation of grid prediction, based on a contrived data set
of four predictive variables and 400 randomly simulated observations. The column labels
represent alternative variable subsets, and the row labels represent alternative observation
subsets. Each cell represents a codependent calibration 8; that is, a unique combination of
predictive variables and observations. The values in the cells are the weights (1)) we apply to
the calibration-specific predictions to form the composite grid prediction. Cells that are shades
of red are less important to forming the prediction while blue shaded cells are more important.

The values in the grid are specific to each prediction task.

Exhibit 1: Grid Prediction — Illustrative Example

Variable combinations

ABCD ABC ABD ACD BCD AB AC AD BC BD CD A B C D

0 - e 0w . 106 os% 07 . oo osn or

0.1 07% 08% 06% 05% 06% 05% 05% 04% 08% & 04% 02% 04%
0.2 07% | 10% 07% 05% 06% 07% 06% | 04% 09% 04% 03% 05%
0.3 0.9% 08% 06% 06% 08% 07% 05% @ 11% 04% 04% 0.6%
04 0.9% 08% 06% 06% | 10% 08% 05% 0.4% 04% @ 06%
*
r
05 0.9% 09% 07% 07% | 10% 08% 05% 0.5% 04% 0.7%
0.6 1.0% 09% 07% 07% | 10% 08% 05% 05% [ 02% @ 04% 07%
0.7 1.0% 09% 07% 07% | 10% 08% 06% 05% 04% 04% 07% | 03% & 02%
0.8 1.0% 09% 07% 07% [ 1.0% 09% 06% 05% 04% 05% 08% 04% | 02%

09 12% 11% 08% 07% [ 114% 10% 0.7% [ 42% " 0.6% . 05% 06% -

Note that each cell’s prediction is a linear function of observations, and the grid
prediction is a linear function of each cell’s prediction. Therefore, we can express the grid

prediction in terms of composite weights applied to each observation, as shown in Equation 28.
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Composite weights are important because they preserve the transparency of how each
observation contributes to the current prediction task, and they allow us to calculate fit from

composite weights as a final gauge of the grid prediction’s reliability.

Wit gria = 2.0 YoWite (28)

One final point is worth noting about grid prediction. In cases where informative
(statistically unusual) observations do not extrapolate reliably to other circumstances, it may be
advisable to consider subsamples of observations and predictive variables based on similarity
filtering rather than relevance filtering. We need not worry whether we should use similarity or
relevance to identify the optimal combination of observations and variables. We simply include
multiple observation censoring rules as candidates in the grid. However, even when we censor
based on similarity, we should still form the predictions as a relevance-weighted average of the

retained observations.

We next present a simple illustration of HCMs and RBP to show how they form

predictions differently but give similar results.

A Simple lllustration of HCMs and RBP

Exhibit 2 shows evenly spaced observations of a predictive X variable and corresponding values
for Y. This example clearly is contrived to reflect a conditional relationship in which the

relationship of X and Y is sometimes negative and sometimes positive.
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Exhibit 2: Illustrative Data for a Conditional Relationship

Y
UGB ALNREORNWEU O N ®

8-76-54-3-2-10123 456738
X

Exhibit 3 compares the prediction of Y given an x; value of -5.50 performed two
different ways. The left panel of Exhibit 3 uses an HCM to form the prediction. It creates two
nonlinear transformations of X to create new predictive variables S1 and S2. The rule for S1 is
to keep the value of X if it is negative and replace it with zero if it is positive. The rule for S2 is

to keep the value of X if it is positive and replace it with zero if it is negative.

The right panel in Exhibit 3 uses RBP to form the prediction, though only up to partial
sample regression. It does not incorporate grid prediction. Partial sample regression is
configured to censor the least relevant half of the observations to generate prediction weights
to apply across observations of Y. It leads to prediction weights that are very similar to the

HCM.
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Exhibit 3: Comparison of HCM and RBP Predictions (x; = —5.5)

HCM RBP
Prediction for X=-5.5 Prediction for X=-5.5
Observation Observation

Observation S1 S2 Relevance Censor Weight [Observation X Y Relevance Censor Weight
1 -7.50 0.00 2.76 1 25% 1 -7.50 3.50 1.82 1 27%
2 -6.50 0.00 2.25 1 21% 2 -6.50 4.57 1.58 1 23%
3 -5.50 0.00 1.74 1 18% 3 -5.50 2.80 1.33 1 19%
4 -4.50 0.00 1.23 1 14% 4 -4.50 -1.75 1.09 1 15%
5 -3.50 0.00 0.72 1 11% 5 -3.50 -2.30 0.85 1 12%
6 -2.50 0.00 0.20 1 8% 6 -2.50 -3.70 0.61 1 8%
7 -1.50 0.00 -0.31 1 4% 7 -1.50 -5.17 0.36 1 4%
8 -0.50 0.00 -0.82 1 1% 8 -0.50 -2.79 0.12 1 1%
9 0.00 0.50 -1.06 1 -1% 9 0.50 -4.71 -0.12 0 -1%
10 0.00 1.50 -1.03 1 -1% 10 1.50 -0.56 -0.36 0 -1%
11 0.00 2.50 -1.01 1 0% 11 2.50 -2.80 -0.61 0 -1%
12 0.00 3.50 -0.98 1 0% 12 3.50 0.73 -0.85 0 -1%
13 0.00 4.50 -0.96 1 0% 13 4.50 1.48 -1.09 0 -1%
14 0.00 5.50 -0.93 1 0% 14 5.50 2.69 -1.33 0 -1%
15 0.00 6.50 -0.91 1 0% 15 6.50 1.85 -1.58 0 -1%
16 0.00 7.50 -0.88 1 0% 16 7.50 6.16 -1.82 0 -1%

Average: -2 2 Average: 0.00 0.00

Covariance: 7.07 4.27 Variance: 22.67 11.94

4.27 7.07
Betas: -1.19 1.40
Intercept: -5.19 Prediction: 1.38 Prediction: 1.37

Exhibit 4 shows the same analysis for predicting Y but in this case for an x; value of
+6.5. The two-variable HCM still does not censor any observations, but it shifts its focus across
the two variables which has the same effect as changing the observation weights that inform
the prediction. The partial sample regression chooses to censor a different half of the

observations for this task, and the observation weights change accordingly.

Exhibits 3 and 4 show that, although the HCM and RBP form the predictions differently,
they yield similar predictions and place similar importance on the observations. Given the
conditionality of the contrived data, the HCM’s betas and intercept are difficult to interpret.
However, owing to the equivalence of linear regression analysis with full-sample RBP, we are
able to recast the HCM predictions as relevance-weighted averages, which allows us to observe

the similarity of the observation weights, and which underscores the transparency of RBP.
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Exhibit 4: Comparison of HCM and RBP Predictions (x; = +6.5)

HCM

RBP

Prediction for X=6.5

Prediction for X=6.5

Observation

Observation

Observation S1 S2 Relevance Censor Weight |Observation X Y Relevance Censor Weight
1 -7.50 0.00 -0.59 1 2% 1 -7.50 3.50 -2.15 0 -2%
2 -6.50 0.00 -0.75 1 1% 2 -6.50 4.57 -1.86 0 -2%
3 -5.50 0.00 -0.91 1 0% 3 -5.50 2.80 -1.58 0 -2%
4 -4.50 0.00 -1.07 1 -1% 4 -4.50 -1.75 -1.29 0 -2%
5 -3.50 0.00 -1.23 1 -2% 5 -3.50 -2.30 -1.00 0 -2%
6 -2.50 0.00 -1.39 1 -3% 6 -2.50 -3.70 -0.72 0 -2%
7 -1.50 0.00 -1.55 1 -4% 7 -1.50 -5.17 -0.43 0 -2%
8 -0.50 0.00 -1.71 1 -5% 8 -0.50 -2.79 -0.14 0 -2%
9 0.00 0.50 -1.42 1 -3% 9 0.50 -4.71 0.14 1 0%
10 0.00 1.50 -0.69 1 2% 10 1.50 -0.56 0.43 1 4%
11 0.00 2.50 0.05 1 7% 11 2.50 -2.80 0.72 1 8%
12 0.00 3.50 0.78 1 11% 12 3.50 0.73 1.00 1 13%
13 0.00 4.50 1.51 1 16% 13 4.50 1.48 1.29 1 17%
14 0.00 5.50 2.25 1 21% 14 5.50 2.69 1.58 1 22%
15 0.00 6.50 2.98 1 26% 15 6.50 1.85 1.86 1 26%
16 0.00 7.50 3.71 1 31% 16 7.50 6.16 2.15 1 30%

Average: -2.00 2.00 Average: 0.00 0.00

Covariance: 7.07 4.27 Variance: 22.67 11.94

4.27 7.07
Betas: -1.19 1.40
Intercept: -5.19 Prediction: 3.92 Prediction: 3.15

Next, we expand our set of predictive variables beyond just S1 and S2. We now

consider 1,000 randomly generated nonlinear transformations. In the spirit of Kelly, Malamud,

and Zhou, we create one new variable by multiplying all 16 values of X by a randomly drawn

number from a normal distribution with unit variance centered on zero, and we shift those

results by another randomly drawn number from the same distribution. We then apply the

highly nonlinear sine function to the result. We repeat this process 1,000 times to generate

1,000 distinct transformed S variables. We then perform principal components analysis on the

covariance matrix of the 1,000 S variables and project their values to obtain 15 uncorrelated Q

variables which we sort in decreasing order of variance. Recall that the information in any

number of S variables can be condensed into a maximum of 15 Q variables, which is one less

than the number of observations. This is possible because the S variables contain partly
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redundant information. The Q variables represent the dominant sources of variation in the
randomly transformed variables.” As we discussed previously, regressing Y on the Q variables
derived from principal components analysis is equivalent to regressing on the S variables
directly using the Moore-Penrose pseudo-inverse of the covariance matrix of S, which is also

equivalent to ridgeless regression.

Exhibit 5 shows the values of the Q variables for each observation. We observe, for
example, that Q1 mainly distinguishes high values of X from low values of X, while Q3

distinguishes moderate values from high and low values.

Exhibit 5 also shows the observation weights, based on relevance, for predictions that
pay attention to the top 5 Q variables, the top 10 Q variables, and all 15 Q variables. The
observation weights based on the top 5 Q variables are broadly similar to the weights we
observed in the prior examples; observations for low values of X similar to the prediction
circumstances (observation 3) receive high weights, while other observations receive weights
close to zero. As we include more Q variables, the weights become increasingly concentrated.
If we include all 15 Q variables, the prediction places 100% of its weight on the observation that
matches the prediction circumstance. It therefore results in a prediction that is precisely equal
to the actual Y value for observation 3. In the Appendix we show mathematically that this
result always obtains for ridgeless regression when the nonlinear transformations are extensive
enough that they generate the full range of N — 1 principal components of the covariance
structure, which means they are capable of perfectly isolating each observation in the data
sample. This scenario would be deemed overfitting because there is no generalization of a
relationship from multiple observations, and if there is noise involved in the process, we would
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expect a new observation of Y for the same X circumstances to differ from the value of 2.80.
Using multiple observations to inform a prediction, where viable, has the advantage of
diversifying the noise components of each observation in the prediction. To put it differently,
the prediction with 15 Q variables has not learned a generalized relationship, it has merely

memorized the training data.*?

The regression betas corresponding to each Q variable are shown at the bottom of
Exhibit 5. It is difficult to interpret these regression betas, and it is not necessarily apparent
from visually inspecting them that the prediction from 15 Q variables places 100% weight on a
single observation. It would be even more difficult to interpret 1,000 regression betas
corresponding to the S variables. However, invoking the equivalence of linear regression
analysis with full-sample RBP, we can again recast the HCM predictions as relevance-weighted
averages, which reveals the importance of each observation to the predictions. The larger
point, though, is that the efficacy of HCMs is not dependent on a contrived two-variable
example; it generalizes to applications that comprise a very large number of randomly

generated predictive variables.
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Exhibit 5: HCM Predictions with 15 Qs from 1,000 Randomly Generated Sine Transformations

Predictions X=[ 13.19 5.60  8.01 158 037 -762 898 38 245 217 -183 -164 -2.12 -0.51 0.31 Relevance Observation Weights
Observations | Q1 Q2 Q3 Q4 Qs Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15| 5Qs 10Qs 15Qs| 5Qs 10Qs 15Qs
1 -5.62 -9.48 490 829 -811 -881 -582 -347 459 -231 289 -1.04 0.79 -0.11 0.01 |-0.37 -0.59 -0.94 4% 2% 0%
2 -8.97 -12.43 6.08 547 -670 008 -031 189 -453 430 -429 366 -095 133 024 |-097 -1.28 -0.94| 0% -2% 0%
3 -11.21 -9.69 565 -364 026 830 7.04 521 -267 141 177 -223 165 -1.16 -0.30|-1.46 -0.90 -0.94 | -3% 0% 0%
4 -12.07 -2.24 422 -984 761 267 610 -211 559 -220 193 192 -1.03 204 067 |-1.47 -0.51 -094 | -4% 3% 0%
5 -11.58 638 181 -6.09 10.50 -6.70 -1.51 -523 -0.94 251 -395 143 091 -1.34 -0.80|-1.02 -1.30 -094| -1% -2% 0%
6 -9.94 12.02 -1.98 4.45 7.45 -458 -474 408 -583 186 219 -1.88 0.25 1.61 1.16 | -0.59 -1.13 -0.94 2% -1% 0%
7 -7.23 1223 -6.63 1073 0.19 460 009 58 3.60 -1.24 110 343 -0.53 -035 -1.22|-0.64 -025 -094| 2% 5% 0%
8 -349 745 -10.95 562 -6.28 555 621 -448 331 289 -341 -073 147 031 145 |-1.21 -1.15 -094| -2% -1% 0%
9 0.77 -0.11 -13.58 -496 -6.68 -3.26 646 -429 -560 124 282 -028 -1.04 09 -131]-1.88 -1.51 -094 | -6% -4% 0%
10 491 -7.12 -13.15 -897 -0.55 -6.62 0.18 570 -0.85 -2.75 -0.38 3.07 0.87 -078 131 |-194 -0.02 -094| -7% 6% 0%
11 8.57 -10.24 -9.04 -237 7.05 149 -544 347 494 412 -249 -1.79 058 168 -0.96|-0.93 -098 -094| 0% 0% 0%
12 1149 -7.82 -2.38 694 1028 6.73 -2.27 -462 -1.90 327 331 170 -1.16 -1.04 0.82 | 0.86 -2.55 -094 | 12% -11% 0%
13 13.18 -1.34 4.14 881 723 -087 7.02 -116 -3.64 -490 -156 141 233 1.48 -0.42 | 259 285 -094 | 24% 25% 0%
14 13.19 5.60 8.01 1.58 037 -7.62 8098 3.86 245 217 -183 -164 -2.12 -051 031 3.50 8.82 14.06 | 30% 65%  100%
15 11.29 926 811 -693 -534 -039 -0.52 0.69 123 655 352 315 215 0.80 -0.01| 331 407 -094 | 28% 33% 0%
16 759 786 513 -835 -6.05 884 -827 -0.97 -252 -448 -254 -074 -075 015 007 | 223 -355 -094 | 21% -17% 0%
Covariance: 96.26 0.00 000 000 000 000 000 0.00 0.0 0.00 000 000 000 000 0.00
0.00 7539 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 59.62 0.00 0.00 0.00 000 000 000 000 0.00 0.00 0.00 000 000
0.00 000 0.00 51.27 0.00 0.00 000 000 000 000 0.00 0.00 0.00 000 000
0.00 0.00 0.00 0.00 4558 0.00 000 000 000 0.00 0.00 0.00 0.00 000 000
0.00 0.00 0.00 0.00 0.00 34.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 0.00 0.0 0.00 0.00 29.89 000 000 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 0.00 0.0 0.00 0.00 000 1643 000 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 000 000 1502 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.27 0.00 0.00 0.00 0.00 0.00
0.00 000 0.00 ©0.00 0.0 0.00 000 000 000 000 778 0.00 0.00 0.00 0.00
0.00 000 0.00 ©0.00 0.00 0.00 000 000 000 000 0.00 442 0.00 000 000
0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 000 0.0 0.00 177 0.00 0.00
0.00 0.00 000 0.00 0.00 000 000 000 000 0.00 0.0 0.00 0.00 1.25 0.00
0.00 0.00 0.00 ©0.00 ©0.00 0.00 000 000 000 0.00 0.00 0.00 0.00 000 076
Betas 5 Qs: 0.10 -0.13 032 -0.03 -0.18 Prediction 3.36
Intercept: 0.32
Betas 10 Qs: 0.10 -0.13 032 -0.03 -0.18 0.06 -0.10 0.01 -0.12 -0.15 -
Prediction 1.58
Intercept: 0.50
Betas 15 Qs: 0.10 -0.13 032 -0.03 -0.18 0.06 -0.10 001 -0.12 -0.15 -0.20 -0.06 -0.02 -0.49 0.72 .
Prediction 2.69
Intercept: 0.64

Simulation Experiments

To evaluate these approaches in a more intricate setting with multiple predictive variables,

repeated random draws, and RBP grid prediction, we perform a regime-based simulation

experiment similar to Czasonis, Kritzman, and Turkington (2023), but with the addition of

random noise affecting outcomes for Y. We simulate four X variables which we refer to as
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A,B,C,D, where A, B function as a group and influence Y in regime 1, and C, D function as a

group and influence Y in regime 2.

w=B 3 0 0); ov=(1 1 3 3); =01 2 0 0
u, =0 0 3 3) 06,=3B 3 1 1); B=0 0 1 2)

{X ~NQuy, Q) if regime =1
X ~N(uy,Q,) if regime =2

{}’t =pBix{+¢€ if regime=1
y: = Boxi + € if regime = 2

0. =05

Regime 1 prevails randomly 75 percent of the time, and regime 2 prevails the other 25
percent of the time. We simulate 500 random training observations and 500 random testing

observations.

We form predictions using multiple methods. First, we form predictions from traditional
linear regression analysis. Second, we produce RBP grid predictions considering all
combinations of the predictive variables along with observation subsamples based on censoring
thresholds of 0, 0.2, 0.5, and 0.8 based on both relevance and similarity. Third, we produce
predictions from multiple calibrations of nonlinear transformed predictive variables. Following
Kelly, Malamud, and Zhou, we generate 5,000 (10 times the number of observations) S

variables, each of which applies a set of four random multiples from a centered normal
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distribution with variance of 10 (which provided more consistent and reliable results than
variance of 1) to the normalized z-scores of the inputs and computes the sine function of the
resulting sum. We condense the 5,000 S variables into sets of 10, 100, 250, and 499 @
variables. Recall from our earlier discussion that 499 Qs capture the entirety of the linear
predictive information in the 500 training sample observations for the 5,000 S variables. The

smaller sets of Q extract subsets of the highest variance information in S.

Exhibit 6 shows the average outcomes for the prediction tasks conditional on below
median (low) and above median (high) predictions from each method, as well as a further
decomposition by below median (low) and above median (high) fit within the low and high
prediction subsamples. Fit effectively identifies in advance predictions with more extreme
outcomes in almost every case except low predictions for 10 @Qs, but the separation is most
dramatic for RBP grid predictions.

Exhibit 6: Average Out-of-Sample Outcomes Relative to Full-Sample Average

Linear RBP Random Sine Transformations

Regression  Grid 10 Qs 100 Qs 250 Qs All Qs
Low predictions -0.95 -1.44 -0.63 -0.74 -0.86 -0.86
Low predictions with low fit -0.42 -0.33 -1.19 -0.18 -0.12 -0.06
Low predictions with high fit -1.49 -2.55 -0.07 -1.31 -1.60 -1.65
High predictions 0.95 1.44 0.63 0.74 0.86 0.86
High predictions with low fit 0.80 0.77 -0.21 0.23 0.16 0.21
High predictions with high fit 1.10 2.11 1.46 1.25 1.55 1.51

Exhibit 7 reports the correlations of actual out-of-sample outcomes for each of the 500
prediction tasks with the predictions as well as the correlations among the various predictions.
It is interesting to note that RBP grid prediction has the highest correlation of predictions with

outcomes by a significant margin. Even though the highest correlation between HCM and RBP
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is only 0.54, it is notable that the HCM predictions have a consistently higher correlation with
RBP than with linear regression, which indicates that they identify at least some nonlinear
predictive relationships in common. We will explore the overlapping nature of their

information in more detail shortly.

Exhibit 7: Correlations of Outcomes and Predictions

Linear RBP Random Sine Transformations
Actual |Regression  Grid 10Qs 100 Qs 250 Qs All Qs
Actual 1.00
Linear 0.25 1.00
RBP Grid 0.57 0.73 1.00
Sine transformations: 10 Qs 0.25 0.33 0.46 1.00
Sine transformations: 100 Qs 0.34 0.42 0.51 0.56 1.00
Sine transformations: 250 Qs 0.37 0.43 0.54 0.48 0.85 1.00
Sine transformations: All Qs 0.33 0.31 0.44 0.33 0.52 0.59 1.00

Exhibit 8 shows the average and standard deviation of actual test sample outcomes
along with those of each prediction method. It also shows the root mean squared error of the
predictions and repeats the correlations of predictions to outcomes from Exhibit 7. Lastly,
Exhibit 8 shows the average standard deviation in observation weights that are used to form
each prediction. Recall that observation weights sum to 1 for each prediction, and a prediction
formed from a single observation has a variance (and standard deviation) of 1. Weights can
also be negative, which can lead to a higher standard deviation. It is interesting to note that
RBP grid prediction has the lowest root mean squared error. The apparent superiority of RBP

grid prediction from Exhibits 7 and 8 may be specific to this simulation, though.
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Exhibit 8: Prediction Statistics

Linear RBP Random Sine Transformations

Actual |Regression Grid 10 Qs 100 Qs 250 Qs All Qs
Average 9.19 8.85 9.55 8.99 9.06 9.02 8.41
Standard deviation 3.25 1.08 0.99 0.93 1.73 2.09 3.58
Root mean squared error 3.18 2.82 3.15 3.12 3.15 4.02
Correlation to actual 0.25 0.57 0.25 0.34 0.37 0.33
Standard deviation of 0.07 0.05 0.09 0.31 0.47 1.42
observation weights (average)

Exhibit 9 shows linear regression betas and t-statistics (in parentheses) for OLS
regressions of actual test sample outcomes on multiple predictions. The RBP grid and sine
transformation predictions subtract linear predictions to avoid excessive collinearity for the
purpose of decomposition.!! We consider the sine transformation predictions for the case of
250 Qs which has the highest correlation with realized outcomes and with RBP predictions.
Exhibit 9 shows that despite having a correlation of only 0.54 with the RBP predictions, the
useful predictive information contained in the 250 Qs HCM mostly overlaps with that of RBP, as

evidenced by the differences in predictive R-squared across the regressions.

Exhibit 9: Regressions of Actual Outcomes on Prediction Components

1 2 3 4
Intercept -7.18 1.85 -7.50 2.67
(-6.4) (1.65) (-6.7) (2.3)
Linear Regression 1.64 0.82 1.67 0.74
(13.79) (6.56) (14) (5.65)
RBP Grid (above linear) 2.63 2.79
(14.57) (16.5)
Sine Transformations: 250 Qs 0.16 0.50
(above linear) (2.43) (6.94)
R-squared 0.40 0.14 0.39 0.06
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Exhibits 10, 11, 12, and 13 show results from the same simulation setup, but the S
variables are derived using a logistic S-shaped function instead of a sine function. This
collection of simulations is based on a fresh draw of random numbers for X and Y. These
exhibits show that, just as in the case of sine function transformations, RBP grid prediction has
the highest correlation of predictions with outcomes as well as the lowest root mean squared

error of all prediction methods, but again this result may be specific to this simulation.

The HCM predictions have slightly higher correlations with RBP predictions in this set of
results. Once again, we observe that the 250 s HCM has the highest correlation with actual
outcomes, but its predictive information is mostly subsumed by the nonlinear component of

the RBP predictions, as seen in the R-squared comparisons of Exhibit 13.

Exhibit 10: Average Out-of-Sample Outcomes Relative to Full-Sample Average

Linear RBP Random Logistic Transformations

Regression  Grid 10 Qs 100 Qs 250 Qs All Qs
Low predictions -0.97 -1.46 -1.21 -1.30 -1.42 -0.52
Low predictions with low fit -0.32 -0.24 -0.48 -0.49 -0.61 0.15
Low predictions with high fit -1.63 -2.67 -1.94 -2.12 -2.23 -1.19
High predictions 0.97 1.46 1.21 1.30 1.42 0.52
High predictions with low fit 0.21 0.47 0.41 0.58 0.77 0.35
High predictions with high fit 1.74 2.45 2.01 2.03 2.08 0.69

Exhibit 11: Correlations of Outcomes and Predictions

Linear RBP Random Logistic Transformations
Actual |Regression  Grid 10 Qs 100 Qs 250 Qs All Qs
Actual 1.00
Linear Regression 0.30 1.00
RBP Grid 0.59 0.74 1.00
Logistic Transformations: 10 Qs 0.45 0.68 0.71 1.00
Logistic Transformations: 100 Qs 0.50 0.43 0.65 0.70 1.00
Logistic Transformations: 250 Qs 0.51 0.32 0.57 0.54 0.78 1.00
Logistic Transformations: All Qs 0.18 0.15 0.23 0.27 0.26 0.29 1.00
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Exhibit 12: Prediction Statistics

Linear RBP Random Logistic Transformations

Actual |Regression  Grid 10 Qs 100 Qs 250 Qs AllQs
Average 9.12 9.01 9.63 9.05 8.99 9.00 8.48
Standard deviation 3.40 1.12 1.00 1.63 2.28 3.13 8.99
Root mean squared error 3.24 2.97 3.05 3.00 3.25 9.04
Correlation to actual 0.30 0.59 0.45 0.50 0.51 0.18
Standard deviation of 0.07 0.05 0.13 0.42 0.76 3.11
observation weights (average)

Exhibit 13: Regressions of Actual Outcomes on Prediction Components

1 2 4
Intercept -7.50 0.29 -9.31 0.83
(-6.24) (0.28) (-7.89) (0.72)
Linear Regression 1.70 0.98 1.86 0.92
(13.62) (8.49) (15.03) (7.11)
RBP Grid (above linear) 2.16 2.71
(10.55) (15.16)
Logistic Transformations: 250 Qs 0.24 0.50
(above linear) (5.19) (11.36)
R-squared 0.41 0.28 0.38 0.09

Conclusion and Summary

The key challenge to prediction is to extract the most information possible from a sample of

data without detrimentally overfitting the data. One technique for doing so is to convert a

relatively small number of predictive variables into a much larger set of variables by applying

non-linear transformations to the original variables. If the number of transformed variables is

sufficiently large, the variables will extract all the information from the data including
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conditionalities that the original set of variables would fail to detect. It is commonly assumed,
however, that as the number of variables increases relative to the number of observations the
covariance matrix becomes unstable rendering out-of-sample predictions unreliable. Kelly,
Malamud, and Zhou (2024) overcome this concern by effectively transforming the large number
of transformed variables into linear combinations of fewer variables, which greatly diminishes
the risk of overfitting. A prediction model derived in this fashion is called a high-complexity

model (HCM).

An alternative technique for maximizing the utility of data without overfitting is called
relevance-based prediction (RBP). It forms a prediction as a weighted average of observed
outcomes in which the weights are a statistical measure called relevance. Relevance is
composed of similarity and informativeness, which are both measured as squared z-scores in
the case of a single predictive variable, or as Mahalanobis distances in the case of multiple
predictive variables. RBP recognizes that observations and predictive variables are
codependent; they should be selected jointly using principles that evaluate predictive reliability

in advance, given the unique circumstances of each individual prediction task.

There are two critical differences between HCMs and RBP. HCMs rely on a large number
of randomly manufactured predictive variables within a single model to extract information.
RBP, by contrast, is model free. It is a prediction routine that extracts information by
considering many combinations of relatively few variables and applying them in ways that are

specific to each prediction task.

HCMs are opaque. They only reveal the average importance of the large set of S

variables or their consolidated counterparts, Q. Also, they give no insight into the relative
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importance of the observations to the prediction. Finally, they give no advance notice of an
individual prediction’s reliability. We must wait to see the outcome before we can judge the
quality of a prediction. RBP is fully transparent. It shows precisely how each observation
informs a specific prediction, and it reveals the relative importance of the predictive variables
for each individual prediction task. Finally, it gives advance notice of the reliability of the

individual predictions before they are rendered.

We have shown that HCMs and RBP give similar predictions and assign similar
importance to the observations in contrived experiments designed to illustrate how they
function. There are likely to be prediction tasks, though, in which there are subtle
conditionalities that are beyond the reach of RBP, given its reliance on relatively few variables
and a parsimonious set of censoring rules. In these instances, an HCM, with its ability to include
as many variables as necessary, has the potential to extract more information from the data
than RBP. One might therefore conclude that we are faced with a tradeoff: the superior
transparency of RBP versus the superior completeness of HCMs. We may be able to have it
both ways. Again, recalling the equivalence of linear regression analysis with full-sample RBP,
we could recast an HCM prediction as a relevance-weighted average. This conversion would
allow us to see how each observation informs the HCM prediction. And we could extend RBP’s
ability to capture conditionalities that are beyond the reach of the original predictive variables
by including the Q variables engineered by an HCM as candidates in the RBP routines.
Therefore, the best approach for maximizing the utility of data without overfitting may be to

use an HCM in tandem with RBP.
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Appendix: Observation weights for full-rank predictions of observed circumstances

Here we demonstrate mathematically that for prediction tasks in the observed sample,
ridgeless regression always places 100% weight on the observed outcome that corresponds to
the prediction circumstances, so long as the principal components consolidation of variables is

full-rank with respect to the number of observations, N.

Consider any large set of predictive variables S for which the principal component
transforms of S derived from S’S are full rank. We denote these N principal component
transforms as Q, to distinguish them from the earlier definition of Q which is based on the
average-centered covariance matrix of S, and therefore has N — 1 principal components in this
scenario. The inverse matrix Q1! is guaranteed to exist because Q. is full rank, and Q. Q;* = I.
The OLS linear regression prediction of all the observed circumstancesis ¥ = Q, (Q.Q,) *Q.Y.
Expanding out the inverse gives ¥ = Q+Q;1Q+_1Q;Y = IY =Y. The identity matrix
represents the weights placed on each observation of Y for each prediction task and shows that

each prediction places 100% weight on a single observation.
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Notes

This material is for informational purposes only. The views expressed in this material are the
views of the authors, are provided “as-is” at the time of first publication, are not intended for
distribution to any person or entity in any jurisdiction where such distribution or use would be
contrary to applicable law and are not an offer or solicitation to buy or sell securities or any
product. The views expressed do not necessarily represent the views of Windham Capital
Management, State Street Global Markets®, or State Street Corporation® and its affiliates.
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! Hastie, Montenari, Rosset, and Tibshirani (2022) explore related issues. Kernel ridge regression is also related to
this approach but typically includes a highly curated set of nonlinear transformations of the original predictive
variables rather than a large set of randomly generated transformations.

21f an N-by- N set of X variables are not centered, X'X has a maximum of N nonzero principal components. The
centered product (X — 1,13 XN™1)(X — 1514 XN~1), which is proportional to the covariance matrix, has a
maximum of N — 1 nonzero principal components.

3 The language in this section, particularly in the subsections titled Relevance, Partial Sample Regression, and Fit,
closely follows that of Czasonis, Kritzman and Turkington (2020, 2022a, 2022b, and 2023) with minor modifications
for clarity and context. Relevance-based prediction was first introduced, in successive variations, in these
aforementioned publications. For clarity of exposition and to provide a self-contained reference for the analysis
that follows, we review the essential components of RBP in the present section of this article. In the subsection
titled Grid Prediction, we further extend RBP.

4 This measure was first introduced by Mahalanobis (1936).

5 Shannon showed that information is an inverse logarithmic function of probability, which is a key insight from his
comprehensive theory of communication. See Shannon (1948).

6 See Czasonis, Kritzman, and Turkington (2023) for proof of this result.

7 See Czasonis, Kritzman, and Turkington (2023) for proof of this result.

8 See Czasonis, Kritzman, and Turkington (2022b) for proof of this result.

® We can build intuition about which S variables contribute to the most prominent Q variables when ranked by
variance. First, S transformations with greater variance contain more information in expectation because they
differentiate well between observations on average. These S variables will tend to contribute to prominent (high
variance) Q variables. Second, groups of S transformations that are highly similar and occur frequently across the
random draws indicate aspects of the X variables that dominate the information they provide. These statistically
common S variables will tend to contribute to prominent Q variables because they explain a large amount of the
collective variance in S. These information-rich properties of high-ranking Q variables show why it is reasonable to
consider censored subsets of the highest variance Q variables to avoid overfitting.

10 We may, of course, form a prediction for circumstances that do not equal any of the circumstances in the
observed data. In this case, the prediction cannot rely entirely on memorization. It is likely to choose a focused
set of observations that are near neighbors to the novel prediction circumstances. Intuitively, because there are so
many (N — 1) dimensions to the Q variables, all but the closest observations are extremely distant from the
prediction circumstances. We leave the detailed study of such predictions to future research. But regardless, it
remains the case that any prediction circumstances that match those that occurred in the data will render based on
100% weight on a single observation. Any noise that affects that observation will translate to the prediction in full.
11 This choice does not affect the key conclusions of the analysis, but it allows for a more useful view of the
coefficients on linear regression predictions.
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