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A Rule— DBD+/ K for Non-convex Loss Functions

In a similar spirit as Rule—DBDVk, we also present the deterministic rule Rule—DBD /K which achieves
nearly identical computational guarantees (to within a constant factor) as Rule—SBD VK. First of all, let
us recall the definition of Rule—DBD VK.

Definition A.1. Rule—DBD+vVK. For a fixed value of K > 1, and for any k > 1, define:

o M i k/|VK| €N

Tl 0 if k/|VK]¢N.
In Rule—DBD~/K we do not update any Taylor points unless k is integer times of L{‘/EL and for these
values of k we update all n Taylor points. We point out that for Rule—DBD+/K the Taylor points are

updated less often as K grows (in a different way but with similar effect as in Rule—SBD+/K). Similar to
the case of Rule—SBD /K, we have:

Proposition A.1. Using Rule—DBD/K and K > 1 iterations, the total number of flops used in Algorithm
2.1 is O(K - (fLMO + p?) + K3/* . np?).

(We omit the proof as it is nearly identical to that of Proposition 4.2.)

Theorem A.2. Suppose that Assumption 1.1 holds and F' is not necessarily convex, and Algorithm 2.1 with
Rule—DBD~/K is applied to the problem (1.2) with step-sizes defined by v, :=v:=1/v/K + 1 for all k > 0,
where K > 1 is given. Then:
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and let the iteration index k be chosen uniformly from K], namely, k ~U({1,...,KY}). Then B () [g(xk)]
€, and the total number of flops required is at most
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Also similar to Corollary 4.4, the following corollary shows that the joint dependence on n and ¢ is
O(n/€3/2) under the the hypothesis that all feature vectors wq, ws, ... lie in a bounded set S C {w € R? :
[wll« < M}

Corollary A.2. Under the boundedness of the feature vectors, the bound on the number of flops in Corollary
A.1 to obtain ]E,;Nu([KD[g(xk)] <eis
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The following Table A-1 shows a comparison of the computational guarantees of the standard Frank-Wolfe
method and TUFW with Rule—SBDVK and Rule—DBDV/K.

Table A-1: Complexity bounds for different Frank-Wolfe methods to obtain an e-stationary solution of
ERM, with non-convex losses, under the boundedness assumption of the feature vectors. In the table
€0 := F(2°) — F(2*), ¢; := LM?Diam(C)?, and ¢y := LM3Diam(C)3.

Method Optimality Metric Overall Complexity
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A.1 Proof of Theorem A.2

Let us first prove the following lemma.

Lemma A.1l. In any iteration k of Algorithm 2.1 with Rule—DBD~N/K and ~, = v := 1/\VK + 1, for
problem setup (1.2), it holds that
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holds for any y?,27,27 €C, j=1,...,k.

Proof of Lemma A.1. Notice in Rule—DBD VK that k—7F < [K'*]—1. Now let u,v > 1satisfy 2 +1 = 1.



Then it holds that
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where the first inequality uses ||al|? < d||a||? for a € R4, and the second inequality follows similar to the
equlvalent part of proof of Lemma 3.20 that uses >, a?b; < |a||3,|/b], for a,b € R™ and u,v > 1 and
14+ 1 =1 Setting u =32 and v = 3, the right-hand side of (A-3) is bounded above by K'/2D3. O

And then we can prove Theorem A.2.

Proof of Theorem A.2. The first inequality in (A-1) is obvious. For the second inequality, note from Lemma
4.6 that:
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Let Qx denote the second term of the right-hand side of (A-4). We have
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where the first inequality is due to Lemma 3.14, and the second inequality is due to Lemma A.1. Substituting
this bound back to (A-4) yields the second inequality of (A-1). O

B Adaptive Step-size

In this section we are going to introduce the adaptive-step size proposed in (5.1) and prove the worst-case
convergence rates in the case of using the TUFW with Rule—SBD+k on (1.2) with convex objectives. Other
rules are similar and less complicated.

We first recall the adaptive step-size as follows:
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where Hy, is defined in (2.1) and ~; is the standard step-size, which is %-5-2 for convex loss functions and
1

VE+1
This adaptive step-size 9, can approximately minimize the quadratic approximation of the objective

function in the range of [0,7;]. Let z(\) := 2% + ~(s* — z¥) and then

for non-convex loss functions.

F(x(v)) = F(a) +~v(g") " (s" — 2%) + %2(5" — ") T Hy(s* — %)

+ % Zn: /;O (Vfi(xk +t(s" — %)) = Vfi(bi) — V2 fi(bi) (2 + t(s" — ) — bi))T(g’“ — ")t



It could be further proven that when + € [0,7%], the first three terms of the right-hand side dominates and
therefore 44, defined in (5.1), which is also the closed-form solution of
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can be approximately regarded as arg min, ¢(o.,] F'(z(7)), which yields more decrease of the objective value
than the standard step-size. Then we have the following theorem.

Theorem B.1. Suppose that F is convex and Assumption 1.1 holds, and Algorithm 2.1 with Rule—SBDk

is applied to the problem (1.2) with adaptive step-sizes defined by (B-6) for all k > 0. Then for all k > 1 we

have:

2LD3 + 410L D, D?,
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Proof of Theorem B.1. First of all, suppose that the {#'}; are the iterates of the TUFW with adaptive step-
sizes and {s'}; are still the outputs of the linear minimization oracle on {Z'};. We define d;, := F(z*+!) —
F(&% + yp(s* — ©%)), the difference of using adaptive step-sizes and standard step-sizes. Similar with the
proof of Lemma 3.17, we have
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where the inequality is due to Lemma 3.12. Subtracting F'* from both sides of the above inequality chain,
we arrive at:

~ ~ ~, T *
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where &, denotes F'(7*) — F(z*). Multiplying both side by (k + 1)(k + 2) and telescoping the inequalities

yields:
k
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Now it is time to study the upper bound of §x. According to (B-7), we can write the d as follows

2
— (P + ()T (5 = 0 + ()T b)) (B-10)
- Zn: ;_:k (VHila* + ol — %) — VA(b) - V2 + a(s" —25) —b)) (s — ¥)da
where . 3
F(a*) + () T (sF = o)+ (" —a®) T Hi(s* —o¥) <
P(a*) +0(g") T (8 )+ 2 (5 — ) TH (5 — o)

because of the definition of adaptive step-sizes in (B-6). Now
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For simplicity of notations, we use C;(«) to denote the component inside the i-th integral of the right-hand
side of (B-11), which is

Ci(a) == (l; (w7 + a(w; s —w &%) — li(w] &7
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and then for each i =1,...,n, due to Assumption 1.4
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where the third inequality is due to (B-12) and the fourth inequality is due to 43 < 7. Furthermore,
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and we can still use the inequalities in (3.8) from Lemma 3.14 to obtain
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In addition, directly using Lemma 3.14 yields
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for any ¢t > 1. Substituting (B-15), (B-16), and ~; := H% into (B-9) yields
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Since 4, < H-% for any t > 0, using Lemma 3.18 yields
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Since Zf:o H%Q <log(k + 1), applying expectation on both sides of (B-17) yields
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where the second inequality is due to D3 < D1 D? and log(k+ 1) < k+ 1 when k > 0. Now this inequality

above can directly lead to (B-8).
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C Extension to General ERM Problems

In this section, we extend TUFW to the general ERM problems. Instead of Assumption 1.1, the new
assumption for (1.1) is as follows:

Assumption C.1. The following conditions hold for (1.1).

1. The feasibility set C is a compact convex set with diameter

Diam(C) = max lu — v (C-18)

and the linear minimization problem argmingec g = can be easily solved for any g € RP,

2. for the multivariate loss function f;(-), i = 1,...,n, in (1.2), the gradient V f;(-) is L-Lipschitz con-
tinuous on C, namely

IV fi(u) = Vfi()|l« < L||lu—v|, foranyu, veC, (C-19)
where || - ||« is the dual norm of the norm on the space of variables,
3. and the Hessian matriz V2 f;(-) is L-Lipschitz continuous on C, namely
IV2fi(u) — V2fi()|| < Llu—v|, for anyu, veC, (C-20)
where the norm of Hessian matrices is the operator norm induced by the norm on the space of variables.

In the rest of this section, we will use z* to denote the optimal solution of problem (1.1) and show how
to prove the corresponding new convergence rates. First of all, we have the following fact.



Fact C.1. Under the continuity (C-19) and (C-20) defined in Assumption C.1, for any z, y in C and i € [n],
it holds that

|fily) = fie) = (Vfilz),y — 2)| < Ll|lz — y||*/2 (C-21)

and

IV fi(y) = Vfi(e) = (V2 fi(@).y — )|« < Lz —yl*/2. (C-22)

Now we can establish a fundamental lemma that is similar to Lemma 3.14, useful in measuring the error
of Taylor-estimated gradients.

Lemma C.1. Under Assumption C.1 for the problem ERM, for any u,v € C,
T LD* & . 2
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holds for iteration k of Algorithm 2.1 for all k > 1.

Proof of Lemma C.1. First of all, (VF(z*) — gk)T (u — v) can be rewritten as
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Now we first analyze the convergence of problems with convex objectives. Similar with Lemma 3.17 for
problem setup (1.2), we have the following lemma for problem setup (1.1).

Lemma C.2. When F is convex and Assumption C.1 holds, then for any k,

2LD? 2

P =F@) < G0+ GrneT o
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for problem setup (1.1) with v, := 2/(k + 2).

The proof is almost the same with the proof of Lemma 3.17, different by replacing all DTg by D? and
replacing Lemma 3.13 by Fact C.1.

We will then show how to modify the proofs in section 3 and section 4 to prove the convergence of general
ERM problems.

Taking the TUFW with Rule—SBD+k and standard step-size as an example, we have the following

theorem.

Theorem C.1. Suppose that F is convex and Assumption C.1 holds, and Algorithm 2.1 with Rule—SBDV'k
is applied to the problem (1.1) with step-sizes defined by v := 2/(k+2) for all k > 0. Then for all k > 1
we have: , -
2LD* 4+ 134LD
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The proof is almost the same with the proof of Theorem 3.3, except replacing Lemma 3.17 and Remark
3.15 by Lemmas C.2 and C.1.

As for applying Rule—DBD+'k and adaptive steps, the convergence results and corresponding proofs are
similar with those for problem setup (1.2) in section 3.

When the objective function is nonconvex, similar with Lemma 4.6 for problem setup (1.2), we have the
following lemma for problem setup (1.1).

Lemma C.3. Under Assumption C.1 for (1.1), if we use the step-size v 1=y := \/%H in Algorithm 2.1,
then . .
G(z*) F(2%) — F(z) 1 k Tk _ 2k LD?
< + VF — — + — C-28
];]K—kl_ K+1 K+1]§( (@) =90 (" =)+ 5 (C-28)

The proof is almost the same with the proof of Lemma 4.6, except replacing all DTS by D? and replacing
Lemma 3.13 by Fact C.1.
Taking the TUFW with Rule—SBD /K and standard step-size as an example, we have the following

theorem.

Theorem C.2. Suppose that Assumption C.1 holds and F' is not necessarily convex, and Algorithm 2.1 with
Rule—SBD /'K is applied to the problem (1.1) with step-sizes defined by vy, :== v := 1/v/K + 1 for all k >0,
where K > 1 is given. Then:

“E[G(z%)] _ F(z°) — F(z*) = 3LD3+ LD?
: k
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The proof is almost the same with the proof of Theorem 4.3, different by replacing Lemma 4.6 and
Remark 3.15 by Lemmas C.3 and C.1.
Finally, the overall complexiy result is as follows:

Corollary C.1. Suppose that the above assumption holds, then

1. when F' is convex, and vy := %H’ and Algorithm 2.1 with Rule—SBDVk (or Rule—DBD\/E) is applied
to the problem (1.1), in order to obtain E[F(z*) — F(2*)] < € (or F(z*) — F(z*) < €), the bound of
the number of flops is

L -Diam(C)? + L - Diam(C)? o \/L'Diam(C)“ﬂDiam(C)?')
: np- - )
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2. and if v, = \/%—H’ and Algorithm 2.1 with Rule—SBD~N/K (or Rule—DBD~/'K) is applied to the

problem (1.1), in order to obtain Ekwu([K])E[g(@“E)] <€ (or IE,%NM([K])[Q(Z";)} < e ), the bound of the
number of flops is
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D More experimental results

In order to test our TUFW methods on problems with larger feasible regions, we increased the size of the
feasibility set in (6.1) by inflating the value of A to X' = 100\ (where recall A\ was determined by cross
validation). Table D-2 shows the results of these experiments. For these problems with larger feasible
regions, the advantage of the TUFW methods is even more pronounced. Curiously, this increased advantage
of TUFW due to a larger feasible region is not indicated by any of the theory we developed. TUFW methods
and FW-ada exhibit linear-like convergence rates, but TUFW methods require far lower CPU runtime than
all other methods.

Table D-2: Comparison of average CPU runtimes (in seconds) required to achieve G(z*) < € for methods on
the logistic regression problem (6.1) with X inflated to A’ = 100A. (A blank indicates the method used more
than 5000 seconds.)

€ dataset n P Rule—SBDVk Rule—DBDVE FW FW-ada SPIDER-FW CSFW | Speed-up
1e0 ala 1605 123 | 1.08 0.56 3322.66 21.88 39.14

le-2 ala 1605 123 | 61.47 22.15 2671.01 120.59
le-4 ala 1605 123 | 4561.28 1683.57

1e0 a2a 2265 123 | 2.40 4.30 3858.43  32.69 13.64

le-2 a2a 2265 123 | 6.70 5.68 1959.43 345.13
le-4 a2a 2265 123 | 28.72 13.29

1e0  ada 226906 123 | 15.35 8.50 268.54 31.59

le-2 a8a 22696 123 | 34.86 17.75

le-d a8a 22696 123 | 60.72 30.10

1e0 a9 32561 123 | 20.80 10.97 326.83 29.79

le-2  a9a 32561 123 | 52.70 24.35

le-d a9a 32561 123 | 97.60 45.91

10  wla 2477 300 | 16.17 8.94 4569.30 511.10
le-2 wla 2477 300 | 75.05 34.01

le-4 wla 2477 300 | 1687.82 560.34

10  w2a 3470 300 | 34.13 18.39

le-2  w2a 3470 300 | 138.82 65.27

le-d w2a 3470 300 | 2311.84 778.48

1e0  wra 24692 300 | 147.81 123.91

le-2 wTa 24692 300 | 443.15 339.27

led wTa 24692 300 | 3434.91 1740.40

10  wSa 49749 300 | 522.63 165.85

le2 w8a 49749 300 | 1053.55 515.06

le-d w8a 49749 300 4608.20

le-1 svmguide3 1243 22 3.58 1.17 127.60 109.24
le-3 svmguide3 1243 22 | 11.28 3.67 485.90 132.22
le-5 svinguide3 1243 22 | 18.83 6.08 844.46 138.80
le-7 svmguide3 1243 22 26.37 8.54 1201.28 140.65
le-1 phishing 11055 68 | 2.26 1.20 66.23 254.91  3563.61 64.96 | 53.93

le-3 phishing 11055 68 | 5.15 2.45 3958.88  4057.22 1613.39
le-5 phishing 11055 68 | 19.12 8.35

le-7 phishing 11055 68 | 592.44 207.94

le-1 ijennl 49990 22 | 1.52 0.47 100.76 213.41
le-3 ijennl 49990 22 | 2.32 0.64 243.63 378.96
le-5 ijennl 49990 22 | 2.92 0.80 495.17 531.71
le-7 ijennl 49990 22 | 3.45 0.92 607.30 660.82
le-1 covtype 581012 54 | 250.33 115.22

le-3  covtype 581012 54 1163.77 484.39

le-5 covtype 581012 54 | 2230.09 890.50

Table D-3 is almost identical to Table 4. The only difference is that the numbers in parentheses in the
table are the number of iterations K at which the given average Frank-Wolfe gap was attained.




Table D-3: Comparison of average CPU runtimes (in seconds) required to achieve ﬁ ZkK:o G(z*) < e for
methods on the non-convex binary classification problem (6.2). The numbers in parentheses are the number

of iterations K at which the given average Frank-Wolfe gap was attained. (A blank indicates the method
used more than 5000 seconds.)

g (mk) dataset n P Rule—SBDV/K Rule—DBDVEK FW FW-ada SPIDER-FW CASPIDERG | Speed-up
fe2  ala 1605 119 | 6.05(1.8¢4) 4.44(2.3¢4) 10.46(3.7¢6) 9.00(5.3¢6) 15.77(2.5¢7) 2.03
le-3  ala 1605 119 | 90.34(1.6¢5) 65.11(1.6e5)  818.40(4.2¢7) 237.93(9.2¢6) 3.65
led  ala 1605 119 | 2225.61(6.3¢6)  1453.87(6.3¢6) 4953.53(2.5¢7) 3.41
fe2  aZa 2265 119 | 6.47(2.3¢4) 4.94(1.6¢4) 12.62(5.2¢6) 1055(2.1e7)  13.54(2.1¢7) 2.14
le-3 a2 2265 119 | 93.17(2.0c5) 70.69(2.0e5)  781.05(4.2c7)  303.67(2.1¢7) 4.30
led  a2a 2265 119 | 2168.72(6.3c6)  1389.71(9.4¢6)

T2 ada 22606 123 | 46.68(2.504)  41.92(2.5c4) 243.81(3.9¢6) 140.10(8.7¢6)  35.70(4.27) 0.85
le-3  a8a 226906 123 | 668.35(1.8¢5)  603.88(2.5¢5) 3317.18(2.6¢6) 5.49
led  asa 22606 123

12 ada 32561 123 | 83.24(1.4cd) 79.91(1.204) 358.08(6.3¢0) 240.37(2.6¢6)  46.05(4.2¢7) 0.58
le3 a9 32561 123 | 1165.35(1.3¢5)  1106.16(1.3¢5)

le-4 a%a 32561 123

52 wila 2477 300 | 8.99(2.5ed) 8.82(2.9¢d) 0.44(1.8¢4) 12.66(1.2¢6)  0.96(6.6¢5) 101.83(4.2¢7) | 0.05
le2  wla 2477 300 | 74.94(3.3¢5) 102.18(5.2¢5)  4.69(8.2e4) 157.90(5.1¢6)  19.96(1.3¢7) 0.06
23 wla 2477 300 | 1278.96(1.5e7)  4063.80(4.2¢7)  109.23(1.4e6)  1768.32(1.2¢7) 0.09
52 w2a 3470 300 | 12.64(1.5ed) 11.90(1.0e4) 0.50(1.0e4) 17.41(7.0¢6)  1.01(7.9¢5) 120.51(3:8¢7) | 0.04
le2  w2a 3470 300 | 93.47(2.8¢5) 122.01(2.9¢5) 7.44(8.2¢4) 226.70(8.0¢6)  21.08(1.7¢7) 0.08
23 w2 3470 300 | 900.09(3.1e6)  2545.77(4.2c7)  152.15(2.4e6)  2415.59(1.4e7) 0.17
52 wra 24692 300 | 95.86(1.ded) 90.12(1.6¢4) 7.79(1.2¢4) 271.26(2-3¢6)  2.16(6.6e5)  595.38(2.5e7) | 0.02
le2  wra 24692 300 | 544.57(1.6e5)  561.90(4.9¢4)  80.96(4.9¢4) 3596.39(2.0c7)  29.75(8.4¢6) 0.05
23 wia 24692 300 | 4078.15(1.0c6) 1631.47(6.6¢5) 2990.71(4.2¢7) 0.40
52 wia 40749 300 | 222.71(2.3¢4)  216.21(1.0¢4) 16.41(1.4e4) 534.20(3.5¢6)  3.25(5.2eb)  1122.68(2.7¢7) | 0.02
le2  wsa 49749 300 | 1202.84(4.1c4)  1303.19(4.1e4)  176.70(9.8¢4) 41.53(1.0e7) 0.03
23 w8a 49749 300 3268.55(7.9¢5)

Tl svmguided 1243 22 | 0.47(5.1c4) 0.15(3.7¢4) 2.84(4.207) 1.96(6.3¢6) 13.39
le-2  svmguide3 1243 22 | 7.95(1.4e5) 2.41(6.6e4) 74.73(6.3¢6) 30.98
le-3  svmguide3 1243 22 | 122.45(1.0c6)  33.68(1.0e6) 2946.23(3.4¢7) 87.49
le-4 svmguide3 1243 22 | 2418.83(1.0e7)  804.17(2.1e7)

Te-l  phishing 11055 68 | 1.59(1.6ed) T.17(1.6ed) 2.36(4.6¢5) 102.48(1.4e7)  1.17(4.7¢6) 0.99
le-2  phishing 11055 68 | 17.53(2.9¢4) 12.18(3.5¢4)  158.49(1.5¢7) 2506.03(2.2¢7) 13.01
le-3  phishing 11055 68 | 216.38(3.9¢5)  154.79(3.9e5)

le-d  phishing 11055 68 | 5049.56(1.0¢7)  3558.37(1.0e7)

Te-1 ijennl 19990 22 | 2.32(3.2¢3) 0.96(9.2¢3) 10.88(6.6¢5) 103.03(8.7¢6)  1.58(3.7¢6) 368.77(4.2¢7) | 1.64
le2  ijennl 49990 22 | 24.26(2.5¢4) 10.00(1.3¢4)  728.57(2.7¢7) 2315.87(4.8¢6) 72.85
le-3  ijennl 49990 22 | 298.45(1.6e5)  179.40(1.3¢6)

le-d  ijennl 49990 22 2750.09(5.2¢6)

52 coviype 581012 54 | 156.41(4.5¢6)  110.28(5.8¢6)  2152.50(4.2¢7)  2894.39(4.5¢0) 19.52
le-2  covtype 581012 54 | 785.43(4.7c6)  572.97(5.8¢6)

2-3  coviype 581012 54 | 4202.90(5.8¢6)  3142.24(5.8¢6)
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