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A Model for Understanding the Impacts of Demand and
Capacity on Waiting Time to Enter a Congested Recovery
Room
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Background: When a recovery room is fully occupied, pa-
tients frequently wait in the operating room after emerging
from anesthesia. The frequency and duration of such delays
depend on operating room case volume, average recovery time,
and recovery room capacity.

Methods: The authors developed a simple yet nontrivial
queueing model to predict the dynamics among the operating
and recovery rooms as a function of the number of recovery
beds, surgery case volume, recovery time, and other parame-
ters. They hypothesized that the model could predict the ob-
served distribution of patients in recovery and on waitlists, and
they used statistical goodness-of-fit methods to test this hypoth-
esis against data from their hospital. Numerical simulations and
a survey were used to better understand the applicability of the
model assumptions in other hospitals.

Results: Statistical tests cannot reject the prediction, and the
model assumptions and predictions are in agreement with data.
The survey and simulations suggest that the model is likely to be
applicable at other hospitals. Small changes in capacity, such as

addition of three beds (roughly 10% of capacity) are predicted to
reduce waiting for recovery beds by approximately 60%. Con-
versely, even modest caseload increases could dramatically in-
crease waiting.

Conclusions: A key managerial insight is that there is a
sensitive relationship among caseload and number of recovery
beds and the magnitude of recovery congestion. This is typical
in highly utilized systems. The queueing approach is useful
because it enables the investigation of future scenarios for
which historical data are not directly applicable.

THE flow of patients through the perioperative process
involves multiple resources as patients are transferred
from preoperative locations to operating rooms (ORs)
and then to recovery areas and beyond. Operating room
suites cannot always smoothly meet all of their demand
in part because of congestion in adjacent perioperative
areas, “smoothly” being defined as the OR suite meeting
demand on time and without requiring intensive inter-
vention by managers. When workload exceeds a certain
critical level, patients encounter delays because demand
outstrips the available resources. In the case of a con-
gested postanesthesia care unit (PACU), this means the
patients recover in the OR after emerging from anesthe-
sia. In addition, these delays have significant negative
effects on resource utilization within the hospital (e.g.,
OR time) as well as the morale of staff. To confidently yet
efficiently solve such a problem, one must be able to
predict how much capacity to add to the congested unit in
the workflow to reduce or eliminate delays. Alternatively,
one must be able to predict the impact of increased OR
volume in the face of constrained PACU capacity.

Similar issues arise in the context of future planning of
physical capacity and personnel resource allocation. Our
hospital is constructing a new OR building that will
increase the total number of ORs by about 40%. Capacity
planning of the various components in the new periop-
erative system is a key issue in ensuring a smooth tran-
sition to the new building and the elimination of bottle-
necks that exist in the current system. For future
planning purposes, one wishes to make robust decisions
that will optimize against various possible future scenar-
ios of surgery demand volume. In particular, in our
hospital we have observed unpredictable changes in the
volume of surgeries throughout the recent years, and the
new perioperative system should be planned to accom-
modate this variability.

When making changes in a perioperative system,
whether to optimize the current system or planning to
accommodate multiple future scenarios, the financial
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stakes are very high. Healthcare organizations function
with very small net margins, so decisions about commit-
ting resources must be made with a high degree of
confidence that the investment will lead to the desired
result. Implementing congestion relief solutions to work-
flow problems may entail both monetary and intangible
costs. Monetary costs include construction costs and the
capital and personnel costs of implementing changes in
patient flow. There is also an intangible cost, in terms of
job satisfaction and potential personnel turnover, of
modifying the roles and responsibilities of perioperative
personnel. In addition, such changes entail a risk of
disrupting the nominal function of the perioperative
system without actually relieving congestion. Thus, it is
useful to develop a model of the perioperative system
within which to test proposed solutions to congestion
problems before committing to a given course of action.

Effective modeling would save time and money over
trial-and-error approaches, while providing some confi-
dence that the solutions being implemented are likely to
yield the desired result. On the other hand, perioperative
workflow appears complex, which may limit the appli-
cability of some modeling tools for developing successful
models of perioperative system function. Nevertheless,
simple approaches, such as, for example, queueing models
are attractive because they are readily applied in other
fields with similarly complex systems, thus providing a
body of knowledge that may transfer to the perioperative
system. They also provide managerial insights about funda-
mental trade-offs between resource allocation and proce-
dural decisions and the performance of the system.

The major methodology used in this study is based on
queueing tools. The main goal of this study was to
develop and test a high-level queueing model of the
PACU demand (that is generated by the ORs), and
throughput to illuminate the relationship between key
system parameters, such as caseload, average recovery
time, and number of PACU beds on one hand, and the
magnitude of the PACU waiting time on the other. By
“high-level queuing model,” we mean a tool that can be
used to support operational-strategic decisions (i.e., the
number of beds to have in the PACU) rather than ongo-
ing staffing decisions. In particular, we sought to under-
stand the following issues: (1) whether proposed modest
increases of PACU capacity would have a meaningful
impact on the waiting time for PACU beds at our hospi-
tal; (2) how long-term changes in the overall case vol-
ume might affect waiting for PACU beds and periopera-
tive congestion in our hospital and other similar medical
centers. In the longer term, we hope to use this tool in
the workflow planning of the new OR building that is
currently under construction.

Queueing modeling and analysis have enjoyed a wide
range of applications, beginning with the classic work in
telephony by Erlang.1 Currently, the application areas
include telecommunications, wireless communication,

manufacturing, computer systems, networks, and a wide
range of service areas such as call (contact) centers.2 In
a compact but insightful way, the theory captures funda-
mental trade-offs among the limited resources, implied
waiting times, and inherent randomness of congested sys-
tems. However, effective application of queueing theory
tools to capacity management in the healthcare industry
has thus far been relatively limited. Relevant references in
this area include work on inpatient bed occupancy,3 access
times for outpatient departments,4 and access to critical
care beds.5,6

Other authors have considered the possibility of reduc-
ing PACU waitlists by modifying the OR schedule, thus
“shaping” the profile of demand for PACU resources
throughout the OR day.7 Our results are mostly applica-
ble in scenarios where case scheduling is, by design or
by accident, mostly random, leading to a steady release
of work into the PACU. In this paper, we will test
whether this is the case in our hospital, but we were
sensitive to the fact that our model may not be applica-
ble in contexts with highly structured case scheduling.
To get a rough sense of how commonly random (as
opposed to well-structured) scheduling policies are en-
countered (and by extension, how broadly our model is
applicable) we conducted an informal survey of sched-
uling policies in medium and large OR suites.

Materials and Methods

The main methodology in this study is based on queue-
ing tools. We start with a general but necessary basic
background on queueing, then we will explain how
queueing models can be used to model our problem.

Discussion of Queueing Models
Basic queueing models consist of the following com-

ponents. There is a stream of jobs arriving to the system
in a random fashion, one after the other. The random-
ness in the job arrivals is modeled through a probability
distribution of the time that elapses between the arrivals
of two consecutive jobs. This creates an arrival process
that is a priori unpredictable. Each of the jobs arriving to
the system needs to be served by one of multiple servers
with identical performance. However, the time it takes
to serve a given job is, in general, also random and
follows its own probability distribution. This creates
another source of unpredictability in the system. Jobs are
served according to some queueing discipline, in our
case on a first-in-first-out basis. Upon arrival, a job may
have to wait in the queue until there is an idle server, and
all the jobs that arrived before that job are already served
or in service. The arrival and service times are unpre-
dictable; therefore, it is never a priori certain exactly
how long a given job will have to wait until it will be
served. Many queueing models have been developed to
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characterize the unpredictable behavior of the system
based on certain performance measures (e.g., the aver-
age waiting time of a job).

In this study, we adapt a queuing model in a nontrivial
way to model the flow of patients through a congested
PACU. In our model, jobs correspond to patients to be
recovered from anesthesia after surgery, and the servers
correspond to the staffed beds in the PACU. The jobs
(i.e., patients) arrive to the servers and need to be served
(i.e., recover from anesthesia). For each patient (job), the
service time is simply the time they are in the PACU
system. However, unlike most queuing models, the jobs
in our model do not wait in the queue until they can be
served. In particular, patients start their recovery from
anesthesia after emergence, regardless of whether there
is an available bed in the PACU. To capture this fact, we
adapt the standard model and assume that there are
infinitely many servers, out of which some are “real”
servers (i.e., actual beds in the PACU) and some are
“dummy” servers (i.e., waitlist slots for patients recover-
ing in the ORs). This represents a nontrivial adaptation of
standard queuing models because it accounts for a real-
ity in medical care; the service times of jobs start upon
their arrival into the queue and not upon the time they
are delivered to the server (as would traditionally be the
case in a classic queueing model). This is a fundamental
difference between the jobs in our study (patients recov-
ering from anesthesia) and the jobs in a traditional
queueing system; therefore, we believe that the adapta-
tion is novel and not a trivial departure from established
modeling techniques. In the model we assume that pa-
tients arrive to the PACU with exponentially distributed
interarrival times (between consecutive patients), but
we impose no specific assumptions about the distribu-
tion of time in recovery and on the waitlist, and we allow
maximum modeling flexibility of this aspect. The as-
sumption of exponential interarrival times is justified
based on known theory. We then want to analyze the
fraction of time in which the dummy servers are used,
which is exactly the time in which the PACU is com-
pletely full and patients have to recover in the ORs. The
results from the theoretical model are then compared
to and verified with actual data from our OR statistics
database.

Next, we describe the model in more detail. In queue-
ing theoretic terminology, we have modeled the waitlist
plus the PACU occupancy as a collection of identical
servers (beds), fed by an exogenous process (the ORs).
More specifically, the model can be denoted as M/G/�;
M because the arrival process is assumed to be Mark-
ovian (exponentially distributed interarrival times), G
because the “processing” time (the time a patient spends
in the PACU and on the waitlist) is assumed to have a
general distribution (that is, we make no specific as-
sumptions about this distribution), and � because we
place no limit on the number of patients in the joint

PACU�waitlist system. Because there is no limit on the
number of patients, our model actually does not have a
queue per se; all patients in the system are assumed to be
in a state of processing (i.e., time spent on the waitlist
“counts” towards total time required to recover from
anesthesia). This reflects the fact that patients start the
recovery phase immediately after surgery, regardless of
whether there is an available bed in the PACU. The way
in which we distinguish patients in waitlists versus those
in PACU is a novel aspect of our modeling, and it will be
detailed below.

We denote the rate of completed operations � (e.g.,
PACU admissions per hour in our setting as �), and the
(arithmetic) mean length of stay in the joint PACU�waitlist
system as 1/�. It is a well-known result from queueing
theory8 that, under these assumptions, the steady-state dis-
tribution of the number of patients in the system follows a
Poisson distribution, and the probability of having i pa-
tients in the system can be expressed as follows:

P�i� �
�� ⁄ ��i e�� ⁄ �

i!
(1)

Mathematically, this model does not yet make any
distinction between patients in PACU and patients on
the waitlist. If the capacity of the PACU is N patients
(i.e., N beds), then the number of patients i PACU in the
PACU is:

iPACU � min�i, N�. (2)

Similarly, the length of the waitlist iWaitlist is

iWaitlist � max�0,i � N�. (3)

That is, if there are N or fewer patients in the system,
then all of them are in the PACU, but patients in excess
of N will be on the waitlist.

By using equations (1) and (3), we can calculate the
average number of waitlist cases iWaitlist as follows:

E�iWaitlist� � �
i � 0

�

max�0,i � N� P�i�

� �
i � N � 1

�

�i � N� P�i� (4)

To verify the accuracy of the queueing model in this
context, we performed several tests, which are dis-
cussed in detail below and in the Results section. (1) We
used real OR process time data to test statistically
whether the underlying assumptions of our model are
appropriate for our hospital. (2) We conducted simula-
tion experiments to further validate these assumptions.
(3) We conducted a survey to check whether the OR
scheduling policies of other hospitals are likely to satisfy
the underlying assumptions of the model.
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Statistical Tests of Appropriateness of Underlying
Model Assumptions
First, we considered the different mathematical as-

sumptions that are necessary for equation (1) to hold.
The model makes no assumptions about the statistical
distribution for recovery time; therefore, the main con-
cern was about the realism of exponentially distributed
arrivals with an average arrival rate that was constant
throughout the day. We have attempted to validate this
assumption in several ways. We used goodness of fit and
R2 statistics to test the hypothesis that interarrival times
of patients to the PACU follow an exponential distribu-
tion and whether, more generally, the queueing model
gives good predictions about the system performance.

To estimate the parameters for the model and to per-
form the empirical tests of the model assumptions, we
used de-identified OR throughput data from calendar
year 2006. We also used data from calendar year 2005
and the first three quarters of calendar year 2007 in tests
of the modeling assumptions. The data comprised time
stamps of requests for PACU beds and time stamps for
patients entering and leaving the facilities of interest. We
verified that the average arrival rate into the PACU was
constant during the middle part of the day, when we
planned to use the queueing model, using timestamps
for patient arrivals and departures from the PACU. Next,
we estimated � for the model by using the average arrival
rate over the window of constant arrivals, which was
� � 6.26 patients per hour for the year 2006 (this is the
only measured parameter used in the exponential distri-
bution). We investigated whether this arrival rate was
constant over the year before 2006 and the 9 months
after 2006. We further investigated whether the arrival
rate in 2006 was constant by calendar quarter and by day
of the week.

Simulation Experiments to Test Model Assumptions
We first investigated the pattern of completed opera-

tions in numerical simulations, using our hospital’s OR
time data as the basis for simulations created in a general
programming language (MATLAB, Mathworks, Natick,
MA). Procedure times (patient in to patient out) are best
assumed to come from a lognormal distribution, which is
consistent with past work,9 as well as data from our own
hospital. For the simulation, we sampled the distribution
of actual procedure times. This distribution of procedure
times can be described by their geometric mean (the
antilog of the mean of the log-transformed data) and a
measure of dispersion from the mean, the SD, here given
as the antilogs of (mean of the log-transformed data
minus SD of the log-transformed data) and (mean of the
log-transformed data PLUS SD of the log-transformed
data). Using this convention, the mean procedure time
was 1.95 h (SD 0.97 h, 3.94 h), as expected in a right-
skewed distribution. In the simulation, additional cases
were added to each OR until the last case had a sched-

uled finish time later than 2:30 PM, at which point no
more cases were added. Cases were added without con-
sideration of their duration; in effect, random scheduling
was simulated. The simulated OR days began at 8:00 AM,
and 30 min of scheduled turnover time (our hospital’s
average target) was added between each case. However,
the actual time between surgeries using the convention
above was described by a lognormal distribution with
mean of 1.25 h (SD 0.68 h, 2.29 h). This longer and more
variable time between cases corresponds to the actual
time between cases measured at our hospital, and it is
driven both by turnover time and longer scheduled and
unscheduled gaps between cases. The simulation was
repeated for 5,10, . . . , 50 ORs, although for some ques-
tions the number of ORs did not matter. For each num-
ber of ORs, the simulation was run for 1,000 days. The
output of the simulation was the interarrival time be-
tween completed cases, and this was compared to the
exponential distribution. We also used the simulations to
generate the number of completed operations (i.e.,
PACU arrivals) per hour, again varying the number of
hypothetical ORs feeding the PACU.

Next, we simulated smaller OR suites using our OR
time data. To do this, we segmented the data from
calendar year 2006 to create simulated 5-OR suites. In
other words, ORs 1 through 5 were considered to be a
small, independent OR suite, ORs 6 through 10 were
considered to be another such suite, and so on until 8
unique mock suites of 5 ORs were created, representing
the OR suites of typical small hospitals. We then calcu-
lated the number of completed operations (i.e., PACU
arrivals) for each half-hour of the day using the actual OR
time data from each of the different suites.

Survey of Scheduling Policies at Other Hospitals
After these tests of the modeling assumptions, there

was still the concern that our approach might not be
generalizable if a hospital, through its OR scheduling
practice, had succeeded in creating an OR schedule that
did not produce exponentially distributed arrivals with a
constant average interarrival time. For example, a hospi-
tal that consistently scheduled all of its short cases first
would release a burst of completed cases into the PACU
in a relatively short time frame, violating the constant
average interarrival time assumption. To get some idea of
how likely this might be, we conducted an informal
survey of knowledgeable anesthesia clinicians at a con-
venience sample of 32 medical centers, asking them
about what, if any, case sequencing strategies were em-
ployed in their hospitals.

We contacted the institution’s Clinical Director of An-
esthesia, or an equivalent person, i.e., a person in the
anesthesia department with personal, direct knowledge
of how the daily OR schedule was constructed. We then
asked how many beds were in the unit considered to be
the main PACU and how many ORs were in the largest
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contiguous group of ORs feeding that PACU. Next, we
asked “Who decides how the cases on the OR schedule
in the largest block of ORs feeding the main PACU are
sequenced?” We then asked all respondents a follow-up
question: “Are any strategies such as shortest-cases-first
or ambulatory-cases-first pursued at your institution?”
Finally, we asked directly: “Does your institution pursue
any strategies to shape the flow of work entering the
PACU such that it would be different from the patient
stream occurring from surgeons simply adding cases to
the schedule until their block was filled?” To analyze the
results, we condensed the results of “Are any strategies
such as shortest-cases-first or ambulatory-cases-first pur-
sued at your institution?” and “Does your institution
pursue any strategies to shape the flow of work entering
the PACU such that it would be different from the
patient stream occurring from surgeons simply adding
cases to the schedule until their block was filled?” into a
yes/no categorical response for whether case-sequenc-
ing was applied.

The assumptions about arrival distribution are impor-
tant to the model, and they were subject to substantial
verification efforts and discussion. On the other hand,
we are fortunate that the queueing model and equation
(1) are true regardless of the distribution of processing
times.8 That is, one can use the average time 1/� regard-
less of what the actual distribution is. In our case, we
calculated the average processing time by taking the
difference between the time a PACU bed was requested
and the time of PACU departure. Sometimes patients in
the PACU have to wait for beds to become available
elsewhere in the hospital. This “waiting to leave PACU”
congestion effect was not dynamically modeled; how-
ever, the average time spent waiting for floor beds was
included in the processing time 1/�. Even though equa-
tion (1) does not rely on any distributional assumptions
of processing time, it does assume that the average time
is the same throughout the day. However, our data
suggested that the average time in PACU tended to
increase somewhat over the day, primarily because de-
parting patients more often had to wait for floor beds
later in the day. We will return to this factor when we
compare the predicted and actual patient distributions in
the Results section.

Next we will briefly discuss the identification of pa-
tients as being in PACU, equation (2), or waitlisted,
equation (3), based only on the joint number of such
patients and the PACU capacity N. The physical capacity
of the PACU at our hospital is 28 beds. However, even
when the system is busy it is rare that 28 patients are in
the PACU simultaneously. Occasionally, the beds are not
fully staffed. More importantly, when the system is busy,
many patients are transitioning in and out of the recov-
ery area; as a result, there are usually a few PACU beds
that have just released one patient but not yet received
the next waitlisted one from the ORs. We found that

when a patient gets waitlisted during the steady-state
period from 3:00 to 5:00 PM, there were 24.1 � 2.1
(mean � SD) patients in the PACU. We will use the
(constant) value N � 24 of “effective capacity” to rep-
resent the current situation.

Finally, the queueing model was used to predict how
many additional beds are required to eliminate most of
the waitlist. The model was robust and flexible enough
to give predictions to future scenarios in which some of
the system parameters may change (e.g., surgery volume,
length of recovery, etc.).

Results

Evaluation of Modeling Assumptions
The first modeling assumption is that of a steady,

“memory-less” arrival process to the PACU. In other
words, the intervals between arrivals should be expo-
nentially distributed, leading to a constant arrival rate
over time when the queueing model is expected to
work. Detailed measurement of the distribution of inter-
arrival times from the regular work-day time window
showed excellent agreement with the exponential
curve, as shown in figure 1. Moreover, the release pat-
tern of work into the PACU, as plotted in figure 2,
showed that the arrival rate was approximately constant
from about 10:00 AM to 4:30 PM. Specifically, the average
arrival rate over the window of constant arrivals was � �
6.26 patients per hour for the year 2006. This arrival
rate, �, is the only measured parameter required for the
model, but the utility of the model can be affected if �
changes (by day of week, for example). We investigated
the period over which the arrival rate was stable. For the
calendar year 2005 and for the first three quarters of
2007 (the end of our dataset), the arrival rate to the
PACU during the steady-state portion of the day was the

Fig. 1. Actual (bars) versus predicted (line) distribution of in-
terarrival times to the postanesthesia care unit (PACU) in min-
utes. For the line, we assumed exponential distribution with
constant parameter (6.26 patients per hour, the empirical aver-
age from 10:00 AM to 4:30 PM (see fig. 2).
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same as found for 2006. We also segmented the data by
calendar quarter or by day of the week (i.e., Mondays vs.
Tuesdays vs. Wednesdays, etc.), and we still found the
same arrival rate during the steady-state period. We con-
cluded that the work released into the PACU was con-
stant during the study. The impact of � that changes
throughout the day and how to deal with such changes
will be addressed in the Discussion section.

The result above indicates that the fundamental mod-
eling assumption (randomly distributed, steady stream of
arrivals) is reasonable for our setting, but it is silent about
whether the simple queueing model is useful in other
hospitals. We attempted to illuminate this question using
numerical simulations, overlaying our hospital’s case
time performance on hypothetical OR suites between 5
and 50 ORs in size. The simulations suggest that expo-
nentially distributed interarrival times and a steady re-
lease of work into the PACU is not unique to our setting.
Specifically, figure 3 shows that the exponential distri-
bution is descriptive even for as few as five ORs. The
steady average arrival rate (fig. 4) also seems to hold
rather well under the simulated conditions. Specifically,
an exponential process with constant parameter ex-
plains more than 99% of the variation in the interarrival
times (R2 � 0.99). The results of the simulation have also
been listed in table 1. Note that, as can be seen in figure
4, the temporal distribution of arrivals is independent of
the number of ORs. That is, although changing the num-
ber of ORs will change the absolute number of PACU
arrivals, figure 4 and our empirical data demonstrate that
the average proportion of arrivals in different hours of
the day only depends on the durations of operations and
turnover times and the scheduling policy.

Numerical simulations based on averages from our OR
time data indicate that the model applies to ORs of
various sizes, so we next simulated smaller OR suites
using our actual OR time data. We segmented the data

from calendar year 2006 to create eight unique, nonover-
lapping simulated 5-OR suites typical of smaller hospi-
tals. Then, we calculated the number of completed op-
erations (i.e., PACU arrivals) for each 0.5 h of the day
using the actual OR time data from each of the different
suites. Figure 5A shows eight different grayscale lines
plotting the completed operations from each of the 5-OR
suites. The basic shape of each curve is identical to
figure 2 (the actual rate of completed operations from
the complete OR suite) and figure 4 (the numerical
simulations). Specifically, the release of work from each
5-OR suite is constant from 10:00 AM to 4:30 PM. Figure 5B
highlights the arrival rate to the PACU from one of the
mock 5-OR suites and shows the 95% confidence interval
of an constant arrival rate model of 0.36 patients per
hour. The actual curve compares quite well to this
model.

Comparison of Actual and Modeled
Patient Distributions
From the data set of arrivals and departures, it was also

possible to infer the number of patients in PACU or
waitlisted (i.e., emerged from anesthesia and waiting to
enter the PACU) at a given time. This brings us to the
next part of our verification effort: checking directly if
the distribution of equation (1) fits with empirical data.
A central question here is when and if the system, which
starts the day empty, reaches the steady-state conditions
assumed in equation (1). We must also consider the
previously noted issue that the average processing time
tended to increase somewhat over the day. Analyzing the
distribution of patients at different times of the day
revealed the following pattern. In the morning, the OR
suite–PACU system was filling, and the number of pa-
tients was much smaller than the steady-state equation
suggested. However, in the afternoon, the theoretical
distribution1 predicted the actual distribution of patients
in the combined (PACU � waitlist) queue, assuming that

Fig. 2. The rate of new patient arrivals into the postanesthesia
care unit (PACU) as a function of clock time (in 0.5-h incre-
ments). PACU arrival rate is approximately constant from 10 AM

to 4:30 PM.

Fig. 3. Results of numerical simulations. Theoretical (lines) and
simulated (boxes) interarrival times between completed surger-
ies (i.e., postanesthesia care unit [PACU] arrivals) for hospitals
with different numbers of operating rooms (ORs). The number
of ORs in each hypothetical suite (5, 10, 20, 30, or 40) is shown
next to the corresponding curve.
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we used a PACU processing time relevant for the corre-
sponding time window (figs. 6 and 7). That is, we mea-
sured the average time spent in PACU around 1:00 PM

and around 4:00 PM (the values were 1/�1PM � 3.21
h/patient and 1/�4PM � 3.64 h/patient), and we used
these values in equation (1). Specifically, we measured
the average time spent in PACU�waitlist for patients
leaving between 12:00 PM and 2:00 PM and 3:00 PM and
5:00 PM, respectively. Stays longer than 5 h typically
represented cases from the previous day, and were trun-
cated at 5 h. We then compared the theoretical curve
with the empirical distribution of patients around the
same times, and we specifically performed a �2 hypoth-
esis test on the 4: PM data, with the bins (�12, 13–14, 15,
16, . . . 31, 32–33, 	34). The hypothesis that the model
could generate the distribution we observed was not
rejected (P � 0.217). In figures 6 and 7, we have also
drawn the ranges within which the occupancy levels
would be expected to be 95% of the time.

Survey of Case Sequencing
Strategy Implementation
To test the possibility that hospitals might use case

sequencing strategies that could invalidate the assump-
tion of constant average arrival rates into the PACU, we

contacted clinicians with knowledge of scheduling prac-
tices at 32 other large hospitals and asked about how
cases were scheduled. The average number of ORs in the
largest suite feeding into the largest PACU was 22, with
a range of 6 to 50 and an SD of 10. Thirty institutions
reported that the OR schedule was constructed in the
order that the cases were booked by the surgeons. Two
institutions reported that they had policies mandating
ambulatory cases first. Upon closer discussion, it became
clear that these policies were not consistently obeyed,
that not all services followed them, and that the duration
of the ambulatory cases was indistinguishable from the
average duration of nonambulatory cases. In other
words, there were no scheduling policies in place that
would clearly render the arrival rate into the PACU
anything but random. This is consistent with the findings
of Marcon and Dexter regarding the impact of surgeons’
noncoordinated case-sequencing decisions on the pat-
tern of work released into the PACU.10

Discussion

We developed a queueing model of the joint OR-PACU
congestion problem. We then tested the model, first by

Fig. 4. Simulated number of postanesthe-
sia care unit (PACU) arrivals per 30 min,
given randomly scheduled cases with log-
normal durations. The shape of the curve
does not depend on the number operat-
ing rooms (ORs). The number of ORs in
each hypothetical suite (5, 10, 20, 30, 40,
or 50) is shown next to the correspond-
ing curve.

Table 1. Number of Observed Occurrences of Different Arrival Times during 1,000 Days

Interarrival Time (minutes)

Operating Rooms 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45 45–50 50–55 55�

5 12,384 11,676 11,140 10,116 9,494 8,911 8,119 7,582 7,003 6,423 5,941 47,688
10 52,810 44,800 37,442 31,102 25,978 21,423 17,778 14,564 11,974 9,490 7,614 27,283
15 117,623 88,636 66,642 50,236 36,933 27,012 19,704 14,376 10,401 7,491 5,193 11,252
20 202,629 137,845 92,201 61,417 40,753 26,405 17,331 10,931 7,008 4,348 2,806 4,194
25 304,995 185,244 112,134 66,729 39,206 22,645 12,975 7,453 4,127 2,297 1,272 1,408
30 421,010 230,311 123,891 66,505 34,585 17,701 9,006 4,562 2,313 1,114 563 460
35 549,074 269,717 130,576 62,155 28,765 13,379 6,039 2,676 1,106 481 214 141
40 685,789 302,708 131,013 56,274 23,321 9,378 3,867 1,558 560 218 89 55
45 833,007 328,807 128,506 48,665 17,967 6,684 2,337 839 274 92 28 9
50 986,271 350,979 121,702 41,314 13,840 4,388 1,442 473 124 45 11 5
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verifying that the necessary assumptions were applicable
and then directly by checking that the predicted occu-
pancy and waitlist levels matched the observed ones
during the afternoon (when the PACU has the highest
occupancy and also when the model is the most appli-
cable). Naturally, the model omits many of the real-life
complexities of perioperative workflow, yet it showed
good agreement with current system performance. A

survey and a simulation suggest that our model is appli-
cable for many medium and large hospitals (five or more
ORs).

Our study is largely complementary to previously per-
formed work on how to best align nurse staffing sched-
ules with PACU demand,11,12 but it addresses a different
problem. We assume that nurses are indeed available
when needed and that the key system constraint being
considered is physical bed availability. Our model might
also be useful when staff is the scarce resource; how-
ever, we do assume that the scarce resource is constant.
Thus, our work may not be applicable in situations when
staffing resources are both variable and drive waitlist
problems. At least in our hospital, nurse staffing does not
seem to be a first-order bottleneck in the PACU environ-
ment. In terms of methodology, we depart from previ-
ous work by introducing a queueing model, rather than
seeking answers only directly from data on past events.
While our approach necessitates testable assumptions, it
is conducive to managerial insight, and it enabled us to
analyze future and hypothetical situations for which da-
ta-driven analyses based on past data are not applicable.
The latter point is particularly important in the context
of long-term planning.

The use of a queueing model requires assumptions that
are discussed below. First, we discuss the assumption
that interarrival times of patients into the PACU are
exponentially distributed. This might at first seem like an
unrealistic assumption, because the actual process of
generating “completed” operations, which “feeds” the
PACU facility, is quite complex. Operations are sched-
uled at the discretion of the individual surgeons (with
variable central coordination); the times for the individ-
ual operations have different distributions (typically not
exponential); not all patients are sent to the PACU, and
numerous sporadic phenomena further complicate the
picture (e.g., cancellations, delays, urgent and emergent
cases, to name prominent examples).

Fig. 5. The rate of new patient arrivals into mock 5-operating
room (OR) postanesthesia care units (PACUs) as a function of
clock time (in 0.5-h increments). (A) Each grayscale curve
shows the arrival rate in 0.5-h intervals into the PACU from
5-OR suites created from unique groups of five ORs from our OR
process time database. For each curve, the arrival rate is con-
stant from 10:00 AM to 4:30 PM. (B) One of the arrival rate curves
from panel A is highlighted and compared with the 95% confi-
dence interval of a constant arrival rate model with an arrival
rate of 0.36 patients per hour.

Fig. 6. Total number of patients in the
postanesthesia care unit (PACU) and
waitlist at 1 PM. Data (bars) versus model
(curve with error bars). The horizontal
axis shows the total number of patients
in the PACU queue at 1:00 PM (sum of
patients in the PACU plus those waiting
in the operating room (OR) for a PACU
bed). The physical capacity of the PACU is
28 patients, but the unit operates at its
functional capacity of 24 patients. The
vertical axis is the number of occur-
rences of a given occupancy in 2006. The
error bars indicate the 95% confidence
interval for getting a given observation if
the model is true. The figures show per-
formance from regular workdays only
(251 in 2006).
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However, as already mentioned, these findings are not
surprising in light of the Palm-Khintchine theorem,
which states that, under certain assumptions, a superpo-
sition of many independent arrival processes converges
to a Poisson process with the rate equal to the sum of the
rates of the individual processes.13 This observation was
predicted to be true in our numeric simulations (fig. 4)
and verified for eight different 5-OR mock suites created
by segmenting our actual OR process time data (fig. 5).
In figure 5, each mock suite has a different average
arrival rate; for each, however, the rate is constant from
10:00 AM to 4:30 PM. This indicates that even for as few as
five ORs, the superposition of arrival processes indeed
converges to a Poisson process, with the rate equal to
the sum of the rates of the individual processes. We
observed this for eight mock OR suites created from our
own actual data, so it is likely that the key assumption of
steady-state arrivals is borne out in many OR suites.

On the other hand, if case durations and turnaround
times can be accurately predicted, then it would be
possible to engineer other arrival patterns by enforcing
particular scheduling policies (e.g., shortest case first).
Indeed, such policies have been proposed as a means to
reduce PACU congestion.7 We think such benefits are
difficult to realize in practice, especially at large hospi-
tals, partly because of organizational resistance (patients
and surgeons have other considerations than PACU con-
gestion when scheduling cases) and partly because of
substantial divergences between scheduled and actual
events in real-world hospital environments. Finally, Mar-
con and Dexter found that the scheduling policies used
in actual practice had little impact on peak PACU patient
load.10

Additional Modeling Considerations
Our results above appear to leave the major assump-

tion of the queueing model intact, but there are a few
other factors to consider. First, we note that because we

model PACU/waitlist arrivals as an exogenous process,
we are not capturing the feedback effect that waitlist
cases can delay subsequent operations. We think this is
reasonable in the present context because, as we shall
see, our model is mostly used in the afternoon, and cases
started (and potentially delayed) during this period usu-
ally end later in the evening, when the congestion has
usually cleared up. Moreover, at our hospital, adminis-
trators preferentially allot the available PACU beds to
those ORs with further cases to perform.

The data analysis involved in this verification effort also
gave us a clearer picture of the waitlist problem in
general. As is apparent from figures 6 and 7, waiting for
slots in the PACU was common. This is particularly true
at 4:00 PM (fig. 7). Between 3:00 PM and 5 PM on any given
day, 5 to 10% of all ORs were waiting for a PACU bed.
This observation is confirmed by a query of our anesthe-
sia information management system, where anesthesia
personnel report delays waiting for PACU beds (not
shown). Another illuminating analysis was to directly
plot (fig. 8) the number of waitlisted (patients waiting in
the OR) cases as a function of the hour of the day, for
three representative weeks. The pattern in figure 8 is
that of a full hospital. Waitlists peak in the middle of the
week, when hospital beds are occupied by patients from
earlier in the week. Then, the congestion eases later in
the week as patients begin to be discharged.

Digressing slightly, we point out that it is possible to
use figure 8 (or rather, the underlying data set) to give a
data-driven answer to the question “How many addi-
tional PACU beds are needed to reduce the waitlist?”
Each new bed added to the system has the approximate
impact of removing one waitlisted patient, which can be
intuitively visualized as lowering the curve in figure 8
one step (but never below zero). This way of calculating
the waitlist reduction is quite unlike the mathematical
queueing analysis that is the focus of this paper, and
fewer assumptions are necessary. However, only the

Fig. 7. Total number of patients in the
postanesthesia care unit (PACU) and
waitlist at 4:00 PM. Data (bars) versus
model (curve with error bars). The hor-
izontal axis shows the total number of
patients in the PACU queue at 4:00 PM

(sum of patients in the PACU plus those
waiting in the operating room [OR] for a
PACU bed). The functional and physical
capacities of the PACU are 24 and 28 pa-
tients, respectively. The vertical axis is
the number of occurrences of a given oc-
cupancy in 2006. The error bars indicate
the 95% confidence interval for getting a
given observation if the model is true.
The figures show performance from reg-
ular workdays only (251 in 2006).
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impact of additional PACU beds can be calculated in this
way, not the impact of changed caseload or length of
stay.

A potential limitation of our approach, as discussed in
detail in earlier sections, is that our mathematical model
relies on specific assumptions about the various aspects
of hospital operations. Although these assumptions
seemed to hold quite well in our setting, they may of
course be less applicable elsewhere. For example, our
model assumes a constant rate of arrivals into the PACU.
Figure 2 indicates that this assumption is accurate in our

environment, and our numerical simulations indicate
that it is robust to the overall size of the OR suite (figs. 3
and 4). Furthermore, others have also observed that the
net result of multiple ORs sending work to the PACU is
a steady workload.10 However, this generalization must
be treated cautiously. In one instance, the observed
arrival rates are best described by a triangular distribu-
tion—one in which the arrival rate is never constant.14

Investigators wishing to use our model in a different
hospital would have to check that these assumptions are
applicable in that setting. Specifically, if a hospital em-
ployed case sequencing strategies that could make the
release of work into the PACU nonrandom, then the
simple queueing model might not work. In that instance,
it would be necessary to compare the actual and pre-
dicted distributions of patients in the combined PACU �
waitlist queues by a goodness of fit test.

Numerical simulations and theoretical considerations
suggest that the simple queueing model is most likely to
apply in hospitals that are midsized or large, where case
scheduling occurs without coordinating policies. We
note that if caseload varies consistently by day of week
or by season, then one can evaluate the model (i.e.,
measure the arrival rate and recovery time for each
scenario) for each day of the week and plan capacity
accordingly. For example, in a hypothetical 5-OR suite in
which one of the ORs releases one 8-h case into the
PACU on Mondays and 15 short cases per day into the
PACU on Tuesdays, it is likely that separate model pa-
rameters will be needed for the 2 days.

Differences between hospitals that are nevertheless
consistently present within each hospital are well han-
dled by our approach. For example, in a physician-only
practice with no one assigned to the PACU, patients may
wait to leave the PACU (and hence, other patients may
wait to enter the PACU) because no physician is avail-
able to sign patients out of the PACU. However, this
source of waiting will be subsumed into the institution’s
measurement of the PACU recovery time.

One could envision modified and expanded queueing
models for systems with other idiosyncrasies; although
there is generally no guarantee that a given system can
be described with a compact formula such as equation
(1). An alternative is to use numerical discrete-event
simulation, which can typically handle more complex
situations. For example, the simulation study by Marcon
et al.15 captures several aspects (such as transfer time
and porter availability) not explicitly encompassed by
our model. On the other hand, analytical formulae such
as equation (1) also have benefits; they reveal key rela-
tionships in a compact and instructive way.

Because there was good agreement between data and
model in our setting, we are in a position to make
predictions about how the waitlist problem would be
affected by changes in the time patients spend in the
PACU, the number of PACU beds, and the OR caseload.

Fig. 8. Timeline of five successive weekdays from three repre-
sentative workweeks, showing the number of patients on a
waitlist to enter the postanesthesia care unit (PACU) as a func-
tion of time of day. Panels A, B and C illustrate progressively
larger waitlists to enter the PACU. The time scale is continuous,
with ticks at midnight and noon for each day. The day of week
labels are below the noon ticks.

1302 SCHOENMEYR ET AL.

Anesthesiology, V 110, No 6, Jun 2009

Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/Journals/JASA/931179/ on 12/22/2015



In particular, this might become useful in the workflow
planning of the new OR building that is currently under
construction at our hospital. We thus hope that the
results presented here will complement past research on
PACU congestion, which has primarily focused on the
impact of various managerial policies.7

We will first consider changes in the average waitlist-
PACU length of stay 1/�. It should be clear, both intu-
itively and from equation (1), that if 1/� could be de-
creased, for example by actions that speed recovery, the
waitlist will be reduced as well. As noted, the PACU
length of stay parameter is calculated by including time
spent waiting for beds to become available elsewhere in
the hospital (when relevant). Therefore, if the waiting
time to leave the PACU could be reduced, this would
reduce 1/�, and then the waitlist will decrease in turn. In
fact, we have already implemented “decompressive”
strategies by selectively routing patients so that they are
released directly to home from PACU,16,17 rather than
first going to (and potentially waiting for) other hospital
beds. According to the model, if such efforts could have
a meaningful impact on the average length of stay, this
would translate to a reduced waitlist problem as well.
However, our previous work in this setting suggests that,
at least for one patient population, the practical impact
of this strategy was quite limited.16 On the other hand,
we also had data (not shown) on what portion of time in
PACU was spent waiting for beds elsewhere. If this
portion could be taken out of 1/�, then calculating
waitlists from equations (1) to (3) suggests that the
OR-to-PACU waitlist would be all but eliminated. In this
sense, the PACU is not the “true” capacity constraint at
our hospital.

The exit condition from the PACU (full hospital vs. free
access) is important because it affects the impact of
interventions to reduce 1/� by speeding ‘wakeup’ in the
PACU. If much of 1/�, is attributable to waiting for
hospital beds then it is not beneficial to expend re-
sources to speed recovery.

A potentially stronger way to model the leaving-the-
PACU waitlist problem would be to expand our queue-
ing model to dynamically model congestion in other
parts of the hospital and how this interacts with the
PACU congestion. Our hospital is physically constrained
from adding additional inpatient beds in the next 5 yr, so
we leave such improvements in modeling technique for
future research. However, adding PACU beds directly to
the OR suite was a feasible option, which we will discuss
shortly.

We will now turn our attention to predicting the im-
pact of changed N and �. As we have seen, because of
staff availability and especially turnover times for PACU
beds, the effective PACU capacity is less than the actual
physical capacity at our hospital; it is the former that
should be used as N in our model. If one could bring the
effective capacity closer to physical capacity, for exam-

ple, by using improved nurse scheduling procedures7

and/or by reducing PACU turnover times, then the
model would predict the resulting reduction of waitlists.
We primarily wanted to understand the impact on wait-
lists of changing demand or changing PACU capacity; for
a small increase it seems reasonable to assume that the
effective number of beds will increase by approximately
the same amount (e.g., that if the physical capacity goes
from 28 to 31, then the effective capacity will go from 24
to 27).

Figure 9 shows a three-dimensional surface predicting
the interaction among caseload, effective PACU capac-
ity, and waiting time for PACU beds based on the M/G/�
queueing model. The current state, shown as “1” on the
left axis represents 21 cumulative hours per week of
waiting for PACU beds. Using the model, we can predict
with our current PACU capacity that raising surgical
volume by 5% or reducing staffed PACU beds by 2 (the
impact of a sick call by a nurse) would effectively double
the amount of waiting for PACU slots. On the other
hand, adding three staffed PACU beds, bringing the total
to 31 (and the effective capacity to 27), would reduce
waiting from approximately 21 h per week to 8 bed-
hours per week. Stated differently, a capacity expansion
of about 10% would reduce the congestion problem by
approximately 60%. This very sensitive relationship may
seem surprising, but it is in fact rather typical for con-
gested queueing systems (see figure 3.4 in reference 18).
It is also in good agreement with the result of the data-
driven analysis outlined at the end of the Results section
(i.e., lowering the curve in fig. 8). It should also be
acknowledged, with reference to figure 9, that the
marked sensitivity to small changes in the input param-
eters makes the model results sensitive to estimation
errors.

Fig. 9. Three-dimensional surface of cumulative postanesthesia
care unit (PACU) waitlist time as a function of PACU capacity
and operating room (OR) caseload. Current state is indicated by
the black dot. Functional PACU capacity is limited to 24 beds.
This gives an average weekly cumulative PACU waitlist of about
21 patient-hours in the current state.
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We have constructed a downloadable spreadsheet based
on our simple model (see model, Supplemental Digital
Content 1, an Excel [Microsoft, Redmond, WA] spread-
sheet that readers can use to model their own OR suites;
given input on PACU load and characteristics, the model
predicts distribution of occupancy and waitlists during
peak hours, http://links.lww.com/A1197). Readers can ap-
ply the model to their own setting (with due attention to
the limitations and assumptions described above) by input-
ting values for PACU arrival rate, length of stay, and effec-
tive number of staffed PACU beds. The spreadsheet returns
“average number of waitlist cases,” “probability of at least
one waitlist case,” and the probability distribution for hav-
ing a given number of patients in the combined PACU-OR
system under steady-state conditions. The value for “aver-
age number of waitlist cases” actually means “average num-
ber at any time during steady-state conditions.” If an OR
suite’s configuration returns a value of 1.37 for this field
and the OR is in steady-state for 3 h per day then the model
predicts 3 � 1.37 � 4.11 patient-hours per day of waitlists.
However the model does not provide information about
whether this is distributed over single or multiple cases. Of
course, to make a decision, managers must consider not
only waitlists, but numerous other monetary and nonmon-
etary factors, many of which will no doubt vary from
institution to institution. Our model does not compute an
optimal number of beds; rather, it is intended as a decision-
support tool. The spreadsheet allows simple modeling of
scenarios such as the one described above, wherein one
OR of a small suite releases one case per day to the PACU
on Mondays but 15 cases per day on Tuesdays. Under this
extreme example situation, the arrival rate will definitely
change between days, in turn changing the probability of
PACU waitlists if capacity is kept constant.

Further reference to figure 9 indicates that adding
three PACU beds would allow case volume to grow by
10% relative to current demand while still encountering
fewer hours of waiting than in the current configuration.
What would be the cost or benefit of making such a
change? The construction costs are unique to each hos-
pital, but they are quantifiable. Similarly, the cost of
additional PACU staff can be estimated. Our hospital
pays overtime to anesthesiologists and nurses to recover
patients in the OR after regular OR hours or to finish
cases that were delayed because of PACU waitlists earlier
in the day. There is a tangible cost (in terms decreased
margin for the cases using overtime) and an intangible
cost (in terms of staff frustration, demoralization and
turnover) of not reducing the waitlist. If a hospital had
waitlists with none of these costs, then there is little
reason to use resources to reduce the waitlist.

In separate but complementary work, we have been
developing a pod of ORs designed to implement parallel
processing to reduce the total process time for cases and
raise throughput in these ORs.19–24 Preliminary analysis of
this strategy indicates that there would be sufficient time

saved and OR capacity realized to close a small OR and
convert it to PACU space,25,26 with the impact of adding a
net three PACU beds to the perioperative system. Thus, the
empirical initiative to expand parallel processing in our
ORs and the queueing model work described in this paper
provide convenient opportunities to test the validity of
both approaches and provide methods by which other
congested academic medical centers may increase their
functional capacity for growth in OR patient volume.
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