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WEB APPENDIX 1 
ANALYSIS OF CHOICE WITHIN THE CONSIDERATION SET 

 Our focus in the paper is on consumers’ consideration-set decisions.  We chose this focus 

for managerial and scientific interest because it enabled us to test a range of non-compensatory 

and compensatory decision rules and because, for categories with many products and many fea-

tures, consideration is an important managerial problem.  The focus also simplified exposition. 

 Our studies also asked respondents to rank profiles within their consideration sets.  For 

mobile phones, three of the four decompositional methods rank the profiles and both direct-

elicitation methods weakly rank the profiles.  From these predicted ranks we compute the rank 

correlation with the observed ranks within the consideration sets in the validation data.  Table A1 

summarizes the results. 

 Table A1 is consistent with Table 1 in the text. There is no statistical difference between 

the decompositional additive logit method and the unstructured direct-elicitation (UDE) method 

on both the initial and the delayed validation.  The greedoid dynamic program does not do as 

well on choice as consideration, possibly because non-compensatory models are more common 

in consideration than choice – an hypothesis worth further testing. 

TABLE A1. RANK CORRELATIONS FOR CHOICE WITHIN CONSIDERATION SET 

Mobile Phone Study Initial Validation Delayed Validation 

Decompositional Methods   

    HB Logit, Additive Utility  0.374*  0.396* 

    HB Logit, q-Compensatory 0.346 0.328  

    Greedoid Dynamic Program1 0.268  0.273  

Direct-Elicitation Methods   

    Structured direct elicitation 0.332 0.267 

    Unstructured direct elicitation  0.412*  0.375* 

1 Estimates a lexicographic model. * Best or not significantly different than best at the 0.05 level.  
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 For the automotive study, UDE is best or not significantly different than best.  However, 

unlike for consideration decisions, UDE is not significantly better in predicting ranks within the 

consideration set than the decompositional methods.  We are hesitant to read too much into this 

result because the variation across respondents in rank correlations is large compared to variation 

across methods.  The ratio of the standard deviation to the mean is between 2.0 and 2.7 for the 

four methods (although the results in Table A2 are paired t-tests with greater power). 

The lack of statistical power for ranks in the automotive study is explained, in part, be-

cause we focused that study on consideration-set decisions.  In the current managerial climate, 

understanding automotive consideration is extremely important.  The large number of potential 

features and levels (53) relative to the sizes of the consideration sets (~ 10 profiles) challenged 

all methods.   Nonetheless there remains the scientific challenge of improving and testing UDE 

for automotive ranks within the consideration set.  For example, more-aggressive coding might 

resolve ties in weak orderings to improve the predictive ability of UDE for ranks.   

An alternative hypothesis is that UDE is best for heuristic consideration decisions while 

additive decomposition is best if compensatory rules are used to rank profiles within a considera-

tion set.  (See also the greedoid dynamic program results in Table A1.)  We cannot resolve this 

hypothesis with our focused studies, but it is an interesting topic for future research. 

TABLE A2. RANK CORRELATIONS FOR CHOICE WITHIN CONSIDERATION SET 

Automotive Study  Delayed Validation 

Decompositional Methods   

    HB Logit, Additive Utility  0.204* 

    HB Logit, q-Compensatory  0.151* 

Direct-Elicitation Methods   

    Structured direct-elicitation (Casemap)  0.108 

    Unstructured direct-elicitation (e-mail)  0.150* 

* Best or not significantly different than best at the 0.05 level.  
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WEB APPENDIX 2 
BRIEF SUMMARY OF DECOMPOSITIONAL METHODS 

 HB Logit, Additive Utility.  Respondents consider a profile if the sum of the 

partworths of the levels of the profile, plus error, is above a threshold.  Subsuming the threshold 

in the partworth scaling, we get a standard logit likelihood function. We impose a first-stage 

prior on the partworth vector that is normally distributed with mean 𝛽0 and covariance D.  The 

second stage prior on D is inverse-Wishart with parameters equal to I/(N+3) and N+3, where N is 

the number of parameters to be estimated and I is an identity matrix.  We use diffuse priors on 

𝛽0.  Inference is based on a Monte Carlo Markov chain with 20,000 iterations, the first 10,000 of 

which are used for burn-in. 

 HB Logit, q-Compensatory.  Same as the above except we use rejection sampling to 

enforce constraints that no feature importance is more than q times any other feature importance.  

We follow Yee, et al. and use q = 4, but obtain similar results for q = 2, 4, 6, and 8. 

 Greedoid Dynamic Program. Yee, et al. (2007) demonstrate that a lexicographic or-

dering of features and levels induces a rank ordering of profiles that has a greedoid structure.  

This enables us to use forward induction on the feature levels to minimize the number of errors 

in fitting ordinal paired-comparisons among profiles (vs. observed data) as implied by the feature 

ordering.  The output is a rank ordering of features and levels that best fits the calibration data. 

 Logical Analysis of Data (LAD). LAD attempts to identify minimal sets of features 

and levels to distinguish “positive” events from “negative” events (Boros, et. al. 1997).  LAD 

uses a greedy algorithm to find the fewest conjunctive patterns (feature-level combinations) 

necessary to match the set of considered profiles.  The union of these patterns is a disjunction of 

conjunctions – a generalization of conjunctive, disjunctive, and subset conjunctive decision rules 

(Gilbride and Allenby 2004, 2006; Jedidi and Kohli 2005).  For each respondent, we resolve ties 

among patterns based on the the frequency of patterns in the sample of respondents.  We enforce 
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cognitive simplicity by limiting the number of feature-levels in a pattern (Hauser, et al. 2010). 

WEB APPENDIX 3 
DETAILS OF KULLBACK-LEIBLER DIVERGENCE FOR OUR DATA 

The Kullback-Leibler divergence (KL) is an information-theory-based measure of the di-

vergence from one probability distribution to another.  Because it is calculated for each respon-

dent, we suppress the respondent subscript.  We seek the divergence from the predicted consid-

eration probabilities to those that are observed in the validation data , recognizing the discrete na-

ture of the data (�⃗� such that 𝑦𝑘 = 1 if the respondent considers profile k, 0 otherwise).  We pre-

dict whether the respondent considers profile k.  Call this prediction 𝑟𝑘.  Let 𝑟 be the vector of 

the 𝑟𝑘’s.  If the 𝑟𝑘’s were always probabilities (and the number of profiles is not too large), the 

divergence from the data (�⃗�) to the model being tested (𝑟) would be:  

(W1) 𝐾𝐿 =  𝐷𝐾𝐿(�⃗�||𝑟) = � �𝑦𝑘 log2 �
𝑦𝑘
𝑟𝑘
� + (1 − 𝑦𝑘) log2 �

1 − 𝑦𝑘
1 − 𝑟𝑘

��
𝑘∈𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

 

 Equation W1 is poorly defined for discrete predictions (𝑟𝑘 = 0 or 1) and very sensitive to 

false predictions when 𝑟𝑘 approaches 0 or 1.  For a fair comparison of both discrete and probabil-

istic predictions we focus on false positives, true positives, false negatives, and true negatives to 

separate the summation into four components.1

                                                 
1 As per information theory, some information is lost in aggregation.  If future researchers develop UDE methods 
that produce probabilistic predictions, and if the number of profiles is not too large, then comparisons might be 
made with Equation W1.  When comparing discrete and probabilistic predictions we chose to use Equation W2. 

  Let V = the number of profiles in the validation 

sample, �̂�𝑣 = the number of considered validation profiles, 𝐹𝑝 = the false positive predictions, 

and 𝐹𝑛 = the false negative predictions.  Then the KL divergence is given by the following equa-

tion where Sc,c is the set of profiles that are considered in the calibration data and considered in 

the validation data.  The sets Sc,nc, Snc,c, and Snc,nc are defined similarly (nc → not considered). 

𝐾𝐿 =  � log2 �
�̂�𝑣

�̂�𝑣 − 𝐹𝑝
� + � log2 �

𝑉 − �̂�𝑣
𝐹𝑛

� + � log2 �
�̂�𝑣
𝐹𝑝
� + � log2 �

𝑉 − �̂�𝑣
𝑉 − �̂�𝑣 − 𝐹𝑛

�
𝑆𝑛𝑐,𝑛𝑐𝑆𝑛𝑐,𝑐𝑆𝑐,𝑛𝑐𝑆𝑐,𝑐
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After algebraic simplification, KL divergence can be written as: 

(W2) 𝐾𝐿 =  𝐷𝐾𝐿(�⃗�||𝑟) = �̂�𝑣 log2 �̂�𝑣 + �𝑉 − �̂�𝑣�log2�𝑉 − �̂�𝑣� −  ��̂�𝑣 − 𝐹𝑝� log2��̂�𝑣 − 𝐹𝑝�   

    − 𝐹𝑛 log2 𝐹𝑛 − 𝐹𝑝 log2 𝐹𝑝 − �𝑉 − �̂�𝑣 − 𝐹𝑛� log2�𝑉 − �̂�𝑣 − 𝐹𝑛�  

When necessary we use L’hôspital’s rule to show that lim𝑞→0 𝑞 log2 𝑞 = 0. 

In the paper we rescale the KL divergence relative to a random null model, specifically:  

[𝐷𝐾𝐿(𝑑𝑎𝑡𝑎 ∥ 𝑟𝑎𝑛𝑑𝑜𝑚) − 𝐷𝐾𝐿(𝑑𝑎𝑡𝑎 ∥ 𝑚𝑜𝑑𝑒𝑙)] 𝐷𝐾𝐿(𝑑𝑎𝑡𝑎 ∥ 𝑟𝑎𝑛𝑑𝑜𝑚)⁄ .  This scaling is pure-

ly for interpretation and does not change the results of any of the statistical tests in this paper. 

Equation W2 is related to, but not identical to, the KL measure used by Hauser, et al. 

(2010), who use the ratio 𝐷𝐾𝐿(𝑚𝑜𝑑𝑒𝑙 ∥ 𝑟𝑎𝑛𝑑𝑜𝑚) 𝐷𝐾𝐿(𝑑𝑎𝑡𝑎 ∥ 𝑟𝑎𝑛𝑑𝑜𝑚)⁄ .  Each measure has 

its own strengths. If we were to use their measure, the basic conclusions would not change.  For 

example, UDE remains significantly better than both Casemap and decomposition for the auto-

motive data (p < 0.001).  Training effects are similar: UDE improves significantly with training 

(p < 0.001), but Casemap and decomposition do not (p > 0.05), UDE is significantly better than 

Casemap and decomposition with training (p < 0.001), and UDE is not significantly different 

without training (p > 0.05).  Hit rate and other diagnostic measures reinforce the interpretations 

that are based on KL. 

WEB APPENDIX 4 
TASK EVALUATIONS 

Mobile Phone Study 

We asked respondents whether they understood the tasks and understood that it was “in 

their best interests to tell us their true preferences.”  The mean responses on understanding the 

task were 1.96 (SD = 0.58) and 2.05 (SD = 0.69) for the decompositional and direct-elicitation 

tasks, respectively, where 1 = “extremely easy”, 2 = “easy,” 3 = “after putting in effort,” 4 = 

“difficult”, and 5 = “extremely difficult.  The mean responses for understanding incentive align-



Web Appendices to “Unstructured Direct Elicitation of Decision Rules.” A7 

ment were 1.97 (SD = 0.64) and 2.03 (SD = 0.72), respectively.  There were no significant dif-

ferences between the two tasks. 

Automotive Study 

The mean responses on understanding the task were 1.93 (SD = 0.87), 1.75 (SD=0.75), 

and 2.34 (SD = 0.99) for the decompositional, Casemap and UDE tasks, respectively, where 1 = 

“extremely easy,” 2 = “easy,” 3 = “after putting in effort,” 4 = “difficult”, and 5 = “extremely 

difficult.”  The mean responses for understanding incentive alignment were 1.86 (SD = 0.86), 

1.73 (SD=0.80), and 1.89 (SD = 0.88), respectively.  Although, the task and the incentives were 

easiest to understand for Casemap (p < 0.05), they appear to be easy to understand for all three 

methods. 

We also asked the participants how the tasks “enable them to accurately express their pre-

ferences,” where 1 = “very accurately,” 3 = “somewhat accurately,” and 5 =“not accurately.” 

The mean responses were 2.38 (SD=0.97), 2.15 (SD=0.95), and 2.04 (SD=0.95) for the decom-

positional, Casemap, and UDE tasks, respectively.  Respondents believed the UDE and Casemap 

tasks enabled them to express their preferences more accurately than the decompositional task (p 

< 0.01), but there is no significant difference between the UDE and the Casemap tasks. 

WEB APPENDIX 5  
RULES AND PARTWORTHS BY FEATURE LEVEL, AUTOMOBILES 

For automobiles the elimination percentages, the compensatory percentages, and the 

partworths are face valid.  As expected, there are differences between direct elicitation and de-

composition.  As in the mobile phone study, the decompositional partworths are negatively cor-

related (-0.34) with direct-elicitation elimination percentages and positively correlated (0.50) 

with direct-elicitation compensatory percentages.  The elimination and compensatory percentag-

es are negatively correlated (-0.23). 



Web Appendices to “Unstructured Direct Elicitation of Decision Rules.” A8 

WEB APPENDIX 6 
SCREENSHOTS OF THE STUDIES 

Screenshots from both studies will be made available from the authors.  They are not in-

cluded in this document because they would cause the document to be an extremely large file 

challenging electronic transmission, storage, and printing.   


