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Abstract

We consider learning and signaling in a dynamic Cournot oligopoly where firms
have private information about their production costs and only observe the market
price, which is subject to unobservable demand shocks. An equilibrium is Markov if
play depends on the history only through the firms’ beliefs about costs and calendar
time. We characterize symmetric linear Markov equilibria as solutions to a boundary
value problem. In every such equilibrium, given a long enough horizon, play converges
to the static complete information outcome for the realized costs, but each firm only
learns its competitors’ average cost. The weights assigned to costs and beliefs under the
equilibrium strategies are non-monotone over time. We explain this by decomposing
incentives into signaling and learning, and discuss implications for prices, quantities,
and welfare.

1 Introduction

In the theory of oligopoly, asymmetric information plays a central role in explaining anti-
competitive practices such as limit pricing and predation (Milgrom and Roberts, 1982a,b),
or price rigidity in cartels (Athey and Bagwell, 2008). However, the fundamental question of
how competition unfolds in a new market where firms start out with incomplete information
about each other has received comparatively little attention. In such a market, a firm may be
trying to simultaneously learn its competitors’ types from the observation of market variables
and influence their beliefs about its own type. This possibility of multi-sided learning and
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signaling makes the setting fascinating but creates a technical challenge responsible for the
scarcity of results: the analyst must track the evolution of the firms’ beliefs over time.

In this paper, we make progress on the problem by using continuous-time methods to
provide the first tractable analysis of Markov (perfect) equilibria in a dynamic oligopoly
with incomplete information. More specifically, we study a stylized Cournot game where
each firm privately knows its own cost and only observes the market price, which is subject
to unobservable demand shocks. The resulting equilibrium dynamics capture the jockeying
for position among oligopolists before the market reaches its long-run equilibrium. We study
how the firms’ strategic behavior is shaped by learning and signaling, and derive implications
for the time paths of prices, profits, and consumer surplus.

To address the tractability of beliefs, we consider a linear-quadratic Gaussian environ-
ment: the market demand function and the firms’ cost functions are linear in quantities, the
constant marginal costs are drawn once and for all from a symmetric normal prior distri-
bution, and the noise in the market price is given by the increments of a Brownian motion.
Restricting attention to equilibria in strategies that are linear in the history along the equi-
librium path, we can then derive the firms’ beliefs using the Kalman filter.

When costs are private information, a natural way to impose a Markov restriction on
behavior is to allow current outputs to depend on the history only through the firms’ beliefs
about the costs. But when individual outputs are unobservable, these beliefs are also private
information: not observing its output, a firm’s rivals cannot tell what inference the firm made
from the price. Thus, if the firm plays as a function of its belief—that is, if the belief is part
of its “state”—then its rivals have to entertain (private) beliefs about this belief, and so on,
making the problem seemingly intractable.1 However, building on Foster and Viswanathan’s
(1996) analysis of a multi-agent version of Kyle’s (1985) insider trading model, we show that
under symmetric linear strategies, each firm’s belief can be written as a weighted sum of its
own cost and the public posterior expectation about the average industry cost conditional
on past prices. In other words, its own cost and the public belief are sufficient statistics
for a firm’s private belief. The same is true even if the firm unilaterally deviates from the
symmetric linear strategy profile, once we appropriately augment these statistics to account
for the resulting bias in the public belief.

The representation of beliefs yields a characterization of all symmetric linear Markov
strategies as affine, time-dependent functions of the firm’s own cost and the public belief.
We consider equilibria in such strategies, and show that they are in turn characterized by
solutions to a boundary value problem, which is the key to our analysis.

The boundary value problem characterizing Markov equilibria consists of a system of
1This is the “forecasting the forecasts of others problem” of Townsend (1983).
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nonlinear differential equations for the coefficients of the equilibrium strategy and the pos-
terior variance of the public belief. As is well known, there is no general existence theory
for such problems. Indeed, the biggest technical challenge in our analysis is establishing
the existence of a solution to the boundary value problem, or, equivalently, the existence of
a symmetric linear Markov equilibrium. We provide a sufficient condition for existence in
terms of the model’s parameters, which amounts to requiring that the incentive to signal not
be too strong. The condition is not tight but not redundant either: linear Markov equilibria
fail to exist if the signaling incentive is sufficiently strong. On the other hand, we can say
surprisingly much about the properties of such equilibria.

As quantities are strategic substitutes, each firm has an incentive to deviate up from
the myopic output to manipulate its competitors’ beliefs. This additional output has a
deterministic component common to all cost types, which in equilibrium has no learning
consequences.2 However, the incentive to expand output is stronger the lower the firm’s
own cost: not only is it cheaper to do so, a low-cost firm also benefits more from the
other firms scaling back their production. As a result, the equilibrium has the firms actively
signaling their costs through the market price. We show that, in any symmetric linear Markov
equilibrium, the equilibrium price carries enough statistical information about industry costs
for the firms to asymptotically learn the average cost of their rivals. The identification
problem caused by the ex ante symmetry of firms and the one-dimensional price prevents
learning the costs of individual firms. But knowing the average is enough for the firms to play
their complete information best response. Thus, equilibrium play converges asymptotically
to the static complete information outcome for the realized costs.

We then show that the interplay of learning and signaling leads to a rich and interesting
set of predictions. The key observation is that the equilibrium strategy assigns non-monotone
weights to private and public information over time. In particular, the weight each firm
assigns to its own cost is the largest (in absolute value) in the intermediate term. By
decomposing the equilibrium strategy into a myopic and a forward-looking component, this
can be understood as arising from two monotone effects. The myopic component, which
only reflects learning, grows over time. Roughly, high-cost firms scale back their production
further over time because they expect their rivals to be more aggressive as they become
better informed. The forward-looking component, which captures signaling, decreases over
time. This is because the firms’ estimates of their competitors’ costs become more precise,
beliefs become less sensitive to price changes, and the incentive to signal diminishes.

Because the firms assign non-monotone weights to their own costs, the difference between
2This component is analogous to signal-jamming in environments with symmetric uncertainty. See, e.g.,

Holmström (1999), Riordan (1985), Fudenberg and Tirole (1986), or Mirman, Samuelson, and Urbano (1993).
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any two firms’ outputs is non-monotone over time conditional on their realized costs. In
particular, efficient firms benefit the most from their cost advantage at intermediate times.
From an industry standpoint, the higher sensitivity of individual outputs to costs improves
the allocation of production, leading to higher profits. In fact, this allows us to even derive
conditions under which the ex ante expectation of industry profits (as well as total surplus)
is higher in the intermediate term than under complete information.

Finally, we observe that signaling drives the expected total quantity above the corre-
sponding (static) complete information level. In turn, this implies that the expected market
price is depressed below its complete information level. Moreover, we show that at any point
in time, consumers only observing historical prices expect prices to increase in the future as
the signaling incentive diminishes.

The above prediction about prices concerns an aggregate variable found in market-level
data. In this vein, we also show that the volatility of total market output conditional on
costs eventually decreases, but not necessarily monotonically so. Because of linear demand,
this implies that the volatility of the average price eventually vanishes as well. As the drift
also disappears, the price only exhibits variation due to demand shocks in the long run.

Some of our other predictions concern firm-level data as they involve individual costs
and outputs. The result about the non-monotonicity of the equilibrium strategy is one
such example. Namely, the coefficient on the firm’s own cost in the equilibrium strategy
determines the sensitivity of the firm’s output to its cost. Thus, the shape of this coefficient
is simply a prediction about the time pattern of the cost-sensitivity of individual firm output
in a new market, which could readily be measured in firm-level data.

Our results are in line with some recent empirical evidence. In particular, a study of a
newly deregulated British electricity market by Doraszelski, Lewis, and Pakes (2016) finds
that (i) prices were low and increasing during an initial phase, but in the long run (ii) the price
process settled down and (iii) the market converged to a stable state akin to a static equi-
librium. They interpret the findings to be the result of firms learning to play an equilibrium
of a complete information game using some adaptive learning rule. Our analysis provides a
complementary perspective, showing that the patterns can be qualitatively matched also by
the equilibrium of a dynamic game of incomplete information where forward-looking firms
learn about their competitors’ types.3 However, our model is unlikely to generate the later
period of decreasing prices in the British market, but as the data pertain to a single realiza-

3The microstructure of the British market differs from that in our model. However, Cournot competition
is often adopted in studies of electricity markets even when it is not descriptively accurate, see, for example,
Borenstein and Bushnell (1999) or Bushnell, Mansur, and Saravia (2008). Furthermore, Hortacsu and Puller
(2008) show in an additively-separable supply-function model with private information that, in equilibrium,
firms price optimally against residual demand as in Cournot competition.
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tion of a time series, this could be random variation before convergence to static equilibrium.
Alternatively, our model could be extended with a deterministic trend (in the demand or
the costs), trumped by the initial signaling activity to still yield increasing prices early on.

Related Literature. Our work contributes to the literature on continuous-time games
with Brownian information. In particular, our model adds incomplete information to the
imperfect-monitoring games studied by Sannikov (2007). We share his focus on a fixed
discount factor. However, Sannikov studies the entire set of public perfect equilibria whereas
we characterize a class of Markov equilibria.4 Prior work considering incomplete information
includes Faingold and Sannikov (2011), who study reputation dynamics in the context of a
population of small players facing a long-run player who may be a behavioral type, as well as
Daley and Green (2012) and Dilmé (2014), who study one-sided signaling with a binary type
and Brownian noise. Cisternas (2015) develops methods for games where uncertainty about
the state of the world is symmetric in equilibrium but private beliefs arise after deviations.
In contrast, in our game beliefs are private even on the equilibrium path.

The early literature on incomplete information in dynamic oligopoly considers issues
such as limit pricing, predation, and reputation using models with one-sided information.
See Milgrom and Roberts (1982a,b) and Fudenberg and Tirole (1986) among others. Mailath
(1989) and Mester (1992) construct separating equilibria in two and three-period oligopoly
games where all firms have private costs and actions are observable. More recently, Athey
and Bagwell (2008) study collusion in a Bertrand oligopoly with persistent private costs.
They identify conditions under which the best equilibrium for patient firms has all types
pooling at the same price and no learning takes place. In contrast, we fix the discount rate,
and learning and signaling are central to our analysis. There is also recent work on the role
of information in static oligopoly; see Myatt and Wallace (2015) for Cournot competition,
or Vives (2011) and Bernhardt and Taub (2015) for supply-function equilibria.

Finally, a large literature studies strategic use of information and its aggregation through
prices in financial markets following the seminal analysis by Kyle (1985). Most closely related
to our work is the multi-agent model by Foster and Viswanathan (1996) mentioned above,
and its continuous-time version by Back, Cao, and Willard (2000). We share their focus on
linear equilibria in a Gaussian environment. (Our results can be used to show that the ad hoc
restriction on strategies in these works is equivalent to requiring them to be symmetric, linear,

4The use of continuous-time methods and the focus on Markov equilibria also distinguishes our work
from the literature on repeated Bayesian games with fully or partially persistent types. This literature has
almost exclusively restricted attention to patient players, typically focusing on cooperative equilibria. See,
for example, Aumann and Maschler (1995), Hörner and Lovo (2009), Escobar and Toikka (2013), Pęski
(2014), or Hörner, Takahashi, and Vieille (2015). There is also a literature on learning in repeated games of
incomplete information under myopic play, see Nyarko (1997).
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and Markov in our sense.) However, trading in a financial market with common values differs
starkly from product market competition under strategic substitutes and private values. In
the former, players limit trades in order to retain their informational advantage, whereas in
the latter, they engage in excess production to signal low costs to discourage their rivals,
leading to qualitatively different equilibrium behavior. The differences between the games
also result in the analysis being substantially different.5

Outline. We introduce the model in the next section and consider beliefs under linear
strategies in Section 3. We then turn to Markov strategies and equilibria in Section 4, and
discuss their properties in Section 5. We consider the infinite horizon case and discuss other
possible extensions in Section 6. Section 7 concludes. All proofs are in the Appendix.

2 Model

We consider a Cournot game with privately known costs and imperfect monitoring, played
in continuous time over the compact interval [0, T ]. There are n ≥ 2 firms, each with a
privately known (marginal) cost Ci (i = 1, . . . , n). The firms’ common prior is that the costs
are independent draws from a normal distribution with mean π0 and variance g0.6

At each time t ∈ [0, T ], each firm i supplies a (possibly negative) quantity Qi
t ∈ R. The

firms do not observe each others’ quantities, but observe the revenue process

dYt = (p̄−
∑
i

Qi
t)dt+ σdZt, Y0 = 0, (1)

where p̄ > 0 is the demand intercept, σ2 > 0 is the variance, and Z is a standard Brownian
motion that is independent of the firms’ costs (cf. Keller and Rady, 1999; Sannikov and
Skrzypacz, 2007). Heuristically, the current market price dYt/dt is given by a linear demand
curve perturbed by additive i.i.d. noise. Thus, with slight abuse of terminology, we refer to
the firms’ observation of Y as the firms observing the market price.

A pure strategy for a firm determines current output as a function of the firm’s cost, past
revenues, and own past outputs. However, because of the noise in the revenue process, no

5In the finance models, the price is set by a market maker and the players’ linear flow payoffs are
determined by differences in beliefs. In contrast, we have an exogenous demand curve, quadratic payoffs,
and cost levels matter. As a result, the equilibrium in the former is essentially characterized by a single
ordinary differential equation for the market depth (see Back, Cao, and Willard, 2000) whereas it is not
possible to further reduce our boundary value problem.

6See Section 6 for the infinite horizon case and for a discussion of the symmetry, independence, and
private value assumptions.
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firm can ever observe that another firm has deviated from a given strategy.7 For the analysis
of equilibrium outcomes it therefore suffices to know the quantities each firm’s strategy
specifies at histories that are consistent with the strategy being followed, i.e., on the path
play. We thus define a strategy to be only a function of the firm’s cost and revenues, leaving
off-path behavior unspecified. This notion of strategy extends public strategies studied in
repeated games with imperfect public monitoring to a setting with private costs.

Formally, a (pure) strategy for firm i is a process Qi that is progressively measurable with
respect to the filtration generated by (Ci, Y ). A strategy profile (Q1, . . . , Qn) is admissible if
(i) for each i, E[

´ T
0

(Qi
t)

2dt] <∞, in which case we write Qi ∈ L2[0, T ], and (ii) equation (1)
has a unique (weak) solution Y ∈ L2[0, T ].8 We define the expected payoff of firm i under
an admissible strategy profile to be

E
[ ˆ T

0

e−rt(p̄−
∑
j

Qj
t − Ci)Qi

tdt

]
= E

[ˆ T

0

e−rtQi
tdYt − Ci

ˆ T

0

e−rtQi
tdt

]
, (2)

where r ≥ 0 is the common discount rate. The equality is by (1). It shows that the payoff
can be thought of as the expected present value of the observable flow payoff Qi

t(dYt−Cidt).
Payoff from all other strategy profiles is set to −∞. In what follows, a strategy profile is
always understood to mean an admissible one unless noted otherwise.

A Nash equilibrium is a strategy profile (Q1, . . . , Qn) from which no firm has a profitable
deviation. We focus on equilibria in strategies that are linear in histories to facilitate tractable
updating of beliefs, but we allow firms to contemplate deviations to arbitrary strategies.
Formally, firm i’s strategy Qi is linear if there exist (Borel measurable) functions α, δ :

[0, T ]→ R and f : [0, T ]2 → R such that

Qi
t = αtC

i +

ˆ t

0

f tsdYs + δt, t ∈ [0, T ]. (3)

A profile of linear strategies is symmetric if the functions (α, f, δ) are the same for all firms.9

7As the firms’ quantities only affect the drift of Y , the monitoring structure has full support in the sense
that any two (admissible) strategy profiles induce equivalent measures over the space of sample paths of Y .

8More precisely, the game takes place on a filtered probability space (Ω,F , {Ft},P). The state space
Ω = Rn × C[0, T ] is the space of all possible cost realizations and (continuous) paths of Y . The filtration
{Ft} is defined as follows. Let B = B1 ⊗ · · · ⊗ Bn be the product sigma-algebra on Rn generated by
(C1, . . . , Cn), and let Bi = {∅,R} ⊗ · · · ⊗ {∅,R} ⊗ Bi ⊗ {∅,R} ⊗ · · · ⊗ {∅,R}. Let {F̄t} be the canonical
filtration on C[0, T ], where each F̄t is generated by sets {f ∈ C[0, T ] : fs ∈ Γ} with s ≤ t and Γ a Borel set
in R. (Heuristically, {F̄t} amounts to observing the past of the process Y .) Now, define {Ft} by Ft = B⊗F̄t.
A strategy for player i is a process Qi progressively measurable with respect to {F i

t}, where F i
t = Bi ⊗ F̄t.

(Note that Qi is also measurable with respect to {Ft}.) Under an admissible strategy profile, the probability
P is the unique product measure on Ω = Rn × C[0, T ] consistent with (1) and the normal prior on costs.

9A necessary and sufficient condition for a linear strategy profile to be admissible is that all the functions α,
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Our interest is in Nash equilibria in symmetric linear strategies that condition on the history
only through its effect on beliefs about costs and calendar time. Such equilibria, defined
formally below, are a natural extension of Markov perfect equilibrium to our setting.

As will be clear in what follows, the Gaussian information structure obtained under linear
strategies is essential for the analysis. The key aspects of the model enabling this are the
quadratic payoff function defined by the left-hand side of (2) and the monitoring technology
defined by (1), under which the players observe a noisy public signal of the sum of everyone’s
actions. A similar analysis can be carried out for other quadratic stage games under this
monitoring structure. Note that linear strategies require abstracting from corner solutions by
allowing negative outputs, and the normal prior requires negative costs, explaining these two
simplifying assumptions. However, with an appropriate choice of parameters, the probability
of negative outputs and costs can be taken to be arbitrarily small because of the convergence
of equilibrium play (see Corollary 2 below).10

3 Beliefs under Linear Strategies

As a step towards Markov equilibria, we derive sufficient statistics for the firms’ beliefs about
costs under symmetric linear strategies and unilateral deviations from them.

Fix firm i, and suppose the other firms are playing symmetric linear strategies so that
Qj
t = αtC

j + Bt(Y
t) for j 6= i, where Bt(Y

t) :=
´ t
0
f tsdYs + δt depends only on public

information. Regardless of its own strategy, firm i can always subtract the effect of its
own quantity and that of the public component Bt(Y

t) of the other firms’ quantities on the
revenue, and hence the relevant signal for firm i about the other firms’ costs is

dY i
t := −αt

∑
j 6=i

Cjdt+ σdZt = dYt −
(
p̄−Qi

t − (n− 1)Bt(Y
t)
)
dt. (4)

Therefore, firm i’s belief can be derived by applying the Kalman filter with Y i as the signal
and C−i := (C1, . . . , Ci−1, Ci+1, . . . , Cn) as the unknown vector. Moreover, since the other
firms are ex ante symmetric and play symmetric strategies, firm i can only ever hope to filter
the sum of their costs. The following lemma formalizes these observations.

δ, and f be square-integrable over their respective domains (Kallianpur, 1980, Theorem 9.4.2). Note that in
discrete time, any affine function of own cost and past prices takes the form qit = αtci+

∑
s<t f

t
s(ys−ys−1)+δt.

Equation (3) can be viewed as a limit of such strategies.
10Requiring the updating to be Gaussian and the firms’ best responses to be linear prevents us from using

a nonlinear transformation to keep quantities or costs nonnegative.
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Lemma 1. Under any symmetric linear strategy profile and any strategy of firm i, the
posterior belief of firm i at time t ∈ [0, T ] is that Cj, j 6= i, are jointly normal, each with
mean M i

t := 1
n−1E

[∑
j 6=iC

j
∣∣FY i

t

]
, and with a symmetric covariance matrix Γt = Γ(γMt ),

where the function Γ : R→ R2(n−1) is independent of t, and

γMt := E
[(∑

j 6=i

Cj − (n− 1)M i
t

)2∣∣∣FY i

t

]
=

(n− 1)g0

1 + (n− 1)g0
´ t
0
(αs

σ
)2ds

is a deterministic non-increasing function of t.

The upshot of Lemma 1 is that firm i’s belief is summarized by the pair (M i
t , γ

M
t ). The

expectation about the other firms’ average cost, M i
t , is firm i’s private information as the

other firms do not observe i’s quantity and hence do not know what inference it made.
(Formally, Qi enters Y i.) The posterior variance γMt is a deterministic function of time
because the function α in the other firms’ strategy is taken as given.

By Lemma 1, asking symmetric linear strategies to condition on history only through
beliefs amounts to requiring each firm i’s output at time t to only depend on Ci, M i

t , and t.
From the perspective of the normal form of the game, this is simply a measurability require-
ment on the firms’ strategies, and causes no immediate problems. However, showing the
existence of a Nash equilibrium in strategies of this form requires verifying the optimality of
the strategies to each firm, and for this it is essentially necessary to use dynamic optimiza-
tion. But formulating firm i’s best-response problem as a dynamic optimization problem,
we then have M j, j 6= i, appearing as unobservable states in firm i’s problem, and we thus
need to consider i’s second-order beliefs about them. Indeed, it could even be the case that
firm i’s best response then has to explicitly condition on these second-order beliefs, requiring
them to be added to the state, and so on, leading to an infinite regress problem.

It turns out, however, that for linear Gaussian models there is an elegant solution, first
applied to a strategic setting by Foster and Viswanathan (1996). The key observation is that
each firm’s private belief can be expressed as a weighted sum of its own cost and the public
belief about the average cost conditional on past prices. Thus, even when the other firms’
behavior conditions on their beliefs, firm i only needs to have a belief about their costs as
the public belief is public information. Firm i’s belief in turn is just a function of its cost
and the public belief.

More specifically, consider the posterior expectation about the average firm cost condi-
tional on the revenue process Y under a symmetric linear strategy profile (α, f, δ). This
public belief is defined as Πt := 1

n
E
[∑

j C
j
∣∣FYt ], with corresponding posterior variance
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γt := E
[(∑

j C
j − nΠt

)2∣∣FYt ].11 It can be computed using the Kalman filter with Y as the
signal and the sum

∑
j C

j as the unknown parameter (see Lemma A.1 in the Appendix),
and it corresponds to the belief of an outsider who knows the strategy, but only observes the
prices (cf. market makers in Foster and Viswanathan, 1996). We note for future reference
that, given α, the posterior variance is a decreasing function of time given by

γt =
ng0

1 + ng0
´ t
0
(αs

σ
)2ds

, t ∈ [0, T ]. (5)

The public belief can be used to express private beliefs as follows.

Lemma 2. Under any symmetric linear strategy profile, for each firm i,

M i
t = ztΠt + (1− zt)Ci, t ∈ [0, T ],

where
zt :=

n

n− 1

γMt
γt

=
n2g0

n(n− 1)g0 + γt
∈
[
1,

n

n− 1

]
(6)

is a deterministic non-decreasing function of t.

That is, on the path of play, each firm’s private belief M i
t is a weighted average of

the public belief Πt and its cost Ci, with the weight zt a deterministic function of time.
Heuristically, Ci captures the firm’s private information about both its cost and its past
outputs (whose private part equals αsCi at time s), and hence it is the only additional
information the firm has compared to an outsider observing prices. The functional form
comes from the properties of normal distributions, since under linear strategies the system
is Gaussian. Moreover, since the variance γMt is also only a function of time by Lemma 1,
the tuple (Ci, Πt, t) is a sufficient statistic for firm i’s posterior belief at time t.12

If firm i unilaterally deviates, then the formula in Lemma 2 does not apply to its belief
because the public belief Πt assumes that all firms play the linear strategy. (The formula
still holds for the other firms, because they do not observe the deviation.) At such off path
histories, it is convenient to represent firm i’s belief in terms of a counterfactual public belief,
which corrects for the difference in firm i’s quantities, and which coincides with Πt if i has
not deviated.

11We use the posterior variance of nΠt for notational convenience.
12In fact, each firm i’s entire time-t hierarchy of beliefs is captured by (Ci, Πt, t). For example, firm i’s

first-order belief about firm j’s cost Cj is normal with mean ztΠt + (1 − zt)Ci and variance a function of
γMt , where zt and γMt are only functions of t. Thus to find, say, firm k’s second-order belief about firm i’s
first-order belief about Cj , we only need k’s first-order belief about Ci because (Πt, t) are public. But k
simply believes that Ci is normal with mean ztΠt + (1− zt)Ck and variance a function of γMt . And so on.
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Lemma 3. Under any symmetric linear strategy profile and any strategy of firm i,

M i
t = ztΠ̂

i
t + (1− zt)Ci, t ∈ [0, T ],

where zt is as in Lemma 2, and the process Π̂ i is defined by

dΠ̂ i
t = λtαt

(
1 + (n− 1)(1− zt)

)
(Π̂ i

t − Ci)dt+ λtσdZ
i
t , Π̂ i

0 = π0,

where

λt := −αtγt
nσ2

, and dZi
t :=

dY i
t + (n− 1)αt

(
ztΠ̂

i
t + (1− zt)Ci

)
dt

σ

is a standard Brownian motion (with respect to FY i) called firm i’s innovation process.
Moreover, if firm i plays on [0, t) the same strategy as the other firms, then Π̂ i

t = Πt.

The counterfactual public belief Π̂ i evolves independently of firm i’s strategy by construc-
tion. (We give an interpretation for its law of motion in the context of the best-response
analysis in Section 4.1.) However, it is defined in terms of the process Y i defined in (4),
and hence its computation requires knowledge of firm i’s past quantities. Thus Π̂ i

t is in
general firm i’s private information. Nevertheless, if firm i plays the same strategy as the
other firms, then the counterfactual and actual public beliefs coincide (i.e., Π̂ i

t = Πt) and
we obtain Lemma 2 as a special case. In general, however, firm i’s posterior at time t is
captured by (Ci, Π̂ i, t).13

Special cases of Lemmas 2 and 3 were first derived in discrete time by Foster and
Viswanathan (1996), who considered a restricted class of strategies; our results extend the
argument to all symmetric linear strategy profiles.

4 Markov Equilibria

In games of complete information, a Markov (perfect) equilibrium allows behavior to depend
only on the payoff-relevant part of history. In our model, only costs and calendar time are
directly payoff relevant, but because the firms do not know each others’ costs, it is in general
necessary to let behavior depend on the history through its effect on the firms’ beliefs about
costs. Our Markov restriction is to not allow any more history dependence than that.

With this motivation, we say that a strategy profile is Markov if each firm’s strategy
depends on the history only through calendar time and the firm’s belief about the cost vector

13If firm i has deviated from the symmetric linear strategy profile, then its time-t hierarchy of beliefs is
captured by (Ci, Πt, Π̂

i
t , t): its first-order belief uses Π̂i

t instead of Πt, but since each firm j 6= i still forms
its (now biased) beliefs using (Cj , Πt, t), Πt is needed for the computation of higher order beliefs.
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(C1, . . . , Cn). Based on our analysis in Section 3, we have the following novel characterization
of symmetric linear Markov strategies.14

Lemma 4. A symmetric linear strategy profile is Markov if and only if there exist functions
α, β, δ : [0, T ]→ R, called the coefficients, such that for each firm i,

Qi
t = αtC

i + βtΠt + δt, t ∈ [0, T ].

That a strategy of this form only conditions on calendar time and firm i’s belief about
costs (including its own) is immediate from the fact that i’s belief is summarized by (Ci, Πt, t).
The other direction combines this representation of beliefs with the observation that Πt is
itself a linear function of history, and hence for a strategy conditioning on it to be linear in
the sense of (3), it has to take the above form.15

We then define our notion of Markov equilibrium as follows.

Definition 1. A symmetric linear Markov equilibrium is a Nash equilibrium in symmetric
linear strategies such that (i) the strategy profile is Markov, and (ii) the coefficients (α, β, δ)

of the equilibrium strategy are continuously differentiable.

We identify a symmetric linear Markov equilibrium with the coefficients (α, β, δ) of the
equilibrium strategy. Their differentiability is included in the above definition to avoid having
to keep repeating it as a qualifier in what follows.

We do not require sequential rationality in the definition of Markov equilibria, since given
the full support of the revenue process Y , the only off-path histories at which a firm can find
itself are those that follow its own deviations. Thus, such a requirement would not restrict
the set of equilibrium outcomes. Nevertheless, we obtain a partial description of optimal
off-path behavior in our best-response analysis, which we turn to next.

4.1 Best-Response Problem

In order to characterize existence and properties of Markov equilibria, we now explicitly
formulate firm i’s best-response problem to a symmetric linear Markov strategy profile as a
dynamic stochastic optimization problem.

14The finance literature on insider trading simply assumes that strategies condition only on the initial
private signal and the market makers’ belief (which equals the market price). Lemma 4 can be applied to
that setting to show that this assumption is equivalent to strategies being linear and Markov (in our sense).

15Our strategies only prescribe behavior on the path of play, so the observation in footnote 12 implies that
if we replace “firm’s belief” with “firm’s hierarchy of beliefs” in the definition of a Markov strategy profile,
then Lemma 4 continues to hold verbatim, as do all our other results. We have chosen to impose the Markov
restriction in terms of the firms’ (private) first-order beliefs to avoid having to introduce higher-order beliefs.
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To this end, fix firm i, and suppose the other firms play a symmetric linear Markov
strategy profile (α, β, δ) with differentiable coefficients. We observe first that the tuple
(Ci, Πt, Π̂

i
t , t) is the relevant state for firm i’s problem. To see this, note that the integrand

in the expected payoff (2) is linear in the other firms’ outputs, and hence firm i’s flow payoff
at time t depends only on the other firms’ expected output conditional on i’s information.
By Lemmas 1 and 4, this is given by (n − 1)(αtM

i
t + βtΠt + δt), where the private belief

satisfies M i
t = ztΠ̂

i
t + (1 − zt)C

i by Lemma 3. Furthermore, the coefficients (α, β, δ) and
the weight z are deterministic functions of time (as are γ and λ that appear in the laws of
motion for Π and Π̂ i). Thus (Ci, Πt, Π̂

i
t , t) fully summarizes the state of the system.

Using the state (Ci, Πt, Π̂
i
t , t), the normal form of firm i’s best-response problem can be

written as

sup
Qi∈L2[0,T ]

E
[ ˆ T

0

e−rt
[
p̄−Qi

t − (n− 1)(αtM
i
t + βtΠt + δt)− Ci

]
Qi
tdt
]

subject to

dΠt = λt[(αt + βt)Πt + δt −Qi
t + (n− 1)αt(Πt −M i

t )]dt+ λtσdZ
i
t , Π0 = π0,

dΠ̂ i
t = λt[αt(Π̂

i
t − Ci) + (n− 1)αt(Π̂

i
t −M i

t )]dt+ λtσdZ
i
t , Π̂ i

0 = π0,

M i
t = ztΠ̂

i
t + (1− zt)Ci.

The only sources of randomness in the problem are the initial draw of Ci and firm i’s
innovation process Zi defined in Lemma 3, which is a standard Brownian motion.

The law of motion of the public belief Π is simply the dynamic from Lemma A.1 written
from firm i’s perspective.16 Conditional on prices, Π is a martingale, but from i’s perspective
it has a drift, which consist of two components. The first component, (αt + βt)Πt + δt −Qi

t,
captures the difference between the public expectation of firm i’s output and firm i’s actual
output. The second, (n − 1)αt(Πt −M i

t ), captures the difference between the public’s and
firm i’s expectations about the other firms’ outputs due to firm i’s superior information
about their costs. Since Qi enters the drift, firm i controls the public belief Π. This allows
the firm to (noisily) signal its cost and makes the problem dynamic.

16Noting that under Markov strategies, Bt(Y
t) = βtΠt + δt, we have by Lemma A.1 and equation (4),

dΠt = λt
[
dYt −

(
p̄− αtnΠt − nBt(Y

t)
)
dt
]

= λt
[
dY i

t + (αtnΠt + βtΠt + δt −Qi
t)dt

]
= λt

[
σdZi

t +
(
αtnΠt + βtΠt + δt −Qi

t − αt(n− 1)M i
t

)
dt
]
,

where the last step is by definition of the innovation process dZi := σ−1[dY i + (n− 1)αtM
i
tdt] in Lemma 3.
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The other stochastically evolving state variable, the counterfactual public belief Π̂ i,
evolves exogenously. (Its law of motion follows by Lemma 3.) The interpretation of its
drift is the same as that of Π, except that Π̂ i is calculated assuming that firm i plays
the strategy (α, β, δ) and hence the difference in its expected and realized quantity is just
αt(Π̂

i
t −Ci). Note that d(Πt− Π̂ i

t) = λt[αtn(Πt− Π̂ i
t) +αtC

i +βtΠt + δt−Qi
t]dt, from which

it is immediate that Πt = Π̂ i
t if firm i has indeed played according to (α, β, δ) in the past.

Firm i’s best-response problem can be formulated recursively as follows. Let V (c, π, π̂i, t)

denote the optimal time-t continuation value of firm i with cost Ci = c, public belief Πt = π,
and counterfactual public belief Π̂ i

t = π̂.17 The Hamilton-Jacobi-Bellman (HJB) equation
for the firm’s problem is then

rV (c, π, π̂, t) = sup
q∈R

{[
p̄− q − (n− 1)

(
αt(ztπ̂ + (1− zt)c) + βtπ + δt

)
− c
]
q

+ µt(q)
∂V

∂π
+ µ̂t

∂V

∂π̂
+
∂V

∂t
+
λ2tσ

2

2

(∂2V
∂π2

+ 2
∂2V

∂π∂π̂
+
∂2V

∂π̂2

)}
, (7)

where the drifts of Π and Π̂ i are, as above,

µt(q) := λt
[
(αt + βt)π + δt − q + (n− 1)αt

(
π − (ztπ̂ + (1− zt)c)

)]
,

µ̂t := λtαt
[
1 + (n− 1)(1− zt)

]
(π̂ − c),

written here using Lemma 3 to express firm i’s belief as ztπ̂ + (1− zt)c. Note that of all the
terms on the second line in (7), only the first one depends on q.

The objective function in the maximization problem on the right-hand side of (7) is linear-
quadratic in q with −q2 the only quadratic term, and thus it is strictly concave. Therefore,
there is a unique maximizer q∗(c, π, π̂, t) given by the first-order condition

q∗(c, π, π̂, t) =
p̄− (n− 1)

[
αt(ztπ̂ + (1− zt)c) + βtπ + δt

]
− c

2
− λt

2

∂V

∂π
, (8)

where the first term is the myopic best response and the second term captures the dynamic
incentive to affect the drift of the public belief Π.

It is worth noting that here continuous time greatly simplifies the analysis. Similar
arguments can be used in discrete time to derive a Bellman equation analogous to (7). The
public belief still enters the flow payoff linearly, so the value function is convex in π. However,
the quantity q then affects the level of π linearly, which means that the optimization problem
in the Bellman equation has a term convex in q. Moreover, this term involves the value

17We use upper case to denote random variables and lower case to denote their realizations (i.e., scalars).
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function—an endogenous object—making it hard to establish the existence and uniqueness
of an optimum. In contrast, in continuous time q affects the drift of π, which in turn affects
the value of linearly. This renders the HJB equation strictly concave in q by inspection.

4.2 Characterization

We can view any symmetric linear Markov equilibrium as a solution to the HJB equation (7)
satisfying the fixed point requirement that the optimal policy coincide with the strategy to
which the firm is best responding. This leads to a boundary value problem characterization
of such equilibria, which is the key to our analysis.

More specifically, we proceed as follows. We show first that if (α, β, δ) is a symmetric
linear Markov equilibrium, then the solution to the HJB equation (7) is a (continuation)
value function of the form

V (c, π, π̂, t) = v0(t) + v1(t)π + v2(t)π̂ + v3(t)c+ v4(t)ππ̂

+ v5(t)πc+ v6(t)π̂c+ v7(t)c
2 + v8(t)π

2 + v9(t)π̂
2 (9)

for some differentiable vk : R→ R, k = 0, . . . , 9. Moreover, a linear optimal policy exists on
and off the path of play.18 Substituting for ∂V/∂π in the first-order condition (8) using (9),
we see that the best response to the equilibrium strategy can be written in the form

q∗(c, π, π̂, t) = α∗t c+ β∗t π + δ∗t + ξ∗t (π̂ − π).

The fixed point requirement is thus simply that (α∗, β∗, δ∗) = (α, β, δ).
The off-path coefficient ξ∗ is a free variable given our focus on Nash equilibria. Never-

theless, this argument shows that optimal off-path behavior can be taken to be linear, and
that a best response exists on and off the path of play.

After imposing the fixed point, the HJB equation (7) reduces to a system of ordinary
differential equations (ODEs) for the coefficients vk of the value function V and the posterior
variance γ. However, it turns out to be more convenient to consider an equivalent system
of ODEs for γ and the coefficients (α, β, δ, ξ) of the optimal policy along with the relevant
boundary conditions. This identifies symmetric linear Markov equilibria with solutions to a
boundary value problem. A verification argument establishes the converse.

18The proof uses the fact that the best-response problem is a stochastic linear-quadratic regulator (see,
e.g., Yong and Zhou, 1999, Chapter 6). Note that the posterior variance γt depends nonlinearly on the
coefficient α, and so do the weight zt and the sensitivity of the public belief to the price, λt = −αtγt/(nσ

2).
Hence, even though the best-response problem is linear-quadratic because it takes α as given, our game is
not a linear-quadratic game in the sense of the literature on differential games (see, e.g., Friedman, 1971).
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For the formal statement, define the myopic coefficients αm, βm, δm, ξm : R→ R by

αm(x) := − (n− 1)ng0 + x

(n− 1)ng0 + (n+ 1)x
, δm(x) :=

p̄

n+ 1
,

βm(x) :=
(n− 1)n2g0

(n+ 1)[(n− 1)ng0 + (n+ 1)x]
, ξm(x) :=

(n− 1)n2g0
2[(n− 1)ng0 + (n+ 1)x]

.

(10)

In the proof of the following result, we show that these are the equilibrium coefficients for
myopic players as a function of current posterior variance x. In particular, firm i’s time-T
equilibrium best-response is Qi

T = αm(γT )Ci + βm(γT )ΠT + δm(γT ) + ξm(γT )(Π̂ i
T −ΠT ).

Recalling from (6) that zt is only a function of the current γt, we have the following
characterization of equilibria.

Theorem 1. (α, β, δ) is a symmetric linear Markov equilibrium with posterior variance γ if
and only if δ = −p̄(α + β) and there exists ξ such that (α, β, ξ, γ) is a solution to

α̇t = r(αt − αm(γt))
αt

αm(γt)
− α2

tβtγt[(n− 1)nαt (zt − 1) + 1]

nσ2
, (11)

β̇t = r(βt − βm(γt))
αt

αm(γt)

+
αtβtγt

[
nαt(n+ 1− (n− 1)zt − (n2 − 1)βt(zt − 1)) + (n− 1)βt

]
n(n+ 1)σ2

, (12)

ξ̇t = r(ξt − ξm(γt))
αt

αm(γt)

+
αtγtξt
nσ2

[
ξt − (nαt((n− 1)βt(zt − 1)− 1) + βt)

]
− (n− 1)α2

tβtγtzt
2σ2

, (13)

γ̇t = −α
2
tγ

2
t

σ2
, (14)

with boundary conditions αT = αm(γT ), βT = βm(γT ), ξT = ξm(γT ), and γ0 = ng0.
In particular, such an equilibrium exists if and only if the above boundary value problem

has a solution. A sufficient condition for existence is

g0
σ2

< max

{
r

κ(n)
,

1

3nT

}
, (15)

where the function κ : N→ R++ defined in (A.10) satisfies κ(n) ≤ n− 2 + 1
n
for all n.

The derivation of the boundary value problem for (α, β, ξ, γ) proceeds along the lines
sketched above. This is the standard argument for characterizing solutions to HJB equations,
save for the facts that (i) here we are simultaneously looking for a fixed point, and hence
also the flow payoff is determined endogenously as it depends on the strategy played by the
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other firms, and (ii) we derive a system of differential equations for the optimal policy rather
than for the value function.

The identity δ = −p̄(α + β) provides a surprising, but very welcome, simplification for
equilibrium analysis, and allows us to eliminate δ from the boundary value problem. A similar
relationship holds in a static Cournot oligopoly with complete information and asymmetric
costs.19 We establish the result by direct substitution into the ODE for δ. Since this is an
equilibrium relationship, it does not seem possible to establish it by only considering the
best-response problem even in a static model.

The hard part in the proof of Theorem 1 is establishing existence. This requires showing
the existence of a solution to the nonlinear boundary value problem defined by equations
(11)–(14) and the relevant boundary conditions. As is well known, there is no general
existence theory for such problems. We thus have to use ad hoc arguments, which require
detailed study of the system’s behavior. On the upside, we obtain as a by-product a relatively
complete description of equilibrium behavior, which we discuss in the next section. However,
due to the complexity of the system, we have not been able to prove or disprove uniqueness,
even though numerical analysis strongly suggests that a symmetric linear Markov equilibrium
is unique whenever it exists. (All the results to follow apply to every such equilibrium.)

Our existence proof can be sketched as follows. As ξ only enters equation (13), it is
convenient to first omit it from the system and establish existence for the other three equa-
tions. For this we use the so-called shooting method. That is, we choose a time-T value
for γ, denoted γF (mnemonic for final). This determines the time-T values of α and β by
αT = αm(γF ) and βT = βm(γF ). We then follow equations (11), (12), and (14) backwards
in time from T to 0. This gives some γ0, provided that none of the three equations diverges
before time 0. Thus we need to show that γF can be chosen such that there exists a global
solution to (11), (12), and (14) on [0, T ], and the resulting γ0 satisfies γ0 = ng0. For the
latter, note that we have γ0 ≥ γF since γ̇ ≤ 0. Furthermore, setting γF = 0 yields γ0 = 0. As
the system is continuous in the terminal value γF , this implies that the boundary condition
for γ0 is met for some γF ∈ (0, ng0]. The sufficient condition given in the theorem ensures
that α and β remain bounded as we vary γF in this range.

The proof is completed by showing that there exists a solution on [0, T ] to equation (13),
viewed as a quadratic first-order ODE in ξ with time-varying coefficients given by the solution
(α, β, γ) to the other three equations. We use a novel approach where we first establish the
existence of ξ, and hence of equilibria, for g0 small, in which case the system resembles the
complete information case. We then observe that if ξ is the first to diverge as g0 approaches

19For example, given n = 2 and demand p = p̄− q1− q2, if we define π = (c1 + c2)/2, then the equilibrium
quantities are qi = aci + bπ + d (i = 1, 2), where a = −1, b = 2/3, and d = p̄/3, and hence d = −p̄(a+ b).
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some ḡ0 from below, then some of the coefficients of the equilibrium value function V in
(9) diverge. This allows us to construct a non-local deviation that is profitable for g0 close
enough to ḡ0 and hence contradicts the existence of an equilibrium for all g0 < ḡ0.

The sufficient condition (15) for existence in Theorem 1 is satisfied if players are suffi-
ciently impatient or if the horizon is sufficiently short. The condition is not tight; numerical
analysis suggests that equilibria exist for parameters in a somewhat larger range. However,
it is not redundant either. For example, it is possible to prove that, given any values for
the other parameters, if r = 0, then there exists a sufficiently large but finite T̄ such that a
symmetric linear Markov equilibrium fails to exist for T > T̄ . In terms of the decomposition
of the firms’ equilibrium incentives provided in the next section, lack of existence appears to
be due to the signaling incentive becoming too strong. Consistent with this interpretation,
(15) becomes harder to satisfy if r decreases or T increases, either of which makes signaling
more valuable, or if g0/σ2 increases, which increases the scope for signaling. To see why
increasing the number of firms n is also problematic, note that under linear strategies, it is
the sum of the firms’ costs that enters into (1) and into the firms’ payoffs through Q. Thus,
the relevant initial variance is that of the sum of costs, or ng0, which is increasing in n.

5 Equilibrium Properties

We then turn to the properties of linear Markov equilibria and derive implications for the
firms’ strategic behavior, prices, quantities, and welfare.

We first summarize properties of the equilibrium coefficients.

Proposition 1. Any symmetric linear Markov equilibrium satisfies the following properties:

1. (−αt, βt, δt) ≥ (−αm(γt), β
m(γt), δ

m(γt)) > 0 for all t.

2. α is initially decreasing and if T is sufficiently large, it is eventually increasing.20

3. β is initially increasing and if T is sufficiently large, it is eventually decreasing.

4. δ is eventually decreasing.

5. If r = 0, then α is quasiconvex, β is quasiconcave, and δ is decreasing.

The first part of Proposition 1 shows that the equilibrium coefficients are everywhere
larger in absolute value than the myopic coefficients (for the current beliefs) defined in (10).

20A function [0, T ]→ R satisfies a property initially if it satisfies it in an open neighborhood of 0. Similarly,
the function satisfies a property eventually if it satisfies it in an open neighborhood of T .
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Figure 1: Equilibrium Coefficients, (r, σ, n, p̄, T, g0) = (0.1, 1, 2, 5, 5, 2).

As the latter are signed and bounded away from zero, so are the former. In particular, each
firm’s output is decreasing in its cost and increasing in the public belief.

The second and third part Proposition 1 imply that the equilibrium coefficients on the
cost, α, and on the public belief, β, are necessarily non-monotone for T sufficiently large. As
we discuss below, this seemingly surprising pattern is a natural consequence of learning and
signaling. In contrast, the myopic coefficients, which only reflect learning, are monotone:
αm(γt) is decreasing, βm(γt) is increasing, and δm(γt) is constant in t by inspection of (10).21

The last part of Proposition 1 completes the qualitative description of equilibrium coef-
ficients for r = 0, in which case −α and β are single peaked and δ is decreasing. In fact,
numerical analysis suggests that these properties always hold even for r > 0, but we are not
aware of a proof. Figure 1 illustrates a typical equilibrium.

As an immediate corollary to Proposition 1, we obtain a characterization of long-run
behavior. To see this, note that α is bounded away from zero, since αt ≤ αm(γt) ≤ −1/2 for
all t, where the second inequality is by definition of αm in (10). By inspection of (14), this
implies that learning will never stop. Moreover, since the bound on α is independent of the
length of the horizon, the rate of convergence is uniform across T , in the following sense.

Corollary 1. For all ε > 0, there exists tε <∞ such that for all T ≥ t ≥ tε, every symmetric
linear Markov equilibrium of the T -horizon game satisfies γt < ε.

21These coefficients correspond to an equilibrium of a dynamic game where players are myopic, but where
γ evolves according to the actual equilibrium coefficient α. In contrast, the true equilibrium for myopic
players (i.e., for r = ∞) is given by the system defined by (10) and (14). The coefficients are pointwise
smaller in absolute value in the latter than in the former, because in the true myopic equilibrium γ decreases
more slowly due to the smaller α and the myopic coefficients are monotone functions of variance by (10).
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This implies that the public belief converges to the true average cost, and hence each firm
learns its rivals’ average cost, asymptotically as we send the horizon T to infinity. Because
of the identification problem arising from a one-dimensional signal and symmetric strategies,
the firms cannot learn the cost of any given rival when there are more than two firms.
However, with linear demand and constant marginal costs, knowing the average is sufficient
for the firms to play their complete information best responses even in this case. Thus, under
Markov strategies, play converges asymptotically to the static complete information Nash
equilibrium for the realized costs.

Formally, let Qt := (Q1
t , . . . , Q

n
t ), and let qN : Rn → Rn be the Nash equilibrium map of

costs to quantities in the static, complete information version of our model.

Corollary 2. Suppose rσ2 > g0κ(n). Then for all ε > 0, there exists tε < ∞ such that for
all T ≥ t ≥ tε, every symmetric linear Markov equilibrium of the T -horizon game satisfies
P[‖Qt − qN(C)‖ < ε] > 1− ε.22

The key to the proof is the fact that under the sufficient condition for existence invoked in
the statement, the equilibrium coefficients can be shown to converge over time to the static
complete information values at a rate bounded from below uniformly in T . Corollary 2 then
follows by noting that the public belief converges to the true average cost in distribution at
a similarly uniform rate by Corollary 1. The independence of tε from the horizon T suggests
that it is the Markov restriction rather than the finite horizon that is driving the convergence
to the static complete information Nash outcome, and, indeed, our other results. (In Section
6 we show that as T →∞, our equilibria converge to a symmetric linear Markov equilibrium
of the infinite horizon version of the model.)

5.1 Signaling and Learning

In order to explain the qualitative properties of equilibrium strategies, we consider here
how signaling and learning affect the firms’ incentives. For the deterministic part of the
equilibrium strategy, δ, the intuition is well understood in terms of signal-jamming in a
game with strategic substitutes: each firm has an incentive to increase its output above the
myopic level to lower the price in an attempt to lead its competitors to underestimate its
cost.23 Indeed, compared to the myopic coefficient δm, which is constant, the equilibrium δ

is greater with the difference (eventually) decreasing over time.
22Here, P denotes the joint law of (C,Qt) under the equilibrium strategies in the game with horizon

T . Without the condition on the parameters, play still converges to the static complete information Nash
equilibrium, but our proof for that case allows the critical time tε to depend on the horizon T .

23See, e.g., Riordan (1985), Fudenberg and Tirole (1986), or Mirman, Samuelson, and Urbano (1993).
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For the weights on the own cost and the public belief, i.e., α and β, the intuition seems
less clear at first. From firm i’s perspective, the public belief is not just the average cost of its
rivals, but also includes its own cost. Furthermore, conditioning on Ci serves two purposes:
it accounts both for firm i’s cost of production as well as its belief about the other firms’
average cost as M i

t = ztΠt + (1− zt)Ci.
To separate these effects, we proceed as follows. Rewrite firm i’s strategy as conditioning

explicitly on its cost Ci and its beliefM i
t . That is, fix a symmetric linear Markov equilibrium

(α, β, δ), and define α̂t := αt − βt(1 − zt)/zt and β̂t := βt/zt. Then, by Lemma 2, firm i’s
equilibrium quantity on the path of play is given by

Qi
t = αtC

i + βtΠt + δt = α̂tC
i + β̂tM

i
t + δt, t ∈ [0, T ].

By inspection of the first-order condition (8), there are two drivers of firm i’s output:
myopic flow profits and the value of signaling. The myopic time-t best response to the
equilibrium strategy is found by setting ∂V/∂π ≡ 0 in the second term in (8). Expressed in
terms of Ci and M i

t as above, this gives Qbr
t = α̂brt C

i + β̂brt M
i
t + δbrt , where

α̂brt = −(n− 1)βt(zt − 1)

2zt
− 1

2
, β̂brt = −(n− 1)(βt + αtzt)

2zt
, δbrt =

p̄− (n− 1)δt
2

.

The difference between the equilibrium strategy and the myopic best response, or

Qi
t −Qbr

t = (α̂t − α̂brt )Ci + (β̂t − β̂brt )M i
t + (δt − δbrt ), (16)

which equals the second term in (8), is then by construction only due to signaling. Accord-
ingly, we refer to the coefficients on the right-hand side of (16) as signaling components.

Proposition 2. In any symmetric linear Markov equilibrium, the signaling components sat-
isfy the following properties:

1. α̂t − α̂brt < 0, β̂t − β̂brt > 0, and δt − δbrt > 0 for all 0 ≤ t < T , and we have
α̂T − α̂brT = β̂T − β̂brT = δT − δbrT = 0.

2. If r = 0, then |α̂t − α̂brt |, |β̂t − β̂brt |, and |δt − δbrt | are decreasing in t.24

Armed with Proposition 2, we are now in a position to explain equilibrium signaling and
the non-monotonicity of the equilibrium coefficients. Note first that the ex ante expected

24As with some of our other results for r = 0, numerical analysis strongly suggests that this result holds
for all r > 0, but proving it appears difficult without the tractability gained by assuming r = 0.

21



signaling quantity is given by

E[Qi
t −Qbr

t ] = (α̂t − α̂brt )π0 + (β̂t − β̂brt )π0 + (δt − δbrt ) = (δt − δbrt )
(

1− π0
p̄

)
,

where we have used δt = −p̄(α̂t + β̂t) and δbrt = −p̄(α̂brt + β̂brt ). Thus, in the relevant range
where π0 < p̄, the expected signaling quantity is positive as the firms are engaging in excess
production in an effort to convince their rivals to scale back production. Moreover, if r = 0,
the expected excess output is monotonically decreasing over time, reflecting the shorter time
to benefit from an induced reduction in the rivals’ output and the fact that beliefs are less
sensitive to output when the firms’ estimates of their rivals’ costs are more precise.

The costs and benefits of signaling depend on the firm’s own cost and its belief about
its rivals’ costs. A lower cost first makes it cheaper to produce additional output, and then
leads to higher profits from the expansion of market share when the other firms scale back
their outputs. This is captured by the signaling component α̂t − α̂brt in (16) being negative.
If r = 0, it is decreasing in absolute value over time for the same reasons why the expected
signaling quantity discussed above is decreasing and vanishing at the end.

The existence of the strictly positive signaling component β̂t − β̂brt multiplying firm i’s
belief M i

t in (16) is due to the belief being private. That is, firm i produces more when it
believes that its rivals’ costs are high both because it expects them to not produce much
today (captured by β̂brt > 0) and because by producing more, it signals to its rivals that it
thinks their costs are high and that it will hence be producing aggressively in the future.
Producing more is cheaper when the belief is higher as the other firms are then expected
to produce less. Moreover, as a firm with a higher belief also expects to produce more in
the future, it expects a larger benefit from its rivals scaling back their output. Again, this
signaling component is monotone decreasing over time when r = 0.

Turning to the non-monotonicity of the equilibrium coefficients, consider Figure 2, which
illustrates the equilibrium coefficients α̂ and β̂, the coefficients α̂br and β̂br of the myopic best
response to the equilibrium strategy, and the signaling components α̂− α̂br and β̂− β̂br. The
dashed curves depict the implied coefficients on Ci andM i

t under the myopic coefficients from
(10), assuming that the evolution of the posterior variance γ is driven by the corresponding
myopic αm. That is, the dashed curves correspond to the equilibrium of the dynamic game
when players are myopic (i.e., with r =∞).

In the myopic equilibrium (dashed), the weights on Ci and M i
t are increasing in absolute

value as the firms’ information becomes more precise (i.e., as γ decreases over time). As
the myopic equilibrium reflects only the effect of learning, its properties are best understood
by analogy with a static Cournot game of incomplete information, where each of two firms
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Figure 2: Learning and Signaling Incentives, (r, σ, n, p̄, T, g0) = (0, 1, 2, 1, 4.1, 2).

privately observes an unbiased signal about its opponent’s cost. In this setting, a higher-cost
firm knows that its rival will observe, on average, a higher signal. As the private signals
become more precise, the firms increasingly rely on them to form their beliefs about their
rival’s cost. In a setting with strategic substitutes, each firm then consequently also assigns
greater weight to its own cost in response, i.e., a high-cost firm scales back production further
when signals are more precise as it expects its rival to be more aggressive.

The myopic best reply to the equilibrium strategy reflects these forces, but it is also
affected by the shape of the equilibrium coefficients. The fact that the equilibrium β̂ is
larger than the corresponding weight in the myopic equilibrium means in the context of our
auxiliary static game that firm i’s opponent is responding more aggressively to its private
signal. In response, firm i’s myopic best reply places a higher weight α̂br on its own cost.
This explains why α̂br lies below the lower of the dashed curves, except at t = 0 when there is
no private history. Proposition 1 shows that β (and thus βbr) is eventually decreasing, which
explains why α̂br is eventually slightly increasing in Figure 2. Similarly, as the equilibrium α̂ is
larger than the weight on the cost in the myopic equilibrium, the price is a more informative
signal, and hence β̂br lies above the corresponding dashed curve. As the equilibrium α

is eventually increasing by Proposition 1, the opponents’ output becomes eventually less
sensitive to their cost, and the myopic best response then places a smaller weight on the
belief about their cost. This is why β̂br is eventually slightly decreasing in Figure 2.

Finally, the difference between the equilibrium coefficients and those of the myopic best
reply is given by the signaling components α̂ − α̂br and β̂ − β̂br, which are decreasing in
absolute value by Proposition 2.

To summarize, both α̂ and β̂ are the sum of a monotone signaling component, and of
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Figure 3: Price and Output Paths, (r, σ, n, p̄, T, g0, π0, c
1, c2) = (0.4, 0.75, 2, 100, 3.46, 2, 30, 20, 40).

an almost monotone myopic component reflecting learning. Since α̂ and β̂ are simply a
regrouping of α and β, these two effects explain also the non-monotonicity of the latter.

5.2 Prices and Quantities

The properties of the equilibrium coefficients have implications for the levels and time paths
of prices and outputs. The relationship δ = −p̄(α+β) between the coefficients in Theorem 1
yields a simple expression for the expected total output conditional on past prices: for any
t and s ≥ t, we have

E
[∑

i

Qi
s | FYt

]
= n(αsΠt + βsΠt + δs) = nδs

(
1− Πt

p̄

)
.

Thus, the total expected output inherits the properties of the coefficient δ when Πt ≤ p̄. (For
t = 0 the condition can be satisfied simply by assuming that π0 ≤ p̄; for t > 0 it can be made
to hold with arbitrarily high probability by a judicious choice of parameters.) Proposition 1
then implies that the total expected output is eventually decreasing in s, and lies everywhere
above its terminal value (p̄ − Πt)n/(n + 1), which is the complete information Nash total
output for an industry with average cost Πt. That is, if Πt ≤ p̄ (respectively, Πt > p̄), then
the expected current market supply conditional on public information is higher (lower) than
the market supply in a complete information Cournot market with average cost Πt.

In order to describe the behavior of prices, we average out the demand shocks by defining
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for any t and s ≥ t the expected price

Et[Ps] := p̄− E
[∑

i

Qi
s | FYt

]
= p̄− nδs

(
1− Πt

p̄

)
,

which is just the expected time-s drift of the process Y conditional on its past up to time t.
The above properties of the expected total market output then carry over to the expected
price with obvious sign reversals. We record these in the following proposition, which sum-
marizes some properties of equilibrium prices and outputs.

Proposition 3. In any symmetric linear Markov equilibrium, prices and quantities satisfy
the following properties:

1. If Πt ≤ p̄ (respectively, Πt > p̄), then for all s ≥ t, the expected price Et[Ps] is
lower (respectively, higher) than the complete information equilibrium price in a static
Cournot market with average cost Πt. As s → T , the expected price converges to
the complete information equilibrium price given average cost Πt. If r = 0, then
convergence is monotone. If in addition Πt < p̄, then Et[Ps] is increasing in s.

2. The volatility of total output conditional on costs, −(αtβtγt)/σ, is eventually decreasing
in t. If r = 0, then the volatility decreases monotonically in t.

3. The difference between any two firms’ output levels conditional on their costs, Qi
t−Q

j
t =

αt(C
i − Cj), is deterministic and, for T sufficiently large, non-monotone.

The first part of Proposition 3 implies that as long as the public belief about the average
cost lies below the demand intercept, then conditional on past prices, future prices are
expected to increase, monotonically so if r = 0. In particular, this is true of the time-0
expectation as long as π0 ≤ p̄. The finding is illustrated in Figure 3, which shows realized
price and output paths for two firms with costs (c1, c2) = (20, 40).

The second part of the proposition concerns the volatility of total output. Noting that∑
iQ

i
t = αt

∑
iC

i + nβtΠt + nδt, we see that this volatility is given by nβtλtσ, where λtσ
is the volatility of the public belief Πt. Recalling that λt = −(αtγt)/(nσ

2) then gives the
expression in Proposition 3. Since the volatility of output is driven by the volatility of the
public belief Πt, it eventually decreases as Πt converges to the true average cost. Indeed, as
t → ∞, the total output converges to a constant by Corollary 2. If r = 0, this convergence
is monotone, despite the non-monotonicity of α and β. Interestingly, however, the volatility
of total output may be non-monotone, peaking at some intermediate time, when r > 0.

By inspection of (1), the drift of the revenue process is p̄ −
∑

iQ
i
t, and hence it simply

mirrors the movements in total output. But the drift is just the expected price (where the
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expectation is over the time-t demand shock σdZt), and so the above discussion of output
volatility also describes the volatility of the expected price. We thus see that the expected
price may be the most volatile after the market has already operated for some time, but it
will eventually settle down. Of course, realized prices continue to vary due to demand shocks
even after outputs have converged (close) to complete information levels.

The non-monotonicity of the output difference Qi
t−Q

j
t in t in the third part of Proposition

3 can be clearly seen in Figure 3. The result follows simply by definition of Markov strategies
and the non-monotonicity of α for T large. As we discuss below, it has implications for
productive efficiency and hence for market profitability and market concentration.

5.3 Profits, Consumer Surplus, and Market Concentration

We now consider equilibrium profits and consumer surplus. In particular, we are interested
in comparing them to the corresponding complete information benchmarks over time.

Of course, conditional on any history, the firms’ profits as well as consumer surplus depend
on the realized costs and prices as well as on the prior beliefs. Thus, in order to obtain a
meaningful comparison, we consider the ex ante expected flow profits and flow consumer
surplus. That is, we take expectations of these flows with respect to the vector of costs in
our dynamic game. Similarly, we construct the complete information benchmark by taking
an expectation of the static complete information Nash equilibrium profits and consumer
surplus with costs drawn from the same prior distribution as in the dynamic game.25

By the symmetry, the ex ante expectation of any firm i’s time-t flow profit is given by

Wt := E
[(
p̄−

∑
j

Qj
t − C1

)
Q1
t

]
.

Routine calculations show that the expected static complete information Nash profit is

W co :=
(p̄− π0)2 + g0(n

2 + n− 1)

(n+ 1)2
.

The ex ante expected time-t flow consumer surplus, CS t, and the expected static complete
information Nash consumer surplus, CS co, are defined analogously.

25Note that repetition of the static Nash equilibrium is the natural complete information analog of our
linear Markov equilibria. Indeed, it obtains as a limiting case as g0 → 0.
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Proposition 4. The expected profits and consumer surpluses satisfy the following properties:

1. CS t > CS co for all t ∈ [0, T ] in every symmetric linear Markov equilibrium.

2. Wt < W co for t = 0 and t = T in every symmetric linear Markov equilibrium.

3. Suppose

κ(n) <
rσ2

g0
<
n(2− 3n+ n3)

(n+ 1)3
. (17)

Then for all π0 sufficiently close to p̄ and for all T̄ > 0, there exists t > 0 and T > T̄

such that the T -horizon game has a symmetric linear Markov equilibrium where

ˆ T

t

e−rs(Ws −W co)ds > 0 and
ˆ T

t

e−rs(TS s − TS co)ds > 0,

where TS s := Ws+CS s and TS co := W co +CS co are, respectively, the ex ante expected
time-s total surplus and the expected static complete information Nash total surplus.

The first part of Proposition 4 shows that the ex ante expected flow consumer surplus
always lies above the expected complete information consumer surplus. Heuristically, this
follows since expected price is at all times below the complete information level if π0 ≤ p̄

by Proposition 3 and any variation in the price conditional on the costs is only beneficial to
consumers who can adjust their demands. (The actual proof allows for π0 > p̄.)

Turning to the profits, Figure 4 compares the expected flow profits under complete and
incomplete information. The left and right panels contrast markets with a low and high mean
of the cost distribution. There are two main forces at play. On the one hand, signal-jamming
adds to the expected total output, relative to the complete information Nash equilibrium
level. This wasteful spending drives down profits but (eventually) declines over time by
Proposition 2. On the other hand, the firms’ active signaling (i.e., α being more negative than
its myopic value) increases the sensitivity of each firm’s output to its own cost. This improves
the allocation of production, holding fixed the total output level. The resulting higher
productive efficiency leads to higher expected profits since, from the ex ante perspective,
each firm receives an equal share of the industry profit.

Based on the first force alone, one would conjecture that expected flow profits always
increase over time, as in the left panel of Figure 4. But recall from Proposition 1 that the
sensitivity of output to cost, α, is non-monotone. In other words, signaling can result in the
productive efficiency being highest in the medium run. As in the right panel of Figure 4,
this can lead the expected flow profitWt to surpass the expected complete information profit
W co at some intermediate time. The third part of Proposition 4 shows that the effect may be
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Figure 4: π0 = 0 (left), π0 = p̄ (right), and (r, σ, n, p̄, T, g0) = (0.2, 1, 2, 5, 15.44, 2).

strong enough to cause even the ex ante expectation of the time-t continuation profits (i.e.,´ T
t
e−rsWsds) to be higher than under complete information. Moreover, since the consumer

surplus is always above the complete information level, also the expected time-t continuation
total surplus is then above the complete information level.

The conditions in the third part of Proposition 4 ensure (i) that the “average profitability
of the market” (as captured by p̄ − π0) is not too high relative to the variance of output,
so that the gain in allocative efficiency of production is important enough to outweigh the
effect of higher total output, and (ii) that each firm is sufficiently patient, so that the value of
signaling is sufficiently large. The latter is guaranteed by the second inequality in (17). The
first inequality in (17) is a technical condition. It guarantees the existence of our equilibrium
for any T by Theorem 1, and implies that (α, β, δ, γ) converge uniformly to well-defined limit
functions as T →∞ (along some subsequence), which we use in the proof.26

To summarize, after an initial unprofitable phase of high output levels, the combined
effect of learning and signaling can improve the expected industry flow profits. This result
suggests that some intermediate information structure would yield higher payoffs than both
complete information and incomplete information with firms only sharing the common prior.
In particular, the initial phase of wasteful spending could be avoided by releasing an exoge-
nous public signal about the industry average cost. For a given precision level, such a signal
induces the information structure (obtained by repeatedly observing the market price) that
arises in equilibrium at some intermediate time.27

26For concreteness, we show at the end of the proof of Proposition 4 that the two inequalities in (17) define
a non-empty interval of possible values for rσ2/g0 if 3 ≤ n ≤ 10.

27In the static literature on ex ante information sharing in oligopoly (Vives, 1984; Gal-Or, 1985; Raith,
1996), output is most sensitive to costs under complete information, and the expected total quantity is
constant in the precision of the information revealed. As a result, sharing full information about costs is
optimal in Cournot models. Instead, in our dynamic model, total expected quantity is decreasing, but output
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The above discussion of equilibrium profits focused on ex ante expected profits, which
by symmetry are the same across firms. For any cost realizations, however, the firms with
the lowest costs earn the highest profits and have the largest market shares. A possible way
to capture this is to use some standard measure of concentration such as the Herfindahl-
Hirshman index, or HHI, which is defined as the sum of the squared market shares.

In a symmetric linear Markov equilibrium, the time-t HHI is given by

HHI t :=
∑
i

(
Qi∑
kQ

k

)2

=

∑
i(αtC

i + βtΠt + δt)
2

(αt
∑

k C
k + nβtΠt + nδt)2

.

The presence of Πt in the denominator makes it hard to study the behavior of the HHI
analytically, so we resort here to simulations in order to explore the evolution of market
concentration over time. Figure 5 shows the simulated HHI, averaged over 500 runs of the
market, for a two-firm industry with cost vector (c1, c2) = (1, 4). As the figure illustrates, in-
dustry concentration can be non-monotone over time. This is driven by the non-monotonicity
of the difference between the firms’ outputs over time (Proposition 3). The result is “over-
shooting:” the firm with the lowest cost captures relatively quickly a large market share that
is larger than its share in the complete information outcome, to which the market eventu-
ally converges. We also see that for long horizons or low discount rates, the HHI can be
decreasing for a long time.

is most sensitive to cost for some intermediate time, leading to the richer picture outlined above.
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6 Extensions

6.1 Infinite Horizon

We have assumed a finite horizon throughout. The main reason for this is a technical one:
it allows us to derive and impose the relevant boundary conditions for the equilibrium sys-
tem (11)–(14). However, we now show that our analysis carries over to an infinite horizon.
More precisely, we show that our finite-horizon equilibria converge to an equilibrium of the
infinite-horizon version of the model as T →∞ under a slight strengthening of the sufficient
condition for existence (15). This result allows us to extend our findings about the equilib-
rium properties to the infinite-horizon case. It also provides a method for approximating an
equilibrium of the infinite-horizon game using our boundary value problem.

For the formal statement, we use Theorem 1 to identify a Markov equilibrium of the T -
horizon game with the tuple (αT , βT , δT , ξT , γT ). It is convenient to extend these functions
to all of [0,∞) by setting (αTt , β

T
t , δ

T
t , ξ

T
t , γ

T
t ) = (αTT , β

T
T , δ

T
T , ξ

T
T , γ

T
T ) for t > T . We then

define a sequence of symmetric linear Markov equilibria to be any sequence of such tuples
indexed by a strictly increasing, unbounded sequence of horizons. By the infinite-horizon
game we mean the game obtained by setting T =∞ in Section 2. (Note that the first time
we use T <∞ in the above analysis is when we impose boundary values on the equilibrium
coefficients in Section 4.2.)

Proposition 5. Suppose g0/σ2 < 4r/(27n). Then any sequence of symmetric linear Markov
equilibria contains a subsequence that converges uniformly to a symmetric linear Markov
equilibrium (α∗, β∗, δ∗, ξ∗, γ∗) of the infinite-horizon game.28 Moreover, δ∗ = −p̄(α∗ + β∗)

and (α∗, β∗, ξ∗, γ∗) is a solution to the system (11)–(14) on [0,∞) with limt→∞ α
∗
t = αm(0),

limt→∞ β
∗
t = βm(0), limt→∞ ξ

∗
t = ξm(0), and γ∗0 = ng0.

The condition g0/σ2 < 4r/(27n) strengthens the first case in (15) to ensure that all the
functions are bounded uniformly in T , facilitating the convergence argument. In particular,
if g0/σ2 < r/κ(n), then (αT , βT , δT , γT ) are uniformly bounded and converge uniformly
(along a subsequence) as T → ∞. The stronger condition allows us to also bound and
show the convergence of ξT , and ultimately establish that the limit is an equilibrium of the
infinite-horizon game by verifying a transversality condition.

Since beliefs and play converge in the limit of finite-horizon equilibria, this is immediately
true of the infinite-horizon equilibrium we identify. Moreover, as each δT lies everywhere

28There is no reason to allow Markov strategies to condition on calendar time in the infinite-horizon game.
However, allowing for it is innocuous because α∗ is bounded away from zero, and hence the limit posterior
variance γ∗t is strictly decreasing in t, implying that conditioning on t is equivalent to conditioning on γ∗t .
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above the complete information level, so does δ∗. This implies that our predictions for
expected outputs and prices carry over as well. Finally, depending on the parameters, the
coefficient α∗ is either non-monotone or everywhere decreasing, implying that the possibility
of non-monotone market shares and expected profits carries over as well.

6.2 Asymmetric, Correlated, and Interdependent Costs

Symmetry of the prior distribution and of the equilibrium strategies is important for tractabil-
ity. The asymmetric case presents no new conceptual issues, but the public belief Π becomes
vector-valued with an associated posterior covariance matrix, and the analysis of the result-
ing boundary value problem seems a daunting task. (See Lambert, Ostrovsky, and Panov
(2014) for an extension of the static Kyle (1989) model to the asymmetric case.)

In contrast, the assumption about independent costs can be easily relaxed. Correlated
costs bring qualitatively no new insights, and the analysis under independence extends to
symmetric settings with positively or negatively correlated costs. To see this, note that the
public belief simply tracks the average cost, so the laws of motion of Π and γ are unaffected
by (symmetric) correlation in the prior; correlation only affects the initial condition for γ.
Similarly, firm i’s private belief is still captured by M i and γM ; only the initial condition
for the matrix Γ in Lemma 1 is affected. Lemmas 2 and 3 then carry over as stated, except
that the initial value of z will now be greater than 1 if costs are negatively correlated, and
less than 1 if correlation is positive.

The above observation can be used to establish the following relationships among sym-
metric linear Markov equilibria across the different cases. For simplicity, suppose there are
only two firms. Fix an equilibrium with independent cost draws. Then at any time t, the
continuation equilibrium over the remaining horizon [t, T ] is an equilibrium of a game where
the horizon is [0, T − t] and the prior has negative correlation. (The latter equilibrium is
characterized by the same differential equations as in the independent case, only the initial
conditions are different.) The intuition for this result is as follows. Along the path of play,
the outsider is learning the firms’ average cost. Hence, from his perspective, individual costs
are increasingly negatively correlated over time even though they were independent under
the prior. Indeed, in the limit the average is known and costs are perfectly negatively corre-
lated. On the other hand, if costs are ex ante symmetrically negatively correlated, then the
outsider believes them to be negatively correlated already at t = 0. Moreover, each firm’s
own cost now provides a private signal about the others’ cost. Thus the resulting information
structure is as if we had directly jumped to some time t > 0 in the independent case.

Similarly, when the prior distribution has symmetric positive correlation, the outsider is
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still just learning the average. As a result, from the outsider’s perspective, the correlation
of the costs is decreasing and eventually becomes zero at some time t, at which point the
continuation equilibrium over [t, T ] is simply an equilibrium of a game where the horizon is
[0, T − t] and where the costs are independent according to the prior.

We can also introduce interdependent values, modeled as firm i’s cost being the sum Ci+

k
∑

j 6=iC
j for some 0 < k ≤ 1. The addition of an extra term in the payoff function changes

the equations in our boundary value problem somewhat, but the derivation is analogous.
Cost interdependence reduces the incentive to signal, since any given firm having a lower
cost implies that the other firms’ costs are lower as well, and hence induces them to produce
more. In the extreme case of pure common values (k = 1), the firms initially scale back
production, with the burst of production toward the end resembling the aggressive behavior
at the end of the horizon in models of insider trading in financial markets.

We have focused on the firms’ uncertainty about their competitors’ costs. A more general
model of a new market would have both cost and demand uncertainty. A one-agent model
with such two-dimensional uncertainty is studied by Sadzik and Woolnough (2014) who
generalize the model of Kyle (1985) by endowing the insider with private information about
both the fundamental value and the amount of noise traders.

7 Concluding Remarks

We have analyzed a stylized game of dynamic oligopolistic competition under incomplete
information. In our game, firms must balance the intertemporal trade-off between flow-profit
maximization and investment in manipulating their rivals’ beliefs. The key to the tractability
of our framework is the representation of symmetric linear Markov strategies in terms of the
private costs and a public belief—a sufficient statistic based on public information only.

We have derived conditions for existence of a symmetric linear Markov equilibrium and
characterized the time-varying equilibrium weights the firms assign to private and public
information. In any such equilibrium, learning is partial—firms only learn the average of their
rivals’ costs—yet behavior converges uniformly to the complete information Nash outcome.
Finally, we have traced the rich implications of equilibrium behavior for the patterns of
relevant variables, such as prices, quantities, and industry profits.

Our model with fixed costs captures in a stylized way a new market where firms eventually
converge to a static equilibrium. It is also of interest to consider settings where costs vary
over time. We pursue this in ongoing work.
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Appendix

A.1 Preliminary Lemma

Under symmetric linear strategies, dYt =
(
p̄−αt

∑
iC

i−nBt(Y
t)
)
dt+σdZt, with Bt(Y

t) :=´ t
0
f tsdYs + δt. The following result is standard (Liptser and Shiryaev, 1977).

Lemma A.1. Under any symmetric linear strategy profile, Πt := 1
n
E
[∑

j C
j
∣∣FYt ] and γt :=

E
[(∑

j C
j − nΠt

)2∣∣FYt ] are given by the unique solution to the system

dΠt = −αtγt
nσ2

[
dYt −

(
p̄− αtnΠt − nBt(Y

t)
)
dt
]
, Π0 = π0,

γ̇t = −
(αtγt
σ

)2
, γ0 = ng0.

In particular, the solution to the second equation is given by (5).

A.2 Proofs of Lemmas 1 to 4

Proof of Lemma 1. Let e := (1, . . . , 1)′ ∈ Rn−1 be a column vector of ones, and
let I denote the (n − 1) × (n − 1) identity matrix. The argument in the text before the
Lemma shows that firm i’s belief can be found by filtering the (column) vector C−i :=

(C1, . . . , Ci−1, Ci+1, . . . , Cn)′ ∼ N (π0e, g0I) from the one-dimensional process

dY i = −αte′C−idt+ σdZt.

By standard formulas for the Kalman filter (see, e.g., Liptser and Shiryaev, 1977, Theorem
10.2), the posterior mean M−i

t := E[C−i|FY i

t ] and the posterior covariance matrix Γt :=

E[(C−i −M−i
t )(C−i −M−i

t )′|FY i

t ] are the unique solutions to the system

dM−i
t = −αt

σ
Γte

dY −i − αte′M−i
t dt

σ
, M−i

0 = π0e, (A.1)

Γ̇t = −α
2
t

σ2
Γtee

′Γt, Γ0 = g0I, (A.2)

where for Γt uniqueness is in the class of symmetric nonnegative definite matrices.
We first guess and verify the form of the solution for Γt. Let At := Γtee

′Γt. It is easy to
see that its (i, j)-th component satisfies

Aijt =
n−1∑
k=1

Γikt

n−1∑
`=1

Γ`jt .
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Thus we guess that the solution takes the form Γii = γ1t , Γijt = γ2t , i 6= j, for some functions
γ1 and γ2. The matrix equation (A.2) then reduces to the system

γ̇1t = −α
2
t

σ2
(γ1t + (n− 2)γ2t )

2, γ10 = g0,

γ̇2t = −α
2
t

σ2
(γ1t + (n− 2)γ2t )

2, γ20 = 0.

Consequently, γMt := (n− 1)[γ1t + (n− 2)γ2t ] satisfies

γ̇Mt = −
(αtγMt

σ

)2
, γM0 = (n− 1)g0,

whose solution is
γMt =

(n− 1)g0

1 + (n− 1)g0
´ t
0
α2
s

σ2 ds
.

We can then solve for γ1 and γ2 by noting that γ̇it = γ̇Mt /(n − 1)2 for i = 1, 2, and hence
integration yields

Γiit = γ1t =
γMt

(n− 1)2
+

(n− 2)g0
n− 1

and Γijt = γ2t =
γMt

(n− 1)2
− g0
n− 1

, i 6= j.

It remains to verify that Γt so obtained is nonnegative definite. To this end, note that
γ1t = γ2t + g0, and hence Γt = g0I + γ2tE, where E is a (n − 1) × (n − 1) matrix of ones.
Therefore, for any nonzero (column) vector x ∈ R(n−1) we have

x′Γtx = g0 ‖x‖22 + γ2t

(∑
i

xi

)2
.

If γ2t ≥ 0, we are done. If γ2t < 0, then, using the fact that (
∑
i

xi)
2 ≤ ‖x‖21, we have

x′Γtx ≥ g0 ‖x‖22 + γ2t ‖x‖
2
1 ≥ ‖x‖

2
1

( g0
n− 1

+ γ2t

)
= ‖x‖21

γMt
(n− 1)2

> 0,

where the first inequality follows from
√
n− 1 ‖x‖2 ≥ ‖x‖1 and the second inequality from

γMt > 0. We conclude that Γt is nonnegative definite, and hence it is indeed our covariance
matrix. By inspection, it is of the form Γt = Γ(γMt ) as desired.

In order to establish the form of the posterior mean, note that (Γte)
i = γMt /(n−1). Thus

(A.1) implies that M−i
t = M i

te, where M i
t evolves according to

dM i
t = −αt

σ

γMt
n− 1

dY i + αt(n− 1)M i
tdt

σ
, (A.3)
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and where
dZi

t :=
dY i + (n− 1)αtM

i
tdt

σ

is a standard Brownian motion (with respect to FY i) known as firm i’s innovation process. It
is readily verified that ((n− 1)M i

t , γ
M
t ) are the posterior mean and variance for the problem

dY i
t = −αtνdt+ σdZt, ν ∼ N ((n− 1)π0, (n− 1)g0),

which amounts to filtering the other firms’ total cost. Thus M i
t is the posterior expectation

about the other firms’ average cost as desired.
Proof of Lemma 2. The result is a special case of Lemma 3. (The formula for zt follows
by direct calculation from the formulas for γMt and γt given in Lemma 1 and equation (5),
respectively.)
Proof of Lemma 3. Fix a symmetric linear strategy profile, and let

λt := −αtγt
nσ2

and λMt := − αtγ
M
t

(n− 1)σ2
, t ∈ [0, T ].

Note that zt := nγMt /[(n− 1)γt] = λMt /λt. Recall the law of motion of the private belief M i

in (A.3), and define the process Π̂ i by

Π̂ i
t := exp

(
n

ˆ t

0

λuαudu
)
π0

+

ˆ t

0

exp
(
n

ˆ t

s

λuαudu
)
λs

[
− αs

(
Ci + (n− 1)M i

s

)
ds+

dM i
s

λMt

]
.

The process Π̂ i is in firm i’s information set because it is a function of its belief M i and cost
Ci. We prove the first part of the Lemma by showing that

M i
t − Ci = zt(Π̂

i
t − Ci), t ∈ [0, T ]. (A.4)

To this end, note that the law of motion of Π̂ i is given by

dΠ̂ i
t = λtαt[Π̂

i
t − Ci + (n− 1)(Π̂ i

t −M i
t )]dt+

λt
λMt

dM i
t , Π̂ i

0 = π0. (A.5)
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Let Wt := zt(Π̂
i
t − Ci). Applying Ito’s rule and using that ztλt = λMt gives29

dWt = λMt αt[(n− 1)zt − n](Π̂t − Ci)dt+ λMt αt[Π̂t − Ci + (n− 1)(Π̂t −M i
t )]dt+ dM i

t

= (n− 1)λMt αt
[
zt(Π̂t − Ci)− (M i

t − Ci)
]
dt+ dM i

t

= (n− 1)λMt αt
[
Wt − (M i

t − Ci)
]
dt+ dM i

t .

Therefore, we have

d[Wt − (M i
t − Ci)] = (n− 1)λMt αt[Wt − (M i

t − Ci)]dt,

which admits as its unique solution

Wt − (M i
t − Ci) = [W0 − (M i

0 − Ci)] exp
(

(n− 1)

ˆ t

0

λMs αsds
)
.

But W0 − (M i
0 − Ci) = z0(Π̂

i
0 − Ci) − (M i

0 − Ci) = 0, since z0 = 1 and Π̂ i
0 = M i

0 = π0.
Consequently, Wt − (M i

t − Ci) ≡ 0, which establishes (A.4).
The law of motion for Π̂ i given in the Lemma now follows from (A.5) by using (A.4) to

substitute for M i
t , and by using (A.3) to substitute for dM i

t .
It remains to show that Π̂ i

s = Πs if firm i plays the same strategy on [0, s) as the other
firms. Note that then by (4), we have from the perspective of firm i

dYt − (p̄− nBt(Y ))dt = dY i
t − αtCidt = −αt[Ci + (n− 1)M i

t ]dt+
dM i

t

λMt
, t ∈ [0, s),

where the second equality follows by (A.3). Therefore, the law of motion of Π in Lemma
A.1 is from firm i’s perpective given on [0, s) by

dΠt = −αtγt
nσ2

[
dYt −

(
p̄− αtnΠt − nBt(Y )

)
dt
]

= λtαt[nΠt − Ci − (n− 1)M i
t ]dt+

λt
λMt

dMt

= λtαt[Πt − Ci + (n− 1)(Πt −Mt)]dt+
λt
λMt

dMt,

29Observe that

żt =
n

n− 1

γ̇Mt γt − γMt γ̇t
γ2t

= − n

n− 1

α2
t (γMt )2

σ2γt
+ zt

α2
tγt
σ2

= (n− 1)λMt αtzt − nλMt αt,

where we have used that γ̇t = −(αtγt/σ)2 and γ̇Mt = −(αtγ
M
t /σ)2.
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with initial condition Π0 = π0. By inspection of (A.5) we thus have Πt = Π̂ i
t for all t ≤ s.

(This also shows that if firm i has ever unilaterally deviated from the symmetric linear
strategy profile in the past, then Π̂ i

t equals the counterfactual value of the public belief that
would have obtained had firm i not deviated.)
Proof of Lemma 4. Lemmas 1 and 2 imply that if all firms play a symmetric linear
strategy profile, then there is a one-to-one correspondence between (Ci, Πt, t) and firm i’s
time-t belief about (C1, . . . , Cn) and calendar time. Thus, if Qi

t = αtC
i+βtΠt+δt, t ∈ [0, T ],

then firm i’s quantity is only a function of its belief and calendar time. Using the law of
motion from Lemma A.1, it is straightforward to verify that the public belief is of the form
Πt =

´ t
0
ktsdYs + constantt. Thus conditioning on it agrees with our definition of a linear

strategy in (3).
Conversely, suppose that a symmetric linear strategy profile (α, f, δ) is only a function of

beliefs and calendar time. Given the one-to-one correspondence noted above, we then have
for each firm i and all t,

Qi
t = ψt(C

i, Πt)

for some function ψt : R2 → R. Let supp(α) denote the essential support of α on [0, T ], and
let τ := min supp(α). Then private and public beliefs about firms j 6= i are simply given
by the prior at all 0 ≤ t ≤ τ (i.e., Πt = π0, zt = 1, and thus M i

t = π0), and hence the
strategy can only condition on firm i’s (belief about its) own cost and on calendar time on
[0, τ ]. Thus, by linearity of the strategy, we have ψt(Ci, Πt) = αtC

i + δt for t ≤ τ , which
shows that the strategy takes the desired form on this (possibly empty) subinterval. Note
then that for any t > τ , we have

Qi
t = αtC

i +

ˆ t

0

f tsdYs + δt = ψt(C
i, Πt) = ψt

(
Ci,

ˆ t

0

ktsdYs + constantt
)
,

where the argument of ψt can take on any value in R2 given the distribution of Ci and the
noise in the revenue process Y . Thus, for the equality to hold, ψt must be an affine function,
i.e., ψt(Ci, Πt) = atC

i + btΠt + dt for some constants (at, bt, dt), establishing the result.

A.3 Proof of Theorem 1

The proof proceeds as a series of lemmas.

Lemma A.2. If (α, β, δ) is a symmetric linear Markov equilibrium with posterior variance
γ, then (i) (α, β, ξ, γ) with ξ defined by (13) is a solution to the boundary value problem, and
(ii) δ = −p̄(α + β).
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Proof. Fix such an equilibrium (α, β, δ) with variance γ, and fix some firm i. By inspection,
the best-response problem in Section 4.1 is a stochastic linear-quadratic regulator (see, e.g.,
Yong and Zhou, 1999, Chapter 6). Moreover, (α, β, δ) is an optimal policy (a.s.) on the path
of play, i.e., at states where Πt = Π̂ i

t .
We argue first that the value function takes the form given in (9). Along the way, we also

establish the existence of an optimal policy at off-path states (Ci, Πt, Π̂
i
t , t) where Πt 6= Π̂ i

t .
Introducing the shorthand St for the state, we can follow Yong and Zhou (1999, Chapter
6.4) and write the best-response problem at any state St as an optimization problem in a
Hilbert space where the choice variable is a square-integrable output process Qi on [t, T ] and
the objective function takes the form

1

2

[
〈L1

tQ
i, Qi〉+ 2〈L2

t (St), Q
i〉+ L3

t (St)
]

for certain linear functionals Lit, i = 1, 2, 3.30 Since an equilibrium exists, the value of the
problem at St is finite, and hence L1

t ≤ 0 by Theorem 4.2 of Yong and Zhou (1999, p. 308).
Furthermore, because the coefficient on (Qi

t)
2 in the firm’s flow payoff is invertible (as it

simply equals −1), Yong and Zhou’s Corollary 5.6 (p. 312) implies that the existence of a
linear optimal policy is equivalent to the existence of a solution to the stochastic Hamiltonian
system associated with the best-response problem. This Hamiltonian system is a linear
forward-backward stochastic differential equation for which existence in our case follows by
the result of Yong (2006). The form of the value function given in (9) then follows by the
existence of a linear optimal policy.

We note then that the value function V is continuously differentiable in t and twice
continuously differentiable in (c, π, π̂).31 Thus it satisfies the HJB equation (7). This implies
that the linear optimal policy q = αtc + βtπ + δt + ξt(π̂ − π), where (αt, βt, δt) are the
equilibrium coefficients, satisfies the first-order condition (8). This gives

αtc+ βtπ + δt + ξt(π̂ − π) =
p̄− (n− 1)

[
αt(ztπ̂ + (1− zt)c) + βtπ + δt

]
− c

2

− λt
v1(t) + v4(t)π̂ + v5(t)c+ 2v8(t)π

2
,

where we have written out ∂V/∂π using (9). As this equality holds for all (c, π, π̂) ∈ R3, we
30Cf. display (4.17) on page 307 in Yong and Zhou (1999).
31Differentiability of each vi in (9) can be verified using the fact that V is the value under the optimal

policy (α, β, δ, ξ), where (α, β, δ) are differentiable by assumption and ξ, which only enters V through an
intergral, can be taken to be continuous by Corollary 5.6 of Yong and Zhou (1999, p. 312).
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can match the coefficients of c, π, π̂, and constants on both sides to obtain the system

αt = −(n− 1)αt(1− zt) + 1

2
+
αtγt
2nσ2

v5(t),

βt − ξt = −(n− 1)βt
2

+
αtγt
nσ2

v8(t),

δt =
p̄− (n− 1)δt

2
+
αtγt
2nσ2

v1(t),

ξt = −(n− 1)αtzt
2

+
αtγt
2nσ2

v4(t),

(A.6)

where we have used λt = −αtγt/(nσ2).
We can now show that (α, β, ξ, γ) satisfy the boundary conditions given in the theorem.

Note that vk(T ) = 0, k = 1, . . . , 9. Thus we obtain (αT , βT , δT , ξT ) from (A.6) by solving
the system with (v1(T ), v4(T ), v5(T ), v8(T )) = (0, . . . , 0). Recalling the expression for zT
in terms of γT from (6), a straightforward calculation yields αT = αm(γT ), βT = βm(γT ),
δT = δm(γT ), and ξT = ξm(γT ), where the functions (αm, βm, δm, ξm) are defined in (10).
The condition γ0 = ng0 is immediate from (5).

As γ satisfies (14) by construction, it remains to show that (α, β, ξ, γ) satisfy equations
(11)–(13) and that δ = −p̄(α+ β). Applying the envelope theorem to the HJB equation (7)
we have

r
∂V

∂π
= −(n− 1)βtq

∗(c, π, π̂, t) + µt
∂2V

∂π2
+
∂µt
∂π

∂V

∂π
+ µ̂t

∂2V

∂π∂π̂
+
∂2V

∂π∂t
, (A.7)

where we omit third-derivative terms as V is quadratic. By inspection of (9), the only coef-
ficients of V that enter this equation are v1(t), v4(t), v5(t), and v8(t) as well as their deriva-
tives v̇1(t), v̇4(t), v̇5(t), and v̇8(t). Therefore, we first solve (A.6) for (v1(t), v4(t), v5(t), v8(t))

in terms of (αt, βt, δt, ξt, γt), and then differentiate the resulting expressions to obtain the
derivatives (v̇1(t), v̇4(t), v̇5(t), v̇8(t)) in terms of (αt, βt, δt, ξt, γt) and (α̇t, β̇t, δ̇t, ξ̇t, γ̇t). (Note
that (A.6) holds for all t and (α, β, δ) are differentiable by assumption; differentiability of ξ
follows by (A.6).) Substituting into (A.7) then yields an equation for (αt, βt, δt, ξt, γt) and
(α̇t, β̇t, δ̇t, ξ̇t, γ̇t) in terms of (c, π, π̂) and the parameters of the model. Moreover, as this
equation holds for all (c, π, π̂) ∈ R3, we can again match coefficients to obtain a system of
four equations that are linear in (α̇t, β̇t, δ̇t, ξ̇t). A very tedious but straightforward calculation
shows that these equations, solved for (α̇t, β̇t, δ̇t, ξ̇t), are equations (11)–(13) and

δ̇t = rαt
δt − δm(γt)

αm(γt)
+

(n− 1)αtβtγt
n(n+ 1)σ2

[
δt − nαt(zt − 1)((n+ 1)δt − p̄)

]
. (A.8)
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The identity δ = −p̄(α + β) can be verified by substituting into (A.8) and using (11) and
(12), and noting that the boundary conditions satisfy it by inspection of (10).

Lemma A.3. If (α, β, ξ, γ) is a solution to the boundary value problem, then (α, β, δ) with
δ = −p̄(α + β) is a symmetric linear Markov equilibrium with posterior variance γ.

Proof. Let (α, β, ξ, γ) be a solution to the boundary value problem and let δ = −p̄(α+ β).
Then (α, β, δ) are bounded functions on [0, T ], and hence they define an admissible symmetric
linear Markov strategy (see footnote 9 on page 7). Moreover, (5) is the unique solution to
(14) with γ0 = ng0, and hence γ is the corresponding posterior variance of the public belief.

To prove the claim, we assume that the other firms play according to (α, β, δ), and we
construct a solution V to firm i’s HJB equation (7) such that V takes the form (9) and the
optimal policy is q∗(c, π, π̂, t) = αtc+βtπ+δt+ξt(π̂−π). We then use a verification theorem
to conclude that this indeed constitutes a solution to firm i’s best response problem.

We construct V as follows. By Proposition 1, (α, β, δ, ξ) are bounded away from 0,
and so is γ because T is finite.32 We can thus define (v1, v4, v5, v8) by (A.6). Then, by
construction, q∗(c, π, π̂, t) = αtc+ βtπ + δt + ξt(π̂ − π) satisfies the first-order condition (8),
which is sufficient for optimality by concavity of the objective function in (7). The remaining
functions (v0, v2, v3, v6, v7, v9) can be obtained from (7) by substituting the optimal policy
q∗(c, π, π̂, t) for q on the right-hand side and matching the coefficients of (c, π̂, cπ̂, c2, π̂2) and
the constants on both sides of the equation so obtained. This defines a system of six linear
first-order ODEs (with time-varying coefficients) for (v0, v2, v3, v6, v7, v9).

This system is stated here for future reference:

v̇0(t) = rv0(t)− δt(p̄− nδt)−
α2
tγ

2
t

n2σ2
v9(t)−

αtγt(nβt + βt + 2ξt) + 2(n− 1)α2
tγtzt

2n
,

v̇2(t) = (n− 1)αtzt (p̄− nδt) +
nrσ2 + α2

tγt (n(1− zt) + zt)

nσ2
v2(t),

v̇3(t) = (n− 1)αt(zt − 1)(nδt − p̄) + rv3(t) + δt +
α2
tγt((n− 1)zt − n)

nσ2
v2(t),

v̇6(t) =
nrσ2 + α2

tγt(n(1− zt) + zt)

nσ2
v6(t) +

2α2
tγt((n− 1)zt − n)

nσ2
v9(t) (A.9)

+ αt
(
−2nξt − (n− 1)zt(2nαt − 2ξt + 1) + 2(n− 1)2αtz

2
t

)
,

32For ξ, this follows from ξt ≥ ξmt := ξm(γt) > 0. The second inequality is by (10). To see the first, notice
that ξ̇t is decreasing in βt. Therefore, bounding βt with βm

t by Proposition 1, we obtain

(βt, ξt) = (βm
t , ξ

m
t )⇒ ξ̇t − ξ̇mt = − g20(n− 1)3n3αt(2αt − 1)γt

4(n+ 1)σ2(g0(n− 1)n+ (n+ 1)γt)2
≤ 0,

because αt < αm
t ≤ −1/2 for all t by Proposition 1. This implies that ξ can only cross its myopic value from

above, which occurs at time t = T .
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v̇7(t) = rv7(t) + αt(n− 1)(zt − 1)− α2
t (n(1− zt) + zt)

2 +
α2
tγt((n− 1)zt − n)

nσ2
v6(t),

v̇9(t) =
nrσ2 + 2α2

tγt(n(1− zt) + zt)

nσ2
v9(t)− ((n− 1)αtzt + ξt)

2.

By linearity, the system has a unique solution on [0, T ] that satisfies the boundary condition
(v0(T ), v2(T ), v3(T ), v6(T ), v7(T ), v9(T )) = (0, . . . , 0). Defining V by (9) with the functions
vk, k = 1, . . . , 9, defined above then solves the HJB equation (7) by construction.

Finally, because V is linear-quadratic in (c, π, π̂) and the functions vk are uniformly
bounded, V satisfies the quadratic growth condition in Theorem 3.5.2 of Pham (2009).
Therefore, V is indeed firm i’s value function and (α, β, δ, ξ) is an optimal policy. Moreover,
on-path behavior is given by (α, β, δ) as desired.

We then turn to existence. As discussed in the text following the theorem, we use the
shooting method, omitting first equation (13) from the system.

Define the backward system as the initial value problem defined by (11), (12), and (14)
with γT = γF , αT = αm(γF ), and βT = βm(γF ) for some γF ∈ R+. By inspection, the
backward system is locally Lipschitz continuous (note that g0 > 0 by definition). For γF =

0, its unique solution on [0, T ] is given by αt = αm(0), βt = βm(0), and γt = 0 for all
t. By continuity, it thus has a solution on [0, T ] for all γF in some interval [0, γ̃F ) with
γ̃F > 0. Let G := [0, γ̄F ) be the maximal such interval with respect to set inclusion. (I.e.,
γ̄F = sup {γ̃F ∈ R+ : backward system has a solution for all γF ∈ [0, γ̃F )}.) Finally, define
the function κ : N→ R++ by

κ(n) := inf
a∈(−∞,−1]

{
−

(n− 1)2
√
a5(a+ 1)n(2an+ n+ 1)(a(n− 1)n− 1)

(a+ an+ 1)2

+
a2(a(n(a− (3a+ 2)n) + 1) + 1)

(a+ an+ 1)2

}
. (A.10)

Lemma A.4. Suppose (15) holds, i.e., g0/σ2 < max{r/κ(n), 1/(3nT )}. Then there exists
γF ∈ G such that the solution to the backward system satisfies γ0 = ng0.

Proof. Suppose g0/σ2 < max{r/κ(n), 1/(3nT )}. The backward system is continuous in γF ,
and γF = 0 results in γ0 = 0. Thus it suffices to show that γ0 ≥ ng0 for some γF ∈ G.
Suppose, in negation, that the solution to the backward system has γ0 < ng0 for all γF ∈ G.
Since γ is monotone by inspection of (14), we then have γF = γT ≤ γ0 < ng0 for all γF ∈ G,
and thus γ̄F ≤ ng0 < ∞. We will show that this implies that the solutions (α, β, γ) are
bounded uniformly in γF on G, which contradicts the fact that, by definition of G, one of
them diverges at some t ∈ [0, T ) when γF = γ̄F .

To this end, let γF ∈ G, and let (α, β, γ) be the solution to the backward system.
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By monotonicity of γ, we have 0 ≤ γt ≤ γ0 < ng0 for all t, and hence γ is bounded
uniformly across γF in G as desired.

Note then that, by the arguments in the proof of the first part of Proposition 1 below,
we have (−α, β, δ) ≥ 0. The identity −p̄(α + β) = δ then implies α ≤ −β ≤ 0. Therefore,
to bound α and β, it suffices to bound α from below.

We first derive a lower bound for α when ρ := ng0/σ
2 < 1/(3T ). Consider

ẋt = ρx4t , xT = −1. (A.11)

By (10), we have xT ≤ αm(γF ) = αT for all γF ≥ 0. Furthermore, recalling that γt ≤ ng0,
zt ∈ [1, n/(n−1)], and −αt ≥ βt ≥ 0 for all t, we can verify using equation (11) that ρα4

t ≥ α̇t

for all αt ≤ −1. Working backwards from T , this implies xt ≤ αt for all t at which xt exists.
Furthermore, the function x is by definition independent of γF , so to bound α it suffices to
show that (A.11) has a solution on [0, T ]. This follows, since the unique solution to (A.11)
is

xt =
1

3
√

3ρ(T − t)− 1
, (A.12)

which exists on all of [0, T ], because 3ρ(T − t)− 1 ≤ 3ρT − 1 < 0 by assumption.
We then consider the case g0/σ2 < r/κ(n). We show that there exists a constant ā < −1

such that α ≥ ā. In particular, denoting the right-hand side of α̇ in (11) by f(αt, βt, γt), we
show that there exists ā < −1 such that f(ā, b, g) ≤ 0 for all b ∈ [0,−ā] and g ∈ [0, ng0].
Since 0 ≤ β ≤ −α and 0 ≤ γ ≤ ng0, this implies that following (11) backwards from any
αT > −1 yields a function bounded from below by ā on [0, T ].

For a ≤ −1 and r > 0, let

D(a, r) :=
(
ā2g0(n− 1)(an+ 1)− rσ2(a(1 + n) + 1)

)2
− 4a2(a+ 1)g0(n− 1)rσ2(a(n− 1)n− 1).

We claim that there exists ā ≤ −1 such that D(ā, r) < 0. Indeed, D(a, r) is quadratic and
convex in r. It is therefore negative if r ∈ [r1, r2], where r1 = r1(a) and r2 = r2(a) are the two
roots of D(a, r) = 0. One can verify that for any a ≤ −1, D(a, r) = 0 admits two real roots
r1 = r1(a) ≤ r2 = r2(a), with strict inequality if a < −1, which are both continuous functions
of a that grow without bound as a → −∞. Thus, there exists ā such that D(ā, r) < 0 if
r > infa∈(−∞,−1) r1(a). But, by definition, the objective function in the extremum problem
in (A.10) is (σ2/g0)r1(a), and hence the existence of ā follows from r > κ(n)g0/σ

2. We fix
some such ā for the rest of the proof.

Consider any g ∈ [0, ng0]. Let z := n2g0/[n(n − 1)g0 + g]. By inspection of (11), if
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(n− 1)nā(z− 1) + 1 ≥ 0, then f(ā, b, g) ≤ 0 for all b ∈ [0,−ā], since ā ≤ −1 ≤ αm(g), which
implies that the r-term is negative. On the other hand, if (n − 1)nā(z − 1) + 1 < 0, then
f(ā, b, g) ≤ f(ā,−ā, g) for all b ∈ [0,−ā]. Thus it suffices to show f(ā,−ā, g) ≤ 0.

Note that

f(ā,−ā, g) =
ā (g(n− 1)ng0ā

2 (nā+ 1)− g2ā2 ((n− 1)nā− 1))

nσ2 (g0(n− 1)n+ g)

+
rσ2ā (g0(−(n− 1))n2 (ā+ 1)− gn ((n+ 1)ā+ 1))

nσ2 (g0(n− 1)n+ g)
.

The numerator on the right-hand side is quadratic and concave in g, while the denominator
is strictly positive. Thus, if there exists no real root g to the numerator, f(ā,−ā, g) is
negative. In particular, the equation f(ā,−ā, g) = 0 admits no real root g if the discriminant
is negative. This discriminant is exactly D(ā, r), which is negative by definition of ā.

Lemma A.4 shows that there exists a solution (α, β, γ) to equations (11), (12), and (14)
satisfying boundary conditions αT = αm(γT ), βT = βm(γT ), and γ0 = ng0 when (15) holds.
Therefore, it only remains to establish the following:

Lemma A.5. Suppose (15) holds, and let (α, β, γ) be a solution to equations (11), (12),
and (14) with αT = αm(γT ), βT = βm(γT ), and γ0 = ng0. Then there exists a solution ξ to
equation (13) on [0, T ] with ξT = ξm(γT ).

Proof. Let g0 < max{rσ2/κ(n), σ2/(3nT )} and let (α, β, γ) be as given in the lemma. We
first establish the result for all g0 > 0 sufficiently small.

Recall that for any g0 < σ2/(3nT ) we can bound α from below by x given in (A.12). In
particular, for g0 ≤ 7σ2/(24nT ), we have

0 ≥ αt ≥ xt =
1

3
√

3ng0
σ2 (T − t)− 1

≥ 1

3

√
3ng0T
σ2 − 1

≥ −2.

Combining this with 0 ≤ γt ≤ γ0 = ng0, we see that the coefficient on ξ2t in (13), αtγt/(nσ2),
is bounded in absolute value by 2g0/σ

2. Thus for any g0 small enough, (13) is approximately
linear in ξt and hence it has a solution on [0, T ].

Define now ḡ0 as the supremum over g̃0 such that a solution to the boundary value
problem exists for all g0 ∈ (0, g̃0). By the previous argument, ḡ0 > 0. We complete the proof
of the lemma by showing that ḡ0 ≥ max{rσ2/κ(n), σ2/(3nT )}.

Suppose towards contradiction that ḡ0 < max{rσ2/κ(n), σ2/(3nT )}. Then for g0 = ḡ0

there exists a solution (α, β, γ) to (11), (12), and (14) satisfying the boundary conditions by
Lemma A.4, but following equation (13) backwards from ξT = ξm(γT ) yields a function ξ
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that diverges to ∞ at some τ ∈ [0, T ). We assume τ > 0 without loss of generality, since if
limt↓0 ξt = ∞, then ξt can be taken to be arbitrarily large for t > 0 small enough, which is
all that is needed in what follows.

Since the boundary value problem has a solution for all g0 < ḡ0, a symmetric linear
Markov equilibrium exists for all g0 < ḡ0. Fix any such g0 and any firm i. The firm’s
equilibrium continuation payoff at time s < τ given state (Ci, Πs, Π̂

i
s, s) = (0, 0, 0, s) is

V (0, 0, 0, s) = v0(s). The payoff V (0, 0, 0, s) is the expected profit over [s, T ] under the
equilibrium strategies conditional on Πs = Π̂s = Ci = 0. Because Πs = Π̂s, it is independent
of ξ. Moreover, (α, β, δ, γ) are bounded on [s, T ] uniformly over g0 ∈ [0, ḡ0] by assumption.
Hence, the equilibrium payoff V (0, 0, 0, s) is bounded by some B <∞ uniformly in g0.

Let ∆ > 0, and suppose firm i deviates and produces Qi
t = βtΠt+ δt−∆ for all t ∈ [s, τ),

and then reverts back to the equilibrium strategy at τ . Then d(Πt − Π̂ i
t) = λt[αtn(Πt −

Π̂ i
t) + ∆]dt (see Section 4.1), and hence

Πτ − Π̂ i
τ = ∆

ˆ τ

s

exp
(
−
ˆ t

τ

λuαundu
)
dt > 0. (A.13)

Since Π and Qi still have linear dynamics on [s, τ), their expectation and variance are
bounded, and hence so is firm i’s expected payoff from this interval. Moreover, since (α, β, γ)

(and hence also δ = −p̄(α + β)) exist and are continuous in g0 at ḡ0, the supremum of this
expected payoff over g0 ≤ ḡ0 is then also finite.

Firm i’s continuation payoff from reverting back to the equilibrium best-response policy
(α, β, δ, ξ) at time τ is given by

V (0, π, π̂, τ) = v0(τ) + v1(τ)π + v2(τ)π̂ + v4(τ)ππ̂ + v8(τ)π2 + v9(τ)π̂2 ≥ 0,

where the inequality follows, since the firm can always guarantee zero profits by producing
nothing. By inspection of (A.6) and (A.9), we observe that

(i) v4(τ) ∝ −ξτ and v8(τ) ∝ ξτ ;

(ii) v1(τ) and v2(τ) are independent of ξ;

(iii) v9(τ) depends on ξ, but is either finite or tends to ∞ as ξ grows without bound;

(iv) v0(τ) = V (0, 0, 0, τ) ≥ 0.

Therefore, letting g0 → ḡ0 and hence ξτ →∞, we have for all π > 0 ≥ π̂,

V (0, π, π̂, τ)→∞.
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Moreover, such pairs (π, π̂) have strictly positive probability under the deviation by (A.13),
because Π̂ i is an exogenous Gaussian process. But because V (0, π, π̂, τ) ≥ 0 for all (π, π̂),
this implies that the time-s expectation of the deviation payoff tends to infinity as g0 → ḡ0.
Hence it dominates B (and thus V (0, 0, 0, s)) for g0 close enough to ḡ0. But this contradicts
the fact that a symmetric linear Markov equilibrium exist for all g0 < ḡ0.

A.4 Proofs for Section 5

We start with a lemma that is used in the proof of Corollary 2, and later in the proof of
Proposition 5. Let g0/σ2 < r/κ(n) so that a symmetric linear equilibrium exists for all
T , and select for each T some such equilibrium fT := (αT , βT , δT , γT ), where γT is the
corresponding posterior variance. Extend each fT to all of [0,∞) by setting fT (t) = fT (T )

for t > T . We continue to use fT to denote the function so extended. Denote the sup-norm
by ‖fT‖∞ := supt ‖fT (t)‖, where ‖fT (t)‖ := maxi |fTi (t)|.

Since g0/σ2 < r/κ(n), each αT is bounded in absolute value uniformly in T by some ā <
∞ (see the proof of Lemma A.4). Thus, 0 < βT ≤ −αT < ā and 0 < δT = −p̄(αT +βT ) < p̄ā

for all T > 0. This implies, in particular, that the “non-r term” on the right-hand side of ḟTi
is bounded in absolute value by γTt K for some K <∞ independent of i and T .

Lemma A.6. Let g0/σ2 < r/κ(n). Then for all ε > 0, there exists tε <∞ such that for all
T ≥ t ≥ tε, ‖fT (t)− (αm(0), βm(0), δm(0), 0)‖ < ε.

Proof. For γ, the claim follows by Corollary 1. We prove the claim for α; the same
argument can be applied to β and δ. By Corollary 1, for any η > 0, there exists tη such that
0 ≤ γTt < η for all T ≥ t ≥ tη. Furthermore, by taking tη to be large enough, we also have
|αm(γTt ) + 1| < η for all T ≥ t ≥ tη by continuity of αm. This implies, in particular, that
αTt ≤ αm(γTt ) < −1 + η for all T ≥ t ≥ tη, giving an upper bound on αT uniformly in T .

To find a lower bound, fix T > tη. Define b : [tη, T ] → R as the unique solution to
ḃt = r(bt + 1) + ηK with bT = −1, where K is the constant from the remark just before
Lemma A.6. Then, by construction, −1− ηK/r ≤ bt ≤ −1 for all t in [tη, T ]. Furthermore,
we have αT > b on [tη, T ]. To see this, note that αTT = αm(γTT ) > −1 = bT , and if for some t
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in [tη, T ) we have αTt = bt, then

α̇Tt ≤ r
αTt

αm(γTt )
(αTt − αm(γTt )) + γTt K

= r
αTt

αm(γTt )
(αTt + 1)− r αTt

αm(γTt )
(αm(γTt ) + 1) + γTt K

< r
αTt

αm(γTt )
(αTt + 1) + ηK

≤ r(αTt + 1) + ηK = ḃt,

where the first inequality is by definition of K, the second uses αm(γTt ) ≥ −1 and t ≥ tη,
and the third follows from αTt = bt ≤ −1 ≤ αm(γTt ). Thus, at any point of intersection, αT

crosses b from above, and hence the existence of an intersection contradicts αTT > bT . We
conclude that αTt > bt ≥ −1− ηK/r for all T ≥ t ≥ tη. Note that even though b depends on
T , the lower bound is uniform in T .

To conclude the proof, fix ε > 0, and put η = min{ε, rε/K}. Then, by the above
arguments, there exists tε = tη such that αTt ∈ (−1− ε,−1 + ε) for all T ≥ t ≥ tε.
Proof of Corollary 2. Corollary 1 and Lemma A.1 imply that for every η > 0, there
exists tη < ∞ such that for all T > tη, every symmetric linear Markov equilibrium satisfies
P[|Πt − n−1

∑
iC

i| < η] > 1− η for all t > tη. Furthermore, we have

∣∣Qi
t − qNi (C)

∣∣ ≤ |αt − αm(0)|
∣∣Ci
∣∣+ |βt − βm(0)| |Πt|+ βm(0)

∣∣∣Πt −
∑

iC
i

n

∣∣∣+ |δt − δm(0)| .

By the above observation about Π and Lemma A.6, each term on the right converges in
distribution to zero as t → ∞ (uniformly in T ). Since zero is a constant, this implies that
the entire right-hand side converges to zero in distribution. In particular, if we denote the
right-hand side by Xt, then for any ε > 0, there exists tε such that for every T ≥ t ≥ tε, we
have P[|Xt| < ε] ≥ 1 − ε. But {|Xt| < ε} ⊂

{∣∣Qi
t − qNi (C)

∣∣ < ε
}
, and hence it follows that

P[|Qi
t − qNi (C)| < ε] > 1− ε.

Proof of Proposition 1. (1.) Consider a symmetric linear Markov equilibrium (α, β, δ)

with posterior variance γ. Denote the induced values of the myopic coefficients under γ by

(αmt , β
m
t , δ

m
t ) :=

(
αm(γt), β

m(γt), δ
m(γt)

)
.

By Theorem 1, (α, β) are a part of a solution to the boundary value problem, and hence
δ satisfies (A.8). The boundary conditions require that αT = αmT < 0 and βT = βmT > 0.
We first show that α ≤ 0 for all t. This is immediate, since αT < 0 and α̇t = 0 if αt = 0.
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Next, we show that δt lies everywhere above its (constant) myopic value δmt . To establish
this, notice that δT = δmT , and δ̇T < 0 by (A.8). Furthermore

δt = δmt ⇒ δ̇t − δ̇mt =
(n− 1)pαtβtγt
n(n+ 1)2σ2

≤ 0.

Now suppose towards a contradiction that βt crosses βmt from below at some t < T . Then
evaluate β̇t at the crossing point and obtain

βt = βmt ⇒ β̇t − β̇mt = − g20(n− 1)3n3αtγt((n+ 1)αt − 1)

(n+ 1)3σ2(g0(n− 1)n+ (n+ 1)γt)2
< 0,

a contradiction. Therefore βt ≥ βmt .
The results shown above (αt ≤ 0, δt/p̄ = −αt − βt ≥ 1/(n + 1), and βt ≥ βmt ) imply

that, if for some t, αt = αmt , then also βt = βmt , since −αmt − βmt = 1/(n+ 1). Using this we
evaluate α̇t at αt = αmt to obtain

(αt, βt) = (αmt , β
m
t )⇒ α̇t − α̇mt =

g0(n− 1)2nγt(g0(n− 1)n+ γt)
3

(n+ 1)σ2(g0(n− 1)n+ (n+ 1)γt)4
> 0,

which establishes αt ≤ αmt for all t.
(2.–3.) The boundary conditions imply γ0 = ng0. Substituting into α̇t gives

α̇0 = −r(2α0 + 1)α0 −
g0α

2
0β0
σ2

< 0,

since both terms are negative as by part (1.), −α0 ≤ −αm0 = 1/2. Similarly, we have

β̇0 =
rα0 (n− 1− 2(n+ 1)β0)

n+ 1
+
g0α0β0 (2nα0 + (n− 1)β0)

(n+ 1)σ2
> 0,

since n ≥ 2, αt + βt < 0, and βt > βmt . Boundary conditions (αT , βT ) = (αmT , β
m
T ) imply

α̇T =
(n− 1)γT zT ((n2 − 1)zT − n2 − 1)

n(n+ 1)σ2 (n+ 1− zT (n− 1))4
,

β̇T =
(n− 1)γT zT ((n− 1)3z2T − (n+ 1)(n(n+ 4)− 1)(n− 1)zT + n(n+ 1)3)

n(n+ 1)3σ2 (n+ 1− zT (n− 1))4
.

Note that as γT → 0 and hence zT → n
n−1 , we have α̇T → (n−1)γT

(n+1)σ2 > 0 and β̇T →

−n(n2+n−2)γT
(n+1)3σ2 < 0. Finally, because |αt| is bounded away from zero at all t, we have γT → 0

as T →∞, and hence the derivatives have the desired signs for T large enough.
(4.) That δ is eventually decreasing follows by evaluating (A.8) at t = T using the boundary

47



condition δT = δmT and signing the terms using part (1.).
(5.) If r = 0, (A.8) simplifies to

δ̇t =
(n− 1)αtβtγt (δt − nαt (zt − 1) ((n+ 1)δt − p̄))

n(n+ 1)σ2
< 0,

since αt < 0 and (n+ 1)δt ≥ p̄ = (n+ 1)δmt by part (1.).
Now consider the second time derivative α̈t, and evaluate it at a critical point of αt.

Solving α̇t = 0 for g0 and substituting into the second derivative, we obtain

α̈t = −α
3
tβtγ

2
t (nαt + 1) ((n− 1)nαt − 1)

n3σ4
> 0,

since n ≥ 2 and αt ≤ −1/2.
Finally, we evaluate β̈ at a critical point of β. To this end, note that for r = 0,

β̇t =
αtβtγt

n(n+ 1)σ2

[
nαt
(
1 + n− zt(n− 1)− (n2 − 1)βt(zt − 1)

)
+ (n− 1)βt

]
.

At a critical point, the term in parentheses is nil. Since αt < 0, the second derivative β̈t is
then proportional to

−α̇t
(
1 + n− zt(n− 1)− (n2 − 1)βt(zt − 1)

)
+ αtżt

(
n− 1 + (n2 − 1)βt

)
.

We know zt is strictly increasing, αt < 0, and the last term in parentheses is positive.
Furthermore, β̇t = 0 implies (1 + n− zt(n− 1)− (n2 − 1)βt(zt − 1)) > 0. Finally, δt =

−p̄(αt + βt) from Theorem 1 implies that αt is strictly increasing at a critical point of βt.
Therefore, both terms in β̈t are negative establishing quasiconcavity.
Proof of Proposition 2. (1.) The signaling components obviously vanish at T as then
also the equilibrium play is myopic. Evaluate the slope of α̂ and α̂br at t = T . We obtain

˙̂αT − ˙̂αbrT = − γT (n− 1)2zT ((n− 1)zT − 2n)

2n(n+ 1)2σ2 (−(n− 1)zT + n+ 1)3
> 0,

since zT ≤ n/(n− 1) implies both that the numerator is negative and that the denominator
is positive. Because α̂T = α̂brT , the signaling component α̂t − α̂brt is thus negative in a
neighborhood of T . Now solve α̂t = α̂brt for zt and substitute the resulting expression into
˙̂αt − ˙̂αbrt . We obtain,

α̂t = α̂brt ⇒ ˙̂αt − ˙̂αbrt =
(n− 1)αtβtγt ((n− 1)αt − 1)

2n(n+ 1)σ2
> 0.
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Thus, if α̂t − α̂brt = 0 for some t < T , then the signaling component crosses zero from below
at t, contradicting the fact that it is negative for all t close enough to T . We conclude that
α̂t − α̂brt > 0 for all t < T .

Now evaluate the slope of β̂ and β̂br at t = T . We obtain

˙̂
βT − ˙̂

βbrT = − γT (n− 1)3zT
2n(n+ 1)2σ2 (n (−zT ) + n+ zT + 1) 3

< 0.

Because β̂T = β̂brT , the signaling component β̂t− β̂brt is positive in a neighborhood of T . Solve
β̂t = β̂brt for zt and substitute the resulting expression into ˙̂

βt − ˙̂
βbrt . We obtain,

β̂t = β̂brt ⇒
˙̂
βt − ˙̂

βbrt = −(n− 1)2α2
tβtγt

2n(n+ 1)σ2
< 0.

Thus, if the signaling component β̂t−β̂brt ever crosses zero it does so from above, contradicting
the fact that it is positive at t = T .

Direct calculation yields δt−δbrt = 1
2
((n+1)δt− p̄) ≥ 0, where the inequality follows since

δt ≥ δm(γt) = p̄/(n + 1) by Proposition 1.1 and (10). Furthermore, by inspection of (A.8),
δ̇t < 0 if δt = δm(γt), and thus δt > p̄/(n+ 1) for all t < T .
(2.) Consider α̂t − α̂brt , and suppose there exists a time t for which the signaling component
has a slope of zero. Impose r = 0, solve ˙̂αt− ˙̂αbrt = 0 for βt, and substitute into α̂t− α̂brt . We
obtain

α̂t − α̂brt =
(n− 1)αt − 1

2n(n+ 1)αt (zt − 1)− 2
> 0,

contradicting our finding that α̂t ≤ α̂brt for all t.
Likewise, we know the signaling component β̂t − β̂brt is decreasing at t = T . Now impose

r = 0, and consider the slope ˙̂
βt − ˙̂

βbrt at an arbitrary t. We obtain

˙̂
βt − ˙̂

βbrt = −(n− 1)αtβtγt (nαt (zt − 1) ((n+ 1)βt + (n− 1)αtzt)− βt)
2nσ2zt

.

If the slope of the signaling component satisfies ˙̂
βt ≥ ˙̂

βbrt , then it must be that (n + 1)βt +

(n− 1)αtzt ≤ 0. However, the level of the signaling component is given by

β̂t − β̂brt =
(n+ 1)βt + (n− 1)αtzt

2zt
.

Consider the largest t for which the signaling component has a slope of zero. Then the
signaling component must be negative at that point. This contradicts our earlier finding
that the signaling component is positive and decreasing in a neighborhood of T . Therefore,
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˙̂
βt <

˙̂
βbrt for all t.

Since δt − δbrt = 1
2
((n+ 1)δt − p̄), the claim follows by Proposition 1.4.

Proof of Proposition 3. (1.) The result follows from the properties of the expected total
output established in the text before the proposition.
(2.) By Lemma A.1, the volatility of the public belief Πt is −((αtγt)/(nσ

2))σ = λtσ. Thus
the total output

∑
iQ

i
t = αt

∑
iC

i + nβtΠt + nδt has volatility nβtλtσ = −(αtβtγt)/σ.
Differentiating αtβtγt with respect to t, setting t = T , and using (11), (12), and (14) gives

d

dt
(αtβtγt)

∣∣∣
t=T

=
g20(n− 1)3n3γ2T (g0(n− 1)n+ γT )2 (g0n(3n(n+ 1)− 2) + (−n2 + n+ 2) γT )

(n+ 1)3σ2 (n(g0(n− 1) + γT ) + γT )5
.

The last term in the numerator is positive for all n, because γT ≤ ng0 implies

g0n(3n(n+ 1)− 2) + (−n2 + n+ 2)γT > 2g0n2(2 + n) > 0.

Thus −αtβtγt is eventually decreasing.
In the undiscounted case, we obtain

d

dt
(αtβtγt) =

α2
tβtγ

2
t ((n− 1)nαt (−2(n+ 1)βt (zt − 1)− zt)− 2βt)

n(n+ 1)σ2
.

Because zt ≥ 1 and −αt > βt > 0 we rewrite the terms in parentheses in the numerator as

(1− n)nαtzt − 2βt
(
n
(
n2 − 1

)
αt (zt − 1) + 1

)
> (1− n)nαtzt − 2βt > (n− 1)nβt − 2βt.

Therefore, we obtain the following bound:

d

dt
(αtβtγt) >

(n− 2)α2
tβ

2
t γ

2
t

nσ2
> 0.

This shows that −αtβtγt is strictly decreasing in t.
(3.) Firm i’s output on the equilibrium path is given by Qi

t = αtC
i+βtΠt+δt. Therefore, for

any i and j 6= i, we have Qi
t−Q

j
t = αt(C

i−Cj). Proposition 1 shows that α is non-monotone
for T sufficiently large.
Proof of Proposition 4. We begin by constructing the distribution of Πt under the true
data-generating process. Substituting the equilibrium strategies into the law of motion for
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Πt in Lemma A.1, we obtain dΠt = λtαt(nΠt −
∑

iC
i)dt+ λtσdZt, or

Πt = π0 exp
(ˆ t

0

nλtαsds
)
−
∑
i

Ci

ˆ t

0

λsαs exp
(ˆ t

s

nλuαudu
)
ds

+ σ

ˆ t

0

λs exp
(ˆ t

s

nλuαudu
)
dZs.

We conclude that conditional on C, Πt is normally distributed with mean

E[Πt | C] = π0 exp
( ˆ t

0

nλtαsds
)
−
∑
i

Ci

ˆ t

0

λsαs exp
(ˆ t

s

nλuαudu
)
ds,

and variance

Var[Πt | C] = σ2

ˆ t

0

λ2s exp
(

2

ˆ t

s

nλuαudu
)
ds.

Recall also that nαtλt = γ̇t/γt, and hence exp(
´ t
s
nλuαudu) = γt/γs. We thus have

E[Πt | C] = π0
γt
γ0
−
∑
i

Ci 1

n

ˆ t

0

γ̇s
γs

γt
γs
ds = π0

γt
γ0
− 1

n

∑
i

Ciγt

(
1

γ0
− 1

γt

)
,

and

Var[Πt | C] = − 1

n2

ˆ t

0

γ̇s
γ2t
γ2s
ds =

1

n2
γ2t

(
1

γt
− 1

γ0

)
.

Thus, conditional on the realized costs, firm i’s expected time-t flow profit is given by

(
p̄− Ci − αt

n∑
j=1

Cj − βtnE[Πt | C]− δtn
) (
αtC

i + βtE[Πt | C] + δt
)
− β2

t nVar[Πt | C].

Taking an expectation with respect to C, we obtain its ex ante expected time-t profit

Wt :=
βtγt((2αt + βt)n+ 1)− g0n (n(αt + (αt + βt)

2) + βt)

n2

− (p̄− π0)2(αt + βt)(n(αt + βt) + 1).

A similar derivation yields the ex ante expected time-t consumer surplus

CS t :=
1

2

(
g0n(αt + βt)

2 − βtγt(2αt + βt)
)

+
1

2
n2(p̄− π0)2(αt + βt)

2.

(1.) Subtracting the expected complete information static Nash consumer surplus CS co from
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the ex ante expected time-t consumer surplus CS t gives

1

2

[
g0n(αt + βt)

2 − g0n

(n+ 1)2
− βtγt(2αt + βt)

]
+

1

2
(p− π0)2

[
n2(αt + βt)

2 − n2

(n+ 1)2

]
.

We claim that this expression is positive. Since δt ≥ δm, we know that αt +βt < −1/(n+ 1),
and hence the second term is positive. Consider the first term. The sum of the first two
terms inside the brackets is again positive, and the last term is positive as −αt > βt for all t.
(2.) Recalling that γ0 = ng0, we have

W0 −W co = −g0
[
n2 + n− 1

(n+ 1)2
+ αt(αt + 1)

]
+ (p− π0)2

[
− (αt + βt)(n(αt + βt) + 1)− 1

(n+ 1)2

]
.

Because n ≥ 2 and αt ≤ 1/2, the coefficient on g0 is negative. The coefficient on p̄ − π0

is negative as well because αt + βt ≤ 1/(n + 1). Similarly, using the terminal values of the
equilibrium coefficients, we have

WT −W co = −
g0(n− 1)nγT

[
g0n(2n2 + n− 3) + (n+ 1)(n+ 3)γT

]
[g0n(n2 − 1) + (n+ 1)2γT ]2

,

which is negative because the coefficient on g0 inside the brackets is positive for n ≥ 2.
(3.) By part (1.), it suffices to establish the result for flow profits. We assume π0 − p̄ = 0;
the result for π0 − p̄ small enough follows by continuity of the profits in π0.

For any T , fix a symmetric linear Markov equilibrium with coefficients (αT , βT ) and
posterior variance γT . Throughout the proof we restrict attention to a strictly increasing
sequence of horizons T such that (i) (αT , βT , γT ), viewed as functions on [0,∞) by setting
(αTt , β

T
t , γ

T
t ) = (αTT , β

T
T , γ

T
T ) for all t > T , converge uniformly to well-defined limits (α∗, β∗, γ∗)

as T →∞, and (ii) γTT → 0 monotonically as T →∞. The existence of a sequence satisfying
(i) can be established as in Lemma A.9 below because (αT , βT , γT ) are bounded uniformly in
T when κ(n) < rσ2/g0 (see the proof of Lemma A.4). Moreover, the argument shows that the
limits (α∗, β∗, γ∗) satisfy (11), (12), and (14) on [0,∞) with (α∗t , β

∗
t , γ

∗
t )→ (αm(0), βm(0), 0)

as t→∞. Since γTT → 0 by Corollary 1, we can then take a further subsequence of horizons
in order to satisfy (ii).

For T ≥ t ≥ 0, let ∆W T
t := W T

t −W co, whereW T
t is the ex ante expectation of the time-t

equilibrium flow profit in the game with horizon T . Given the convergence of (αT , βT , γT ),
∆W T (viewed as a function on [0,∞) by setting ∆W T

t = ∆W T
T for all t > T ) converges

uniformly to some ∆W ∗ as T →∞ (along our sequence). It suffices to show that ∆W ∗
t > 0
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for all t large enough. Indeed, then
´∞
t
e−rs∆W ∗

s ds > 0 for any t large enough, and hence
by uniform convergence of ∆W T to ∆W ∗, we have

´ T
t
e−rs∆W T

s ds >
´∞
t
e−rs∆W T

s ds > 0

for any sufficiently large T (along our sequence; hence the need for T̄ in the statement of the
result), where the first inequality follows because W T

s = W T
T < 0 for s > T by the first part

of Proposition 4.
It turns out to be convenient to change variables. Note that each αT is bounded away

from zero, and so each γT is a strictly decreasing function. We can thus invert γT and
write the equilibrium coefficients and expected profits as a function of the posterior variance
instead of time. We denote these functions αγT and βγT , indexed by the terminal posterior
variance γT := γTT instead of the horizon (e.g., αγT (γ) = αT ((γT )−1(γ)) for γ ∈ [γT , ng0]).
By the uniform convergence of (αT , βT , γT ), the functions αγT and βγT have well-defined
pointwise limits as γT → 0 (along our subsequence). Abusing notation, we denote these
limits α and β. The corresponding limit flow-profit difference written in terms of γ is then

∆W (γ) = −g0n2
[
α(γ)(α(γ) + 1) +

n2 + n− 1

(n+ 1)2

]
− (g0n− γ)β(γ) (2nα(γ) + 1 + nβ(γ)) .

Noting that ∆W (γ) = ∆W ∗((g∗)−1(γ)) and limt→∞ γ
∗
t → 0, it then suffices to show that

∆W (γ) > 0 for all γ > 0 small enough.
The rest of the argument proceeds as follows: We show first that α is strictly decreasing

(and hence strictly less than α(0) = −1) in a neighborhood of 0 by constructing a sequence
of linear upper bounds for the family of functions αγT for γT small. We use this to bound
β from below by its complete information level in a neighborhood of 0. This in turn allows
deriving a better upper bound for α and a lower bound for ∆W . The latter satisfies an
ODE, which we use to establish the result (after another change of variables).

Lemma A.7. The limit function α is strictly decreasing in a neighborhood of γ = 0 if

rσ2

g0
<

(n− 1)2

n+ 1
. (A.14)

Proof. Given the change of variable, each αγT satisfies the differential equation

αγT ′(γ) =
β(γ)(γ + (n− 1)nαγT (γ)(g0n− γ) + g0(n− 1)n)

γn(γ + g0(n− 1)n)

+
nrσ2(γ + αγT (γ)(γ + n(γ + g0(n− 1))) + g0(n− 1)n)

γ2nαγT (γ)(γ + g0(n− 1)n)

(A.15)

with boundary condition αγT (γT ) = αm(γT ). Replacing αγT (γ) with αm(γ) in the first term
of (A.15), we obtain an upper bound on its numerator. In particular, the coefficient on
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βγT (γ) is negative for all γ ≤ γ̄ := nγ0(n− 1)2/(n2 + 1). Hence, we obtain an upper bound
on αγT by replacing βγT (γ) with its myopic value βm(γ), which was defined in (10). This
bound applies over the interval [γT , γ̄] for all γT sufficiently small. It is given by the ODE

α̂γT ′(γ) =
βm(γ)(γ + (n− 1)nα̂γT (γ)(g0n− γ) + g0(n− 1)n)

γn(γ + g0(n− 1)n)

+
nrσ2(γ + α̂γT (γ)(γ + n(γ + g0(n− 1))) + g0(n− 1)n)

γ2nα̂γT (γ)(γ + g0(n− 1)n)

(A.16)

with α̂γT (γT ) = αm(γT ). Since βm(γ) ≤ β(γ) for all γ ≥ 0, we then have α̂γT (γ) > αγT (γ)

for all γ small enough. Moreover, as these bounds are ODEs, their paths for different initial
values γT cannot cross.

We now study the right-hand side of (A.16) to construct a linear upper bound on α̂γT .
The right-hand side of (A.16) is strictly concave in α̂γT , and for γ small enough, it is strictly
decreasing in α̂γT when α̂γT = −1 and strictly increasing in γ. Furthermore, under condition
(A.14), there exists γ̂ > 0 such that the right-hand side of (A.16) is strictly negative when
α̂γT = −1 and γ < γ̂.

These properties imply that there exist γ̃ ∈ (0, γ̂) and γ̃T < γ̃ such that α̂γ̃T (γ̃) = −1.
Furthermore, for all γT ≤ γ̃T and (γ, α̂γT ) ∈ [0, γ̃] × [−1, αm(γ̃T )], the right-hand side of
(A.16) is bounded from above by α̂γ̃T ′(γ̃). (This slope is obtained by substituting the values
α̂ = −1 and γ = γ̃.) Therefore, for all γT ≤ γ̃T , α̂γT is bounded from above on (0, γ̃] by a
linear function with slope α̂γ̃T ′(γ̃) that takes value αm(γT ) at γT . Because this holds for all
γT ∈ (0, γ̃T ), the function α̂ obtained by letting γT → 0 is also strictly decreasing for γ small
enough. The lemma now follows as, by construction, α̂(0) = α(0) = αm(0) and α̂ ≥ α.

Lemma A.8. Under condition (17), the limit function β lies above βm(0) in a neighborhood
of γ = 0.

Proof. Consider the ODE for β, which is given by

β′(γ) =
n(n+ 1)rσ2β(γ)(γ(n+ 1) + γ0(n− 1)n)− γ(n− 1)β(γ)2(γ + γ0(n− 1)n)

γ2n(n+ 1)α(γ)(γ + γ0(n− 1)n)

− β(γ)(γ((n2 − 1)β(γ) + n+ 1) + γ0n(β(γ) + n2(−β(γ)) + n− 1))

γ(n+ 1)(γ + γ0(n− 1)n)

− γ0(n− 1)n3rσ2

γ2n(n+ 1)α(γ)(γ + γ0(n− 1)n)
,

(A.17)

with β(0) = βm(0). Now assume rσ2(n + 1)3 > ng0(n − 1)2, which is implied by the first
inequality in (17). The right-hand side of (A.17) is then strictly decreasing in α for γ
sufficiently small. Because, as γ → 0, the coefficient α approaches −1 from below, we use
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α = −1 to bound β′(γ) in a neighborhood of γ = 0. This gives a lower bound β̂ on β.
Let βco := βm(0). One can verify that if the second inequality in (17) holds, there exists
γ̃ > 0 small enough such that β̂ is strictly increasing in γ whenever β̂(γ) = βco and γ ≤ γ̃.
Therefore, β(γ) ≥ β̂(γ) ≥ βco for all γ close enough to 0.

We now turn to ∆W . Notice first that

∂∆W (γ)

∂β
= (−ng0 − γ) (1 + 2n(α(γ) + β(γ)) .

Proposition 1 implies that α + β ≤ −1/(n + 1). Thus, ∆W (γ) is locally increasing in β

around the equilibrium values of our coefficients. Furthermore, ∆W (γ) is strictly concave
in β. We can therefore use βco ≤ β to construct a lower bound on ∆W (γ) for γ sufficiently
small. Furthermore, there exists ᾱ < −1 such that the resulting bound on ∆W (γ) is strictly
decreasing in α for all α > ᾱ. Because α(0) = −1 and all coefficients are continuous
functions, there exists a neighborhood of γ = 0 in which ∆W (γ) is decreasing in α.

We now define the family of functions α̃γT as solutions to the differential equation in
(A.16), where βm(γ) is replaced by the constant βco. (Identical steps to those in Lemma A.7
establish that the limiting bound α̃ (as γT → 0) is strictly decreasing for γ small enough.)
We then define a lower bound on the profit difference by setting β(γ) = βco and α(γ) = α̃(γ)

in ∆W (γ). This gives

w(γ) :=
n (γ (2(n+ 1)nα̃(γ) + n2 + n+ 1)− γ0n(n+ 1) (α̃(γ) + 1) ((n+ 1)α̃(γ) + 2n))

(n+ 1)2
.

To finish the proof, we solve w(γ) = w for γ and substitute the resulting expression into
the derivative w′(γ). This gives w′(γ) in terms of w and α̃ only. Since α̃ is strictly decreasing
for γ small enough, we can make the change of variables γ 7→ α̃ (i.e., we divide by α̃′(γ)) to
obtain a differential equation for w(α̃). Finally, evaluating the expression for w′(α̃) at w = 0

and α̃ = −1, we have w′(0) = −n2(n− 1)γ0/(n+ 1) < 0. Therefore, w is strictly decreasing
in α̃ at γ = 0. Since α̃ is strictly decreasing in γ, this implies that ∆W (γ) ≥ w(γ) > 0 for
γ > 0 small enough as desired.

Finally, in the table below, we report the values of the left-hand side and the right-hand
side of condition (17) for different values of n:

n 2 3 4 5 6 7 8 9 10

LHS of (17) 0.32 0.87 1.48 2.10 2.74 3.38 4.02 4.66 5.31

RHS of (17) 0.30 0.94 1.73 2.59 3.50 4.43 5.38 6.37 7.30

By inspection, LHS of (17) is strictly smaller than RHS of (17) for 3 ≤ n ≤ 10, confirming
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that for such n, there exists a nonempty open interval of possible values of rσ2/g0 for which
the assumptions of the second part of Proposition 4 are satisfied.

A.5 Proofs for Section 6

We prove Proposition 5 in two main steps. First, we show that finite-horizon equilibria
converge along a subsequence to a strategy profile of the infinite horizon game that is a
solution to the corresponding HJB equation. Second, we show that the value under this
limit strategy profile satisfies a transversality condition and hence constitutes a solution to
each player’s best response problem.

As a preliminary observation, we note that g0/σ2 < 4r/(27n) strengthens the first case
in (15) and hence αT , βT , δT , and γT are bounded uniformly in T (see beginning of Section
A.4). Moreover, then −nα ≥ ξ ≥ 0, and hence ξT is uniformly bounded as well. To see the
last claim, note that nαm + ξm = 0. Therefore, for all T , we have −nαT = ξT . Now consider
the sum nα̇t + ξ̇t and evaluate it at nαt + ξt = 0. We obtain

nα̇t + ξ̇t = − nαt
2σ2 (g0(n− 1)n+ γt)

(
g0(n− 1)n

(
rσ2 + αtβtγt

)
+ 2rσ2γt

)
.

Because the fraction is positive, we can bound γt in the term in parentheses with ng0 and 0

respectively to bound the right-hand side from below. Thus, if ng0αtβt + rσ2 > 0 for all t,
then the function −nα crosses ξ from above only, and then −nαT = ξT implies ξt < −nαt
for t < T . Because β < −α, this clearly holds if α > a for some a > −3/2. The existence
of such a constant a can be shown by first verifying that α is bounded from below by the
solution to

ẏt = −ryt(yt + 1) +
ng0
σ2

y4t , yT = −1,

and then verifying that yt > −3/2 when g0/σ2 < 4r/(27n). We omit the details.
We adopt the notation introduced in the beginning of Section A.4, but redefine fT :=

(αT , βT , δT , ξT , γT ) to include ξT . Note that Lemma A.6 continues to hold for fT so redefined.
Finally, note that each fT satisfies ḟT (t) = F (fT (t)) at every t < T , where F : [−B,B]5 →
R5 is the continuous function on the right-hand side of our boundary value problem (written
here including δ). By continuity, F is bounded on its compact domain implying that the
functions {fT} are equi-Lipschitz.

Lemma A.9. Any sequence {fT} of symmetric linear Markov equilibria contains a subse-
quence {fTn} that converges uniformly to a continuously differentiable f : [0,∞)→ R5 that
satisfies ḟ = F (f) and limt→∞ f(t) = (αm(0), βm(0), δm(0), ξm(0), 0).
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Proof. The family {fT} is uniformly bounded and equi-Lipschitz and hence of locally
bounded variation uniformly in T . Thus, Helly’s selection theorem implies that there exists
a subsequence of horizons {Tn}n∈N with Tn →∞ such that fT converges pointwise to some
function f as T → ∞ along the subsequence. We show that this convergence is in fact
uniform.

Suppose to the contrary that there exists ε > 0 and a collection of times {Tk, tk}k∈N such
that {Tk} is a subsequence of {Tn} and ‖fTk(tk) − f(tk)‖ > ε for every k. By Lemma 2,
there exists tε < ∞ such that for all Tn ≥ t ≥ tε, we have ‖fTn(t) − (x∗, 0)‖ < ε/2. Since
fTn(t) → f(t) as n → ∞, we then have ‖fTn(t) − f(t)‖ < ε for all Tn ≥ t ≥ tε. This
implies that tk belongs to the compact interval [0, tε] for all sufficiently large k, which in
turn implies that no subsequence of {fTk} converges uniformly on [0, tε]. But {fTk} are
uniformly bounded and equi-Lipschitz (and thus equicontinuous) and [0, tε] is compact, so
this contradicts the Arzela-Ascoli theorem. We therefore conclude that {fTn} converges
uniformly to f .

For differentiability of f , note first that uniform convergence of fTn to f implies that
ḟTn = F (fTn)→ F (f) uniformly on every interval [0, t], since F is continuous on a compact
domain and hence uniformly continuous. Define h : R+ → R5 by

hi(t) := fi(0) +

ˆ t

0

Fi(f(s))ds, i = 1, . . . , 5.

We conclude the proof by showing that h = f . As fTn → f , it suffices to show that fTn → h

pointwise. For t = 0 this follows by definition of h, so fix t > 0 and ε > 0. Choose N such
that for all n > N , we have ‖fTn(0)−h(0)‖ < ε/2 and sups∈[0,t] ‖ḟTn(s)−F (f(s))‖ < ε/(2t).
Then for all n > N ,

‖fTn(t)− h(t)‖ ≤ ‖fTn(0)− h(0)‖+ ‖
ˆ t

0

ḟTn(s)ds−
ˆ t

0

F (f(s))ds‖ < ε

2
+
ε

2
= ε.

Thus f = h and ḟ = ḣ = F (f). The limit of f as t→∞ follows by Lemma A.6.
Since the limit function f = (α, β, δ, ξ, γ) satisfies the boundary value problem, we may

construct a value function V of the form (9) as in the proof of Lemma A.3. Then the
policy (α, β, δ, ξ) satisfies the first-order condition (8) by construction and thus achieves the
maximum on the right-hand side of (7). Hence, it remains to show that the transversality
condition holds. In what follows, we use the fact that in the infinite-horizon game, a strategy
Q is admissible if (i) E

[ ´ t
0
Q2
sds
]
< ∞ for all t ≥ 0, (ii) revenue process (1) has a unique

solution, and (iii) firms’ expected payoffs are finite. We need the following two lemmas.
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Lemma A.10. For any admissible strategy Q,

lim
t→∞

e−rtv(t)E[ΠQ
t ] = lim

t→∞
e−rtv(t)E[Π̂t] = lim

t→∞
e−rtv(t)E[Π̂2

t ] = 0

for any function v of polynomial growth. Also, lim sup
t→∞

e−rtE[(ΠQ
t )2] <∞.

Proof. Regarding Π̂, suppose that (Π0, Π̂0) = (π, π̂). Then, it is easy to see that

Π̂t = π̂R̂t,0 + c(1− R̂t,0) +

ˆ t

0

R̂t,sσλsdZs.

where R̂t,s := exp(
´ t
s
λuαu[1 + (n− 1)(1− zu)]du), s < t, is a discount factor (i.e., λuαu[1 +

(n− 1)(1− zu)] < 0). In particular,

E[Π̂t] = π̂R̂t,0 + c(1− R̂t,0) < max{c, π̂}.

Also, by uniform boundedness,

E
[( ˆ t

0

R̂t,sσλsdZs

)2]
= E

[ ˆ t

0

R̂2
t,sσ

2λ2sds
]
≤ K1t

for some K1 > 0. Hence, E[Π̂2
t ] ≤ K0 +K1t. The limits for Π̂ follow directly.

Regarding (ΠQ
t )t≥0, letting R̃t,s := exp(

´ t
s
λu[nαu + βu]du), we have that

ΠQ
t = πR̃t,0 +

ˆ t

0

R̃t,sλs[δs− (n− 1)αs(zΠ̂s + (1− zs)c)]ds+

ˆ t

0

R̃t,sλsQsds+

ˆ t

0

R̃t,sλsσdZs.

Defining E[I1t ] :=
´ t
0
R̃t,sλsE[Qs]ds, Cauchy-Schwarz inequality implies

E[I1t ] ≤
(ˆ t

0

R̃2
t,sλ

2
sds
)1/2(ˆ t

0

E[Qs]
2ds
)1/2

< Kt1/2
(
E
[ˆ t

0

Q2
sds

])1/2
.

Hence,

e−rtE[I1t ] < e−rt/2Kt1/2
(
e−rtE

[ ˆ t

0

Q2
sds
])1/2

< e−rt/2Kt1/2
(
E
[ ˆ ∞

0

e−rsQ2
sds
])1/2

,

where the last term is finite by admissibility of Q. Hence, e−rtE[I1t ]→ 0. It is easy to verify
that all other terms also converge to zero once discounted, and this also occurs when they
are accompanied by v of polynomial growth. Thus, e−rtv(t)E[ΠQ

t ]→ 0.
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To conclude, in studying e−rtE[(ΠQ
t )2] the only non-trivial terms are

At :=
( ˆ t

0

R̃t,sλsQsds
)2

and Bt :=

ˆ t

0

R̃t,sλsQsds

ˆ t

0

R̃t,sλsσdZs.

(For the others the limit exists and takes value zero.) Observe first that there is ε > 0 such
that R̃t,s < e−ε

´ t
s λudu for all 0 ≤ t < ∞; this follows from nα + β < 0 and lim

t→∞
nα + β < 0.

Thus, from Cauchy-Schwarz and the fact that λ < C, some C > 0,

At ≤
( ˆ t

0

R̃2
t,sλsds

)( ˆ t

0

λsQ
2
sds
)
≤ C2

( ˆ t

0

e−2ε
´ t
s λuduλsds

)(ˆ t

0

Q2
sds
)

= C
1− e−2ε

´ t
0 λudu

2ε

(ˆ t

0

Q2
sds
)
< C̃

(ˆ t

0

Q2
sds
)
.

Consequently, e−rtE[At] ≤ C̃E
[
e−rt
´ t
0
Q2
sds
]
≤ C̃E

[ ´∞
0
e−rsQ2

sds
]
< ∞, by admissibility.

We conclude that lim sup e−rtE[At] <∞.
Regarding Bt, by applying Cauchy-Schwarz again, we have

E[Bt] ≤ E
[( ˆ t

0

R̃t,sλsQsds
)2]1/2

E
[( ˆ t

0

R̃t,sλsσdZs

)2]1/2
,

where the second term is bounded by some (L0 + L1t)
1/2. Using the previous argument for

At gives

e−rtE[At]
1/2 ≤ e−rt/2v(t)C̃1/2E

[
e−rt
ˆ t

0

Q2
sds
]1/2
≤ e−rt/2C̃1/2E

[ ˆ ∞
0

e−rsQ2
sds
]1/2

,

where the last term is finite by admissibility. Thus, e−rtE[Bt] ≤ e−rtE[At]
1/2(L0+L1t)

1/2 → 0.
It is easy to show that the rest of the terms in E[(ΠQ

t )2] converge to zero using similar (and
simpler) arguments. Hence, lim sup e−rtE[(ΠQ

t )2] <∞.

Lemma A.11. Under the limit strategy (α, β, δ, ξ), the system (A.9) admits on [0,+∞)

a bounded solution for which lim
t→∞

vi(t) exists for each i, and the system (A.6) defines vk
(k = 1, 4, 5, 8) that have at most linear growth.

Proof. Let θ := r+[2α2γ(n(1−z)+z)]/nσ2. Notice that because z ≤ n/(n−1), θt > r > 0.
It is easy to see that for s > t,

v9(s)e
−
´ s
0 θudu − v9(t)e−

´ t
0 θudu = −

ˆ s

t

e−
´ u
0 θvdv[(n− 1)αuzu + ξu]

2du.
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We look for a solution such that v9(s) exp(−
´ s
0
θudu)→ 0 as s→∞. If it exists, then

v9(t) =

ˆ ∞
t

e−
´ s
t θvdv[(n− 1)αszs + ξs]

2ds.

Because (n − 1)αszs + ξs is uniformly bounded and θ > r > 0, the right-hand side exists,
and it is uniformly bounded. Hence, it corresponds to our desired solution. Moreover, the
limit value of v9 is, by L’Hopital’s rule

lim v9(t) = lim
[(n− 1)αszs + ξs]

2

θt
=

[−n+ n/2]2

r
=
n2

4r
.

The other equations in (A.9) have similar solutions (i.e., taking the form of a net present
value, with a finite limit value), and they can be found in an iterative fashion.

Solving vk(t)αtλt (k = 1, 4, 5, 8) as a function of the limit coefficients from (A.6) and
using limt→∞ f(t) from Lemma A.9, we see that vk(t)αtλt → 0. Because αt → −1, γt ∈
O(1/(a+ bt)), and λt ∝ αtγt, this implies that vk(t) grows at most linearly.

We are now ready to show that the transversality condition holds (see, e.g., Pham, 2009,
Theorem 3.5.3).

Lemma A.12. Under any admissible strategy Q, lim supt→∞ e
−rtE[V (C,ΠQ

t , Π̂t, t)] ≥ 0.
Moreover, under the limit strategy (α, β, δ, ξ), the limit exists and it takes value zero.

Proof. It obviously suffices to show the result conditional on any realized c. We first check
the lim sup. Terms involving vi, i = 0, 1, 2, 3, 5, 6, 7, 9 in V converge to zero by the last two
lemmas. For the v4 term, Cauchy-Schwarz implies

e−rtv4(t)E[ΠQ
t Π̂t] ≤ e−rt/2v4(t)E[Π̂2

t ]1/2e−rt/2E[(ΠQ
t )2]1/2,

where e−rt/2v4(t)E[Π̂2
t ]1/2 → 0 as v4 is at most O(t) and E[Π̂2

t ] is linear. By Lemma A.10,
lim sup e−rtE[(ΠQ

t )2] < ∞. Thus e−rtv4(t)E[ΠQ
t Π̂t] → 0 as t ≥ 0. We deduce that the

lim sup is non-negative by noticing that e−rtv8(t)E[(ΠQ
t )2] ≥ 0 as v8 ≥ 0.

Since all terms except for e−rtv8(t)E[(ΠQ
t )2] converge to zero under any admissible strat-

egy, it remains to show that, under the limit strategy Q∗, e−rtv8(t)E[(ΠQ∗

t )2]→ 0. However,
this is straightforward once we observe that

ΠQ∗

t = πRt − cRt

ˆ t

0

Rt,sλsαs[1 + (n− 1)(1− zs)]ds

+

ˆ t

0

Rt,sλsσdZs +

ˆ t

0

Rt,sλs[ξs + (n− 1)αszs]Π̂sds.
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Indeed, because (i) E
[( ´ t

0
Rt,sλsσdZs

)2] and E[Π̂2
t ] grow at most linearly, (ii) the functions

(α, β, ξ, z, λ) are all uniformly bounded, and (iii) Rt,s is a discount rate, it is easy to verify
that all terms in E[(ΠQ∗

t )2] decay to zero once discounted by e−rt.
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