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Real-time Adaptive Randomization of Clinical Trials 
Abstract 

 Objective: To evaluate real-time (day-to-day) adaptation of randomized controlled clinical 

trials (RCTs) with delayed endpoints – a “forward-looking optimal-experimentation” form of 

response-adaptive randomization (RAR). To identify the implied tradeoffs between lowered 

mortality, confidence intervals, statistical power, potential arm misidentification, and endpoint-

rate change during the trial. 

 Study Design and Setting: Using data from RCTs in acute myocardial infarction (30,732 

patients in GUSTO-1) and coronary heart disease (12,218 patients in EUROPA), we resample 

treatment-arm assignments and expected endpoints to simulate (1) real-time assignment, (2) for-

ward-looking assignments adapted after observing a fixed number of patients (“blocks”), and (3) 

a variant that balances RCT and real-time assignments. Blinded RTARs adjust day-to-day arm 

assignments by optimizing the tradeoff between assigning the (likely) best treatment and learning 

about endpoint rates for future assignments.  

 Results: Despite delays in endpoints, real-time assignment quickly learns which arm is 

superior. In the simulations, by the end of the trials, real-time assignment allocated more patients 

to the superior arm and fewer patients to the inferior arm(s) resulting in fewer mortalities over 

the course of the trial. Endpoint rates and odds ratios were well within (resampling) confidence 

intervals of the RCTs, but with tighter confidence intervals on the superior arm and less-tight 

confidence intervals on the inferior arm(s) and the odds ratios. The variant and patient-block-

based adaptation each provide intermediate levels of benefits and costs. When endpoint rates 

change within a trial, real-time assignment improves estimation of the end-of-trial superior-arm 

endpoint rates, but exaggerates differences relative to inferior arms. Unlike most RARs, real-

time assignment automatically adjusts to reduce biases when real changes are larger. 

 Conclusion: Real-time assignment improves patient outcomes within the trial and narrows 

the confidence interval for the superior arm. Benefits are balanced with wider confidence 

intervals on inferior arms and odds ratios. Forward-looking variants provide intermediate 

benefits and costs. In no simulations, was an inferior arm identified as statistically superior. 

Keywords: adaptive clinical trials, multi-armed bandits, response-adaptive randomization, 

temporal changes, patient beneficence, forward-looking trials. 

Running title: Real-time adaptive randomization. Text word count: 4,514 
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 Plain language summary. Randomized control tests (RCT) are the gold standard in clinical 

trials – typically half of the patients are assigned to a new drug or procedure and the other half to 

a placebo (or the current best option). Typically, half of the patients might get an inferior drug or 

treatment. We explore a method, Real-time Adaptive Randomization (RTAR), that uses 

information observed up to the time of the next assignment to best allocate patients to 

treatments—balancing known current and unknown future outcomes—treating versus learning. 

RTAR is based on a preplanned, but adaptive, assignment rule. Blinding can be maintained, so 

that neither the trialist nor the patient knows to which treatment the patient was assigned. During 

the trial, as the RTAR learns the “best” treatment, the RTAR assigns more patients to that best 

treatment than would a classical RCT. In two large-scale cardiovascular clinical trials, our 

simulations suggest that the RTAR would have saved lives while identifying the best post-trial 

treatment at least as well as an RCT. Some statistical measures are improved and others are 

worse. If endpoint rates in treatments would have changed dramatically during the trial, the 

RTAR would have adapted better than many other methods. 
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Real-time Adaptive Randomization of Clinical Trials 
 
1. Adaptive trials, response-adaptive-randomization, and real-time adaptive 

randomization 
Relative to randomized controlled trials (RCT) patient lives might be saved (and non-

fatal endpoints prevented) if blinded information, gained from patients within a large-scale trial, 

is used to automatically reassign more patients to the superior arm. (Superiority is identified 

during the trial.) We examine whether such increased patient benefit (beneficence) and assigning 

the best arm if known (equipoise) comes at the cost of higher-variance odds-ratios, a change in 

the ability to identify the best arm, or statistical confidence that the superior arm is indeed best. 

Automatic, real-time adaptive randomization is a response-adaptive randomization 

(RAR) method [1, 2, 3, 4, 5, 6], which are themselves a type of adaptive designs such as when 

Data Safety Monitor Boards (DSMBs) periodically review results and reallocate the next batch 

of patients among arms [7, 8]. RAR methods include Thompson Sampling (assign patients 

proportional to the probability that an arm is best), modifications of Thompson sampling, play 

the winner, sequential maximum likelihood, sequential posterior mean, and various other 

methods based on Bayesian updating [2, 3, 4, 5, 6]. RARs vary in how they choose to use 

information in their adaptive-sampling strategies, leading to different trade-offs between patient 

beneficence and uncertainty reduction (e.g., statistical power for endpoint rates or for odds 

ratios). Because RARs often allocate more patients to the superior arm as the trial progresses, 

RARs may or may not be robust if (true) endpoint rates change during the trial (temporal 

changes) [9, 10, 11]. Furthermore, RAR analysis must use all available information and account 

for any small-sample biases that might be due to adaptivity [8, 10, 11, 12, 13, 14, 15]. When 

RARs are Bayesian in nature, reported statistics must be justified as appropriate for the data-
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generating process [10, 16, 17]. 

RARs tend to be myopic, require randomization within groups of assigned patients, and 

use fixed overall sample sizes [12]. Recently proposed forward-looking patient assignment 

balances the benefit of learning the endpoint rates of the arms to make better patient assignments 

during the remainder of trial (and post-trial) against the immediate expected best-arm 

assignments in the current period [9, 13, 18, 19, 20]. 

Forward-looking methods show promise for increased beneficence and equipoise relative 

to myopic RARs and fixed randomization [19], but forward-looking optimization faces 

theoretical challenges when endpoints are delayed. Randomizations assume a trialist observes 

prior endpoints before randomization rates are changed. However, in our first empirical example, 

mortality is observed 30 days after arm assignment and in our second empirical example the last 

primary endpoints are observed with a mean of 4.2 years after treatment. To address delayed 

outcomes and to maintain randomization for every assignment, most previously-proposed 

forward-looking algorithms group patients into blocks of patients and sample from all potential 

patient orders within a block. Randomization rates are changed block to block [19].  

Assigning patients within blocks is a creative and effective strategy, but does not fully 

address delayed endpoints. Unless the trialist plans no-assignment periods between successive 

blocks, delayed patient endpoints for assignments late in the block period are not observed in 

time for the next-block patient assignments. Large blocks reduce the percentage of unobserved 

outcomes, but large blocks decrease the advantages of optimal experimentation [19]. 

We examine an alternative forward-looking optimal-experimentation algorithm which 

assigns patients on a real-time (day-to-day) basis based on all data observed up to the day of pa-

tient assignment – real-time adaptive randomization (RTAR). Our analyses suggest that, had 
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RTAR assignments been used in two large-scale cardiovascular trials, lives would have been 

saved and non-fatal cardiovascular events prevented. We evaluate advantages, disadvantages, 

and ethical issues of RTARs. In §4.2, we examine the impact of temporal changes in endpoint 

rates, a known issue with RARs [9, 10, 11]. 

1.1. Multi-arm bandit algorithm when there are no delayed outcomes 

RTARs use a preplanned statistical algorithm to assign patients to arms based on the end-

points observed up to the time of assignment. For ease of exposition, we first summarize a real-

time adaptive design in which exactly one patient arrives each day and endpoints are observed 

the day of assignment. We next extend the discussion to the more-realistic situation where more 

than one patient arrives each day and endpoints are delayed. Based on patient homogeneity and 

tests that the true endpoint rates (e.g., mortality) per arm do not change throughout the trial 

(stationarity, §4.1), we assume that patients are interchangeable.  

RTARs are based on multi-arm bandits (MAB) [21] where the trialist seeks to optimize 

endpoints over all current and future patients, including those after the trial. To best assign arms 

to patients, the trialist balances learning about the endpoint rates (“learning”) and assigning the 

treatment most likely to be best (“treating”). See Figure 1. RTARs use Bayesian thinking – 

updating posterior beliefs about the distributions of endpoint-outcome probabilities after each 

day’s (possibly delayed) outcomes.  
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Fig. 1. Real-time adaptive randomization 

If we know the best treatment today rather than later, we can save lives and prevent non-

fatal cardiovascular events while we are learning. To capture this concept, trialists use a 

“discount” parameter to value endpoints today slightly more than endpoints tomorrow [13, 19, 

21, 22, 23]. The “discount” parameter is chosen conservatively; analyses for our data suggest 

RTAR benefits for other (larger and smaller) discount-parameters values. We seek an algorithm 

that minimizes discounted negative endpoint outcomes for all future periods, including post trial.  

eAppendix A describes full technical details about RTARs. We summarize the concepts 

here. An RTAR represents system knowledge about the endpoint rates using a Beta probability 

distribution per arm [9, 13, 24]. The Beta probability distribution has two parameters which are 

automatically updated when endpoints are observed. Based on this updating, an MAB-based 

RTAR chooses the patient assignments that best balance learning (potentially choosing 

suboptimal arms to learn more about them) and treating (always choosing the best arm given the 

available information). 

Gittins proved that the optimal solution to the MAB is to compute a “Gittins index” that 

is a function of the updated parameters [13, 23]. The optimal policy is to assign to the arriving 

Patients randomly arrive daily on day 

Balance earning and learning for current patients 
and all future patients (within and after trial).

Provide the (likely) best treatment 
and better learn current best-arm 

outcome rate (earn).

Better learn outcome rates of 
inferior arms for potential future 

treatments (learn).

(Delayed) endpoints observed 
(only those available by day )

Update beliefs about 
endpoint rates.
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patient the arm with the lowest Gittins index. (Lowest for mortality endpoints; highest for 

survival.) The calculations are easily completed and tabled before (blinded) patients are assigned 

to arms. 

The RTAR algorithm differs from many RARs because patients are assigned to arms 

deterministically based on the endpoints observed up to that day. Because patients arrive 

randomly, randomization occurs over the trial. (Variants introduced in §1.3-1.4 allow 

randomization within days or blocks.) RTARs avoid arm assignments that are “unnecessary” for 

the learning process [13, 24]. RTARs automatically assign a sufficient number of patients to all 

study arms, but not necessarily in a 1:1 ratio, until uncertainty in endpoint rates is reduced 

enough that assigning patients to the inferior arms no longer provides value. In our experience, a 

trial size that is sufficiently powered as if run as an RCT is sufficiently long for real-time assign-

ments to stabilize. In a new trial, trial size can be planned with simulation [8]. 

When patients arrive randomly and when endpoint rates do not change over the course of 

the trial, the random arrival of patients assures that the RTAR algorithm is an optimal 

randomization procedure. DSMBs still maintain independent oversight and monitoring of the 

trial progress, data integrity, and participant safety [8, 25]. 

1.2. Multi-arm bandit algorithm with delays and multiple patients per day 

RTARs modify Gittins’ solution. If more than one patient arrives on a given day, we 

assign all patients to the arm with the lowest index. When there are delays, we use only end-

points that have been observed by day 𝑑𝑑. The Gittins algorithm is no longer provably optimal, 

but we expect the algorithm to be close to optimal if (1) the number of patients that arrive on 

each day is small compared to the total patients in the trial and (2) the delay is small compared to 

the length of the trial. The first condition is met in both trials that we analyze, but the 
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performance of an RTAR remains an empirical question. The second condition is met in the first 

trial we analyze, but not necessarily the second trial, thus enabling us to examine the impact of 

substantial endpoint delays.  

1.3. Block-based MAB based on Gittins’ solution 

To achieve randomization for every patient, a block-based MAB algorithm changes 

assignment probabilities only after a blocks of patients arrives and outcomes are observed [9, 

19]. Empirically, if the block is sufficiently large relative to the endpoint delay, then most, but 

not all, endpoints can be observed before assignments are made in the next block. The algorithm 

samples the expected percentages of arm assignments over all possible patient orders. The block-

based MAB is also known as the forward-looking Gittins index algorithm [FLGI, 9, 18, 19]. 

In simulations grounded to a breast-cancer-treatment RCT, the block-based MAB 

algorithm provided “substantial improvements in terms of patient benefit” relative to other trial 

strategies including RCTs and other RARs [19]. The block-based MAB improved the expected 

number of positive endpoints by almost 50%, but with a reduction in statistical power of approxi-

mately 70%. Results depended upon the block size, with more positive endpoints and lower 

power observed for smaller-sized blocks. Other RARs produced intermediate patient successes 

and power relative to the block-based MAB and an RCT. 

1.4. RTAR 𝜂𝜂-variant to ensure a target minimum power 

 An RTAR assigns substantial sample to the superior arm, but less sample to inferior arms 

resulting in less statistical power for the inferior-arm endpoint rates. To address this ethical 

dilemma, trialists may wish to assure a minimum sample size (minimum statistical power) on the 

inferior arms or on odds ratios [9, 26]. 

An 𝜂𝜂−variant of an MAB algorithm addresses this dilemma by seeking a minimum level 
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of statistical power to inferior arms. With probability 𝜂𝜂, the 𝜂𝜂-variant randomizes patients in 

equal proportions to all arms that have not yet reached a targeted minimum number of patients. 

Otherwise, the 𝜂𝜂-variant assigns patients with Gittins’ indices. The 𝜂𝜂-variant is an alternative 

means to achieve burn-in [3, 6, 27]. RTARs, the block-based MAB, and the 𝜂𝜂-variants are all 

MAB-based algorithms. An MAB-based algorithm is a type of RAR and an RAR is a type of 

adaptive design. 

2. Statistical concepts, adaptivity bias, and expected performance 

eAppendix B provides details. We provide summaries in this section.  

2.1. Statistical concepts and potential adaptivity bias 

• The likelihood function and the posterior distribution do not depend explicitly on how the 

RTAR assigns patients [16].  

• All information about unequal sample sizes among arms is included in the likelihood 

function [10, 16, 17]. 

• Typically-used maximum-likelihood estimators (MLEs) can be reported and analyzed 

after the trial is completed, especially for large samples [12, 14, 15, 16, 28, 29]. 

• MLEs are consistent (asymptotically unbiased), but they may be biased for small samples 

[8, 11, 13, 14, 15, 16, 30, 31, 32]. Such biases are minimal for the large samples in the 

trials analyzed in this paper [15, 16, 33]. 

• When the number of patients is sufficiently large, resampling consistently generates all 

commonly-reported post-trial statistics [34].  

2.2. Anticipated performance of an RTAR relative to an RCT 

 Because an RTAR usually allocates more patients to the superior arm, we expect: 

• Fewer negative endpoints with an RTAR relative to an RCT. 



        Real-time Adaptive Randomization  11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Tighter confidence intervals and more power for the superior arm, less-tight 

confidence intervals and lower power for inferior arms. 

• For two arms, an RCT maximizes pairwise power and minimizes odds-ratio 

confidence intervals. For three or more arms, predictions are less clear. 

• The 𝜂𝜂-variant approaches an RTAR as 𝜂𝜂 → 0 and approaches an RCT as 𝜂𝜂 → 1, 

enabling a trialist to fine-tune patient beneficence versus power for odds ratios. 

• RTARs have advantages relative to other RARs for temporal changes in endpoint 

rates (§4.2).  

3. What if the GUSTO-1 and EUROPA trials had been adapted in real time? 

3.1. The GUSTO-1 and EUROPA RCT trials 

To study the potential performance of RTARs, we use resampling simulations grounded 

by the data from the GUSTO-1 and the EUROPA trials [35, 36]. The design and principal results 

of both trials have been published and are summarized in eTable 1 in eAppendix C. Briefly, 

GUSTO-1 randomized a total of 31,180 patients presenting with acute myocardial infarction to 

one of three thrombolytic strategies. (30,732 patients after excluding observations with missing 

data. A fourth strategy was added later into the trial.) The primary endpoint was 30-day all-cause 

mortality and was lowest in the patients randomized to accelerated tissue plasminogen activator 

(t-PA) with intravenous heparin. The GUSTO-1 investigators concluded that this combination “is 

the best thrombolytic strategy to date (i.e., 1993) for patients with acute myocardial infarction.”  

 The EUROPA investigators randomly assigned 12,218 patients with stable coronary heart 

disease to either a treatment with the angiotensin-converting-enzyme (ACE) inhibitor perindopril 

or to a matching placebo. The primary endpoint was a composite of cardiovascular death, non-

fatal myocardial infarction and cardiac arrest with successful resuscitation, and was lowest in 
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those patients randomized to perindopril. In 2003, the investigators concluded that, “on top of 

other preventive medications, [perindopril] should be considered in all patients with coronary 

heart disease.” The mean time-to-the-last observation of outcomes across all patients in 

EUROPA was 4.2 years after the start of the trial. 

 The GUSTO-1 and EUROPA trials were conducted according to the prevailing ethical 

regulations at the time, which included approval of the protocol by the institutional review board 

at the participating hospitals, and informed consent by the study participants. Our analyses are 

based on the individual (anonymized) patient data from the trials, which we obtained by courtesy 

of Duke University School of Medicine and Servier. 

3.2. Data and grounded simulations 

The detailed distribution of the RCT randomizations and endpoints per day in the 

GUSTO-1 and EUROPA trials are presented in online eAppendix D (eFigures 1 and 2). Data are 

displayed from the first randomization until the last observed primary endpoint. 

 Using the empirical trial data, we resampled patients to simulate what would have 

happened had the trial been based on an RTAR. Priors were weakly informative and equal for all 

arms, thus starting with an equally-likely ratio (1:1:1 for GUSTO-1; 1:1 for EUROPA). For each 

day of the trial, the RTAR automatically assigns patients arriving on day 𝑑𝑑 to one of the study 

arms, based on observed endpoints up to that the beginning of day 𝑑𝑑. Patients for each arm are 

drawn randomly (with replacement, given stationarity and exchangeability of patients) from the 

pool of RCT patients in the chosen arm. To avoid a particularly favorable draw and to compute 

confidence intervals for all statistics, we repeat the process with 200 replicates for each study. In 

GUSTO-1, these pools have 10,255 patients in arm 1, 10,268 patients in arm 2, and 10,209 

patients in arm 3. In EUROPA, these pools have 6,100 patients in Perindopril and 6,108 in the 



        Real-time Adaptive Randomization  13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

placebo. The empirically-grounded simulations continue until the final day of the original RCT 

trials. Mean endpoint rates, confidence intervals, power, pairwise odds ratios, and other statistics 

of interest are based on the distributions over replicates. 

3.3. Odds ratios 

Throughout the trial, estimated odds ratios evolve and the odds-ratio confidence intervals 

become tighter. Figures 2a to 2c plot the evolution of the mean and the confidence intervals for 

the odds ratios of all pairs of arms (averaged over replicates). We observe a tighter confidence 

interval for the arm-1-to-arm-3 odds ratio (the two arms with lowest mortality rates) relative to 

the confidence intervals for the arm-1-to-arm-2 odds ratio (superior to third best) and for the 

arm-2-to-arm-3 odds ratio (second best to third best).  
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Fig. 2. Changes in RTAR odds ratios during the trial for arms 1 and 2 (top), arms 1 and 3 (bottom left), 
and arms 2 and 3 (bottom, right) averaged over 200 replicates  

To obtain medians and confidence intervals, we ordered 2.5%, 50%, and 97.5% levels 

over 200 replicates. For GUSTO-1, the resampling median RCT arms 1:2 odds ratio is 1.182 

(1.075, 1.297), the arms 1:3 odds ratio is 1.116 (0.997, 1.240), and the arms 2:3 odds ratio is 

0.944 (0.852, 1.052). (In the RCT, the observed means were 1.184, 1.118, and 0.945, 

respectively.) The median RTAR odds ratio estimates are 1.204 (1.073, 1.632) for arms 1:2, 

1.150 (1.032, 1.414) for arms 1:3, and 0.946 (0.721, 1.199) for arms 2:3. The RCT medians are 

within the RTAR confidence intervals and the RTAR medians are within the RCT confidence 

intervals for all pairs of arms. The confidence intervals for the RTAR odds ratios are wider than 

those for the RCT. 

We get similar results for EUROPA. For example, the median odds ratio for Perindopril 
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versus a placebo is 1.246 (1.118, 1.412) and the median RTAR odds ratio is 1.248 (1.080, 

1.455), 𝜂𝜂 = 0.25. 

3.4. Number of patients assigned, mortalities, and mortality rates 

The first four columns of Table 1 present the results of the GUSTO-1 trial. The last three 

columns present the results of the EUROPA trial. We present the number of assigned patients, 

the number of primary endpoint events, and the endpoint rates for the original RCT (in the first 

three rows) along with confidence intervals. In the last nine rows of Table 1, we present the 

results had these trials used an RTAR, an 𝜂𝜂-variant, or a block-based MAB.  

For both trials, the ranking of all arms in the simulations by the RTAR, the 𝜂𝜂-variant, and 

the block-based MAB match the RCT ranking (t-PA with IV Heparin is the best, SK with IV 

Heparin is the worst in GUSTO; Perindopril is the best, placebo is the worst in EUROPA). The 

primary endpoint rates estimated with all three adaptive algorithms are quite close to those 

estimated with the RCT and well within the confidence intervals. Relative to the RCT, all MAB 

variants provided tighter confidence intervals on the mortality rate for the (identified-within-the-

trial) superior arm, with the tightest confidence interval provided for by the RTAR. As expected, 

the tighter bound for the superior arm comes with a tradeoff: confidence intervals are not as tight 

for the (identified-within-the-trial) inferior arms. 

The lowest mortality (greatest beneficence) in GUSTO-1 was observed for the RTAR 

(1,952 lives lost) and the highest mortality for the RCT (2,074 lives lost) – a net saving of 122 

lives due to real-time adaptation. The net savings for the 𝜂𝜂-variant and the block-based MAB 

were 72 and 102 lives saved, respectively. 

 Resampling suggests that the RCT would have identified the best arm in 98% of the rep-

licates, comparable to the 99% achieved by the RTAR. There were no cases, for either the RTAR 
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or the RCT, where an inferior arm (arm 2 or arm 3) was identified as statistically significantly 

better than the superior arm (arm 1). There were only 2% cases of arm imbalance where one of 

the inferior arms (arm 2 or arm 3) was assigned more patients than the superior arm (arm 1). We 

obtain similar results for EUROPA despite the substantial delays in observing outcomes in the 

follow-up. 

The gain in the reduction of negative endpoint outcomes comes at the cost of making 

fewer assignments to the inferior arms. For the RTAR, the assignments to the inferior arms 

averaged 2,755 (vs. 10,268) in GUSTO-1 arm 2, 4,311 (vs. 10,209) in GUSTO-1 arm 3, and 

1,859 (vs. 6,108) in the EUROPA placebo arm. The 𝜂𝜂-variant and the block-based MAB 

allocated fewer patients to the superior arm and more patients to the inferior arms than the 

RTAR. For the 𝜂𝜂-variant, the observed minimums for inferior arms vary slightly from preset 

minimums because the real-time portion of the 𝜂𝜂-variant favors the superior arm. 



Table 1. Benchmark simulation results for GUSTO-1 and EUROPA 

 GUSTO-1 EUROPA 

 

 Arm 1a: 

 t-PA, IV Heparin 

Arm 2:  

SK, IV Heparin 

Arm 3:  

 t-PA+ SK, IV 

Heparin   Totals 

Arm 1 a:           

Perindopril 

Arm 2:   

Placebo Totals 

RCT     RCT   

Patients 10,255 10,268  10,209  30,732 6,110 6,108 12,218 

Events 631 742 701 2,074 489 603 1,092 

Event rate 0.062 (0.055, 0.068) 0.072 (0.068, 0.077) 0.069 (0.068, 0.069)  0.080 (0.074, 0.087) 0.099 (0.091, 0.106)  

Real-time adaptive randomization (RTAR)b   Real-time adaptive randomization (RTAR)b, d 

Patients 23,666 2,755 4,311 30,732 10,359 1,859 12,218 

Events 1,455 200 297 1,952 828 183 1,012 

Event rate 0.061 (0.059, 0.065) 0.073 (0.066, 0.096) 0.069 (0.064, 0.085)  0.080 (0.075 0.153) 0.098 (0.088, 0.227)  

Real-time adaptive randomization variant, 𝜂𝜂 = 0.25 b, c   Real-time adaptive randomization variant, 𝜂𝜂 = 0.25 b,d 

Patients 18,479 5,683 6,570 30,732 9,768 2,450 12,218 

Events 1,136  413  453 2,002 782 241 1,023 

Event  rate 0.062 (0.059, 0.066)  0.073 (0.067,0.079)  0.069 (0.067, 0.076)  0.080 (0.075 0.086) 0.099 (0.088, 0.110)  

Block-based MAB b, d 

Patients 21,593 3,579 5,560 30,732 

Events 1,336  255  379 1,971 

Event rate 0.062 (0.059, 0.068)  0.071 (0.066, 0.081)  0.068 (0.066, 0.083)   
a Best arm in the trial 
b Averaged over 200 replicates. Priors in GUSTO: 𝛼𝛼𝑜𝑜 = 6, 𝛽𝛽𝑜𝑜 = 390 for all arms. Priors in EUROPA: 𝛼𝛼𝑜𝑜 = 40, 𝛽𝛽𝑜𝑜 = 1,800 for both arms 
c Minimum equally-likely allocation = 6,000. 
d Block size = 60. Monte Carlo draws = 100.  



3.5. The trade-off between (odds-ratio) statistical power and patient beneficence 

More patients assigned to the superior arms implies greater power for the superior-arm’ 

endpoint rates. Fewer patients assigned to inferior arms implies less power for inferior-arms’ 

endpoint rates. The deviation from equal allocation of patients to arms implies lower power for 

the odds ratios [12, 18]. To examine this tradeoff further, we plot the change in odds-ratio 

statistical power (solid lines, left vertical axis) and the number of patient exposed to the superior 

and inferior arms (dotted lines, right vertical axis) for different values of 𝜂𝜂.  

 

Fig. 3. Trade-off between statistical power and patient beneficence in GUSTO-1 

Larger 𝜂𝜂’s (more sample to 1:1:1 randomization) provide higher statistical power for the 

odds ratios, but lower patient beneficence (spread between the orange and blue dotted lines). At 

𝜂𝜂 ≥ 0.30, the power of the 𝜂𝜂-variant is almost indistinguishable from the power of the RCT 

(90%). The trialist can choose 𝜂𝜂 to make ethical tradeoffs between beneficence and odds-ratio 

power. (Open-source code provided.)  

3.6. Greater patient beneficence with larger differences in endpoint rates 

Every life is important, but it is beyond the scope of this article whether 122 fewer deaths 

out of 2,074 mortalities in GUSTO-1 justifies the use of a new method. However, if we examine 
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the GUSTO-1 trial, we see that the three arms are close in mortality risk, 0.062, 0.069, and 

0.072. As an hypothetical, we examine more substantial differences—mortality rates of 0.063, 

0.126, and 0.189 for the three arms, unknown before the trial. With 30,732 patients, an RTAR 

would have saved 1,700 lives compared to an RCT. We kept the total patients the same for a 

clear comparison. If the trialist had strong priors on the mortality risk and required the same 

statistical power, the trialist would allocate fewer patients to both the RTAR or the RCT. Even in 

this case, the RTAR would lead to substantially greater patient beneficence. 

3.7. Summary of the GUSTO-1 and EUROPA empirically-grounded simulations 

For GUSTO-1 and EUROPA, an RTAR increases patient beneficence, reduces patient 

risk, provides tighter confidence intervals and more power for the superior-arm endpoint rates, 

and comparable pairwise power for the superior-arm-to-second-best-arm comparison. An RTAR 

reduces power for inferior-arm endpoint rates and pairwise power for superior-to-third-best-arm 

and inferior-arm comparisons. The 𝜂𝜂-variant and the block-based MAB algorithm provide an 

intermediate balance of the benefits and costs of an RTAR versus an RCT. Odds-ratio power is 

comparable to an RCT for 𝜂𝜂 = 0.30 or higher. Neither the RTAR, the 𝜂𝜂-variant, nor the block-

based MAB identify an inferior arm as statistically superior.  

4. Stationarity and temporal changes in endpoint rates 

4.1. Tests of stationarity 

 To test whether endpoint rates change over the course of the trial, we split the RCT trial 

by quantiles on the date of assignment and examine whether endpoint rates vary significantly by 

quantile. For deciles, the null hypothesis of stationarity was not rejected for all GUSTO-1 arms 

(arm 1 𝑝𝑝 = 0.47, arm 2 𝑝𝑝 = 0.45, arm 3 𝑝𝑝 = 0.80) and for both EUROPA arms (Perindopril 𝑝𝑝 = 

0.37, placebo 𝑝𝑝 = 0.39). Two-way quantile splits were also not significantly different. Other 
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stationarity tests are available from the authors. 

4.2. Temporal changes in endpoint rates  

 Temporal changes in endpoint rates (non-stationarity), such as changes resulting from 

mutation in a virus, a change in the demographics of patients, environmental changes, or the ad-

vent of auxiliary treatments, are a known issue with RARs and potentially an issue with RTARs 

[9. 10. 11. 14]. eAppendix E explores the behavior of an RTAR with temporal shocks of 5%, 

10%, 15%, 20% and 25% higher mortality for later patients than earlier patients. (The literature 

suggests that RARs are robust to drift rates less than 25%, but not for large rates [9. 14].) 

 As detailed in eTable 2 and consistent with the literature, RTAR estimates are closer than 

RCT estimates to “true” end-of-trial mortalities, but between-arm differences are upwardly 

biased. RTARs may have advantages relative to other RARs. For large shocks, an RTAR 

reexplores post-shock inferior arms resulting in reduced bias (only 1-3% for higher shock rates). 

This is an interesting topic for further exploration, especially in light of the developing theory for 

MABs that anticipate temporal changes [37, 38]. 

5. Discussion 

Even when there are delays of 30 days or more, an RTAR would have saved lives (in 

GUSTO-1) and avoided cardiovascular events (in EUROPA) relative to an RCT while providing 

estimates of endpoint rates and odds ratios within statistical confidence of the RCT. The RTAR 

identifies well the superior arm for post-trial assignment. In no replicates was an inferior arm 

identified as statistically superior; the superior arm was identified as least as often with the 

RTAR as the RCT. Some statistical measures are better (tighter superior-arm confidence) and 

some worse (odds-ratio confidence intervals). Variants enable trialists to balance benefits and 

costs.  
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Ethically, RTARs enhance beneficence [2] and equipoise. However, patients who enter 

the trial late are more likely to receive the better treatments than patients who enter the trial early 

(violating equality).  

GUSTO-1 and EUROPA were large-sample, stationary trials of medical treatments. 

Benefits might be less: 

• For small-sample trials which require sufficient sample in inferior arms, such as 

many cancer trials, and reduced patient population trials such as rare-disease 

trials.  

• When, during the course of the trial, there are temporal changes in endpoint rates 

or there are large changes in the treatment, such as technology changes in medical 

devices. 

• When delays between randomization and endpoints are extremely large.  

Endpoint rates were delayed more in EUROPA than GUSTO-1 suggesting that, while 

RTARs can handle delays, they might struggle with substantial delays. We encourage research 

on earlier adaptivity based on biomarkers.    

Our simulations are empirically-grounded and their implications are as predicted by 

theory, but our simulations are post hoc analyses of the GUSTO-1 and EUROPA trials. There is 

nothing in our analyses that used knowledge that was not available at the time of RCT patient 

assignment. Nonetheless, any post hoc analyses must be treated with caution.  

Our empirical results suggest that trialists can rely on random arrival with changing 

deterministic assignments rather than require an MAB to adjust randomized assignments after 𝑏𝑏 

patients have arrived (𝑏𝑏 ≫ 1). For multiple-trial multiple-population settings, researchers can 

merge RTARs and platform-trials [35].  
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