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Key Takeaways 

 
The simplest way to treat incomplete information is to use only predictive variables without 
missing information, but this approach is unappealing because it discards valuable information.  
 
Alternatively, one may use statistical techniques to manufacture missing information thereby 
preserving available information, but these techniques often depend on limiting assumptions 
and produce tenuous results. 
 

A new prediction technique called relevance-based prediction (RBP) treats observations with 
missing information in a way that preserves remaining information and explicitly accounts for 
the relative importance of observations with missing information when forming a prediction 
and assessing its reliability. 
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Abstract 

A key requirement for forming data driven predictions is to assemble the best possible set of 
observations for the predictive variables.  This task, however, is not often easy.  In the case of 
time series data, some variables have shorter histories than others, and some variables are 
reported less frequently than others.  And in the case of cross-sectional data, some information 
is not reported for every case.  We are therefore faced with several choices.  We can discard 
predictive variables with missing information.  We can exclude observations with missing 
information and retain only those with full information for all the predictive variables.  We can 
use statistical techniques to manufacture replacements for the missing information.  However, 
each of these approaches has significant drawbacks.  The authors propose a new procedure for 
treating missing information that enables us to retain as much information as possible to form 

predictions and, at the same time, to account for the relative reliability of observations with 
missing information. 
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PREDICTION WITH INCOMPLETE INFORMATION  

 

When we set out to form data driven predictions, we first identify predictive variables that we 

believe to be important to the prediction, and then we assemble a sample of observations for 

those predictive variables.  It is often the case, though, that some observations do not have 

complete information.  For example, if we form our prediction from a time series of 

observations, some predictive variables may have shorter histories than others or some 

observations may be reported less frequently than others.  And if we form our prediction from 

cross sectional data, some observations may have missing information.  We could discard 

predictive variables that have missing information, or we could use all the predictive variables 

but only include observations with full information that are common across all predictive 

variables.  Both these approaches are unappealing, though, because they force us to discard 

useful information.  Alternatively, we could use statistical techniques to manufacture 

replacement information, but these techniques rely on limiting assumptions and often yield 

tenuous results.1  Moreover, these techniques fail to distinguish between the relative 

importance of missing information in one prediction task compared to another.  We propose a 

fourth alternative which follows from a new prediction technique called relevance-based 

prediction (RBP).  This technique, which has been shown to extract as much information from 

complex datasets as machine learning models,2 offers an elegant solution for treating 

observations with missing information that allows us to retain as much information as possible 

and, at the same time, account for the relative reliability of the observations with missing 

information.  
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 We proceed as follows.  We first describe RBP and its key features: relevance, fit, and 

grid prediction.  We then describe a simple but powerful way to treat missing information 

within the context of RBP, which is to assign a zero to a missing observation’s relevance weights 

within a grid that considers every possible combination of variables.  We present a simple 

illustration of how this approach allows us to retain more observations than if we were to 

eliminate the observations with missing information or if we were to omit predictive variables 

with missing information.  Next, we explain how RBP’s treatment of missing information 

accounts for the relative importance of missing information, and we present a toy example for 

a single grid cell prediction to support our argument.  Following that we present more toy 

examples to illustrate how the assignment of zero to the relevance weight of observations with 

missing information affects the composite prediction that flows from the prediction grid.  We 

then carry out a simulation to provide further evidence that RBP’s approach to treating missing 

information reliably captures the relative importance of the missing information.  We conclude 

with a summary. 

 

Relevance-Based Prediction 

Relevance-based prediction (RBP) is a model-free prediction routine that forms a prediction as 

a weighted average of observed outcomes in which the weights are based on a precisely 

defined statistic called relevance.  RBP also relies on fit which measures the reliability of each 

individual prediction, and grid prediction which gives a composite prediction from many 

predictions formed from different combinations of observations and predictive variables.3  As 
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we will show, the grid’s composite prediction explicitly accounts for the relative reliability of 

missing observations by the way it is formed. 

Relevance 

Relevance is a precise statistical measure of the importance of an observation to a prediction.  

It is composed of similarity and informativeness, which are both measured as Mahalanobis 

distances, as shown by equations 1 through 4.4  

𝑟𝑖𝑡 = 𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑡) +
1

2
(𝑖𝑛𝑓𝑜(𝑥𝑖 , 𝑥̅) + 𝑖𝑛𝑓𝑜(𝑥𝑡, 𝑥̅))   (1) 

𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑡) = −
1

2
(𝑥𝑖 − 𝑥𝑡)Ω−1(𝑥𝑖 − 𝑥𝑡)′   (2) 

𝑖𝑛𝑓𝑜(𝑥𝑖 , 𝑥̅) = (𝑥𝑖 − 𝑥̅)Ω−1(𝑥𝑖 − 𝑥̅)′    (3) 

𝑖𝑛𝑓𝑜(𝑥𝑡, 𝑥̅) = (𝑥𝑡 − 𝑥̅)Ω−1(𝑥𝑡 − 𝑥̅)′    (4) 

In equations 1 through 4, 𝑥𝑖 is a vector of the values of 𝐾 predictive variables for a prior 

observation, 𝑥𝑡 is a vector of the values of the predictive variables for a specific prediction task, 

𝑥̅ = 1𝑁1𝑁
′ 𝑋𝑁 −1 is the average of the predictive variables across all observations, and Ω−1 is the 

inverse covariance matrix of all the observations of the variables.  The vector (𝑥𝑖 − 𝑥𝑡) 

measures how distant each variable’s observed value is from its corresponding value in the 

prediction task, when measured in isolation.  By multiplying this vector by the inverse 

covariance matrix, we capture the interaction of the predictive variables, and at the same time 

we standardize the distances by dividing by variance.  By multiplying this product by the 

transpose of the vector (𝑥𝑖 − 𝑥𝑡) we consolidate the outcome into a single number.  All else 
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being equal, observations that are like current circumstances but different from average 

circumstances are more relevant than those that are not.   

This definition of relevance is not arbitrary.  We know from information theory that the 

information contained in an observation is the negative logarithm of its likelihood.5  We also 

know from the Central Limit Theorem that the relative likelihood of an observation from a 

multivariate normal distribution is proportional to the exponential of a negative Mahalanobis 

distance.  Therefore, the information contained in a point on a multivariate normal distribution 

is proportional to a Mahalanobis distance.   

Relevance-based prediction forms a prediction as a weighted average of prior outcomes 

for 𝑌.   

𝑦̂𝑡 = ∑ 𝑤𝑖𝑡𝑦𝑖
𝑁
𝑖=1      (5) 

If we define weights in terms of relevance as follows, which admits the relevance-

weighted average of every prior outcome in the observed data sample, the result is precisely 

equivalent to the prediction that results from linear regression analysis.6   

𝑤𝑖𝑡,𝑙𝑖𝑛𝑒𝑎𝑟 =
1

𝑁
+

1

𝑁−1
𝑟𝑖𝑡      (6) 

In most cases, however, we can produce a more reliable prediction by censoring the 

observations that are less relevant than a chosen threshold, which leads to the following 

definition of prediction weights.   

𝑤𝑖𝑡,𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 =
1

𝑁
+

𝜆2

𝑛−1
(𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡 − 𝜑𝑟̅𝑠𝑢𝑏 )   (7) 
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𝛿(𝑟𝑖𝑡) = {
1    𝑖𝑓 𝑟𝑖𝑡 ≥ 𝑟∗

0    𝑖𝑓 𝑟𝑖𝑡 < 𝑟∗     (8) 

𝜆2 =
𝜎𝑟,𝑓𝑢𝑙𝑙

2

𝜎𝑟,𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑
2 =

1

𝑁−1
∑ 𝑟𝑖𝑡

2𝑁
𝑖=1

1

𝑛−1
∑ 𝛿(𝑟𝑖𝑡 )𝑟𝑖𝑡

2𝑁
𝑖=1

    (9) 

In equations 6 through 9, 𝑛 = ∑ 𝛿(𝑟𝑖𝑡 )𝑁
𝑖=1  is the number of observations that are fully 

retained, 𝜑 = 𝑛/𝑁 is the fraction of observations in the retained sample, and 𝑟̅𝑠𝑢𝑏 =

1

𝑛
∑ 𝛿(𝑟𝑖𝑡 )𝑟𝑖𝑡

𝑁
𝑖=1  is the average relevance value of the observations in the retained sample.  It is 

important to note that 𝑤𝑖𝑡,𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 depends crucially on the prediction circumstances 𝑥𝑡.  

Relevance is reassessed for each prediction circumstance which further affects the 

identification of the retained subsample and introduces nonlinear conditional dependence of 

the prediction 𝑦̂𝑡  on the prediction circumstances 𝑥𝑡.  The scaling factor 𝜆2  compensates for a 

bias that would otherwise result from relying on a small subsample of highly relevant 

observations.  In the case of linear regression analysis 𝑛 = 𝑁 and 𝜆2 = 1.  Lastly, note that the 

regression weights always sum to 1.7   

Fit 

Fit quantifies the prevalence of useful patterns in a dataset, which provides a principled way to 

evaluate the relative efficacy of alternative calibrations for each prediction task.  Additionally, 

fit reveals how much confidence we should have in a specific prediction task, separately from 

the confidence we have in the overall prediction routine.   

Consider a pair of observations that are used to form a prediction.  Each observation has 

a weight and an outcome.  We are interested in the alignment of the weights of the two 

observations with their outcomes.  We first standardize them by subtracting the average value 
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and dividing this difference by standard deviation – in essence, converting them to z-scores.  

We then measure their alignment by taking the product of these standardized values.  If the 

product is positive, their relevance is aligned with their outcomes, and the larger the product, 

the stronger the alignment.  We perform this calculation for every pair of observations in our 

sample.  We should also note that all the formulas we have thus far considered for weights rely 

only on relevance, which in turn relies only on the 𝑥𝑖s, the 𝑥𝑡, and the 𝑥̅.  They do not use any of 

the information from observed outcomes.  To determine fit, however, we must consider 

outcomes (the 𝑦𝑖s).   

𝑓𝑖𝑡𝑡 =
1

(𝑁−1)2
∑ ∑ 𝑧𝑤𝑖𝑡

𝑧𝑤𝑗𝑡
𝑧𝑦𝑖

𝑧𝑦𝑗𝑗𝑖     (10) 

Equation 11 intuitively describes fit as the squared correlation of relevance weights and 

outcomes, which conceptually matches the notion of the conventional R-squared statistic.  As 

we soon show, this connection of fit to R-squared is critically important.   

𝑓𝑖𝑡𝑡 = 𝜌(𝑤𝑡 , 𝑦)2     (11) 

Although we compute fit from the full sample of observations, the weights that 

determine fit vary with the threshold we choose to define the relevant subsample.  As we focus 

the subsample on observations that are more relevant, we should expect the fit of the 

subsample to increase, but we should also expect more noise as we shrink the number of 

observations.  The fit across pairs of all observations in the full sample implicitly captures this 

tradeoff between subsample fit and noise by overweighting observations that are more 

relevant and underweighting observations that are less relevant.   
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Like relevance, fit is not arbitrary.  In the case of linear regression analysis with 𝑛 = 𝑁, 

the informativeness-weighted average fit across all prediction tasks in the observed sample 

equals R-squared.8  

𝑅2 =
1

𝑁−1
∑ 𝑖𝑛𝑓𝑜(𝑥𝑡, 𝑥̅)𝑓𝑖𝑡𝑡

𝑁
𝑡=1     (12) 

Censoring observations that fall below a relevance threshold is more effective to the 

extent there is asymmetry between the fit of the weights formed from the retained subsample 

of observations and the fit of the weights formed from the complementary set of censored 

observations.  We measure asymmetry between the fit of the retained and censored 

subsamples as shown by equation 13.  The (+) superscript designates weights formed from the 

retained observations while the (−) superscript designates weights formed from the censored 

observations.  Asymmetry recognizes the benefit of censoring non-relevant observations that 

contradict the predictive relationships that exist among the relevant observations.  This 

assessment also inherently considers the relative sample sizes of the two subsamples.   

𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑡 =
1

2
(𝜌(𝑤𝑡

(+)
, 𝑦) − 𝜌(𝑤𝑡

(−)
, 𝑦))

2

                  (13) 

To calculate adjusted fit, we add asymmetry to fit and multiply this sum by 𝐾, the 

number of predictive variables included in the prediction, as shown by Equation 14.  

Multiplication by the number of predictive variables allows us to compare predictions based on 

different numbers of predictive variables.  Adjusted fit recognizes that we are more likely to 

observe a spurious relationship from prediction weights based on just one or a few variables 

than we are based on a collection of many variables.   
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𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡 = 𝐾(𝑓𝑖𝑡𝑡 + 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑡 )   (14) 
 

Grid Prediction 

Grid prediction employs a grid in which the columns represent different combinations of 

predictive variables, and the rows represent subsamples of observations determined by 

different relevance thresholds.  Each cell contains a prediction and an associated adjusted fit.  

The assessment of reliability using adjusted fit occurs before the prediction is rendered and the 

subsequent outcome is known.  Grid prediction forms a composite prediction as a reliability-

weighted average of the predictions from all possible calibrations.  Equation 15 defines 

reliability weights, 𝜓𝜃, as the adjusted fit for a parameter calibration, 𝜃, divided by the sum of 

all adjusted fits across all parameter calibrations.   

𝜓𝜃 =
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝜃

∑ 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝜃̃𝜃̃

     (15) 

Equation 16 describes the composite prediction.   

𝑦̂𝑡,𝑔𝑟𝑖𝑑 = ∑ 𝜓𝜃𝑦̂𝑡,𝜃𝜃      (16) 

Exhibits 1 and 2 illustrate how RBP forms a prediction.  Exhibit 1 shows how we compute 

the prediction for a single cell in the prediction grid.  It includes hypothetical values for the X 

and Y variables.  The panel on the right gives values for the similarity and informativeness of 

prior observations and the informativeness of the observations for the current prediction task.  

It also shows the relevance of each prior observation and the observation’s relevance weight.   
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Exhibit 1: Single Cell Prediction 

 

Exhibit 2 gives a visual representation of grid prediction.  The columns represent 

different subsets of variables, and the rows represent different subsamples of observations as 

determined by different relevance thresholds.  Each cell represents a calibration 𝜃; that is, a 

unique combination of predictive variables and observations.  In practice, we would consider all 

31 combinations of five variables, but for illustrative purposes we show only seven columns in 

Exhibit 2.  The first values shown in the cells are the calibration-specific predictions 𝑦̂𝑡  for a 

given prediction task 𝑡.  The second values are the weights 𝜓𝜃 we apply to the calibration-

specific predictions to form the composite prediction.  The values in the grid are specific to each 

prediction task.  This illustration gives a composite prediction of 16.30 (15.7 x 1.72% + 15.7 x 

1.15% + 10.1 x 0.24% + . . . + 9.3 x 0.04%).   

Variables Y X1 X2 X3 X4 X5 X6

Prediction Task t ? 2.78 8.75 0.28 0.61 0.31 0.58

Observation 1 20.67 3.13 10.21 0.29 0.00 0.47 0.53 -4.30 12.13 11.96 7.75 4.9%

Observation 2 6.30 4.14 12.24 0.21 0.60 0.29 0.48 -4.06 2.99 11.96 3.41 2.0%

Observation 3 5.19 1.99 9.78 0.16 0.52 0.10 0.48 -7.36 2.43 11.96 -0.17 -0.4%

Observation 4 10.41 3.21 13.47 0.26 0.34 0.48 0.54 -3.41 3.94 11.96 4.54 2.7%
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .

Observation n 4.49 4.14 3.14 0.23 0.31 0.22 0.37 -7.36 2.75 11.96 -0.01 -0.4%

Prediction 19.40

Adjusted Fit: 2.32

WeightSimilarity Infoi Infot Relevance
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Exhibit 2: Grid Prediction – Illustrative Example 

 

Note that each cell’s prediction is a linear function of observations, and the grid 

prediction is a linear function of each cell’s prediction.  Therefore, we can express the grid 

prediction in terms of composite weights applied to each observation, as shown by Equation 

17.  Composite weights are important because they preserve the transparency of each 

observation’s contribution to the current prediction task, and they allow us to calculate fit from 

composite weights as a final gauge of the grid prediction’s reliability.   

𝑤𝑖𝑡,𝑔𝑟𝑖𝑑 = ∑ 𝜓𝜃 𝑤𝑖𝑡,𝜃𝜃      (17) 

 

 

0.0 15.7 1.72% 15.7 1.15% 10.1 0.24% 15.3 1.37% 10.9 0.54% 15.3 0.47% 7.4 0.06%

0.1 16.4 2.02% 16.7 1.39% 10.4 0.23% 15.4 1.88% 12.5 0.73% 15.5 0.50% 7.7 0.04%

0.2 17.5 2.20% 17.4 1.43% 10.3 0.18% 15.4 1.91% 12.6 0.64% 15.5 0.44% 7.9 0.05%

0.3 17.8 2.17% 17.7 1.43% 10.5 0.20% 15.5 2.24% 12.6 0.62% 15.5 0.42% 7.9 0.05%

0.4 18.2 2.29% 18.0 1.50% 10.6 0.22% 15.4 2.18% 12.7 0.65% 15.5 0.41% 8.1 0.07%

0.5 18.6 2.50% 18.2 1.58% 10.7 0.25% 14.3 2.50% 12.8 0.70% 15.3 0.41% 8.1 0.06%

0.6 18.7 2.47% 18.4 1.61% 10.7 0.23% 15.4 1.21% 13.1 0.73% 15.4 0.42% 8.8 0.10%

0.7 19.0 2.47% 18.8 1.63% 10.7 0.19% 15.4 2.20% 12.9 0.62% 15.4 0.41% 8.7 0.07%

0.8 19.4 2.32% 19.1 1.50% 11.5 0.20% 15.3 2.04% 13.7 0.57% 15.5 0.37% 8.6 0.04%

0.9 19.5 1.26% 18.8 0.81% 12.9 0.22% 15.5 1.73% 14.0 0.32% 15.3 0.25% 9.3 0.04%

O
b
se

rv
at

io
n
 C

en
so

ri
n
g 

Th
re

sh
o
ld

X2 X6

Composite Prediction :     16.30

Variable Combinations

X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X1 X3 X4 X2 X5 X6 X3 X6
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RBP and Missing Data 

RBP treats missing data by assigning a relevance weight of zero to observations with missing 

information, and aggregates alternative uses of data across many variable combinations in a 

prediction grid.  This approach has two important virtues.  First, it allows us to retain more 

observations than if we were to eliminate the observations with missing information or if we 

were to omit predictive variables with missing information.  Second, it allows us to account for 

the relative importance of observations with missing information. We first discuss how RBP 

preserves information.   

Imagine we are presented with the data shown in Exhibit 3, in which three values are 

missing for variable X1 and two values are missing for variable X2.   

Exhibit 3: Potential Samples for Analysis 

 

  

 The three panels in Exhibit 3 illustrate alternative approaches to extracting subsets of 

data that are amenable to traditional analysis.  In the left panel, we remove all observations 

X1 X2 X1 X2 X1 X2

1 0.35 1.11 0.35 1.11 0.35 1.11

2 -0.52 -0.52 -0.52

3 -1.60 -1.60 -1.60

4 -0.22 -0.22 -0.22

5 0.12 -0.90 0.12 -0.90 0.12 -0.90

6 -0.37 0.17 -0.37 0.17 -0.37 0.17

7 0.80 0.80 0.80

8 -0.26 -0.26 -0.26

9 0.60 0.34 0.60 0.34 0.60 0.34

10 0.17 -0.25 0.17 -0.25 0.17 -0.25

X1 only X2 onlyX1 and X2

1 Variable

7 Observations

1 Variable

8 Observations

2 Variables

5 Observations
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that contain missing data, preserving five observations of both X1 and X2 but ignoring five 

pieces of information.  In the middle panel, we remove variable X2 entirely, preserving seven 

observations of variable X1 but ignoring eight pieces of information.  And in the right panel, we 

remove variable X1 entirely, preserving eight observations of variable X2 but ignoring seven 

pieces of information.  Viewed in isolation, each of these approaches is suboptimal because it 

sacrifices potentially useful information.   

 RBP addresses this issue by blending the information from each panel using the inherent 

properties of grid prediction.  In this simplified example, the grid consists of three cells.  Recall 

that RBP forms a prediction by taking a weighted average of observed outcomes in which the 

weights are based on relevance.  For the first cell, we assign relevance weights to each of the 

available observations and set the remaining observation weights to zero.  Then we compute 

the adjusted fit of this cell’s prediction weights.  It is crucial to recognize that adjusted fit is 

penalized for the fact that five observations have zero weights.  Intuitively, this occurs because 

fit equals the squared correlation between weights and outcomes (equation 11), and zero 

weights dilute this correlation.  For the second cell, we ignore variable X2 completely, assign 

relevance weights to the set of seven available observations based on X1, and set the remaining 

weights to zero.  As before, we compute the adjusted fit of this cell’s prediction weights.  The 

adjusted fit of this cell is only dampened by three zero weights, which is fewer than the 

previous cell.  However, this cell’s adjusted fit is dampened by having only one variable, 𝐾, 

rather than two.  A similar situation applies to the third cell.   

 The presence of missing data leads to a fundamental tradeoff: cells with more variables 

tend to have fewer observations.  Adjusted fit accounts for this tradeoff while measuring the 
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precise predictive value of the information in each cell.  From Equation 17, the final weight of 

each observation is a blended average across cells.  Thus, all 10 observations in this example 

will receive a nonzero weight that reflects both the availability of data for that observation and 

the efficacy of the data for cells where it is available.  This blending relies on fit, which in turn 

relies on relevance.  If we were to instead employ a model-based approach to prediction such 

as a linear regression or a neural network, we would not be able to implement this approach 

because we would not know the impact of each observation on the prediction.  Instead, we 

would be forced to choose among suboptimal reductions of the information set.   

Now let us consider how RBP’s treatment of missing information accounts for the 

relative importance of observations across different prediction tasks.  If the prediction in a cell 

in the prediction grid is based, in part, on unimportant missing information, the prediction will 

not differ meaningfully from a prediction that included unimportant information because the 

relevance weight of the observation would be close to zero anyway.  Also, the reliability of a 

cell’s prediction that is based on missing unimportant information would not differ much from 

the reliability that would obtain if the unimportant missing information were included in the 

cell’s formation of the prediction.  Therefore, assigning zero to observations with missing 

unimportant information has a minimal impact on the grid’s composite prediction, because it is 

based on the relative reliability of each cell’s prediction.  The opposite is true for observations 

that are missing important information.  The prediction of a cell that is missing important 

information will change meaningfully from the prediction that would occur if the important 

information were included, as would the cell’s reliability weight in the grid’s composite 

prediction. These effects show how assigning zero to observations with missing information 
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automatically accounts for the relative importance of observations with missing information.  

We illustrate these effects in Exhibits 4 through 7. 

The Effect of Missing Information on Single Cell Prediction 

In Exhibit 4, the panels on the left show the calculation of fit for a single cell prediction in the 

prediction grid based on a sample of observations with complete information.  We consider a 

sample of only four observations for the sake of transparency.  These results follow from 

equation 10 which gives the average alignment between the standardized values of relevance 

weights and outcomes for all pairs of observations that go into a prediction task.  The middle 

panels show the same calculation of fit, but with an observation that has relatively unimportant 

missing information, and which is given a relevance weight of zero.  Notice that fit changes only 

slightly from 0.75 to 0.71.  The panels on the right again show the same calculation of fit, but 

this time with an observation that has relatively important missing information, and which is 

given a relevance weight of zero.  In this case fit changes significantly from 0.75 to 0.25. 
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Exhibit 4: The Effect of Missing Information on the Fit of a Single Cell Prediction 

 

 

The Effect of Missing Information on Grid Prediction 

We next extend our analysis to show how assigning zero to the relevance weights of 

observations with missing information affects the composite prediction that comes from the 

prediction grid.   

 Exhibit 5 depicts a grid prediction assuming there is complete information.  There are 

three combinations of predictive variables: X1 and X2, X1, and X2.  And there are two 

subsamples of observations; one with a relevance threshold of 0, which means that the full 

sample of observations is used, and one with a relevance threshold of 0.5, which means that 

the 50% most relevant observations are used.  The prediction for the calibration that uses all 

Complete Sample Missing Unimportant Information Missing Important Information

w y z(w) z(y) w y z(w) z(y) w y z(w) z(y)

20% 3.16 -0.39 0.20 20% 3.16 -0.26 0.20 35% 3.16 0.51 0.20

30% 1.87 0.39 -0.30 35% 1.87 0.51 -0.30 45% 1.87 1.02 -0.30

40% 5.91 1.16 1.25 45% 5.91 1.02 1.25 0% 5.91 -1.28 1.25

10% -0.34 -1.16 -1.15 0% -0.34 -1.28 -1.15 20% -0.34 -0.26 -1.15

Average 25% 2.65 0.00 0.00 Average 25% 2.65 0.00 0.00 Average 25% 2.65 0.00 0.00

Standard Standard 

Deviation 13% 2.61 1.00 1.00 Deviation 20% 2.61 1.00 1.00 Standard deviation20% 2.61 1.00 1.00

A B z(wi) z(yi) z(wj) z(yj) Product A B z(wi) z(yi) z(wj) z(yj) Product A B z(wi) z(yi) z(wj) z(yj) Product

1 1 -0.39 0.20 -0.39 0.20 0.01 1 1 -0.26 0.20 -0.26 0.20 0.00 1 1 0.51 0.20 0.51 0.20 0.01

1 2 -0.39 0.20 0.39 -0.30 0.01 1 2 -0.26 0.20 0.51 -0.30 0.01 1 2 0.51 0.20 1.02 -0.30 -0.03

1 3 -0.39 0.20 1.16 1.25 -0.11 1 3 -0.26 0.20 1.02 1.25 -0.06 1 3 0.51 0.20 -1.28 1.25 -0.16

1 4 -0.39 0.20 -1.16 -1.15 -0.10 1 4 -0.26 0.20 -1.28 -1.15 -0.07 1 4 0.51 0.20 -0.26 -1.15 0.03

2 1 0.39 -0.30 -0.39 0.20 0.01 2 1 0.51 -0.30 -0.26 0.20 0.01 2 1 1.02 -0.30 0.51 0.20 -0.03

2 2 0.39 -0.30 0.39 -0.30 0.01 2 2 0.51 -0.30 0.51 -0.30 0.02 2 2 1.02 -0.30 1.02 -0.30 0.09

2 3 0.39 -0.30 1.16 1.25 -0.17 2 3 0.51 -0.30 1.02 1.25 -0.19 2 3 1.02 -0.30 -1.28 1.25 0.49

2 4 0.39 -0.30 -1.16 -1.15 -0.15 2 4 0.51 -0.30 -1.28 -1.15 -0.22 2 4 1.02 -0.30 -0.26 -1.15 -0.09

3 1 1.16 1.25 -0.39 0.20 -0.11 3 1 1.02 1.25 -0.26 0.20 -0.06 3 1 -1.28 1.25 0.51 0.20 -0.16

3 2 1.16 1.25 0.39 -0.30 -0.17 3 2 1.02 1.25 0.51 -0.30 -0.19 3 2 -1.28 1.25 1.02 -0.30 0.49

3 3 1.16 1.25 1.16 1.25 2.11 3 3 1.02 1.25 1.02 1.25 1.63 3 3 -1.28 1.25 -1.28 1.25 2.54

3 4 1.16 1.25 -1.16 -1.15 1.93 3 4 1.02 1.25 -1.28 -1.15 1.87 3 4 -1.28 1.25 -0.26 -1.15 -0.47

4 1 -1.16 -1.15 -0.39 0.20 -0.10 4 1 -1.28 -1.15 -0.26 0.20 -0.07 4 1 -0.26 -1.15 0.51 0.20 0.03

4 2 -1.16 -1.15 0.39 -0.30 -0.15 4 2 -1.28 -1.15 0.51 -0.30 -0.22 4 2 -0.26 -1.15 1.02 -0.30 -0.09

4 3 -1.16 -1.15 1.16 1.25 1.93 4 3 -1.28 -1.15 1.02 1.25 1.87 4 3 -0.26 -1.15 -1.28 1.25 -0.47

4 4 -1.16 -1.15 -1.16 -1.15 1.77 4 4 -1.28 -1.15 -1.28 -1.15 2.14 4 4 -0.26 -1.15 -0.26 -1.15 0.09

Sum: 6.71 Sum: 6.43 Sum: 2.27

(N-1)2: 9 (N-1)2: 9 (N-1)2: 9

Fit: 0.75 Fit: 0.71 Fit: 0.25

3

4

Pairs Pairs Pairs

3

4
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1

2
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1

2
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the predictive variables and all the observations equals 2.52.  It is calculated by multiplying the 

Y outcomes by the relevance weights in the column labeled r* = 0 under the broader column 

heading (X1 and X2) and summing these products.  The grid cell weights are calculated as the 

relative adjusted fits as given by equation 15.  The composite prediction 2.19 is calculated by 

summing the products of the Y outcomes and grid cell weights across all the calibrations.   

It might be helpful to reconcile the format of this exhibit with the prediction grid shown 

in Exhibit 2.  Given this dataset, the prediction grid has three columns and two rows.  The 

prediction 2.52 and its associated adjusted fit of 34.9% would be the values in the upper left 

cell of the prediction grid.  The prediction 2.38 and its adjusted fit of 22.8% would go in the cell 

in the first column and second row of the prediction grid.  The prediction 1.81 with adjusted fit 

of 14.7% would go into the cell in the first row and second column of the prediction and so on.   

 

Exhibit 5: Grid Prediction with Complete Information 

 

 

r* = 0 r* = 0.5 r* = 0 r* = 0.5 r* = 0 r* = 0.5

1 0.35 1.11 1.16 24.3% 28.7% 13.4% 9.1% 26.0% 30.6% 23.3%

2 -1.79 -0.52 -3.82 -5.2% -0.8% -8.9% 1.8% 3.6% 1.9% -2.6%

3 -1.21 -1.60 -3.06 -13.4% -0.8% -2.8% 1.8% -11.2% 1.9% -6.4%

4 1.83 -0.22 1.29 18.4% 16.5% 28.8% 42.5% 7.8% -2.0% 18.3%

5 0.12 -0.90 -0.64 1.6% -0.8% 11.0% 1.8% -1.5% 1.9% 2.1%

6 -0.37 0.17 0.04 10.2% -0.3% 5.9% 1.8% 13.1% 7.6% 6.7%

7 0.80 1.59 3.13 31.9% 44.6% 18.1% 19.4% 32.6% 42.4% 32.8%

8 -0.26 -0.29 -0.33 5.9% -0.8% 7.1% 1.8% 6.8% 1.9% 4.0%

9 0.60 0.34 2.55 17.5% 14.7% 16.0% 14.9% 15.5% 11.7% 15.7%

10 0.17 -0.25 -0.25 8.8% -0.8% 11.5% 5.1% 7.3% 1.9% 6.0%

  Prediction 2.52 2.38 1.81 1.49 2.00 1.80 2.19

  Fit 0.86 0.56 0.73 0.33 0.62 0.38 0.80

  Asymmetry 0.00 0.01 0.00 0.04 0.00 0.01

  Adjusted Fit 1.72 1.13 0.73 0.36 0.62 0.38

  Adjusted Fit Weight 34.9% 22.8% 14.7% 7.3% 12.6% 7.7%

N

Prediction Weights

Grid
X1 X2 Y

X1 and X2 X1 X2 

Inputs
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 Exhibit 6 gives the same information as Exhibit 5 for a case in which we remove 

relatively unimportant information from two of the observations.  It is worth noting that the 

composite prediction is approximately the same as the prediction produced from the sample 

with complete information and that the fit only declines by a small amount. 

 

Exhibit 6: Grid Prediction with Unimportant Missing Information 

 

 

 Exhibit 7 shows the results of grid prediction for a case in which we remove relatively 

important information from two of the observations.  In this case, the prediction changes 

significantly from the case in which there is complete information, and the adjusted fit of this 

prediction declines sharply. 

 

 

r* = 0 r* = 0.5 r* = 0 r* = 0.5 r* = 0 r* = 0.5

1 0.35 1.11 1.16 24.6% 28.2% 14.6% 9.8% 26.5% 30.5% 23.6%

2 -1.79 -0.52 -3.82 -4.0% -0.9% -7.9% 2.3% 4.5% 1.8% -1.9%

3 -1.21 -1.60 -3.06 -11.6% -0.9% -1.8% 2.3% -10.1% 1.8% -5.3%

4 1.83 -0.22 1.29 19.7% 16.3% 30.2% 43.2% 8.6% 1.8% 19.4%

5 -0.90 -0.64 0.0% 0.0% 0.0% 0.0% -0.6% 1.8% 0.1%

6 -0.37 0.17 0.04 11.1% -0.9% 7.1% 2.3% 13.9% 6.9% 7.1%

7 0.80 1.59 3.13 32.0% 46.1% 19.4% 20.1% 33.0% 42.6% 33.5%

8 -0.26 -0.33 0.0% 0.0% 8.2% 2.3% 0.0% 0.0% 1.4%

9 0.60 0.34 2.55 18.3% 13.1% 17.3% 15.6% 16.1% 11.1% 15.9%

10 0.17 -0.25 -0.25 9.9% -0.9% 12.8% 2.3% 8.1% 1.8% 6.4%

  Prediction 2.49 2.37 1.91 1.53 1.99 1.85 2.19

  Fit 0.82 0.54 0.72 0.32 0.60 0.40 0.76

  Asymmetry 0.00 0.01 0.00 0.04 0.00 0.00

  Adjusted Fit 1.64 1.10 0.72 0.37 0.60 0.41

  Adjusted Fit Weight 34.0% 22.8% 14.8% 7.6% 12.3% 8.4%

GridX1 and X2 X1 X2 
X1 X2 Y

N

Prediction WeightsInputs



20 
 

Exhibit 7: Grid Prediction with Important Missing Information 

 

 

Simulation of Missing Information 

Next, we simulate the effect of assigning zero to the relevance weights of observations with 

missing information within grid prediction.  Our simulated dataset comprises a training sample 

and a testing sample.   

▪ 100 training observations  

▪ 100 testing observations  

▪ 5 normally distributed uncorrelated predictive variables (X) with means equal to 0 and 

standard deviations equal to 1 

▪ The outcomes (Y) equal the sum of X variables (betas = 1) plus random noise (standard 

normal) 

We consider three training samples.  

r* = 0 r* = 0.5 r* = 0 r* = 0.5 r* = 0 r* = 0.5

1 0.35 1.11 1.16 54.1% 79.0% 15.6% 11.6% 46.8% 69.1% 42.4%

2 -1.79 -0.52 -3.82 -3.4% -5.7% -9.1% 2.4% 3.6% -2.9% -3.2%

3 -1.21 -1.60 -3.06 -29.0% -5.7% -2.4% 2.4% -24.9% -2.9% -12.2%

4 1.83 -0.22 1.29 27.2% 24.2% 32.7% 46.6% 11.7% -1.8% 25.5%

5 0.12 -0.90 -0.64 -1.6% -5.7% 12.9% 2.4% -6.2% -2.9% 1.1%

6 -0.37 0.17 0.04 24.2% 18.2% 7.3% 2.4% 22.0% 19.1% 15.5%

7 0.80 3.13 0.0% 0.0% 20.9% 22.4% 0.0% 0.0% 8.1%

8 -0.26 -0.29 -0.33 12.4% -5.7% 8.6% 2.4% 9.8% -2.9% 5.9%

9 0.34 2.55 0.0% 0.0% 0.0% 0.0% 26.5% 28.1% 6.8%

10 0.17 -0.25 -0.25 16.1% 1.6% 13.6% 7.4% 10.8% -2.9% 9.9%

  Prediction 1.93 1.68 1.53 1.23 1.98 1.74 1.70

  Fit 0.19 0.10 0.41 0.18 0.26 0.14 0.31

  Asymmetry 0.00 0.00 0.00 0.02 0.00 0.01

  Adjusted Fit 0.37 0.21 0.41 0.20 0.26 0.14

  Adjusted Fit Weight 23.4% 13.3% 25.3% 12.7% 16.4% 8.9%

Prediction Weights

GridN
X1 X2

X2 
Y

X1 and X2 X1 

Inputs
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▪ Training sample with complete information  

▪ Training sample in which we remove the 25% least informative observations from each 

predictive variable 

▪ Training sample in which we remove the 25% most informative observations from each 

predictive variable 

We determine informativeness for each variable in isolation as defined by equation 3.   

We calibrate the RBP prediction tasks as follows.   

▪ All 31 combinations of one to five variables 

▪ Relevance thresholds equal to 0.0, 0.2, 0.5, and 0.8 

▪ Censoring criteria: relevance and similarity 

The prediction grid for each prediction task, therefore, comprises 248 cells (31 x 4 x 2).   

Results 

As we should expect from the toy examples presented earlier, predictions have lower average 

fit when they are missing information, and especially when they are missing important 

information, as shown in Exhibit 8.   
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Exhibit 8: Average Fit of Predictions from Complete and Incomplete Training Data 

 

Next, we consider the relationships between the predictions with each other and with 

the actual outcomes.  Exhibit 9 shows that the predictions formed with unimportant missing 

information are more highly correlated with the actual outcomes than those formed with 

important missing information and almost as highly correlated with predictions formed from 

the full sample.  Moreover, predictions formed with unimportant missing information are 

significantly more highly correlated with predictions formed from the full sample than 

predictions formed with important missing information. 

Exhibit 9: Correlations of Predictions with Actual Outcomes and with Each Other 

 

Missing Missing

Unimportant Important

Actual Complete Information Information

Actual 1.00

Complete sample 0.87 1.00

Missing unimportant information 0.85 0.99 1.00

Missing important information 0.76 0.90 0.89 1.00
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Finally, we analyze how missing information affects the efficacy of predictions for 

predictions that experienced the 25% greatest decline in fit.  The bars on the left of Exhibit 10 

show the average difference in absolute errors between predictions and outcomes with 

unimportant missing information.  The bars on the right show the average difference in 

absolute errors between predictions and outcomes with important missing information.  The 

light bars show the effect across all predictions whereas the dark bars show the effect for those 

predictions that experienced the 25% greatest decline in fit. 

 

Exhibit 10: Average Difference in Absolute Errors for Predictions with Missing Information  

 

 

 Exhibit 10 reveals several important points.  

▪ On average, predictions formed from observations that are missing important 

information have larger errors than predictions formed with complete information.   
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▪ The prediction errors are significantly greater for predictions that have experienced 

the greatest declines in fit, which underscores the fact that changes in confidence, 

which are known in advance, foretell changes in predictive efficacy.   

▪ There are no clear patterns for predictions formed from observations with 

unimportant missing information.   

 

Summary 

RBP is a model-free prediction routine that forms a prediction as a weighted average of 

observed outcomes in which the weights are based on a precise and theoretically justified 

statistic called relevance.  Unlike a prediction model, which requires an uninterrupted sample 

of observations to form predictions, RBP seamlessly forms predictions from samples with 

missing information interspersed throughout the sample by assigning zero to the relevance 

weights of observations with missing information and blending information across a grid of 

predictive configurations.  RBP’s grid prediction evaluates the fundamental tradeoff of missing 

data whereby predictions formed from more variables tend to have fewer observations, and 

vice versa.   

 RBP relies on fit which quantifies the prevalence of useful patterns in a dataset and gives 

a principled way to anticipate the efficacy of alternative combinations of observations and 

predictive variables.  Fit also gives advance guidance about a prediction’s reliability. 
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 Additionally, RBP uses grid prediction to form a composite prediction as a reliability-

weighted average of the predictions given by all the combinations of observations and 

predictive variables.   

  We showed that the RBP approach for treating missing information preserves more 

available information than reducing the sample of observations or omitting variables with 

missing information.  We also explained why giving a weight of zero to observations with 

missing information automatically accounts for the relative importance of the observations.  

We then presented a toy example to illustrate how the fit of a cell’s prediction declines more if 

the prediction is based on missing information that is important compared to unimportant 

missing information.  We extended our analysis to the composite prediction given by the 

prediction grid.  Again, using toy examples, we showed that the grid’s composite prediction is 

more sensitive to important missing information than unimportant missing information.  We 

concluded by simulating the effect of assigning zero to the relevance weights of observations 

with missing information.  Our simulations offered supportive evidence that RBP’s approach for 

treating missing information reliably accounts for the relative importance of observations with 

missing information and that it gives advance notice of the effect of missing information on the 

prediction.     
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Notes 

This material is for informational purposes only.  The views expressed in this material are the 
views of the authors, are provided “as-is” at the time of first publication, are not intended for 
distribution to any person or entity in any jurisdiction where such distribution or use would be 
contrary to applicable law and are not an offer or solicitation to buy or sell securities or any 

product.  The views expressed do not necessarily represent the views of Windham Capital 
Management, State Street Global Markets®, or State Street Corporation® and its affiliates. 
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1 Manufacturing replacement information for missing data presents two fundamental problems.  First, it requires 
upfront assumptions that are not informed by the subsequent data analysis, leading to a problem of circularity.  
For example, it is potentially inconsistent to manufacture replacement information under the assumption of an 
unconditional relationship where subsequent analysis reveals a strongly conditional relationship, or vice versa.  

Second, the manufactured data appears as trustworthy as the observed data, which can lead to overconfidence in 
a prediction.   
2 See, for example, Czasonis, Kritzman, and Turkington (2024a) and Czasonis, Kritzman, and Turkington (2024b). 
3 The descriptions of these concepts follow closely from Czasonis, Kritzman, and Turkington (2022a), Czasonis, 
Kritzman, and Turkington (2022b), Czasonis, Kritzman, and Turkington (2023), and Czasonis, Kritzman, and 
Turkington (2024a), and Czasonis, Kritzman, and Turkington (2024b), but they are modified to fit the context of the 
current discussion. 
4 This measure was first introduced by Mahalanobis (1936). 
5 Shannon showed that information is an inverse logarithmic function of probability, which is a key insight from his 
comprehensive theory of communication.  See Shannon (1948). 
6 See Czasonis, Kritzman, and Turkington (2023) for proof of this result.  
7 See Czasonis, Kritzman, and Turkington (2023) for proof of this result. 
8 See Czasonis, Kritzman, and Turkington (2022b) for proof of this result.  

                                                           


