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This paper studies government subsidies for green technology adoption while considering the manufacturing

industry’s response. Government subsidies offered directly to consumers impact the supplier’s production and

pricing decisions. Our analysis expands the current understanding of the price-setting newsvendor model,

incorporating the external influence from the government who is now an additional player in the system. We

quantify how demand uncertainty impacts the various players (government, industry and consumers) when

designing policies. We further show that for convex demand functions, an increase in demand uncertainty

leads to higher production quantities and lower prices, resulting in lower profits for the supplier. With this

in mind, one could expect consumer surplus to increase with uncertainty. In fact, we show this is not always

the case and the uncertainty impact on consumer surplus depends on the trade-off between lower prices and

the possibility of under-serving customers with high valuations. We also show that when policy makers such

as governments ignore demand uncertainty when designing consumer subsidies, they can significantly miss

the desired adoption target level. From a coordination perspective, we demonstrate that the decentralized

decisions are also optimal for a central planner managing jointly the supplier and the government. As a

result, subsidies provide a coordination mechanism.

Key words : Government Subsidies, Green Technology Adoption, Newsvendor, Cost of Uncertainty, Supply

Chain Coordination

1. Introduction

Recent developments in green technologies have captured the interest of the public and private

sectors. For example, electric vehicles (EV) historically predate gasoline vehicles, but have only

received significant interest in the last decade (see Eberle and Helmot (2010) for an overview).

In the height of the economic recession, the US government passed the American Recovery and

Reinvestment Act of 2009 which granted a tax credit for consumers who purchased electric vehicles.

Besides boosting the US economy, this particular tax incentive was aimed at fostering further

research and scale economies in the nascent electric vehicle industry. In December 2010, the all-

electric car, Nissan Leaf, and the plug-in hybrid General Motors’ Chevy Volt were both introduced
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in the US market. After a slow first year, sales started to pick up and most major car companies

are now in the process of launching their own versions of electric vehicles.

More recently in 2012, Honda introduced the Fit EV model and observed low customer demand.

After offering sizable leasing discounts, Honda quickly sold out in Southern California1. It is not

uncommon to read about waitlists for Tesla’s new Model S or the Fiat 500e, while other EVs are

sitting unwanted in dealer parking lots. Both stories of supply shortages or oversupply have been

commonly attributed to electric vehicle sales. At the root cause of both these problems is demand

uncertainty. When launching a new product, it is hard to know how many units customers will

request. In addition, finding the correct price point is also not a trivial task, especially with the

presence of a government subsidy. In fact, understanding demand uncertainty should be a first

order consideration for both manufacturers and policy-makers alike.

For the most part, the subsidy design literature in green technologies has not studied demand

uncertainty (see for example, Benthem et al. (2008), Atasu et al. (2009), Lobel and Perakis (2013)

and Alizamir et al. (2013)). In practice, demand uncertainty has also often been not considered.

As suggested in private communication with several sponsors of the MIT Energy Initiative2, policy

makers often ignore demand uncertainty when designing consumer subsidies for green technology

adoption (see a recent article in Energy Futures magazine, Stauffer 2013). The purpose of this

paper is to study whether incorporating demand uncertainty in the design of subsidy programs for

green technologies is important. In particular, we examine how governments should set subsidies

when considering the manufacturing industry’s response under demand uncertainty. We show that

demand uncertainty plays a significant role in the system’s welfare distribution and should not be

overlooked.

Consider the following two examples of green technologies: electric vehicles and solar panels. By

the end of 2013, more than 10GW of solar photovoltaic (PV) panels had been installed in the

United States, producing an annual amount of electricity roughly equivalent to two Hoover Dams.

While still an expensive generation technology, this large level of installation was only accomplished

due to the support of local and federal subsidy programs, such as the SunShot Initiative. In 2011,

the US energy secretary Steven Chu announced that the goal of the SunShot Initiative by 2020

is to reduce the total cost of PV systems by 75%, or an equivalent of $1 a Watt (DOE 2012), at

which point solar technology will be competitive with traditional sources of electricity generation.

Even before this federal initiative, many states have been actively promoting solar technology with

consumer subsidies in the form of tax rebates or renewable energy credits.

1 Los Angeles Times, 06/05/2013, http://www.latimes.com/business/autos/la-fi-hy-autos-electric-cars-sold-out-
20130605,0,1186526,full.story

2 http://mitei.mit.edu/about/external-advisory-board
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Similarly, federal subsidies were also introduced to stimulate the adoption of electric vehicles

through the Recovery Act. As we previously mentioned, General Motors and Nissan have recently

introduced affordable electric vehicles in the US market. GM’s Chevy Volt was awarded the most

fuel-efficient compact car with a gasoline engine sold in the US, as rated by the United States

Environmental Protection Agency (EPA (2012)). However, the price tag of the Chevy Volt is still

considered high for its category. The cumulative sales of the Chevy Volt in the US since it was

launched in December 2010 until September 2013 amount to 48,218. It is likely that the $7,500

government subsidy offered to each buyer through federal tax credit played a significant role in the

sales volume. The manufacturer’s suggested retail price (MSRP) of GM’s Chevy Volt in September

2013 was $39,145 but the consumer was eligible for $7,500 tax rebates so that the effective price

reduced to $31,645. The amount of consumer subsidies has remained constant since launch in

December 2010 until the end of 2013. This seems to suggest that in order to isolate the impact of

demand uncertainty without complicating the model, it is reasonable to consider a single period

setting.

In this paper, we address the following questions. How should governments design green subsidies

when facing an uncertain consumer market? How does the uncertain demand and subsidy policy

decision affect the supplier’s price (MSRP) and production quantities? Finally, what is the resulting

effect on consumers? In practice, policy makers often ignore demand uncertainty and consider

average values when designing consumer subsidies. This ignorance may be caused by the absence (or

high cost) of reliable data, among other reasons. We are interested in understanding how the optimal

subsidy levels, prices and production quantities as well as consumer surplus are affected when one

explicitly considers demand uncertainty relative to the case when demand is approximated by its

deterministic average value.

While the government designs subsidies to stimulate the adoption of new technologies, the man-

ufacturing industry responds to these policies with the goal of maximizing its own profit. In this

paper, we model the supplier as a price-setting newsvendor that responds optimally to the govern-

ment subsidy. More specifically, the supplier adjusts its production and price (MSRP) depending

on the level of consumer subsidies offered by the government to the consumer. In such industries

where production is long and incurs large fixed costs, we consider the production quantities to be

equivalent to the capacity investment built in the manufacturing facility. This study also helps us

to expand the price-setting newsvendor model while accounting for the external influence of the

government. Consequently, as our problem cannot be cast as a traditional supply-chain model, we

need to develop a new approach to derive optimal policies and insights.

Another feature of the aforementioned green subsidy policy is that the government often sets

an adoption target. For example, in the 2011 State of the Union, US President Barack Obama
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mentioned the following goal: “With more research and incentives, we can break our dependence

on oil with bio-fuels and become the first country to have a million electric vehicles on the road

by 2015” (DOE 2011). Another example of such adoption target has been set for solar panels in

the California Solar Incentive (CSI) program, which states that: “The CSI program has a total

budget of $2.167 billion between 2007 and 2016 and a goal to install approximately 1,940 MW of

new solar generation capacity” (CSI 2007). Hence, in our model, we optimize the subsidy level to

achieve a given adoption target level while minimizing government expenditure (or maximizing the

total welfare) as we discuss in Section 3.

Motivated by the EV market, we analyze the case where both price and production level are

decision variables of the supplier. We compare the optimal policies to the simple case where demand

is approximated by its average value, i.e., a deterministic function. We further extend the compar-

isons in a continuous fashion as a function of the magnitude of demand uncertainty. In other words,

we quantify the impact of demand uncertainty and characterize who bears the cost of uncertainty

depending on the structure of the demand model. Finally, we study the supply-chain coordina-

tion i.e., when the government owns the supplier, and show that subsidies coordinate the overall

system. More precisely, we show that the price paid by consumers as well as the production level

coincide in both the centralized (where the supplier is managed/owned by the government) and

the decentralized models (where supplier and government act separately).

Contributions

Given the recent growth of green technologies, supported by governmental subsidy programs, this

paper explores a timely problem in supply chain management. Understanding how demand uncer-

tainty affects subsidy costs, as well as the economic surplus of suppliers and consumers, is an

important part of designing sensible subsidy programs. The main contributions of this paper are:

• Demand uncertainty does not always benefit consumers: Nonlinearity plays a key role.

As uncertainty increases, quantities produced increase whereas the price and the supplier’s profit

decrease. In general, demand uncertainty benefits consumers in terms of effective price and quanti-

ties. One might hence expect the aggregate consumer surplus to increase with uncertainty. In fact,

we show this is not always true. We observe that the effect of uncertainty on consumer surplus

depends on the demand form. For example, for linear demand, uncertainty increases the consumer

surplus, whereas for iso-elastic demand the opposite result holds. Depending on the demand pat-

tern, the possibility of not serving customers with high valuations can outweigh the benefit of

reduced prices for the customers served.

• By ignoring demand uncertainty, the government will under-subsidize and miss the desired

adoption target.
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Through the case of the newly introduced Chevy Volt by General Motors in the US market, we

measure by how much the government misses the adoption target by ignoring demand uncertainty.

We show that when the supplier takes into account demand uncertainty information while the

government considers only average information on demand, the resulting expected sales can be

significantly below the desired target adoption level.

• The cost of demand uncertainty is shared between the supplier and the government.

We analyze who bears the cost of demand uncertainty between government and supplier, which

we show depends on the profit margin of the product. For linear demand models, the cost of

demand uncertainty shifts from the government to the supplier as the adoption target increases

or the production cost decreases. The impact of uncertainty on the government also depends on

the shape of the demand curve. On one hand, a linear demand model suggests that subsidy levels

always increase with demand uncertainty. On the other hand, for iso-elastic demand, uncertainty

will increase/decrease subsidy levels when there is high/low price elasticity. As a result, the linear

demand model, which is the most common in the literature, is not sufficient to fully understand

the government’s share in the cost of demand uncertainty.

• Consumer subsidies are a sufficient mechanism to coordinate the government and the supplier.

We compare the optimal policies to the case where a central planner manages jointly the supplier

and the government. We determine that the price paid by the consumers and the production levels

coincide for both the decentralized and the centralized models. In other words, consumer subsidies

coordinate the supply-chain in terms of price and quantities.

2. Literature Review

Our setting is related to the newsvendor problem which has been extensively studied in the lit-

erature (see, e.g., Zipkin (2000), Porteus (1990), Winston (1994) and the references therein). An

interesting extension that is even more related to this research is the price-setting newsvendor (see

Petruzzi and Dada (1999) and Yao et al. (2006)). More recently, Kocabıyıkoğlu and Popescu (2011)

identified a new measure of demand elasticity, the elasticity of the lost sales rate, to generalize

and complement assumptions commonly made in the price-setting newsvendor. Kaya and Özer

(2012) provide a good survey of the literature on inventory risk sharing in a supply chain with a

newsvendor-like retailer, which is closer to our framework. Nevertheless, our problem involves an

additional player (the government) that interacts with the supplier’s decisions and complicates the

analysis and insights. Most previous works on the stochastic newsvendor problem treat the additive

and multiplicative models separately (e.g., in Petruzzi and Dada (1999)) or focus exclusively on one

case, with often different conclusions regarding the price of demand uncertainty. In our problem

however, we show that our conclusions hold for both demand models.
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In the traditional newsvendor setting, the production cost is generally seen as the variable cost of

producing an extra unit from raw material to finished good. In capital-intensive industries like solar

panels and electric vehicles, the per-unit cost of capacity investment in the manufacturing facility

is usually much larger than the per-unit variable cost. For this reason, we define the production

quantities of the supplier to be a capacity investment decision, similar to Cachon and Lariviere

(1999).

In the economics literature, one can find a vast amount of papers that consider welfare implica-

tions and regulations for a monopolist (see, e.g., Train (1991)). There is also a relevant stream of

literature on market equilibrium models for new product introduction (see, e.g., Huang and Sošić

(2010)). However, most of these papers do not consider demand uncertainty. Nevertheless, some

works on electricity peak-load pricing and capacity investments address the stochastic demand case

(see Crew et al. (1995) for a review on that topic). In this context, it is usually assumed that the

supplier knows the willingness to pay of customers and can therefore decline the ones with the

lowest valuations in the case of a stock-out. In our application however, one cannot impose such

an assumption and the demand model follows a general price dependent curve while the customers

arrive randomly and are served according to a first-come-first-serve logic.

Another stream of research related to our paper considers social welfare and government subsidies

in the area of vaccines (see, e.g., Arifoglu et al. (2012), Mamani et al. (2011) and Taylor and Xiao

(2013)). In Arifoglu et al. (2012), the authors study the impact of yield uncertainty, in a model that

represents both supply and demand, on the inefficiency in the influenza vaccine supply chain. They

show that the equilibrium demand can be greater than the socially optimal demand. In Taylor

and Xiao (2013), the authors assume a single supplier with stochastic demand and consider how a

donor can use sales and purchase subsidies to improve the availability of vaccines.

Among papers that study the design of subsidies for green technologies, Carlsson and Johansson-

Stenman (2003) examine the social benefits of electric vehicle adoption in Sweden and report a

pessimistic outlook for this technology in the context of net social welfare. Avci et al. (2013) show

that adoption of electric vehicles has societal and environmental benefits, as long as the electricity

grid is sufficiently clean. In Benthem et al. (2008), the authors develop a model for optimizing

social welfare with solar subsidy policies in California. These two papers assume non-strategic

industry players. While considering the manufacturer’s response, Atasu et al. (2009) study the use

of a take-back subsidy and product recycling programs. In a similar way as the previous papers

mentioned above, they optimize social welfare of the system assuming a known environmental

impact of the product. Our work focuses on designing optimal policies to achieve a given adoption

target level, which can be used to evaluate the welfare distribution in the system. In this paper,

we also incorporate the strategic response of the industry into the policy making decision. Also
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considering an adoption level objective, Lobel and Perakis (2013) study the problem of optimizing

subsidy policies for solar panels and present an empirical study of the German solar market. The

paper shows evidence that the current feed-in-tariff system used in Germany might not be efficiently

using the positive network externalities of early adopters. Alizamir et al. (2013) also tackle the

feed-in-tariff design problem, comparing strategies for welfare maximization and adoptions targets.

Finally, Ovchinnikov and Raz (2013) present a price setting newsvendor model for the case of

public interest goods. The authors compare, for the case of linear demand, different government

intervention mechanisms and study under what conditions the system is coordinated in terms of

welfare, prices and supply quantities. On the other hand, in this paper we investigate the impact

of demand uncertainty on the various players of the system for non-linear demands and model

explicitly the strategic response of the manufacturer to the subsidy policy.

Numerous papers in supply-chain management focus on linear demand functions. Examples

include Anand et al. (2008) and Erhun et al. (2011) and the references therein. These papers study

supply chain contracts where the treatment mainly focuses on linear inverse demand curves. In

this paper, we show that the impact of demand uncertainty on the optimal policies differs for

some classes of non-linear demand functions relative to linear models. In particular, we observe

that the effect of demand uncertainty depends on whether demand is convex (rather than linear)

with respect to the price. In addition, the demand non-linearity plays a key role on the consumer

surplus.

As mentioned before, our paper also contributes to the literature on supply chain coordination

(see Cachon 2003 for a review). The typical supply chain setting deals with a supplier and a retailer,

who act independently to maximize individual profits. Mechanisms such as rebates (Taylor 2002) or

revenue-sharing (Cachon and Lariviere 2005) can coordinate the players to optimize the aggregate

surplus in the supply chain. Liu and Özer (2010) examine how wholesale price, quantity flexibility

or buybacks can incentivize information sharing when introducing a new product with uncertain

demand. Lutze and Özer (2008) study how a supplier should share demand uncertainty risk with

the retailer when there is a lead-time contract. In Granot and Yin (2005, 2007, 2008), the authors

study different types of contracts in a Stackelberg framework using a price-setting newsvendor

model. In particular, Granot and Yin (2008) analyze the effect of price and order postponements in

a decentralized newsvendor model with multiplicative demand, wherein the manufacturer possibly

offers a buyback rate. In our setting, the government and the supplier are acting independently

and could perhaps adversely affect one another. Instead, we show that the subsidy mechanism is

sufficient to achieve a coordinated outcome. Chick et al. (2008) and Mamani et al. (2011) have

looked at supply chain coordination in government subsidies for vaccines. Nevertheless, as we

discussed above the two supply chains are fairly different.
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The remainder of the paper is structured as follows. In Section 3, we describe the model. In

Section 4, we consider both additive and multiplicative demand with pricing (price setter model),

analyze special cases and finally study the effect of demand uncertainty on consumer surplus. In

Section 5, we study the supply-chain coordination and Section 6 presents some computational

results. Finally, we present our conclusions in Section 7. The proofs of the different propositions

and theorems together with the price taker case are relegated to the Appendix.

3. Model

We model the problem as a two-stage Stackelberg game where the government is the leader and the

supplier is the follower (see Figure 1). We assume a single time period model with a unique supplier

and consider a full information setting. The government decides the subsidy level r per product and

the supplier follows by setting the price p and production quantities q to maximize his/her profit.

The subsidy r is offered from the government directly to the end consumer. We consider a general

stochastic demand function that depends on the effective price paid by consumers, z = p− r, and

on a random variable ε, denoted by D(z, ε). Once demand is realized, the sales level is determined

by the minimum of supply and demand, that is, min(q,D(z, ε)).

Figure 1 Order of events: 1. Subsidies; 2. Price and Quantity; 3. Sales

The selling price p can be viewed as the manufacturer’s suggested retail price (MSRP) that is,

the price the manufacturer recommends for retail. Additionally, in industries where production lead

time is long and incurs large fixed costs, we consider the production quantities to be equivalent to

the capacity investment built in the manufacturing facility.

The goal of our model is to study the overall impact of demand uncertainty. In order to iso-

late this effect, we consider a single period monopolist model. These modeling assumptions are

reasonable approximations for the Chevy Volt, which we use in our numerical analysis. Note that

since the introduction of electric vehicles, the MSRP for the Chevy Volt and the subsidy level have

remained fairly stable. Consumer subsidies were posted before the introduction of these products

and have remained unchanged ($7,500) since it was launched in December 2010. We assume the

supplier is aware of the amount of subsidy offered to consumers before starting production. The

supplier modeling choice is motivated by the fact that consumer subsidies for EVs started at a
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time where very few competitors were present in the market and the product offerings were signif-

icantly different. The Chevy Volt is an extended-range mid-priced vehicle, while the Nissan Leaf

is a cheaper all-electric alternative and the Tesla Roadster is a luxury sports car. These products

are also significantly different from traditional gasoline engine vehicles so that they can be viewed

as price setting firms within their own niche markets.

Given a consumer subsidy level, r, announced by the government, the supplier faces the follow-

ing profit maximization problem. Note that c denotes the cost of building an additional unit of

manufacturing capacity.

Π = max
q,p

p ·E
[
min(q,D(z, ε))

]
− c · q (1)

Denote Π as the optimal expected profit of the supplier. We consider the general case for which

the supplier decides upon both the price (MSRP) and the production quantities (i.e., the supplier

is a price setter). An alternative case of interest is the one for which the price is exogenously given

(i.e., the supplier is a price taker and decides only production quantity). As mentioned before, we

consider the early stages of the EV market as a good application of the monopolist price setting

model. In contrast, the solar panel manufacturing industry is highly competitive, as the top ten

companies share less than half of the US market. As a result, the solar manufacturing market is

possibly better represented with a price taker model. In this paper, we treat both settings, but

focus on the more complex price setter model. Due to space limitations, we relegate the price taker

case to the Appendix.

We assume the government is introducing consumer subsidies, r, in order to stimulate sales to

reach a given adoption target. We denote by Γ the target adoption level, which is assumed to be

common knowledge. Conditional on achieving this target in expectation, the government wants

to minimize the total cost of the subsidy program. Define Exp as the minimal expected subsidy

expenditures, which is defined through the following optimization problem:

Exp= min
r

r ·E
[
min(q,D(z, ε))

]
s.t. E

[
min(q,D(z, ε))

]
≥ Γ (2)

r≥ 0

In what follows, we discuss the modeling choices for the government in more detail.

Government’s constraints The adoption level constraint used in (2) is motivated by real

policy-making practice. For example, President Obama stated the adoption target of 1 million of

electric vehicles by 2015 (see DOE 2011). More precisely, the government is interested in designing
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consumer subsidies so as to achieve the predetermined adoption target. An additional possibility

is to incorporate a budget constraint for the government in addition to the adoption target. In

various practical settings, the government may consider both requirements (see for example CSI

2007). Incorporating a budget constraint in our setting does not actually affect the optimal subsidy

solution of the government problem (assuming the budget does not make the problem infeasible). In

addition, one can show that there exists a one-to-one correspondence between the target adoption

level and the minimum budget necessary to achieve this target. Hence, we will only solve the

problem with a target adoption constraint, but the problem could be reformulated as a budget

allocation problem with similar insights.

Given that actual sales are stochastic, the constraint used in our model meets the adoption

target in expectation:

E
[
min(q,D(z, ε))

]
≥ Γ. (3)

Our results can be extended to the case where the government aims to achieve a target adoption

level with some desired probability (chance constraint) instead of an expected value constraint.

Such a modeling choice will be more suitable when the government is risk-averse and is given by:

P
([
min(q,D(z, ε))

]
≥ Γ

)
≥∆. (4)

∆ represents the level of conservatism of the government. For example, when ∆ = 0.99, the gov-

ernment is more conservative than when ∆ = 0.9. We note that the insights we gain are similar for

both classes of constraints (3) and (4) and therefore in the remainder of this paper, due to space

limitations, we focus on the case of an expected value constraint.

Government’s objective Two common objectives for the government are to minimize expen-

ditures or to maximize the welfare in the system. In the former, the government aims to minimize

only its own expected expenditures, given by:

Exp= r ·E
[
min(q,D(z, ε))

]
. (5)

Welfare can be defined as the sum of the expected supplier’s profit (denoted by Π and defined in

(1)) and the consumer surplus (denoted by CS) net the expected government expenditures:

W = Π +CS−Exp. (6)

The consumer surplus is formally defined in Section 4.3 and aims to capture the consumer satisfac-

tion. Interestingly, one can show that under some mild assumptions, both objectives are equivalent

and yield the same optimal subsidy policy for the government. The result is summarized in the

following Proposition.
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Proposition 1. Assume that the total welfare is a concave and unimodal function of the subsidy

r. Then, there exists a threshold value Γ∗ such that for any given value of the target level above

this threshold, i.e., Γ≥ Γ∗, both problems are equivalent.

Proof. Since the welfare function is concave and unimodal, there exists a unique optimal uncon-

strained maximizer solution. If this unconstrained solution satisfies the adoption level target, the

constrained problem is solved to optimality. However, if the target adoption level Γ is large enough,

this solution is not feasible with respect to the adoption constraint. By using the non-decreasing

property of the expected sales with respect to r (see Lemma 2 in the Appendix), one can see

that the optimal solution of the constrained welfare maximization problem is obtained when the

adoption level constraint is exactly met. Otherwise, by considering a larger subsidy level, one still

satisfies the adoption constraint but does not increase the welfare. Consequently, both problems

are equivalent and yield the same optimal solution for which the adoption constraint is exactly

met. �

In conclusion, if the value of the target level Γ is sufficiently large, both problems (minimizing

expenditures in (5) and maximizing welfare in (6)) are equivalent. Note that the concavity and

unimodality assumptions are satisfied for various demand models including the linear demand

function. In particular, for linear demand, the threshold Γ∗ can be characterized in closed form

and is equal to twice the optimal production with zero subsidy and therefore satisfied in most

reasonable settings. Furthermore, for smaller adoption target levels, Cohen et al. (2013) show

that even for multiple products in a competitive environment, the gaps between both settings

(minimizing expenditures versus maximizing welfare) are small (if not zero) so that both problems

yield solutions that are close to one another. For the remainder of the paper, we assume the

government objective is to minimize expenditures, while satisfying an expected adoption target,

as in (2). This modeling choice was further motivated by private communications with sponsors of

the MIT Energy Initiative.

With the formal definitions of the optimization problems faced by the supplier (1) and the

government (2), in the next section we analyze of the optimal decisions of each party and the

impact of demand uncertainty.

4. The Price Setter Model

For products such as electric vehicles, where there are only a few suppliers in the market, it is

reasonable to assume that the selling price (MSRP) of the product is endogenous. In other words,

p is a decision variable chosen by the supplier in addition to the production quantity q. In this

case, the supplier’s optimization problem can be viewed as a price setting newsvendor problem

(see e.g., Petruzzi and Dada (1999)). Note though that in our problem the solution also depends
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on the government subsidy. In particular, both q and p are decision variables that should be

optimally chosen by the supplier for each value of the subsidy r set by the government. To keep

the analysis simple and to be consistent with the literature, we consider separately the cases of a

stochastic demand with additive or multiplicative uncertainty. In each case, we first consider general

demand functions and then specialize to linear and iso-elastic demand models that are common

in the literature. Finally, we compare our results to the case where demand is approximated by a

deterministic average value and draw conclusions about the cost of ignoring demand uncertainty.

In practice, companies very often ignore demand uncertainty and consider average values when

taking decisions such as price and production quantities. As a result, we are interested in under-

standing how the optimal subsidy levels, prices and production quantities are affected when we

explicitly consider demand uncertainty relative to the case when demand is just approximated by

its deterministic average value. For example, the comparison may be useful to quantify the value

of investing some large efforts in developing better demand forecasts.

We next present the analysis for both additive and multiplicative demand uncertainty.

4.1. Additive Noise

Define additive demand uncertainty as follows:

D(z, ε) = y(z) + ε. (7)

Here, y(z) = E
[
D(z, ε)

]
is a function of the effective price z = p− r and represents the nominal

deterministic part of demand and ε is a random variable with cumulative distribution function

(CDF) Fε.

Assumption 1. We impose the following conditions on demand:

• Demand depends only on the difference between p and r denoted by z.

• The deterministic part of the demand function y(z) is positive, twice differentiable and a

decreasing function of z and hence invertible.

• When p= c and r= 0 the target level cannot be achieved, i.e., y(c)< Γ.

• The noise ε is a random variable with zero mean: E[ε] = 0.

Under Assumption 1, we characterize the solution of problems (1) and (2) sequentially. First,

we solve the optimal quantity q∗(p, r) and price p∗(r) offered by the supplier as a function of

the subsidy r. By substituting the optimal solutions of the supplier problem, we can solve the

government problem defined in (2). Note that problem (2) is not necessarily convex, even for very

simple instances, because the government needs to account for the supplier’s best response p∗(r) and

q∗(p, r). Nevertheless, one can still solve this using the tightness of the target adoption constraint.

Because of the non-convexity of the problem, the tightness of the constraint cannot be trivially
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assumed. We formally prove the constraint is tight at optimality in Theorem 1. Using this result,

we obtain the optimal subsidy of the stochastic problem (2), denoted by rsto. The resulting optimal

decisions of price and quantity are denoted by psto = p∗(rsto) and qsto = q∗(psto, rsto). From problems

(1) and (2), the optimal profit of the supplier is denoted by Πsto and government expenditures by

Expsto.

We consider problems (1) and (2), where demand is equal to its expected value, that is:

E
[
D(z, ε)

]
= y(z). We denote this deterministic case with the subscript “det”, with optimal values:

rdet, pdet, qdet, zdet,Πdet,Expdet. We next compare these metrics in the deterministic versus stochastic

case.

Theorem 1. Assume that the following condition is satisfied:

2y′(z) + (p− c) · y′′(z) +
c2

p3
· 1

fε

(
F−1
ε

(
p−c
p

)) < 0. (8)

The following holds:

1. The optimal price of problem (1) as a function of r is the solution of the following non-linear

equation:

y(p− r) +E
[
min(F−1

ε

(p− c
p

)
, ε)
]

+ y′(p− r) · (p− c) = 0. (9)

In addition, using the solution from (9), one can compute the optimal production quantity:

q∗(p, r) = y(p− r) +F−1
ε

(p− c
p

)
. (10)

2. The optimal solution of the government problem is obtained when the target adoption level is

exactly met.

3. The optimal expressions follow the following relations:

zsto = y−1
(
Γ−Kε

)
≤ zdet = y−1

(
Γ
)

qsto = Γ +F−1
ε

(psto− c
psto

)
−Kε ≥ qdet = Γ

If, in addition, the function y(z) is convex:

psto = c+
Γ

|y′(zsto)|
≤ pdet = c+

Γ

|y′(zdet)|

Πsto =
Γ2

|y′(zsto)|
− c · (qsto−Γ) ≤ Πdet =

Γ2

|y′(zdet)|

We define Kε as:

Kε =E
[
min(F−1

ε

(psto− c
psto

)
, ε)
]
. (11)
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Remark 1. Note that for a general function y(p− r), one cannot derive a closed form solution

of (9) for p∗(r). This is consistent with the fact that there does not exist a closed form solution for

the price-setting newsvendor. However, one can use (9) to characterize the optimal solution and

even numerically compute the optimal price by using a binary search method (see more details in

the Appendix). Assumption (8) guarantees the uniqueness of the optimal price as a function of

the subsidies, as it implies the strict concavity of the profit function with respect to p. In case this

condition does not hold, problem (1) is still numerically tractable (see Petruzzi and Dada 1999).

For the remainder of this paper, we will assume condition (8) is satisfied. For the case of linear

demand we discuss relation (14) which is a sufficient condition that is satisfied in many reasonable

settings.

Remark 2. The results of Theorem 1 can be generalized to describe how the optimal variables

(i.e., z, q, p and Π) change as demand uncertainty increases. Instead of comparing the stochastic

case to the deterministic case (i.e., where there is no demand uncertainty), one can instead consider

how the optimal variables vary in terms of the magnitude of the noise (for more details, see the

proof of Theorems 1 and 4 in the Appendix). In particular, the quantity that captures the effect

of demand uncertainty is Kε.

Since the noise ε has zero-mean, the quantity Kε in (11) is always non-positive. In addition, when

there is no noise (i.e., ε= 0 with probability 1), Kε = 0 and the deterministic scenario is obtained

as a special case. For any intermediate case, Kε is negative and non-increasing with respect to

the magnitude of the noise. For example, if the noise ε is uniformly distributed, the inverse CDF

function can be written as a linear function of the standard deviation σ as follows:

F−1
ε

(p− c
p

)
= σ
√

3 ·
(

2 · p− c
p
− 1
)
. (12)

Therefore, Kε scales monotonically with the standard deviation for uniform demand uncertainty. In

other words, all the comparisons of the optimal variables (e.g., effective price, production quantities

etc) are monotonic functions of the standard deviation of the noise. For other distributions, the

relationship with the standard deviation is not as simple but the key quantity is Kε. As a result,

one can extend our insights in a continuous fashion with respect to the magnitude of the noise.

For example, the inequality of the effective price is given by: zsto = y−1
(

Γ−Kε

)
. This equation

is non-increasing with respect to the magnitude of Kε and is maximized when there is no noise

(deterministic demand) so that zdet = zsto = y−1
(
Γ
)
. In general, as the magnitude of the noise

increases, the gaps between the optimal decision variables increase (see plots of optimal decisions

as functions of the standard deviation of demand uncertainty in Figure 4 of Section 6).
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Remark 3. The solution of the optimal quantity q and the effective price z provide another

interesting insight. Theorem 1 states that when demand is uncertain, the consumers are better

off in terms of effective price and production quantities (this is true for any decreasing demand

function). Furthermore, the selling price and the profit of the supplier are lower in the presence of

uncertainty, assuming demand is convex. These results imply the consumers are in general better

off when demand is uncertain. Nevertheless, as we will show in Section 4.3, this is not always the

case when we use the aggregate consumer surplus as a metric.

In various settings, the selling price p is exogenously given (i.e., price taker model). This setting

is relevant for products where the market is fairly saturated with suppliers. We present the results

for the price taker model in the Appendix. We observe that for the price setter model, the results

depend on the structure of the demand function unlike in the price taker case, where the results

of Theorem 4 (see Appendix) are robust with respect to the type of demand.

By focusing on a few demand functions, we can provide additional insights. We will first consider

the linear demand case, which is the most common in the literature. The simplicity of this demand

form enables us to derive closed-form solutions and a deeper analysis of the impact of demand

uncertainty. Note that the insights can be quite different for non-linear demand functions. The

results presented in Theorem 1 justify the need for considering non-linear functions as well. For

this reason, we later consider the iso-elastic demand case and compare it to the linear case.

Linear Demand In what follows, we quantify the effect of demand uncertainty on the subsidy

level and the expected government expenditures. We can obtain such results for specific demand

models, among them the linear demand model. Define the linear demand function as:

D(z, ε) = d̄−α · z+ ε, (13)

where d̄ and α are given positive parameters that represent the maximal market share and the

price elasticity respectively. Note that for this model, a sufficient condition for assumption (8) to

hold is given by:

α>
1

2c · inf
x
fε(x)

.

For example, if the additive noise is uniformly distributed, i.e., ε∼ U [−a2, a2]; a2 > 0, (note that

since the noise is uniform with zero mean, it has to be symmetric) we obtain:

α>
a2

c
. (14)

One can see that by fixing the cost c, condition in (14) is satisfied if the price elasticity α is large

relative to the standard deviation of the noise. Next, we derive closed form expressions for the

optimal price, production quantities, subsidies, profit and expenditures for both deterministic and

stochastic demand models and compare the two settings.
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Theorem 2. The closed form expressions and comparisons for the linear demand model in (13)

are given by:

psto = c+
Γ

α
= pdet

qsto = Γ +F−1
ε

(psto− c
psto

)
−Kε ≥ qdet = Γ

rsto =
2Γ

α
+ c− d̄

α
− 1

α
·Kε ≥ rdet =

2Γ

α
+ c− d̄

α

Πsto =
Γ2

α
− c · (qsto−Γ) ≤ Πdet =

Γ2

α

Expsto = Γ · rsto ≥ Expdet = Γ · rdet

We note that the results of Theorem 2 can be presented in a more general continuous fashion as

explained in Remark 2. Surprisingly, the optimal price is the same for both the deterministic and

stochastic models. In other words, the optimal selling price is not affected by demand uncertainty

for linear demand. On the other hand, with increased quantities, the expected profit of the supplier

is lower under demand uncertainty. At the same time, the optimal subsidy level and expenditures

increase with uncertainty. Therefore, both supplier and government are worse off when demand is

uncertain. Corollary 1 and the following discussion provide further intuition in how this cost of

demand uncertainty is shared between the supplier and the government.

Corollary 1.

1. qsto− qdet decreases in c and increases in Γ.

2. rsto− rdet increases in c and decreases in Γ.

3. Assume that ε has support [a1, a2]. Then, the optimal subsidy for the stochastic and determin-

istic demands relate as follows:

rdet ≤ rsto ≤ rdet +
|a1|
α
.

Corollary 1 can be better understood in terms of the optimal service level for stochastic demand,

denoted by ρ= psto−c
psto

. Note that ρ is an endogenous decision of the supplier, which is a function of

the optimal price psto. For linear demand, the optimal service level can be simplified as: ρ= Γ
cα+Γ

.

This service level is decreasing in the cost c but increasing with respect to the target adoption Γ.

On one hand, when the optimal price is significantly higher than the production cost, i.e.,

psto � c, the high profit margin encourages the supplier to satisfy a larger share of demand by

increasing its production. As psto increases, the service level ρ increases and in the limit, when

psto→∞, the service level goes to 1 and the supplier has incentives to overproduce and bear all

the inventory risk. In this case, the government may set low subsidies, in fact the same as in the

deterministic case, which guarantee that the average demand meets the target. On the other hand,
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when psto is close to c (low profit margin), or equivalently in the limit when ρ→ 0, the supplier

has no incentives to bear any risk and produces quantities to match the lowest possible demand

realization. In this case, the government will bear all the inventory risk by increasing the value of

the subsidies. By assuming the worst case realization of demand uncertainty when deciding the

subsidy, the government also induces a production level that meets the target without risk for the

supplier.

Note that as production cost c increases, the required subsidy is larger for both stochastic and

deterministic demands, meaning the average subsidy expenditure is higher. At the same time, the

service level ρ decreases and, from Corollary 1, the gap between rsto and rdet increases. This can

be viewed as an increase in the cost of demand uncertainty for the government.

A similar reasoning can be applied to the target adoption level. As Γ increases, the overall cost

of the subsidy program increases, as expected. Interestingly, the service level ρ also increases. From

Corollary 1, the gap between qsto and qdet widens, meaning the supplier with stochastic demand is

building more inventory. At the same time, the gap between rsto and rdet shrinks. Effectively, the

burden of demand uncertainty is transferred from the government to the supplier as Γ increases. An

interpretation can be that a higher target adoption will induce the product to be more profitable as

it needs larger subsidies to generate enough supply and demand. This will make the supplier take

on more of the inventory risk and consequently switching who bears the cost of demand uncertainty.

Corollary 1.3 shows that the government subsidy decision is bounded by the worst case demand

realization normalized by the price sensitivity. In other words, it provides a guarantee on the gap

between the subsidies for stochastic and deterministic demands.

In conclusion, by studying the special case of a linear demand model, we obtain the following

additional insights: (i) The optimal price does not depend on demand uncertainty. (ii) The optimal

subsidy set by the government increases with demand uncertainty. Consequently, the introduction

of demand uncertainty decreases the effective price paid by consumers. In addition, the government

will spend more when demand is uncertain. (iii) The cost of demand uncertainty is shared by

the government and the supplier and depends on the profit margin (equivalently, service level) of

the product. As expected, lower/higher margins mean the supplier takes less/more inventory risk.

Therefore, increasing the adoption target or decreasing the manufacturing cost will shift the cost

of demand uncertainty from the government to the supplier.

4.2. Multiplicative Noise

In this section, we consider a demand with a multiplicative noise (see for example, Granot and Yin

(2008)). The nominal deterministic part is assumed to be a function of the effective price, denoted

by y(z):

D(z, ε) = y(z) · ε (15)
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Assumption 2. • Demand depends only on the difference between p and r denoted by z.

• The deterministic part of the demand function y(z) is positive, twice differentiable and a

decreasing function of z and hence invertible.

• When p= c and r= 0 the target level cannot be achieved, i.e., y(c)< Γ.

• The noise ε is a positive and finite random variable with mean equal to one: E[ε] = 1.

One can show that the results of Theorem 1 hold for both additive and multiplicative demand

models. The proof for multiplicative noise follows a similar methodology and is not repeated due

to space limitations. We next consider the iso-elastic demand case to derive additional insights on

the optimal subsidy.

Iso-Elastic Demand Define the iso-elastic demand as:

y(z) = d̄ · z−α (α> 0). (16)

Note that this function y(z) is convex with respect to z for any value α> 0. Therefore the results

from Theorem 1 hold. Using the demand structure, we obtain the following additional results on

the optimal subsidy:

Proposition 2. For the iso-elastic demand model in (16), we have:

- If α> 1: rsto ≥ rdet.
- If 0<α< 1: rsto ≤ rdet.
- If α= 1: rsto = rdet = c.

We note that the results of Proposition 2 can be presented in a continuous fashion, as explained in

Remark 2. The iso-elastic model considered in the literature usually assumes that α > 1 in order

to satisfy the Increasing price Elasticity (IPE) property (see, e.g., Yao et al. (2006)). This allows

us to recover the same results as the linear additive demand model. These two cases show that the

subsidy increases with demand uncertainty.

4.3. Consumer Surplus

In this section, we study the effect of demand uncertainty on consumers using consumer surplus as

a metric. For that purpose, we compare the aggregate level of consumer surplus under stochastic

and deterministic demand models. The consumer surplus is an economic measure of consumer

satisfaction calculated by analyzing the difference between what consumers are willing to pay and

the market price. For a general deterministic price demand curve, the consumer surplus is denoted

by CSdet and can be computed as the area under the demand curve above the market price (see,

e.g., Vives (2001)):

CSdet =

∫ qdet

0

(
D−1(q)− zdet

)
dq=

∫ zmax

zdet

D(z)dz. (17)
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We note that in our case, the market price is equal to the effective price paid by consumers

z = p − r. Denote, D−1(q) as the effective price that will generate demand exactly equal to q.

For an illustration, see Figure 2. Note that zdet and qdet represent the optimal effective price and

production, whereas zmax corresponds to the value of the effective price that yields zero demand.

The consumer surplus represents the surplus induced by consumers that are willing to pay more

than the posted price.

Figure 2 Consumer surplus for deterministic demand

When demand is uncertain however, defining the consumer surplus (denoted by CSsto) is some-

what more subtle due to the possibility of a stock-out. Several papers on peak load pricing and

capacity investments by a power utility under stochastic demand address partially this model-

ing issue (see Carlton (1986), Crew et al. (1995) and Brown and Johnson (1969)). Nevertheless,

the models developed in this literature are not applicable to the price setting newsvendor. More

specifically, in Brown and Johnson (1969) the authors assume that the utility power facility has

access to the willingness to pay of the customers so that it can decline the ones with the lowest

valuations. This assumption is not justifiable in our setting where a “first-come-first-serve” logic

with random arrivals is more suitable. In Ovchinnikov and Raz (2013), the authors study a price

setting newsvendor model for public goods and consider the consumer surplus for linear additive

stochastic demand.

For general stochastic demand functions, the consumer surplus CSsto(ε) is defined for each

realization of demand uncertainty ε. If there was no supply constraint, considering the effective

price and the realized demand, the total amount of potential consumer surplus is defined as:∫ zmax(ε)

zsto
D(z, ε)dz. Since customers are assumed to arrive in a first-come-first-serve manner, irre-

spective of their willingness to pay, some proportion of these customers will not be served due to

stock-outs. The proportion of served customers is given by the ratio of actual sales over potential
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demand: min(D(zsto,ε),qsto)

D(zsto,ε)
. Therefore, the consumer surplus can be defined as the total available

surplus times the proportion of that surplus that is actually served.

CSsto(ε) =

∫ zmax(ε)

zsto

D(z, ε)dz ·
min

(
D(zsto, ε), qsto

)
D(zsto, ε)

. (18)

We note that in this case, the consumer surplus is a random variable that depends on the demand

through the noise ε. Note that we are interested in comparing CSdet to the expected consumer

surplus Eε[CSsto(ε)]. For stochastic demand, (18) has a similar interpretation as its deterministic

counterpart. Nevertheless, we also incorporate the possibility that a consumer who wants to buy the

product does not find it available. As we will show, the effect of demand uncertainty on consumer

surplus depends on the structure of the nominal demand function. In particular, we provide the

results for the two special cases we have considered in the previous section and show that the effect

is opposite. For the linear demand function in (13), we have:

CSdet =

∫ qdet

0

(
D−1(q)− zdet

)
dq=

q2
det

2α
=

Γ2

2α
. (19)

For iso-elastic demand from (16), we obtain:

CSdet =

∫ qdet

0

(
D−1(q)− zdet

)
dq=

d̄

α− 1
·
( d̄

Γ

) 1−α
α

(α> 1). (20)

One can then show the following results regarding the effect of demand uncertainty on the consumer

surplus for these two demand functions.

Proposition 3. For the linear demand model in (13), we have:

E[CSsto]≥CSdet. (21)

For the iso-elastic demand model in (16) with α> 1, we have:

E[CSsto]≤CSdet. (22)

Proposition 3 shows that under linear demand, the expected consumer surplus is larger when

considering demand uncertainty, whereas it is lower for the iso-elastic model. We already have shown

in Theorem 1 that the effective price is lower and that the production quantities are larger when

considering demand uncertainty relative to the deterministic model. In addition, this result was

valid for both models (i.e., additive and multiplicative noises for linear and non-linear demand). As

a result, demand uncertainty benefits overall the consumers in terms of effective price and available

quantities. With this in mind, one could expect consumer surplus to increase with uncertainty.

However, when comparing the consumer surplus using equation (18) for stochastic demand, we

obtain that for the iso-elastic demand, consumers are in aggregate worse-off when demand is
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uncertain. On one hand, demand uncertainty benefits the consumers since it lowers the effective

price and increase the quantities. On the other hand, demand uncertainty introduces a stock-out

probability because some of the consumers may not be able to find the product available. These

two factors (effective price and stock-out probability) affect the consumer surplus in opposite ways.

For iso-elastic demand, the second factor is dominant and therefore the consumer surplus is lower

when demand is uncertain. In particular, the iso-elastic demand admits some consumers that are

willing to pay a very large price. If these consumers experience a stock-out, it will reduce drastically

the aggregate consumer surplus. For linear demand, the dominant factor is not the stock-out

probability and consequently, the consumer surplus is larger when demand is uncertain. We note

that this result is related to the structure of the nominal demand rather than the noise effect. For

example, if we were to consider a linear demand with a multiplicative noise, we will have the same

result as for the linear demand with additive noise.

At first glance one can naively infer that demand uncertainty always benefits consumers. Indeed,

with greater demand uncertainty, the price paid by consumers decreases and the production quan-

tities increase. However, under iso-elastic demand, uncertainty actually decreases the average con-

sumer surplus. In general, the uncertainty impact on consumer surplus will depend on the trade-off

between lower prices and the possibility of under-serving customers with high valuations.

5. Supply-chain Coordination

In this section, we examine how the results change in the case where the system is centrally man-

aged. In this case, one can imagine that the government and the supplier take coordinated decisions

together. The central planner needs to decide the price, the subsidy and the production quantities

simultaneously. This situation may arise when the firm is owned by the government. We study

the centrally managed problem as a benchmark to compare to the decentralized case developed in

the previous sections. In particular, we are interested in understanding if the decentralization will

have an adverse impact on either party and more importantly if it will hurt the consumers. We

show in this section that this is not the case. In fact, the decentralized problem achieves the same

outcome as the centralized problem and hence, government subsidies act as a coordinating mech-

anism as far as consumer are concerned. Supply chain coordination has been extensively studied

in the literature. In particular, some of the supply-chain contracting literature (see, e.g., Cachon

(2003)) discusses mechanisms that can be used to coordinate operational decisions such as price

and production quantities.

Define the central planner’s combined optimization problem to maximize the firm’s profits minus

government expenditures as follows:

max
q,p,r

(p− r) ·E
[
min(q,D(z, ε))

]
− c · q (23)
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s.t. p≥ c

E
[
min(q,D(z, ε))

]
≥ Γ

r≥ 0

Note that in this case, we impose the additional constraint p≥ c so that the selling price has to be

at least larger than the cost. Indeed, for the centralized version, it is not clear that this constraint is

automatically satisfied by the optimal solution as it was in the decentralized setting. Our goal is to

show how the centralized solutions for q, p and r compare to their decentralized counterparts from

Section 4. We consider both deterministic and stochastic demand models and focus on additive

uncertainty under Assumption 1.

Theorem 3. The optimal effective price z = p− r and production level q are the same in both

the decentralized and centralized models. Therefore, consumer subsidies are a sufficient mechanism

to coordinate the government and the supplier.

Note that for problem (23), one can only solve for the effective price and not p and r separately.

In particular, there are multiple optimal solutions for the centralized case and the decentralized

solution happens to be one them. If the government and the supplier collude into a single entity,

this does not affect the consumers in terms of effective price and production quantities. Therefore,

the consumers are not affected by the coordination. This result might be surprising as one could

think that the coordination will add additional information and power to the central planner as well

as mitigate some of the competition effects between the supplier and the government. However, in

the original decentralized problem, the government acts as a quantity coordinator in the sense that

the optimal solutions in both cases are obtained by the tightness of the target adoption constraint.

6. Computational Results

In this section, we present some numerical examples that provide further insights into the results

derived in Section 4. The data used in these experiments is inspired by the sales data of the first

eighteen months of General Motors’ Chevy Volt (between December 2010 and June 2012). The total

aggregate sales was roughly equal to 3,500 electric vehicles, the listed price (MSRP) was $40,280

and the government subsidies was set to $7,500. In addition, we assume a 10% profit margin so

that the per-unit cost of building manufacturing capacity is $36,000. For simplicity, we present

here the results using a linear demand with an additive Gaussian noise. We observe that our results

along with the analysis are robust with respect to the distribution of demand uncertainty. In fact,

we obtain in our computational experiments the same insights for several demand distributions

(including non-symmetric ones). As discussed in Section 3, the government can either minimize

expenditures or maximize the total welfare. In particular, the two objectives are equivalent and
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give rise to the same optimal subsidy policies for any target level Γ above a certain threshold. In

this case, this threshold is equal to 860 and the condition is therefore easily satisfied.

Throughout these experiments, we compute the optimal decisions for both the deterministic

and the stochastic demand models by using the optimal expressions derived in Section 4.1. We

first consider a fixed relatively large standard deviation σ = 4,200 (when demand is close to the

sales, this is equivalent to a coefficient of variation of 1.2) and plot the optimal subsidy, production

level, supplier’s profit and government expenditures as a function of the target level Γ for both

the deterministic and stochastic models. The plots are reported in Figure 3. We have derived in

Section 4.1 a set of inequalities regarding the relations of the optimal variables for deterministic

and stochastic demand models. The plots allow us to quantify the magnitude of these differences

and study the impact of demand uncertainty on the optimal policies. One can see from Figure 3

Figure 3 Optimal values as a function of the target level

that the optimal production levels are not strongly affected by demand uncertainty (even for large

values of σ) when the target level Γ is set close to the expected sales value of 3,500. However, the

optimal value of the subsidy is almost multiplied by a factor of 2 when demand uncertainty is taken

into account. In other words, when the government and the supplier consider a richer environment

that accounts for demand uncertainty, the optimal subsidy nearly doubles.

This raises the following interesting question. What happens if the government ignores demand

uncertainty and decides to under-subsidize by using the optimal value from the deterministic

model? It is clear that in this case, since the real demand is uncertain, the expected sales will
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not attain the desired expected target adoption. We address this question in the remaining of

this section but we first plot the subsidies and the supplier’s profit as a function of the standard

deviation of the noise that represents a measure of the demand uncertainty magnitude.

More precisely, we plot in Figure 4 the relative differences in subsidies (i.e., rsto−rdet
rdet

) as well

as the supplier’s profit as a function of the target level Γ (or equivalently, the expected sales) for

different standard deviations of the additive noise varying from 35 to 10,500. For Γ = 3,500, this is

equivalent to a coefficient of variation varying between 0.01 and 3. As expected, one can see from

Figure 4 that as the standard deviation of demand increases, the optimal subsidy is larger whereas

the supplier’s profit is lower. As a result, demand uncertainty benefits consumers at the expense

of hurting both the government and the supplier.

Figure 4 Relative normalized differences in subsidies (a) and supplier’s profit (b)

Finally, we analyze by how much the government will miss the actual target level (now Γ is fixed

and equal to 3,500) by using the optimal policy assuming demand is deterministic, rdet, instead

of using rsto. Recall that rsto ≥ rdet. In other words, the government assumes a simple average

deterministic demand model whereas in reality demand is uncertain. In particular, this allows us to

quantify the value of using a more sophisticated model that takes into account demand uncertainty

instead of simply ignoring it. Note that this analysis is different from the previous comparisons in

this paper, where we compared the optimal decisions as a function of demand uncertainty. Here, we

assume that demand is uncertain with some given distribution but the government decides to ignore

the uncertainty. To this extent, we consider two possible cases according to the modeling assumption

of the supplier. First, we assume that the supplier is non-sophisticated, in the sense that he uses

an average demand approximation model as well (i.e., no information on demand distribution is

used). In this case, both the supplier and the government assume an average deterministic demand
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but in reality demand is random. Second, the supplier is more sophisticated. Namely, the supplier

optimizes (over both p and q) by using a stochastic demand model together with the distribution

information. The results are presented in Figure 5, where we vary the value of the coefficient

of variation of the noise from 0 to 0.7. When the government and the supplier are both non-

Figure 5 Expected sales relative to target

sophisticated, the government can potentially save money (by under-subsidizing) and still gets

close to the target in expectation when demand uncertainty is not very large. As expected, when

the supplier has more information on demand distribution (as it is usually the case), the expected

sales are farther from the target and the government could miss the target level significantly. If in

addition, demand uncertainty is large (i.e., coefficient of variation larger than 1), the government

misses the target in both cases.

One can formalize the previous comparison analytically by quantifying the gap by which the

government misses the target by ignoring demand uncertainty. In particular, let us consider the

additive demand model given in (7).

Proposition 4. Consider that the government ignores demand uncertainty when designing con-

sumer subsidies.

1. The government misses the adoption target (in expectation) regardless of whether the supplier

is sophisticated or not.

2. The exact gaps are given by:

• For non-sophisticated supplier:

E
[
min(q,D(z, ε))

]
= Γ +E

[
min(0, ε)

]
≤ Γ. (24)

• For sophisticated supplier, assuming a linear demand model:

E
[
min(q,D(z, ε))

]
= Γ +

1

2
·E
[
min(F−1

ε

(p∗− c
p∗

)
, ε)
]
≤ Γ. (25)
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3. For low (high) profit margins, the gap is larger (smaller) when the supplier is sophisticated

(non-sophisticated).

p∗ denotes the optimal price set by the supplier. Note that all the results of Proposition 4 (with

the exception of equation (25)) are valid for a general demand model. Nevertheless, when the

supplier is sophisticated, one needs to assume a specific model (in our case, linear) in order to

compute the expected sales. As expected, the previous analysis suggests that the target adoption

will be missed by a higher margin as demand becomes more uncertain. When comparing the

non-sophisticated and sophisticated cases, one can see that in the former the government misses

the target by E
[
min(0, ε)

]
, whereas in the latter by 1

2
·E
[
min(F−1

ε

(
p∗−c
p∗

)
, ε)
]
. Consequently, this

difference depends not only on the distribution of the noise but also on the profit margin. Since

the EV industry has rather low profit margins, the gap may be much larger when the supplier is

sophisticated. Indeed, the sophisticated supplier decreases the price (relative to pdet). In addition,

he reduces the production quantities as he is not willing to bear significant over-stock risk due

to the low profit margin. As a result, the expected sales are lower and therefore the government

misses the adoption target level. In conclusion, this analysis suggests that policy makers should

take into account demand uncertainty when designing consumer subsidies. Indeed, by ignoring

demand uncertainty, one can significantly miss the desired adoption target.

7. Conclusions

We propose a model to analyze the interaction between the government and the supplier when

designing consumer subsidy policies. Subsidies are often introduced at the early adoption stages of

green technologies to help them become economically viable faster. Given the high level of uncer-

tainty in these early stages, we hope to have shed some light on how demand uncertainty affects

consumer subsidy policies, as well as price and production quantity decisions from manufacturers

and the end consumers.

In practice, policy makers often ignore demand uncertainty and consider only deterministic

forecasts of adoption when designing subsidies. We demonstrate that uncertainty will significantly

change how these programs should be designed. In particular, we show by how much the government

misses the adoption target by ignoring demand volatility. Among some of our main insights, we

show that the shape of the demand curve will determine who bears demand uncertainty risk. When

demand is uncertain, quantities produced will be higher and the effective price for consumers will

be lower. For convex demand functions prices will be lower, leading to lower industry profits.

Focusing on the linear demand model, we can derive further insights. For instance, to compensate

for uncertain demand, quantities produced and subsidy levels are shifted by a function of the service

level, i.e., the profitability of the product. For highly profitable products, the supplier will absorb
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most of the demand risk. When profit margins are smaller, the government will need to increase

the subsidy amount and pay a larger share for the risk.

When evaluating the uncertainty impact on consumers, we must consider the trade-off between

lower effective prices and the probability of a stock-out (unserved demand). We again show that the

shape of the demand curve plays an important role. For linear demand, consumers will ultimately

benefit from demand uncertainty. This is not the case, for instance, with an iso-elastic demand

model, where the possibility of not serving customers with high valuations will out-weight the

benefits of decreased prices.

We also compare the optimal policies to the case where a central planner manages jointly the

supplier and the government and tries to optimize the entire system simultaneously. We show that

the optimal effective price and production level coincide in both the decentralized and centralized

models. Consequently, the subsidy mechanism is sufficient to coordinate the government and the

supplier and the collusion does not hurt consumers in terms of price and quantities.
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APPENDIX

Proof of Theorem 1

Proof. 1. Equations (9) and (10) are obtained by applying the first order conditions on the objective

function of problem (1) with respect to q and then to p.

2. We next prove the second claim about the fact that tha optimal solution of the government problem is

obtained when the target adoption level is exactly met. Using condition (8), one can compute the optimal

value of p∗(r) by using a binary search algorithm (note that equation (9) is monotonic in p for any given

value of r). In particular, for any given r, there exists a single value p∗(r) that satisfies the optimal equation

(9) and since all the involved functions are continuous, we may also conclude that p∗(r) is a continuous well

defined function. As a result, the objective function of the government when using the optimal policy of the

supplier is also a continuous function of r. In addition, the target level cannot be attained when r = 0 by

Assumption 1. We then conclude that the optimal solution of the government problem is obtained when the

inequality target constraint is tight. In addition, one can see that the expected adoption target equation is

monotonic in r so that one can solve it by applying a binary section method.

3. Finally, let us show the third part. For the deterministic demand model, we have: qdet = y(zdet) = Γ. On

the other hand, when demand is stochastic, we have E
[
min(qsto,D(zsto, ε))

]
= Γ so that we obtain: qsto ≥ qdet.

In addition, the above expression yields: y(zsto) = Γ−Kε ≥ Γ. Therefore, we obtain: y(zsto)≥ y(zdet). Since

y(z) is non-increasing with respect to z = p− r (from Assumption 1), we may infer the following relation

for the effective price: zdet ≥ zsto. We next compute the optimal price for the deterministic model pdet by

differentiating the supplier’s objective function with respect to p and equate it to zero (first order condition):

∂

∂pdet

[
qdet · (pdet− c)

]
= y′(zdet) · (pdet− c) + y(zdet) = 0.

One can see that in both models, we have obtained the same optimal equation for the price: y(z) =−y′(z) ·

(p−c). Namely, the optimal price satisfies: p= c+ Γ
|y′(z)| . We note that the previous expression is not a closed

form expression as both sides depend on the optimal price p. This is not an issue as our goal here is to compare

the optimal quantities in the two models rather than deriving the closed form expressions. Assuming that

the deterministic part of demand y(z) is a convex function, we know that y′(z) is a non-decreasing function

and then: 0 > y′(zdet) ≥ y′(zsto). We then have the following inequality for the optimal prices: psto ≤ pdet.

We note that the optimal subsidy in both models does not follow such a clear relation and it will actually

depend on the specific demand function. We next proceed to compare the optimal supplier’s profit in both

models. For the deterministic demand model, the optimal profit is given by: Πdet = qdet · (pdet− c) = Γ2

|y′(zdet)|
.

In the stochastic model, the expression of the optimal profit is given by:

Πsto = psto ·E
[
min(qsto,D(zsto, ε))

]
− c · qsto =

Γ2

|y′(zsto)|
− c · (qsto−Γ)≤Πdet.

�
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The Price Taker Model

Consider a firm that faces a stochastic demand D for its product and must decide upon production q before

observing demand. This framework is known as the newsvendor problem and was extensively studied in

the literature (see, e.g., Porteus (1990)). In this section, we consider the case where the selling price p is

exogenously given (price taker setting) and we derive the solutions of problems (2) and (1). The problem is

modeled as a two-stage game and can be solved sequentially by backward induction. Given a subsidy level r,

the optimal solution of problem (1) may be obtained similarly to the newsvendor problem and is given by:

q∗(z) = F−1
D(z,ε)

(p− c
p

)
. (26)

Here, F−1
D(z,ε)

(
p−c
p

)
denotes the inverse Cumulative Distribution Function (CDF) of the random demand

evaluated at the quantile p−c
p

. We note however that the supplier’s production q∗(z) depends on the value

of the effective price z through demand. We next impose the following assumption on demand.

Assumption 3. The function D(z, ε) is positive, decreasing and continuous with respect to z (note that

here p is fixed so that decreasing with z translates to increasing with r) for any realization of the noise ε. By

this, we mean that the corresponding CDF is a decreasing function of z:

FD(z1,ε)(x)<FD(z2,ε)(x); ∀z1 = p− r1 < z2 = p− r2

In addition, E
[
D(p, ε)

]
< Γ for the given price p and r = 0. That is, the target adoption level cannot be

achieved without subsidies (otherwise, the problem is not relevant).

The first part of Assumption 3 is a special case of the first-order stochastic dominance where for each value of

z, D(z, ε) is viewed as a different random variable. Using Assumption 3, we prove formally (see details below)

that the optimal subsidy of problem (2) is obtained when the target adoption level constraint is binding.

As a result, one can find the optimal solution of problem (2) by using the tightness of the target adoption

constraint. In addition, the optimal effective price z∗ can be computed efficiently by using a bisection search

method (see details below). One can then compute q∗(z∗) using equation (26).

In particular, by substituting the expression for q∗(z) from (26) to the government’s problem, the govern-

ment leads the game by solving the following optimization problem:

min
z

r ·E
[
min(q∗(z),D(z, ε))

]
s.t. E

[
min(q∗(z),D(z, ε))

]
≥ Γ (27)

r≥ 0

Note that the problem above is a single variable optimization problem in the subsidy z (since p is fixed,

the real decision is in fact r or equivalently z = p− r). Note also that we impose a non-negative constraint

on the consumer subsidies since the target adoption cannot be achieved with r= 0. However, even for simple

demand functions, this problem is not necessarily convex. In addition as the overall problem is a bi-level

optimization problem (that is, the government problem takes into consideration the production quantities

set by the supplier) the overall problem is hard.
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We next compare the optimal decision variables when demand is stochastic relative to the case of a

deterministic average approximation. We use the subscripts ”sto” and ”det” to denote the optimal variables

for the stochastic and deterministic models respectively. For simplicity, we consider an additive uncertainty

in the following form:

D(z, ε) = y(z) + ε.

Here, y(z) = E
[
D(z, ε)

]
is a function of the effective price z = p− r and represents the nominal deterministic

part of demand whereas ε is a random variable with zero mean. Assumption 3 implies that y(z) is decreasing

with respect to z. We next present the comparison between considering explicitly demand uncertainty relative

to the case where demand is just approximated by its average value. The results are summarized in the

following Theorem.

Theorem 4. Under Assumption 3, we have:

zsto = p− rsto ≤ zdet = p− rdet

qsto ≥ qdet

rsto ≥ rdet

Expsto ≥ Expdet

Πsto ≤ Πdet

Π and Exp denote the supplier profit and government expenditures respectively.

Proof. For the deterministic model, one can obtain that the optimal solution satisfies: qdet = y(zdet) = Γ.

When demand is stochastic, we have E
[
min(qsto,D(zsto, ε))

]
= Γ so that: qsto ≥ qdet. In addition, the above

expression yields: y(zsto) = Γ−E
[
min(F−1

ε

(
p−c
p

)
, ε)
]
≥ Γ. Therefore, we have: y(zsto)≥ y(zdet). Now, since

y(z) is assumed to be a non-increasing function of z = p− r (from Assumption 3), we may infer the following

relation about the effective price: zdet ≥ zsto. Therefore, we also have: rsto ≥ rdet. The government expenditures

are equal to the optimal subsidies multiplied by the expected sales. Since for both deterministic and stochastic

demands, the expected sales are equal exactly to the target level Γ, we conclude that: Expsto ≥Expdet. We

next proceed to compare the optimal profit of the supplier in both models. For the deterministic model, the

optimal profit is given by: Πdet = qdet · (p− c) = Γ · (p− c). In the stochastic model, the expression of the

optimal profit is given by: Πsto = p ·E
[
min(qsto,D(zsto, ε))

]
− c · qsto = p ·Γ− c · qsto ≤Πdet. �

For a general decreasing demand function in terms of the effective price p−r (since in this case the price p

is fixed, demand is increasing with r), uncertainty benefits the consumers in the sense that the price is lower

and the produced quantities are higher. However, both the government and the supplier are worse-off when

demand is uncertain. We observe that for the price taker model considered here, the results do not depend

on the structure of demand as long as it satisfies Assumption 3. In other words, the results of Theorem 4 are

robust with respect to the form of the demand function. The case where the noise is multiplicative also leads

to the same set of results but is not presented here due to space limitations. Remember that for the price

setter model presented in Section 4, the results actually do depend on the underlying demand structure.
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Proof of the tightness of the constraint for the price taker model

Proof. First, we show that the objective function in problem (27) is a non-decreasing function with respect

to the subsidy r. Then, since we are minimizing a non-decreasing function subject to an inequality constraint

and a non-negativity constraint, the optimal solution will be obtained by the tightness of the adoption

constraint. The stochastic demand function D(z, ε) is assumed to be a strictly decreasing and continuous

function of z (see Assumption 3). By this, we mean that the corresponding CDF is a decreasing function of

r: FD(z1)(x)< FD(z2)(x); ∀z1 = p− r1 < z2 = p− r2. Namely, if r increases (and therefore z decreases), the

investment becomes more subsidized and hence more profitable. Consequently, demand tends to increase too

and therefore the CDF decreases since it represents the following probability: FD(z,ε)(x) = P(D(z, ε) ≤ x).

Regarding the optimal inventory level q∗(r), we have obtained that:

q∗(z) = F−1
D(z,ε)

(p− c
p

)
. (28)

We next show that the expression in (28) is decreasing with respect to z.

Lemma 1. Under Assumption 3, the expression of q∗(z) in (28) is an decreasing function of z.

Proof. Let us take two different values z1 and z2 such that z1 < z2. As we previously explained, from

Assumption 3 we have: FD(z1,ε)(x)<FD(z2,ε)(x). By using the non-decreasing property of the CDF, we have:

FD(z,ε)(x1)≥ FD(z,ε)(x2); ∀x1 ≥ x2. Recall that we want to show that: F−1
D(z1,ε)

(t)>F−1
D(z2,ε)

(t). Let us denote:

y1 , F
−1
D(z1,ε)

(t); y2 , F
−1
D(z2,ε)

(t). Now, let us assume by contradiction that: y1 ≤ y2. Then, we have:{
FD(z1,ε)(y1) = FD(z1,ε)

(
F−1
D(z1,ε)

(t)
)

= t

FD(z2,ε)(y2) = FD(z2,ε)

(
F−1
D(z2,ε)

(t)
)

= t

However, t= FD(z2,ε)(y2)>FD(z1,ε)(y2)≥ FD(z1,ε)(y1) = t and this is a contradiction. �

We next look at the expected sales, E
[
min(q∗(z),D(z, ε))

]
as a function of z.

Lemma 2. The function E
[
min(q∗(z),D(z, ε))

]
is a non-increasing function with respect to z.

Proof. Let us define the following (non-negative) random variable as a function of z: W (z) =

min(q∗(z),D(z, ε)). Then, its CDF is given by:

FW (z)(x) = P(W (z)≤ x) = P
(
min(q∗(z),D(z, ε))≤ x

)
=

{
1, if q∗(z)≤ x
P(D(z, ε)≤ x) = FD(z,ε)(x), if q∗(z)>x

Using the result from Lemma 1, we can see that FW (z)(x) is a non-decreasing function of z. We next compute

the desired expectation using the following relation:

E
[
min(q∗(z),D(z, ε))

]
=E

[
W (z)

]
=

∫ [
1−FW (z)(x)

]
dx.

Since we have shown that FW (z)(x) is a non-decreasing function of z, we conclude that the integrand is

non-increasing in z and the desired result follows. �

In conclusion, we have shown that the objective function is a non-increasing function of z and therefore the

optimal minimizing solution is obtained when the target constraint is exactly met.
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We next show that the optimal solution zsto can be computed efficiently and derive the optimal equation

to be solved. By using the tightness of the target constraint, we obtain:

E
[
min(q∗(zsto),D(zsto, ε))

]
= Γ. (29)

Here, zsto denotes the optimal effective price. Since the price p is fixed, the quantile p−c
p

is fixed too and

therefore F−1
D(z,ε)(·) is only a function of z. One can further simplify equation (29) as follows:

q∗ ·
[
1−FD(zsto,ε)(q

∗)
]

+E[D(zsto, ε)|D(zsto, ε)≤ q∗] ·FD(zsto,ε)(q
∗) = Γ.

Since FD(zsto,ε)(q
∗) = p−c

p
, we obtain: c

p
· q∗ + p−c

p
· E
[
D(zsto, ε)|D(zsto, ε) ≤ q∗

]
= Γ. Note that:

E
[
D(zsto, ε)|D(zsto, ε)≤ q∗

]
= p

p−c ·
∫ q∗

0
x · fD(zsto,ε)(x)dx. Here, fD(zsto,ε)(x) represents the Probability Den-

sity Function (PDF) of the random demand D(z, ε) evaluated at z = p− rsto. Finally, since c
p
· q∗ +

∫ q∗
0
x ·

fD(zsto,ε)(x)dx= Γ, using integration by parts, we obtain:∫ q∗

0

x · fD(zsto,ε)(x)dx= x ·FD(zsto,ε)(x)

∣∣∣∣∣
q∗

0

−
∫ q∗

0

FD(zsto,ε)(x)dx

= q∗ · p− c
p
−
∫ q∗

0

FD(zsto,ε)(x)dx.

Therefore: q∗−
∫ q∗

0
FD(zsto,ε)(x)dx= Γ. Since q∗ = F−1

D(zsto,ε)

(
p−c
p

)
, we obtain the following optimal equation

for zsto:

F−1
D(zsto,ε)

(p− c
p

)
−
∫ F−1

D(zsto,ε)

(
p−c
p

)
0

FD(zsto,ε)(x)dx= Γ. (30)

Equation (30) is a monotonic equation in zsto. Therefore, one can find the optimal effective price zsto from

the previous equation using a bisection search method. �

Proof of Theorem 2

Proof. For the linear demand model in (13), the optimal solution of the supplier’s optimization problem

has to satisfy the following first order condition:

d̄+α · (r+ c− 2p) +
c

p
·F−1

ε

(p− c
p

)
+
p− c
p
·E
[
ε|ε≤ F−1

ε

(p− c
p

)]
= 0.

Note that it does not seem easy to obtain a closed form solution for p∗(r). In addition, since the previous

equation is not monotone one cannot use a binary search method.

Instead, one can express r as a function of p: r = 2p − c − d̄
α

+ a·c2
α·p2 . We next proceed to solve the

government optimization problem by using the tightness of the inequality target adoption constraint:

E
[
min(q∗(p∗(r), r),D(p∗(r)− r, ε))

]
= α · (p∗(r)− c) = Γ. One very interesting conclusion from this analysis

is that we have a very simple closed form expression for the optimal price, that is the same than for the

deterministic case:

psto = pdet = c+
Γ

α
. (31)

We can at this point derive the optimal supplier’s profit for both models. In the deterministic case, the profit

of the supplier is given by: Πdet = qdet · (pdet− c) = Γ2

α
. In the stochastic model, the optimal profit is given by:
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Πsto = psto ·E
[
min(qsto,D(zsto, ε)

]
− c · qsto = Γ2

α
− c · (qsto−Γ)≤Πdet. We next derive the optimal production

level for both models. In the deterministic case, we obtained that: qdet = Γ. For the stochastic case, after

substituting all the corresponding expressions we obtain:

qsto = d̄+α · (rsto− psto) +F−1
ε

(psto− c
psto

)
= Γ +F−1

ε

(psto− c
psto

)
−Kε ≥ qdet.

We finally compare the effect of demand uncertainty on the optimal subsidy. One can show after some

appropriate manipulations that the optimal subsidy for the deterministic linear demand model is given by:

rdet = 2Γ
α
− d̄

α
+c. For the stochastic demand model, we have the following optimal equation: α · (2psto−rsto−

c)− d̄=Kε. Hence, one can find the expression for the optimal subsidies as a function of the optimal price

psto: rsto = 2psto− c− d̄
α
− 1

α
·Kε. By replacing: psto = c+ Γ

α
from (31), we obtain: rsto = 2Γ

α
+ c− d̄

α
− 1

α
·Kε =

rdet− 1
α
·Kε ≥ rdet. �

Proof of Corollary 1

Proof. 1. We provide the proof of Corollary 1.1 by using the facts dρ

dc
≤ 0 and dρ

cΓ
≥ 0. We then show

that the production gap widens as the service level ρ increases. Note that qsto − qdet = F−1
ε (ρ) − Kε =

E
[
max(F−1

ε (ρ)− ε,0)
]
. Taking the derivative with respect to the cost c, we obtain:

d(qsto− qdet)
dc

=
d
(
F−1
ε (ρ)

)
dρ

· dρ
dc
· ρ=

1

f(F−1
ε (ρ))

· dρ
dc
· ρ≤ 0.

Similarly, for the target level Γ:

d(qsto− qdet)
dΓ

=
d
(
F−1
ε (ρ)

)
dρ

· dρ
dΓ
· ρ=

1

f(F−1
ε (ρ))

· dρ
dΓ
· ρ≥ 0.

2. To prove Corollary 1.2, we show that the subsidy gap decreases with respect to ρ. Note that rsto−rdet =

−Kε/α=−E
[
min(F−1

ε (ρ), ε)
]
/α. Taking the derivative with respect to the cost c, we obtain:

d(rsto− rdet)
dc

=− 1

α

[d(F−1
ε (ρ)

)
dρ

· dρ
dc
· (1− ρ)

]
=− 1

α
· 1

f(F−1
ε (ρ))

· dρ
dc
· (1− ρ)≥ 0.

Similarly, for the target level Γ:

d(rsto− rdet)
dΓ

=− 1

α

[d(F−1
ε (ρ)

)
dρ

· dρ
dΓ
· (1− ρ)

]
=− 1

α
· 1

f(F−1
ε (ρ))

· dρ
dΓ
· (1− ρ)≤ 0.

3. We next present the proof of Corollary 1.3. We assume that ε is an additive random variable with

support [a1, a2], not necessarily with a symmetric PDF. For the linear demand model from (13), we have:

rsto = rdet−
1

α
·Kε. (32)

First, let us prove the first inequality by showing that the term on the right in equation (32) is non-positive

for a general parameter y. We have: E
[
min(y, ε)

]
= y · P(y ≤ ε) + E[ε|ε < y] · P(ε < y). Now, let us divide

the analysis into two different cases according to the sign of y. If y ≤ 0, we obtain: E
[
min(y, ε)

]
= y ·P(y ≤

ε) + P(ε < y) · E[ε|ε < y] ≤ 0. In the previous equation, both terms are non-positive. For the case where

y > 0, we have: E
[
min(y, ε)

]
< E[ε] = 0. Therefore, E

[
min(F−1

ε

(
p−c
p

)
, ε)
]
≤ 0, showing the first inequality:

rdet ≤ rsto. We now show the second inequality. We know from the optimality that: p≥ c. Let us evaluate the

expression of rsto in (32) for different values of p. If p= c, we obtain: F−1
ε

(
p−c
p

)
= F−1

ε (0) = a1 < 0. Then,

we have: rsto = rdet− 1
α
·E
[
min(a1, ε)

]
= rdet− a1

α
> rdet. If p� c, we obtain: F−1

ε

(
p−c
p

)
→ F−1

ε (1) = a2 > 0.

Therefore, we obtain: rsto → rdet − 1
α
· E
[
min(a2, ε)

]
= rdet − 1

α
· E[ε] = rdet. Since rsto is continuous and

non-increasing in p for any p≥ c, the second inequality holds. �
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Proof of Proposition 2

Proof. By applying a similar methodology as in the proof of Theorem 1, one can derive the following

expressions (the steps are not reported for conciseness):

qdet = Γ; qsto > Γ

pdet = c+ 1
α
·
(
d̄
Γ

) 1
α

; psto = c+
1

α
·
( d̄

Γ
·K(psto)

) 1
α

rdet = c+
(
d̄
Γ

) 1
α ·
(

1
α
− 1
)

; rsto = c+
( d̄

Γ
·K(psto)

) 1
α ·
( 1

α
− 1
)

Here, K(psto) = E
[
min(F−1

ε

(
psto−c
psto

)
, ε)
]
, so that the above expressions for psto and rsto are not in closed

form. Since E[ε] = 1 and ε≥ 0, we have 0≤K(psto)≤ 1. Therefore, as expected: psto ≤ pdet. Regarding the

optimal subsidy, one can see that: if α> 1: rsto ≥ rdet, if 0<α< 1: rsto ≤ rdet and if α= 1: rsto = rdet = c.

�

Proof of Proposition 3

Proof. For the linear additive demand model presented in (13), one can compute the consumer surplus

for given values of p, r and q:

CSsto(ε) =

{
D(z,ε)2

2α
; if D(z, ε)≤ q

D(z,ε)·q
2α

; if D(z, ε)> q
=

D(z, ε)

2α
·
[
min(D(z, ε), q)

]
.

Therefore, we have: CSsto(ε)≥
[

min(D(z,ε),q)
]2

2α
. By applying the expectation operator, we obtain:

E
[
CSsto(ε)

]
≥

E
{[

min(D(z, ε), q)
]2}

2α
≥

{
E
[

min(D(z, ε), q)
]}2

2α
=

Γ2

2α
=CSdet.

Where, the second inequality follows by Jensen’s inequality (or the fact that the variance of any random

variable is always non-negative). The last equality follows from the previous result that the target inequality

constraint is tight at optimality.

We next compute the consumer surplus defined in (18) for the iso-elastic demand from (16). In particular,

we observe that zmax(ε) =∞ for any value of ε (if we assume that ε is strictly positive and finite). In addition,

we have: zsto = psto−rsto =
[
d̄
Γ
·K(psto)

] 1
α . Note that K(psto) is a deterministic constant and does not depend

on the realization of the noise ε. In particular, one can solve the non-linear fixed point equation with respect

to psto and find the corresponding value of K(psto): psto = c+ 1
α
·
[
d̄
Γ
· E
[
min(F−1

ε

(
psto−c
psto

)
, ε)
]] 1

α

. We also

have D(zsto, ε) = d̄ ·
[
d̄
Γ
·K(psto)

]−1 · ε. Therefore, when computing CSsto(ε) for a given ε, since demand is

multiplicative with respect to the noise, one can see that ε cancels out and that simplifies the calculation. We

obtain: CSsto(ε) = 1
α−1
·
[
d̄
Γ
·K(psto)

] 1−α
α ·

[
d̄
Γ
·K(psto)

]
·min

(
D(zsto, ε), qsto

)
. Then, by taking the expectation

operator, we obtain: E[CSsto(ε)] = d̄
α−1
·
(
d̄
Γ

) 1−α
α · (K(psto))

1
α = CSdet ·

[
K(psto)

] 1
α . Here, we have used the

fact that the inequality adoption constraint is tight at optimality, that is: E
[

min
(
D(zsto, ε), qsto

)
] = Γ. In

addition, this is the only term that depends on the noise ε. Since we have 0≤K(psto)≤ 1, one conclude that

for any α> 1: E[CSsto(ε)]≤CSdet. �
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Proof of Theorem 3

Proof. We present first the proof for the deterministic demand model and then the one for stochastic

demand. Let us first consider the unconstrained optimization problem faced by the central planner. If demand

is deterministic, the objective function is given by: J(p, r) = q(p, r) · (p− r − c). We assume that demand

is a function of the effective price (denoted by z), that is: q(p, r) = y(p− r) = y(z). Next, we compute the

unconstrained optimal solution denote by z∗ by imposing the first order condition: dJ(z)

dz
= 0⇒ z∗ = c− y(z∗)

y′(z∗)
.

Although, we did not derive a closed form expression for z∗, we know that it should satisfy the above

fixed point equation. We now show that any unconstrained optimal solution is infeasible for the constrained

original problem since it violates the target inequality constraint:

q(p∗, r∗) = y(z∗) = y
(
c− y(z∗)

y′(z∗)

)
≤ y(c)< Γ.

We used the facts that demand is positive, differentiable and a decreasing function of the effective price (see

Assumption 1). In addition, since we assumed that the target level cannot be achieved without subsidies, we

have shown that the unconstrained optimal solution is not feasible. Therefore, we conclude that the target

inequality constraint has to be tight at optimality, namely: q(pdet, rdet) = Γ. In other words, the optimal

effective price and production level are the same than in the decentralized model.

We now proceed to present the proof for the case where demand is stochastic. Let us consider the constrained

optimization problem faced by the central planner. We denote by J the objective function (multiplied by

minus 1) and by: λi; i = 1,2,3 the corresponding KKT multipliers of the three constraints. The KKT

optimality conditions are then given by:

∂J

∂q
−λ2 ·P(q≤D) = 0;

∂J

∂p
−λ1−A ·λ2 = 0;

∂J

∂r
−λ3−B ·λ2 = 0 (33)

Here, A and B are given by:

A =
∂

∂p
E
[
min(q,D(z, ε))

]
= y′(z) ·FD(z,ε)(q)

B =
∂

∂r
E
[
min(q,D(z, ε))

]
=−y′(z) ·FD(z,ε)(q) =−A

If in addition the noise is additive, we have: FD(z,ε)(q) = Fε(q− y(z)). We also have:

∂J

∂q
= c− z · [1−FD(z,ε)(q)];

∂J

∂p
=−E

[
min(q,D(z, ε))

]
− z ·A=−∂J

∂r

We note that the last two equations are symmetric and hence equivalent. Equivalently, the central planner

decides only upon the effective price z = p − r and not p and r separately. We next assume that λ1 =

λ3 = 0. This corresponds (from the complementary slackness conditions) to assume that both corresponding

constraints are not tight. Indeed, clearly the optimal subsidies may be assumed to be strictly positive since

we assumed that when r= 0, the adoption constraint cannot be satisfied. We further assume that the supplier

wants to achieve positive profits, so that the optimal price is strictly larger than the cost. Therefore, the

KKT conditions (both stationarity and complementary slackness) can be written as follows:

c −(z+λ2) · [1−Fε(q− y(z))] = 0 (34)

− (z−λ2) · y′(z) ·Fε(q− y(z)) = E
[
min(q,D(z, ε))

]
(35)

λ2 ·
(
Γ−E

[
min(q,D(z, ε))

])
= 0 (36)
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We now have two possible cases depending on the value of λ2. Let us investigate first the case where λ2 = 0.

From equation (34), we have: Fε(q− y(z)) = z−c
z

. By using equation (35), we obtain: z = c− E
[
min(q,D(z,ε))

]
y′(z)

.

Now, we have: E
[
min(q,D(z, ε))

]
= y
(
c − E

[
min(q,D(z,ε))

]
y′(z)

)
+ E

[
min(F−1

ε

(
p−c
p

)
, ε)
]
. Since we assume that

the function y(z) is a decreasing function of the effective price z and that both q and D(z, ε) are non-

negative, we obtain: E
[
min(q,D(z, ε))

]
< y(c) +E

[
min(F−1

ε

(
p−c
p

)
, ε)
]
≤ y(c). In the last step, we used the

fact that E
[
min(F−1

ε

(
p−c
p

)
, ε)
]
≤ 0. Therefore, we conclude that: E

[
min(q,D(z, ε))

]
< Γ. In other words, the

solution is not feasible since it violates the target inequality constraint. Hence, we must have λ2 > 0 and the

inequality constraint is tight at optimality: E
[
min(q,D(z, ε))

]
= Γ. Now, by using equation (34), we obtain:

Fε(q − y(z)) = z+λ2−c
z+λ2

. We then substitute the above expression in equation (35): z = c− λ2 − Γ
y′(z)

. Now,

we have: Γ = y(z) +E
[
min(F−1

ε

(
z+λ2−c
z+λ2

)
, ε)
]
. By expressing the previous equation in terms of the effective

price, we obtain: Γ = y(z) + E
[
min(F−1

ε

( − Γ
y′(z)

c− Γ
y′(z)

)
, ε)
]
. Therefore, one can solve the previous equation and

find the optimal effective price z. We note that this is exactly the same equation as in the decentralized case,

so that the effective prices are the same. The optimal production levels are given by: q= y(z)+F−1
ε

( − Γ
y′(z)

c− Γ
y′(z)

)
.

Similarly, the equations are the same in both the decentralized and centralized models so that the optimal

production levels are identical. Finally, we just need to show that λ2 > 0 in order to complete the proof. We

have:

Γ = y
(
c−λ2−

Γ

y′(z)

)
+E

[
min(F−1

ε

( − Γ
y′(z)

c− Γ
y′(z)

)
, ε)
]
≤ y
(
c−λ2−

Γ

y′(z)

)
< y
(
c−λ2

)
If we assume by contradiction that λ2 < 0, we obtain: Γ< y

(
c− λ2

)
< y(c). This is a contradiction so that:

λ2 > 0 and the proof is complete. �

Proof of Proposition 4

Proof. We first consider the scenario where the supplier is non-sophisticated. In this case, the optimal

decision variables are still rdet, qdet and pdet. However, in reality demand is uncertain and therefore the

expected sales are given by:

E
[
min(qdet,D(zdet, ε))

]
=E

[
min(qdet, y(zdet) + ε)

]
= Γ +E

[
min(0, ε)

]
≤ Γ. (37)

Here, we have used the fact that: qdet = y(zdet) = Γ.

Next, we assume that the supplier is sophisticated. Note that in this case, the optimal subsidies set by

the government are still equal to rdet. In other words, the government does not have any distributional

information on demand uncertainty and believes neither does the supplier. In particular, the subsidies are

set such that: y(pdet−rdet) = Γ. However, the supplier is sophisticated in the sense that he uses distributional

information on demand uncertainty in order to decide the optimal price and production. In a similar way as

in equations (9) and (10) from Theorem 1, the optimal price when r= rdet can be obtain as the solution of

the following non-linear equation:

y(p− rdet) +E
[
min(F−1

ε

(p− c
p

)
, ε)
]

+ y′(p− rdet) · (p− c) = 0. (38)

In addition,one can compute the optimal production level as follows:

q∗(p, rdet) = y(p− rdet) +F−1
ε

(p− c
p

)
.
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For the linear demand model, equation (38) becomes: d̄ − α · (2p − rdet − c) + E
[
min(F−1

ε

(
p−c
p

)
, ε)
]

= 0.

Equivalently, the optimal price denoted by p∗ follows the following relation:

p∗ = c+
Γ

α
+

1

2α
·E
[
min(F−1

ε

(p∗− c
p∗

)
, ε)
]
.

Note that the optimal price when demand is deterministic is equal to pset = c+ Γ
α

and therefore: p∗ ≤ pdet.

As a result, the expected demand is given by:

y(p∗− rdet) = d̄−α · (p∗− rdet) = Γ− 1

2
·E
[
min(F−1

ε

(p∗− c
p∗

)
, ε)
]
≥ Γ.

We next proceed to compute the expected sales:

E
[
min

(
q∗,D(p∗− rdet, ε)

)]
=E

[
min

(
y(p∗− rdet) +F−1

ε

(p− c
p

)
, y(p∗− rdet) + ε

)]
= Γ +

1

2
·E
[
min(F−1

ε

(p∗− c
p∗

)
, ε)
]
≤ Γ.

�




