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Abstract. The profitability of many agricultural decisions depends on farmers’ predictions

about the weather. Climate change implies (possibly unknown) changes in the weather

distribution. I study how farmers form predictions about a weather-dependent decision, the

planting time, using rainfall signals. To capture the potential uncertainty caused by climate

change, I develop an empirical framework that estimates, and finds support for, a general

robust learning model in which farmers believe that the rainfall signals are drawn from

a set of rainfall distributions. This indicates that farmers respond to greater (Knightian)

uncertainty by modifying their predictions to be robust to such uncertainty.
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“The real challenge of dealing effectively with climate change is recognizing the value of wise and

timely decisions in a setting where complete knowledge is impossible”

Intergovernmental Panel for Climate Change (IPCC), 2014

1. Introduction

Both economists and psychologists have established that decision making differs in risky

and uncertain environments i.e. in settings where the probabilities of events are known versus

those where they are not.1 Climate change is a particularly relevant example of an environ-

ment characterized by unknowable uncertainty (where the probabilities of weather events

may not be known), especially in the short and medium-run because it will manifest itself as

changes in the weather distribution (Ferro, Hannachi, and Stephenson, 2005). Weather out-

comes provide noisy signals of the underlying climate distribution, and climate change might

do more than add to the complexity (and non-stationarity) of the stochastic process driving

the weather and climate: it might also create uncertainty wherein the underlying stochastic

process is no longer known. Furthermore, the historical record under recent climate change

might be insufficient to statistically distinguish one particular climate process from another.

Unlearnable uncertainty might thus be an important factor that determines climate-sensitive

decisions, and one that has largely been overlooked in previous studies on adaptation. In-

deed, if agents facing climate change are cognizant of this uncertainty and adapt accordingly,

ignoring this aspect of decision making may misstate the extent of adaptation.

Climate change is estimated to have already affected food security adversely, and is pro-

jected to do so to a greater extent in the future(IPCC, 2013). This paper studies how

farmers in India, a country highly vulnerable to climate change (IPCC, 2013), dynamically

make an agricultural decision that is an important determinant of profits (the choice of

planting time), and whose profitability depends on the timing of monsoon rainfall.2 The

high degree of uncertainty governing the monsoon has been exacerbated by recent decadal

shifts in parts of the monsoon distribution in some areas (Goswami, Kulkarni, Mujumdar,

and Chattopadhyay, 2010). The extent to which farmers respond to this greater uncertainty

by changing the way they form weather predictions and their consequent behavior is the

focus of this paper.

To account for the uncertainty introduced by climate change, I model learning by assum-

ing that farmers believe that the rainfall signals they observe are drawn from an unknown

member of a set of (unspecified) stochastic processes near an approximating model (fol-

lowing Hansen and Sargent (2008)). Put differently, this generalizes a standard Bayesian

learning environment (which as I discuss below is a special case of the model) by allowing

for the fact that farmers may not know the true stochastic process governing the weather.

1The classical reference for this is Ellsberg (1961). Gilboa (2009) and Hansen and Sargent (2008) provide a
thorough theoretical treatment of these and related topics.
2Precipitation patterns are a crucial determinant of returns in agriculture, and the monsoon season in India
is particularly important for agricultural returns. The literature documenting the impact of monsoon rainfall
on agricultural returns is extremely extensive and impossible to cover in complete detail - Giné, Townsend,
and Vickery (2007); Jacoby and Skoufias (1998), Rosenzweig and Binswanger (1993), and (Taraz, 2017) cover
important aspects of how monsoon rainfall impacts agricultural yields and incomes in India.
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The behavioral implication of this model is that farmers make decisions that are robust to

model misspecification (i.e. not being certain what the rainfall distribution is) by exhibiting

a concern for worst-case profits.

I estimate the model and find support for its predictions in long-term panel data from India

on monsoon realizations and household-level data on agricultural decisions and returns. The

agricultural decision I study, the timing of planting, contains information about household

expectations about the monsoon, and is an economically crucial decision for farmers: a

every 1% deviation from the optimal planting time in a given year causes about 3% lower

profits relative to mean profits. Specifically, I find that farmers indeed exhibit a concern

for worst-case profits when evaluating the uncertain relationship between the rainfall signal

and the optimal planting time. Furthermore, the estimates provide additional support for

the model by showing that the belief that rainfall signals are drawn from a set, rather than

a single distribution, is much more pronounced in villages that experienced changes in the

monsoon onset distributions in the last five decades. As an additional model-free, data

driven validation of the model, I show that the maximum (i.e. (worst-case)) forecast errors

are also much lower in villages that experienced changes in the monsoon onset distributions.

This indicates that farmers respond to greater (Knightian) uncertainty in their environment

by modifying their predictions to be robust to such uncertainty (this is not an implication

of the alternative canonical models I additionally consider). Methodologically, the empirical

framework I develop is quite general (and not tied to my application per se) and can be

employed to test across learning models in other environments with unlearnable uncertainty.

As mentioned above, my framework additionally allows me to quantify the importance of

robust decision making in my application by contrasting the estimates with those from two

other canonical Bayesian learning models. Unlike robust learning, in these latter models,

the farmer is assumed to know the exact stochastic processes that generate both the optimal

planting time and the rainfall signals. All three models generate distinct testable predictions

on how the farmer combines the information from past rainfall signals to determine her

optimal planting time. In particular, the models yield structural equations governing the

learning process which can be estimated.

Specifically, I contrast a robust normal learning model (RNLM) with two Bayesian nor-

mal learning models (NLMs) in which the mean optimal planting time is assumed to be

time-invariant and time-varying respectively. The time invariant Bayesian NLM (or NLM

for short) is perhaps one of the most widely used learning models in both the theoretical and

empirical literature. In this, both the parameter of interest that is being learned (the mean

optimal planting time) and the signals that provide information (rainfall signals) are drawn

from known normal distributions. Versions of this basic model have been employed in nu-

merous empirical microeconomic studies on learning; for instance, in the work studying the

returns to new technologies or to sectors (see, for example, Foster and Rosenzweig (1995),

Gibbons, Katz, Lemieux, and Parent (2005), Conley and Udry (2010)). Qualitatively, one

of the main implications of this model is that the posterior estimate of the parameter be-

ing learned is formed by taking a linear combination of past signals where each signal is
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given equal weight (since the parameter of interest that the agents are learning about is

time-invariant, each signal contains the same amount of information).

By contrast, in the robust NLM (introduced by Hansen and Sargent (2008) in the macroe-

conomics literature), the farmer starts off with an approximating model that consists of

known normal distributions from which the time-invariant mean optimal planting time and

the rainfall signals are drawn. She chooses an optimal planting time to maximize the worst

case profits that could arise if the true data generating process was not necessarily the ap-

proximating model but could instead be any one from a set of stochastic processes that

are close to it (loosely speaking, the size of this set determines the degree of robustness).

In this sense, decision making is robust to the fact that the approximating model may be

misspecified. An attractive feature of the robust NLM is that the optimal planting time is

still a linear function of past signals; however, the qualitative difference is that these signals

are not weighted equally. Specifically, more weight is placed on recent signals. Intuitively,

earlier signals affect decision making in more time periods and hence, are more likely to be

misleading in the worst case (and should hence be underweighted).

Another natural reason that could explain the overweighting of recent signals is that the

farmers believe the mean optimal planting time is time-varying: by definition, the most

recent signal would then be the most informative. I explore this alternative by considering a

NLM where mean optimal planting time evolves following a known Gaussian AR (1) process.

Here too, the farmer’s optimal choice of planting time is a linear function of past signals (in

which recent signals have greater weight). However, the precise structural equations that

govern this behavior differ from those of the robust NLM and this is what allows me to

contrast the parameter estimates. It is worth emphasizing that each of these models is

economically interesting in their own right and the one that best explains the data depends

on the context and is, ultimately, an empirical question. Hence, the empirical framework can

be viewed as a methodological contribution in that it provides a parsimonious way to test

across canonical learning models that embody varying beliefs about risk and uncertainty,

and can be employed in other learning environments.

With this analysis, we can understand farmer decision making by testing across learning

models, as well as test whether and how climate uncertainty impacts this behavior. This

implies that in environments characterized by unlearnable uncertainty, robust learning may

be an effective adaptation technique, and it is one that farmers are already employing to

adapt to climate change, at least with regard to this one important agricultural decision.

This study makes two main contributions. Firstly, I introduce robust learning and decision

making to the economics of climate change adaptation. It has been argued that changes in

the weather affect agricultural returns (for a recent example, see Burke and Emerick (2013)

who estimate the impacts of changes in decadal mean temperature and precipitation on crop

yields) and that farmers adapt to these changes (for instance, Taraz (2017) shows that farm-

ers respond to variation in mean rainfall by investing in irrigation). To assess the efficacy

and relative importance of various policies that allocate adaptive resources, it is important to

understand farmers’ adaptation behavior. An important aspect of this adaptation behavior
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is using weather information to form beliefs about the changing climate(Lemoine, 2018). Ig-

noring unlearnable uncertainty, especially when analyzing weather sensitive behavior during

climate change, can potentially be a crucial omission. These results also underscore the lim-

itations of providing weather forecast information in absence of other adaptation measures,

since weather forecast information may not allow farmers to discern which distribution the

weather is drawn from under climate change, and so provides limited adaptive possibilities

to the uncertainty caused by climate change. Finally, I show that farmers respond not only

to changes in the mean weather, but also changes in the weather distribution more generally,

and do so by changing the way they form weather predictions which impact their economic

decisions.

Secondly, as mentioned above, a methodological contribution of this paper is to the lit-

erature that tests across learning models. In terms of its data requirements, such testing

is challenging as long term panel data (on the signals observed and the decisions made in

response) is needed. A consequence is that most micro-economic studies on testing learning

have been conducted using data from the laboratory (Camerer and Ho, 1999; Cheung and

Friedman, 1997) or from experimental games in the field (Barham, Chavas, Fitz, Ŕıos-Salas,

and Schechter, 2014). To the best of my knowledge, this is the first paper to test across

learning models while explicitly allowing for robust learning using individual-level field data

on an important economic decision.

The rest of the paper is organized as follows. Section 1.1 discusses the related literature

in more detail, while section 2 provides the background and context of the setting. Section 3

details the models of learning I test across, and section 4 provides the estimating equations

that are implied by the models. Section 5 discusses the data used in estimation, 6 the results

of the estimation, and 7 concludes.

1.1. Related Literature

Farmers make several decisions that incorporate information about their expectations of

climate and weather, and which in turn affects their returns. Examples include irrigation

(Kurukulasuriya, Kala, and Mendelsohn, 2011), crop choice (Kurukulasuriya and Mendel-

sohn, 2008; Miller, 2013) and crop varieties (Deressa, Hassan, Ringler, Alemu, and Yesuf,

2009). More recently, Lemoine (2018) contains a comprehensive discussion of the implica-

tions of inferring climate impacts from weather observations, especially in environments of

irreversible investments. Learning about climate change for adaptation was first considered

by Kelly, Kolstad, and Mitchell (2005), who model an agent who is learning about a climate

which has changed to a new time-invariant state, and use agricultural data from Midwestern

US states to estimate damages of adjusting to this new equilibrium climate. Taraz (2017)

finds that farmers in India are less likely to invest in irrigation following a decade of higher

than average rainfall, which is in keeping with a model of adaptation to decadal monsoon

rainfall cycles. The choice of planting dates, the decision I study, is an important and rela-

tively low-cost adaptation measure to perceived climate risk but there are fewer studies on

planting dates as long term panel data of this decision is relatively rare.
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There has also been considerable interest in studying how farmers’ beliefs impact behavior.

In recent important work, Giné, Townsend, and Vickery (2015) show that subjective beliefs

regarding onset are not only a good approximation of actual onset, but also play an important

role in planting decisions. Thus, they show that farmer beliefs predict their behavior, which is

important for my estimation, since I do not have data on beliefs, and infer them from farmer

choices (timing of planting decisions). Deressa, Hassan, Ringler, Alemu, and Yesuf (2009)

find that information regarding weather and climate to be an important determinant in

adoption of adaptation mechanisms for farmers in the Nile Basin in Ethiopia. The literature

that examines the impact of forecasts on farmer beliefs, decisions and economic outcomes,

finds mixed impacts depending on the context. Lybbert, Barrett, McPeak, and Luseno

(2007) find that while herders in Kenya do update their subjective beliefs about future

weather realizations in response to official forecasts, they do not respond to the forecast

while taking decisions regarding their livestock, likely because their moving costs are low.

Rosenzweig and Udry (2013) find that in areas where monsoon forecasts are reliable, they

are an important determinant in planting investment decisions for Indian farmers.

Also related is the literature that seeks to describe behavior in financial markets and agri-

cultural decision-making, by distinguishing whether agents maximize expected returns, or

minimize the probability of economic disaster. This is discussed in the form of safety-first

decision rules in the literature on portfolio management (Roy, 1952), and later in agricultural

settings (Roumasset et al., 1976). More recently, Bryan (2017) shows that ambiguity-aversion

(evaluating choices based on their minimum returns) is an important barrier to the adoption

of risky technologies. However, these papers do not consider learning. Epstein and Schneider

(2007) model learning under ambiguity with calibrated applications to stock-market partici-

pation. This paper differs from Epstein and Schneider (2007) in that it estimates a structural,

already existing, model of robust learning from data, and contrasts the goodness-of-fit of this

model with standard normal learning models.

Robust learning of the type that I consider in this paper arises from the robust control

and filtering literature which originated in statistics (Whittle, 1981) and engineering (Ba-

navar and Speyer, 1994; Shaked and Theodor, 1992), and was established in economics in

the macroeconomic literature (Hansen and Sargent (2008) contains a detailed treatment of

these topics). This kind of uncertainty regarding model misspecification (where the agent

is uncertain that he has specified the relationship between the noisy signal and underlying

state correctly) is also closely linked to the literature on ambiguity aversion, where agents

operating in environments where they do not know the underlying environment evaluate

returns to different actions based on each action’s minimum returns (Gilboa (2009) contains

a detailed decision theoretic treatment of choice under uncertainty).

2. Context

The Indian monsoon is part of a larger Asian-Pacific monsoon, which is vital to the

agricultural sector and economies of several countries. In India, the four months of the

monsoon (June-September) account for about 80% of annual rainfall. Figure 1 illustrates

daily cumulative rainfall over the course of the year for the villages in the dataset I use (which
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detailed in section 5), with the start and end of the monsoon marked out - the significant

role of the four monsoon months in annual cumulative rainfall is clear. Furthermore, since

only about a third of arable land is irrigated in India (World Bank, 2012), monsoon risk is

a crucial component of weather risk.

In particular, the timing of the onset of the monsoon (the first phase of the monsoon

accompanied by an increase in rainfall relative to earlier months) is an important aspect of

agricultural profits (Rosenzweig and Binswanger, 1993), since it provides the soil moisture

necessary for the early stages of plant growth. There is considerable evidence that monsoon

rainfall, and onset timing and intensity in particular, are affected by global climate phe-

nomenon such as the El Niño (Kug, Jin, and An, 2009). Interestingly, these relationships

have been increasingly variable in recent decades (Ummenhofer, Gupta, Li, Taschetto, and

England, 2011), and there is some evidence that the progression of the monsoon within India

might be slowing (Goswami, Kulkarni, Mujumdar, and Chattopadhyay, 2010). Given recent

decadal changes in the monsoon, and increased awareness about climate change, it is plau-

sible that farmers are uncertain about the exact, possibly time-varying, stochastic processes

governing the timing and intensity of the monsoon.

Furthermore, decisions regarding the timing of planting are important for agricultural

profits. Farmers choose an optimal planting time taking into account soil moisture (Giné,

Townsend, and Vickery, 2007), the pest environment, and rainfall signals (along with possibly

a variety of other signals, a case I discuss in section 6.5.1). Replanting costs are usually high

(Giné, Townsend, and Vickery, 2007), and include the adverse impact of a shorter growing

season. Studies in the agronomic literature that utilize plant growth models to estimate

optimal sowing windows find rainfall variation at sowing to be a crucial component of yields

(Rao, Gadgil, Rao, and Savithri, 2000). Thus, in addition to being an important economic

decision, planting time is a measure of farmers’ beliefs regarding the optimal sowing window

each year, and panel data of planting decisions includes information on how households’

beliefs about optimal planting time evolve over time.3

3. Model

Consider a farmer who chooses the time η̂t at which to plant his crops at each year t.4

The actual optimal planting time at year t is denoted by ηt - it is unobserved by the farmer

and is drawn from distribution Gt with mean µt. At the end of each agricultural season t,

the farmer receives a noisy but informative signal yt of the optimal planting time ηt in the

village that year (thus yt inform decisions η̂t+1 onwards).

While I discuss in detail what the signal yt actually corresponds to in the data in Section

5, it is worth briefly describing here as well to fix ideas. I assume that farmers observe the

cumulative amount of fallen rainfall from the start of the monsoon and plant their crops

at a point at which they feel the timing is optimal (there is sufficient soil moisture, fewer

3While other decisions such as investments in irrigation also include information on farmers’ expectations
regarding future weather, household-specific liquidity constraints might impact farmers’ ability to invest
in them. Thus, variation in decisions like irrigation might not as neatly map on to variation in future
expectations, which is important to identify across decision rules.
4The estimation only considers farmers’ kharif planting, which is the monsoon agricultural season.
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pests, etc.). Hence, the planting time η̂t is expressed in terms of the amount of cumulative

rainfall (as opposed to calendar time) at which the farmer chooses to plant. The signal yt
corresponds to the cumulative amount of rainfall after which planting led to maximal profits

(across farmers) in the village (which farmers can observe prior to next year’s planting season)

in the year t.5

The farmer’s expected profit depends on how far his chosen planting time is from the

optimal and is given by

(1) πt(η̂t, Gt) = at − b
∫

(η̂t − ηt)2 dGt(ηt).

Here, all other decisions made by the household that influence agricultural profits are incor-

porated in the term at ≥ 0 and b ≥ 0 is a parameter that determines the sensitivity of profits

to the chosen planting date. Since b does not vary over time, it is without loss to normalize

b = 1 in what follows.6

This quadratic specification is analogous to the target-input model commonly employed

to model agricultural profits (Conley and Udry, 2001; Foster and Rosenzweig, 1995). While

relatively flexible, this functional form has the following consequences. (i) The choice of

planting date ηt and the other decisions at (such as investments in capital, labor, fertilizer

etc.) are assumed to impact profits in an additively separable way. The optimal planting

time is a composite of various agronomic factors (such as the level of soil moisture to facilitate

seed germination, sunlight, humidity, and the pest environment) and hence, it is realistic to

assume that it does not depend on investments. (ii) The chosen planting time in period t

does not affect profits in any subsequent time period. This is an appropriate assumption

for this setting since the farmers in my data plant seasonal crops like cotton and rice (and

not tree crops), which have to be replanted every year. (iii) Planting too early has the same

(negative) marginal consequences as planting too late.7

I now describe the stochastic process governing the optimal planting ηt. In words, at each

time t, ηt is normally distributed with mean µt which in turn follows a random walk. I refer

to the mean of the optimal planting time µt as the state.

Formally, at time t = 1, the farmer’s prior belief is that the mean optimal planting time

µ1 is normally distributed with mean µ0 and variance ω2. The state evolves according to a

random walk

(2) µt = µt−1 + vt,

5I explore robustness to alternative definitions of yt in the data in Section 6.5.2.
6The theory can readily accommodate a time dependent parameter bt. However, since the farmers’ profit
functions are unobserved, such a time dependent bt cannot be identified or estimated from the data.
7 This assumption is standard in target-input models (Conley and Udry, 2001; Foster and Rosenzweig, 1995).
Since the true optimal planting time is unobserved (though farmers observe noisy signals of it every period),
the assumption is not directly testable. However, if the loss of planting too early vs too late is asymmetric -
for instance, a− b11(η̂t ≥ ηt) (η̂t − ηt)2 − b21(η̂t < ηt) (η̂t − ηt)2, where b1 6= b2, Granger (1969) shows that
the optimal η̂t is E(ηt) plus a constant term that depends b1/b2. In neither case is the relative weighting of
the past history of rainfall signals and the prior affected, which is what is crucial to the identification across
learning rules.
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where vt is drawn independently across time from a normal distribution with mean 0 and

variance φ2. Note that the special case φ2 = 0 corresponds to a time-invariant state. The

optimal planting time is normally distributed with mean µt or

(3) ηt = µt + δt,

where δt is Normally distributed with mean 0.

The farmer learns about the optimal time to plant by observing signals

(4) yt = ηt + εt = µt + δt + εt

where the noise εt is independently drawn in each period and is normally distributed with

mean 0. We denote the total variance of the noise terms δt + εt by σ2. The farmer uses the

signals {y1, . . . , yt−1} to learn the mean µt which in turn determines the optimal planting

time ηt.

Ft denotes the distribution obtained from Bayesian updating (which will be a normal

distribution the mean and variance of which depend on the signals). A non-robust farmer

will maximize profits πt with respect to this distribution or, in my notation, considers Gt = Ft
and solves

max
η̂t
{πt (η̂t, Ft)} .

It is immediate to see that the solution to the above problem is to choose a planting date

equal to the mean of Ft.

By contrast, a robust farmer accounts for the fact that the true distribution Gt may differ

from that obtained by Bayesian updating Ft (or that his underlying model of the world may

be misspecified). Specifically, he believes that an adversarial nature picks a distribution that

minimizes his cumulative expected profits and he chooses a planting date to maximize the

worst-case expected profits. Formally, for a given choice of planting date η̂t, the farmer

evaluates expected profits according to a distribution Ĝt(η̂t) that solves

Ĝt(η̂t) = argmin
Gt

πt(η̂t, Gt) +
T−1∑
t′=1

πt(η̂t′ , Gt)︸ ︷︷ ︸
Cumulative Profits

+
1

θ
KL(Gt, Ft)︸ ︷︷ ︸

Nature’s Penalty

 ,(5)

where θ ≥ 0 and KL(Gt, Ft) is the Kullback-Liebler divergence between the distributions Gt

and Ft (that I describe in further detail below). This latter term disciplines the problem:
1
θ
KL(Gt, Ft) is interpreted as the penalty imposed on nature when she picks a distribution

Gt that is different from Ft. Formally, the function

KL(Gt, Ft) =

∫ ∞
−∞

log

(
gt(ηt)

ft(ηt)

)
gt(ηt)dηt,

is a measure of the distance between the distributions Gt and Ft (with corresponding densities

gt and ft).KL(Gt, Ft) ≥ 0 for all distributions Gt, and KL(Gt, Ft) = 0 if and only if gt = ft
almost everywhere. Intuitively, it is a measure of the information lost when Gt is used

to approximate Ft. This term disincentivizes nature from picking distributions that are
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arbitrarily far from the distribution Ft (thereby preventing nature from always driving the

worst-case expected profits to 0).8

Here, θ captures the degree of robustness : larger values of θ impose a greater penalty on

nature implying that the worst-case distribution Gt will be “closer” to Ft. Observe that as

θ → 0, the penalty term 1
θ
KL(Gt, Ft) explodes implying that nature is compelled to choose

Gt = Ft or, equivalently, that the standard normal Bayesian learning framework is obtained

as a special case (where the farmer’s degree of robustness is θ = 0).

A robust farmer chooses an optimal planting date η̂t (that maximizes worst-case profits)

by solving

(6) max
η̂t

{
πt

(
η̂t, Ĝt(η̂t)

)}
.

Expressing both (5) and (6) together, the farmer solves the following max-min problem

max
η̂t

min
Gt

{
at −

∫
(η̂t − ηt)2 dGt(ηt) +

T−1∑
t′=1

[
at′ −

∫
(η̂t′ − ηt)2 dGt(ηt)

]
+

1

θ
KL(Gt, Ft)

}
.

(7)

The choice of modeling the penalty term on nature by using the Kullback-Liebler divergence

(as opposed to using a different distance function) is a convenient functional form assump-

tion.9 As I will describe below, this assumption combined with the assumption of normality

(of the distributions of the prior, the signals and the state evolution), implies that an elegant

feature of this model is that the above seemingly complex optimization problem yields a

simple and intuitive solution.

I now describe in turn, the optimal planting date as a function of the observed signals

for our three main cases of interest. This will yield the relevant structural equations that I

estimate in the empirical Section 4.

3.1. The (Non-Robust) Normal Learning with a Time-Invariant State

As mentioned earlier, this is the workhorse learning model used in the empirical literature.

Recall that this corresponds to the special case where φ2 = 0 i.e. that the mean optimal

planting time µt does not change over time. Here, the period-t optimal planting time (which

is the mean of the posterior distribution Ft) is given by the following linear recursive equation

η̂t+1 =
(
1−KN

t

)
η̂t +KN

t yt,

where

(8) KN
t =

ΣN
t

ΣN
t + σ2

, ΣN
t =

ΣN
t−1σ

2

ΣN
t−1 + σ2

, ΣN
0 = ω2.

8An equivalent way rewrite (5) would be to remove the penalty term 1
θKL(Gt, Ft) and instead constrain

nature to pick a distribution Gt from a set of distributions, each element of which cannot have more than
some given maximal Kullback-Liebler divergence from Ft. The maximal distance (or equivalently the “size”
of the set) would then be parametrized by θ with higher values representing a greater degree of robustness
(as nature can pick from a larger set of distributions).
9For similar reasons, the rational inattention literature assumes that the cost of information acquisition is
the reduction in entropy.
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As discussed in Section 1 , an important qualitative prediction is that all signals are weighted

equally (after expanding the recursion, the coefficients on {y1, . . . , yt} are the same) since

the state is time-invariant and all signals are equally informative.10

3.2. The Robust Learning Model

My main model of interest is one where the underlying state is time-invariant (φ2 = 0) but

where the farmer exhibits a concern for robustness. As mentioned earlier, this model might

be thought to be particularly relevant for a farmer who makes weather dependent decisions

in an environment where the distribution of weather is possibly changing. A strength of

this framework is that the seemingly complex optimization problem (7) yields a simple

and intuitive solution. Once again, the period-t optimal planting time is given by a linear

recursive equation

η̂t+1 =
(
1−KR

t

)
η̂t +KR

t yt,

where

(9) KR
t =

ΣR
t

ΣR
t + σ2(1− θΣR

t )
, ΣR

t =
ΣR
t−1

ΣR
t−1 + σ2(1− θΣR

t−1)
, ΣR

0 = ω2.

Contrast (9) with (8) and observe that the optimal planting time depends on the degree of

robustness θ (where (8) is the special case corresponding to θ = 0). Qualitatively, as with the

case of a time-varying state, learning involves placing a greater weight on more recent signals

but for a different reason. Intuitively, the reason for this “recency bias” is that, because the

farmer uses old information in more forecasts (e.g. the first signal enters the farmer’s forecast

for all periods starting from the second period onwards, the second signal enters the their

forecast for all periods starting from the third period, and so on), nature can maximize the

farmer’s estimation error by making earlier signals more noisy. Thus, in updating his beliefs,

the farmer best responds by treating the earlier signals as less informative.

To make the paper self-contained (and to provide an easy reference for those readers not

familiar with this model), I provide a derivation in Appendix B that shows how to reduce

the min-max problem (7) to an equivalent and simpler min-max problem with a quadratic

objective in which nature picks a single variable as opposed to a function Gt. Once restated

this way, it is then straightforward to obtain the equation (9) for the optimal planting time

(alternatively, see Simon (2006) for a derivation). Additionally, in Appendix B, I discuss an

alternative (and, in my opinion, less compelling) formulation (due to Whittle (1981)) which

yields the same behavior but is purely Bayesian.11

10This is not immediately apparent from the recursive formulation but can be verified by substituting η̂t =(
1−KN

t−1
)
η̂t−1 +KN

t−1yt−1 and so on and by observing that (1−KN
t )KN

t−1 = KN
t .

11Essentially, Whittle (1981) demonstrates that it is possible to construct a particular utility function for the
farmer which yields the behavior described by (9). This utility function is somewhat hard to interpret (in
that there is not compelling interpretation for this particular function) which is why I find it less compelling
as a model.
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3.3. The (Non-Robust) Normal Learning Model with a Time-Varying State

When the mean optimal planting time µt follows a random walk (given by (2)) with φ2 > 0,

the period-t optimal planting time is once again given by a linear recursive equation

(10) η̂t+1 =
(
1−KRW

t

)
η̂t +KRW

t yt.

where

(11) KRW
t =

ΣRW
t

ΣRW
t + σ2

, ΣRW
t =

ΣRW
t−1 σ

2

ΣRW
t−1 + σ2

+ φ2, ΣRW
0 = ω2.

Contrast (11) with (8) and observe that KRW
t 6= KN

t . It is no longer the case that all signals

are equally weighted; indeed, upon expanding the recursion it can be verified that that the

coefficients on more recent signals are greater (that is, the coefficient on yt will be greater

than yt−1 and so on). This is intuitive: since the state is time-varying, more recent signals

contain less noisy information about the underlying state.12

3.4. Summary of the Theoretical Framework

To summarize, in all three models, updating is linear (a feature that proves very useful

for estimation and model selection). The optimal choice η̂t+1 is obtained from the optimal

choice in the previous period η̂t and the signal yt via the recursive equation

η̂t+1 = (1−Kt) η̂t +Ktyt,

where Kt, the Kalman gain at time t, is the weight given to the signal at time t. Expanding

the above recursion allows for an expression of η̂t+1 in terms of the entire vector of signals

and the prior as

(12) η̂t+1 = η̂1

t∏
j=1

(1−Kj) +K1y1

t∏
i=2

(1−Ki) +K2y2

t∏
i=3

(1−Ki) + · · ·+Ktyt.

In Figures 3-5, I demonstrate graphically the qualitative features of each of the three

models by plotting the relative weights placed on past signals. Each of these figures examines

a planting decision at time t = 11 and plots the coefficients of the signals y1, . . . , y10 (from

equation (12)) where the x-axis corresponds to the signal time (more recent signals are to

the right).

Figure 3, which considers the NLM with a time-invariant state, shows that increasing σ2

shifts the weight on information downward (relative to the weight on the prior), as a higher

variance of the signal implies that the signals are less informative. Additionally, it shows

that all the signals are weighted equally. Conversely, for the NLM with a time-varying state,

Figure 4 illustrates that, as the variance of the state φ2 increases, the relative importance

of recent information is greater (as previous signals provide less precise information about

the current state). Finally, Figure 5 demonstrates the recency bias that arises in the robust

learning framework (despite the state remaining unchanged) and its increase in the degree of

12A robust random walk learning model would be a generalized version and nest these three models. In the
robustness checks, I estimate the model and show that it does not seem to be best explaining the data.
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robustness. Additionally, the difference in the shapes of the curves corresponding to Figures

5 and 4 highlight the qualitative difference in the recency bias that arises in both these cases.

The main contribution of this paper is to structurally estimate (using the equations gov-

erning the optimal planting time) the parameters corresponding to each of the three models

and determining which of them best explains the behavior of the farmers in my data. For

convenient reference, Table 1 summarizes the Kalman gains, Kt and the variance of the

estimation error, Σt in each of the three cases.

4. Estimation

Recall that, in my model, a profit maximizing farmer chooses his planting date as a linear

combination of his prior belief and the signals he has received. Specifically, the optimal

planting time η̂it chosen by farmer i in year t depends on the past village level yearly rainfall

signals {yv1, . . . , yvt−1} as follows

η̂i2 =(1−K1)η̂i1 +K1yv1,

η̂i3 =(1−K2)(1−K1)η̂i1 + (1−K2)K1yv1 +K2yv2,

...

η̂iT =(1−KT−1)(1−KT−2)...(1−K1)η̂i1 + (1−KT−1)(1−KT−2) · · ·K1yv1

+ (1−KT−1)(1−KT−2) · · ·K2yv2 + · · ·+KT−1yvT−1.

The weight Kt−1 that the farmer places on his most recent signal depends on the specific

learning model being estimated (Table 1 contains the explicit functional forms). My esti-

mation procedure can be described as follows. Each of my three main models of interest

contain different parameters (summarized in Table 2) which I separately estimate from the

above equations by using non-linear least squares regression.13

After estimating each of the learning rules separately, I compare the relative fit of the

models using three goodness-of-fit measures: the Akaike Information Criteria (AIC), the

Akaike Information Criteria corrected for smaller samples (AICc), and the Bayesian Infor-

mation Criteria (BIC). All three information criteria trade-off model complexity against

goodness-of-fit, and penalize additional parameters added to a model, with the BIC penaliz-

ing additional parameters relatively more. This latter step is important as both the robust

NLM and the NLM with a time varying state have additional parameters (compared to the

NLM with a time invariant state) which must be accounted for when determining which of

the models best explains the data (and these information criteria trade-off model complexity

against goodness-of-fit).

A few specific remarks on the estimation procedure are in order.

• Note that due to the recursive structure of the model, the observed planting date η̂i1
in year 1 contains all the relevant unobserved information the farmer possesses prior

to the start of my data. Put differently, my model allows me to use this planting

date to capture the prior belief of the farmer.

13The parameters were estimated using the “nlinfit” tool in Matlab. Initial values were set at 0.5.
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• Observe that the Kalman gains Kt (Table 2) depend on the ratio of the variances of

the prior belief, the signal noise and the state evolution process. Hence, parameters

can only identified up to scale. Therefore, I normalize the variance of the prior belief

ω2 to 1 in all the learning models and recover the rest of the parameters up to scale.

Note that, following this normalization, all remaining parameters are identified.

5. Data

5.1. Household Data

I use household-level panel data from the Indian Crop Research Institute for the Semi-

Arid Tropics (ICRISAT). The data contain detailed socio-economic information, including,

season-level data on agricultural operations’ timing, costs and returns. The data cover six

villages over 2005-2012, and eleven additional villages over 2009-2012. The villages are

from five Indian states - Andhra Pradesh, Gujarat, Karnataka, Maharashtra, and Madhya

Pradesh. Thus, there is considerable cross-sectional variation in the timing of the monsoon

progression, as evinced by Figure A1, which shows the location of the villages in the data.

A household’s optimal planting time (corresponding to η̂t in the model) is chosen to be the

point in the monsoon (kharif) season at which they begin planting their most important crop

(the crop that has the highest contribution to profits).14 the following points are important to

re-iterate in this section (i) The planting “time” is measured to be the amount of cumulative

rainfall (that has fallen since the start of the monsoon) at which planting begins. This

choice reflects the fact that cumulative rainfall (instead of calendar time) determines the

conditions (such as the level of soil moisture, the amount of pests etc.) that are conducive

to planting (although the empirical results are qualitatively similar if I use calendar time

instead). This is also consistent with the literature studying farmers’ beliefs about monsoon

rainfall in India- for instance, Giné, Townsend, and Vickery (2015) find that farmers are

more likely to understand and respond to monsoon onset as cumulative rainfall rather than

calendar time. (ii) As argued in Section 3, the chosen planting time contains all the relevant

information about a household’s expectation of the (unknown) optimal planting time (which

thereby obviates the need to explicitly elicit farmer’s beliefs). This feature (inferring beliefs

from actions) is common to the literature on testing across learning models (see, for instance,

Camerer and Ho (1999)).

Summary statistics for the plot on which households planted their most important crop

are presented in Table 3. On average, households wait until cumulative rain after June 1

is about 120 mm, although there is significant heterogeneity across households and years.

Table 1 also shows plot-level asset values, profits and area. Plots on average are about 2.14

acres, and are valued at about Rs. 167,221.70. Average profits for the kharif season for these

plots are about Rs. 9,811.74.

In the learning model estimation, I use households for which the data contains 2 or more

periods of information on planting dates (since at least one updating equation must exist for

14The results are qualitatively similar if I use the household’s first planting, regardless of crop, as their
expectation of the optimal planting time.
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the household to be included in the estimation). If a household has gaps in years for which

planting data is available, I use all the available years since the data has rainfall signals for

every year and therefore, I observe the signals for the household even when I do not observe

their planting date.

5.2. Rainfall Data

The rainfall data used in the estimation are from a precipitation data product known as

CPC Morphing Technique (“CMORPH”). The data are produced by combining precipitation

estimates from several satellite sources, and are available at the 3-hourly temporal resolution,

and the 0.25 by 0.25 degree spatial resolution (Joyce, Janowiak, Arkin, and Xie, 2004). I

use village geographic coordinates to assign the nearest CMORPH grid point to each village.

The CMORPH data range from 2003-2012.

I define the signal of the optimal planting time (corresponding to yt in the model) as the

cumulative rainfall after which planting led to the maximal average profits (across farmers)

in the village last year. For instance, if planting between 26th-29 June led to highest average

profits last year, the cumulative rainfall that fell from the start of the monsoon (that is,

from June 1) is the rainfall signal this year. I show in Section 6.1 that it predicts household

planting behavior, and explore robustness to alternative definitions in Section 6.5.2.

As Table 3 shows, the average amount of cumulative rain after June 1 following which

planting leads to maximal average profits (across farmers in a given village for a given

year) is about 120 mm. Figure 2 presents a kernel density of planting times relative to the

rainfall signal, which is described in Section 5.2. Since the CMORPH data is not available

before 2003, it cannot be used to plot and distinguish the distributions of optimal planting

time from previous decades. For these years, I instead use the rainfall data by the Indian

Meteorological Department (IMD), which is daily station-level rainfall data at the 1◦ by 1◦

level from 1951-2007.15

6. Results

6.1. Reduced Form Evidence

I begin by showing that farmers’ planting decisions are affected by the rainfall signal. To

do so, I estimate the following regression:

(13) pdivt = α + βsvt + δi + γt + ψivt

where pdivt is the cumulative rainfall (after June 1) following which household i in village

v plants their most important crop at year t.16 svt is cumulative planting rainfall that

maximized average profits in the village at time t − 1 (defined as the signal at time t, and

varies at the village by year level). The above specification includes household fixed effects

(δi) and year fixed effects (γt), but I also estimate three additional specifications - no control

variables, year fixed effects, and village and year fixed effects.

15Since it is not available after 2007, and household data is available until 2012, I cannot use this data for
the main estimation.
16Recall that the most important crop is the one that contributes most to profits.
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Table 4 present the results of the above specifications. In all specifications, a higher level

of profit-maximizing planting rainfall in a given year causes households to wait for greater

cumulative rainfall before planting in the next year. The coefficient ranges from 0.22 to about

0.07 mm— so a 1mm higher profit-maximizing planting rainfall one year causes households

to wait for an extra 0.07-0.22 mm of cumulative rainfall before planting next year. The

estimates are statistically significant across specifications.17

This evidence suggests that the rainfall signal I consider is a good predictor of the house-

holds’ planting decision. In the next section, I estimate the structural parameters in the

farmers’ belief updating equations and test which model best fits farmer behavior.

Furthermore, I show that deviation from the optimal planting time is harmful for agri-

cultural profits. To do so, I regress the inverse hyperbolic sine of agricultural profits at the

farmer-year level on the log of the squared deviation from the optimal planting rainfall in

the village that year. Results are presented in Table A2. Column 1 shows this relationship

without any controls, column 2 with village and year fixed effects, column 3 with village by

year fixed effects, and column 4 with village by year fixed effects as well as household fixed

effects. Across specifications, a greater deviation from the optimal planting time implies

lower profits. The coefficient ranges from -0.135 to -0.241, which is about 2.25 to 4% lower

profits relative to mean profits of a 1% deviation from the optimal time. The results are

statistically significant across specifications. Thus, the timing of this agricultural decision is

important for profits, and small deviations from the optimal time lead to lower profitability.

Table A3 additionally presents each reduced form version of the updating model across

each year of data, which I estimate structurally as a set of equations. It regresses planting

rainfall on the farmer’s prior belief as well as all past signals - column 1 presents this for

the third year of data, with the independent variables being the prior belief (proxied for by

the planting rainfall in the first year) and the rainfall signal in the second year. Column 2

presents this for the fourth year of data, which includes the rainfall signal in the third year,

and so on with each column adding in an additional year of signals. The results broadly

show greater weight on more recent signals.

6.2. Structural Learning Model Parameters

In this section, I test which of the three models best fits household planting timing be-

havior. As detailed in Section 4, I use nonlinear least squares to estimate the structural

parameters, and goodness of fit measures (the Akaike Information Criteria, the Akaike In-

formation Criteria corrected for smaller samples, and the Bayesian Information Criteria) to

select across models. Also as mentioned in Section 4, the variance of the prior ω2, a pa-

rameter that appears in all three models, is normalized to 1; all the other parameters are

identified up to scale. Having normalized ω2, I separately estimate the following parameters

for each model. The variance of the rainfall signal σ2 appears in all three models. The two

17Since rainfall in the previous year might increase soil moisture in the current year and therefore affect
planting decisions via a moisture overhang effect, I can re-estimate all four regressions controlling for one-
period lagged monsoon rainfall. The coefficients on the rainfall signal are nearly identical in magnitude and
statistical significance to the specification omitting lagged rainfall.
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more general models each have an additional distinct parameter: the variance φ2 of the state

evolution in the NLM with a time-varying state and the degree of robustness θ in the robust

NLM.

The structural parameter estimates are given in Table 5. In the NLM, σ2 is estimated to

be about 0.79, with a standard error of about 0.10. The robust NLM specification estimates

σ2 to be about 1.2, and θ of about 0.24. The random walk specification estimates σ2 to

be 0.83 and φ2 to be 0.02 - however, I am unable to reject that φ2 equals 0. Recall that

φ2 = 0 corresponds to the NLM with a time-invariant state and so this indicates that farmers’

actions do not appear to be consistent with the beliefs that the optimal planting time evolves

as a random walk.

In contrast, we are easily able to reject the hypothesis that θ equals 0 in the robust NLM

specification, which indicates that farmers are exhibiting some degree of robustness when

learning about the optimal time to plant. To reiterate, this evidence is consistent with

farmers exhibiting a concern about model misspecification when trying to learn about a

weather dependent decision in an environment made uncertain by potential climate change.

Three goodness of fit measures - the Akaike Information Criteria (AIC), a version of the

AIC that corrects for a small sample (AICc), and the Bayesian Information Criteria (BIC)

are also reported in Table 5. Like the parameter estimates, the AIC measures indicate a

preference for the robust NLM specification (although the evidence from the BIC does not

show a preference between the normal and robust model). Thus, the parameter values and

the AIC measures indicates that the robust NLM fits farmers’ planting decisions best. To

the best of my knowledge, this constitutes the first empirical evidence of robust learning

behavior in micro-data and is one of the contributions of this paper.

6.3. Impact of Changing Weather Distributions on the Degree of Robustness

In this section, I further build on the evidence of robust learning (from Section 6.2) by

examining learning heterogeneity based on past weather distributions. Since robustness is

a way for farmers to protect themselves against uncertainty (of the true stochastic process

determining the weather), it is reasonable to expect that farmers who have experienced

greater changes in the weather distribution to be more robust. Put differently, a farmer

who is exposed to relatively different recent weather distributions relative to the past might

exhibit a greater concern for model misspecification relative to a farmer exposed to very

similar weather distributions over time.

I test this hypothesis by separately estimating the learning model parameters for villages

that have experienced greater and lesser changes in the distribution of the rainfall signal in

previous decades. To measure changes in monsoon onset distributions, I use IMD rainfall

data and divide the sample into two equal time periods of 27 years each (1951-1978 and 1979-

2004) before 2005, which is the first year for which planting data is available. Recall that

my measure of the onset signal in a given year was the level of cumulative rainfall planting

in which maximized average profits in the village the previous year. This is not available for

years in which household-data is not available, and so I set the village-level rainfall signal

to be the mean profit-maximizing rainfall level in that village, and estimate the empirical
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distribution of the timing (at the pentad, or 5-day, level) of this rainfall signal for each

village for each of these two time periods. Then, for each village, I calculate the difference

between the earlier (1951-1978) and recent (1979-2004) signal distributions by computing

the Kullback-Leibler divergence (henceforth, referred to as KLD) between them. Recall from

Section 3 that the KLD provides a measure of the distance between any two distributions

where greater values correspond to distributions that are more “different.” Specifically, if

the value of the KLD is 0, it means that these two distributions are identical (no information

is lost by using the earlier distribution to approximate the recent one). Conversely, greater

values of the KLD imply that the recent distribution is more unlike the earlier one.

I divide the sample into villages with above and below median value of the KLD; the

interpretation is that the former (latter) are villages which have experienced greater (lesser)

changes in the recent rainfall signal distributions compared to the past. Figure 6 presents

two examples from each of the samples. The village on the left has a high KLD and is in the

above median sample, whereas the village on the right has a lower KLD and is in the below

median sample. A superficial inspection of Figure 6 shows that the distributions pre and

post 1978 in the low KLD village appear quite similar whereas the post 1978 distribution

appears different from the pre-1978 distribution for the high KLD village. The figure also

suggests that the distribution of the high KLD village has greater variance and so it is

worth emphasizing that the KLD measure is not driven by variance; indeed, two identical

distributions with the same high variance would have a KLD of 0.

Results of the learning model estimation conducted separately on villages with high (Panel

A) and low KLD (Panel B) are given in Table 6. For the high KLD villages, the degree

of robustness θ is large (0.42), and statistically significant. By contrast, for the low KLD

villages, θ is not only much smaller (0.05) but statistically not different from 0. Put together,

these intuitive results (farmers in villages with historically more volatile signal distributions

are more concerned about whether they know the true underlying stochastic process) provide

still further evidence of robust learning.

The main implication of the robust learning model, as I have discussed above, is that the

farmer will minimize worst-case (maximum) forecast errors. To test if this is true in the

raw data, I construct a forecast error for each farmer each year, which is the square of the

deviation of the farmer’s planting rainfall relative to the optimal planting rainfall in their

village that year. With these forecasts, I construct a farmer level measure of the greatest

forecast error (the maximum of their forecast errors across all periods). I plot these raw data

by whether a village experienced a change in the distribution (high KLD) vs. it did not (low

KLD) in Figure 7. The density of maximum forecast errors is shifted leftward in villages

with a high KLD, indicating that farmers in these villages have lower worst-case (maximum)

forecast errors.

Table 9 presents regression results that show this relationship, controlling for mean squared

forecast error, and also present results for minimum forecast errors (the latter as a placebo

check). Columns 1 presents the results from a cross-sectional regression of the maximum

forecast error by a farmer on a dummy variable that takes the value 1 if the village is a

high KLD village, and 0 otherwise. Column 2 controls for mean forecast error. There is a



LEARNING, ADAPTATION, AND CLIMATE UNCERTAINTY 19

highly statistically significant and large (relative to the mean) effect showing that farmers

in high KLD villages have lower maximum forecast errors, which is robust to controlling

for the farmer’s overall mean forecast error. Columns 3 and 4 show the results from the

same specification as in Columns 1 and 2 respectively, but with minimum squared forecast

error as the dependent variable. In contrast, we find no relationship between the minimum

forecast error and whether the village is a high KLD village, and a positive relationship once

mean forecast error is controlled for. These results are important because they show that the

raw data support an important implication of the the robust learning model (that farmers

minimize worst-case forecast errors) which is consistent with the results from the structural

estimation - farmers in villages that experienced changes in the rainfall distribution are

shown to be using robust updating rules in the structural estimation, and their worst-case

forecast errors are lower in the raw data.

6.4. Learning Heterogeneity by Irrigation Access

The previous section highlighted the heterogeneity in the degree of robustness depending

on the volatility of past weather distributions. In this section, I provide further evidence

in support of the model by testing how the access to irrigation (which has the potential

to imperfectly insure the farmers against extreme monsoon realizations) changes planting

behavior. I consider households that had irrigation in at least some years and did not have

irrigation in other years.18 This ensures that other time-invariant household characteristics

are not affecting the results in this sub-sample.

Recall that the robust farmers solve the optimization prtance of the plot to the nearest

source of irrigation, and distance of the plot from the farmer’s house. This estimates the

predicted probability that a plooblem (7) which can be equivalently written (by dividing

through by the constant b) as

max
η̂t

min
Gt

{
at
b
−
∫

(η̂t − ηt)2 dGt(ηt) +
T−1∑
t′=1

[
at′

b
−
∫

(η̂t′ − ηt)2 dGt(ηt)

]
+

1

bθ
KL(Gt, Ft)

}
.

Recall also that I had normalized the parameter b (which captures the sensitivity of profits

to the choice of planting date) to 1 as it is clearly seen from the above expression that θ

cannot be separately identified from b.

Now note that the access to irrigation makes the farmer less dependent on rainfall. In

the above expression, this would correspond to a lower sensitivity of profit to the choice of

planting date or a reduced b. Hence, if farmers were indeed solving the above problem, we

should expect that the estimated value of θ after the normalization b = 1 (which is actually

the product bθ without the normalization) should be lower in years where the farmer has

access to irrigation (as we expect the b is lower). Put differently, while the farmer’s learning

behavior from past information (captured by his actual θ) should not depend on his access

to irrigation, the estimated degree of robustness should (as it also contains the parameter b).

Table 7 presents the results of the estimation separately for irrigated and unirrigated

years. As we should expect from the above argument, the degree of robustness is positive

18Thus, households that always or never had irrigation are omitted.
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and statistically significant for both sets of years. Moreover, it is much higher in unirrigated

years (θ = 0.37) than in irrigated years (θ = 0.17). The goodness-of-fit measures across

the three models are not very different, although the robust NLM is weakly preferred in

unirrigated years and the NLM with time-invariant state is weakly preferred in irrigated

years. It is worth pointing out that, since the estimation requires at least two observations in

which the household either had irrigation or did not to be included in the sample (to form at

least one updating equation), the samples are much smaller than the previous estimations.19

6.5. Robustness Checks

6.5.1. The Econometrician only Observes a Subset of the Signals used by the Farmer

It is possible that farmers use multiple weather signals (which are not observed by the

econometrician) in making planting decisions in addition to the rainfall signal I observe. Note

that this is a potential concern in all learning model estimation studies as the econometrician

may only observe a subset of the signals driving decision making. That said, it is important

to ensure that, even when this is the case, the estimates I obtain (of the weight placed on

information from different periods) are unbiased.

In Appendix A, I show that when the farmer uses two signals of which the econometrician

observes only one, the covariance between the farmer’s estimate of the underlying state and

the econometrician’s estimate of the farmer’s estimate of the underlying state is zero, that is,

the time path of the decision weights is unbiased. This is true even when the error terms on

the two signals are correlated. Thus, the fact that farmers might use multiple signals to infer

optimal planting times, only one of which I observe, does not impact the identification. Of

course, the observed signal should be a predictor of planting decisions, which has previously

been shown in section 6.1.

6.5.2. Crop Specific Rainfall Signal

While the rainfall signal used in the main estimation predicts household behavior on

average, since farmers are growing different crops in the data, I investigate the robustness of

my estimates to the alternate choice of crop-specific rainfall signals. That is, instead of using

the cumulative rainfall corresponding to maximized average profits (across crops), one can

define the signal to be the cumulative rainfall (up till the 5-day window) after which planting

maximized average profits last year for the specific crop that the household planted this year.

There is a large amount of heterogeneity in the crops that form the most important crop

in the ICRISAT sample— cotton is the most common (23% of plots), followed by soybean

(20%), pigeonpea (17%), and maize (10%). The rest of the sample comprises crops like

19It is also possible to conduct a similar exercise in which learning rules are estimated separately for house-
holds with high and low wealth. Here, one would expect richer households to care less about worst-case
profits and this is corroborated by results which show that the behavior of farmers with below (above) me-
dian land values is best explained by the robust NLM (standard NLM with time-invariant state). I consider
these results slightly less interesting since it is difficult to separate the many possible mechanisms (access
to credit, better forecasting ability, and more insurance mechanisms to name a few), and so do not include
them in the main paper. They are reported in Appendix ??.
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sorghum, greengram, blackgram and millets. For this reason, and since we need a household

to cultivate a crop that contributes most to their profits at least twice to be included in the

estimation (since at least two observations are required to form an updating equation), the

number of observations in this estimation is significantly lower than the entire sample.

Table 8 presents the results. While the variance of the signal (σ2) is greater than when

the signal is not crop-specific, the value of θ is very similar (0.22), and is still statistically

significant. As in the general estimation, I fail to reject that the variance of the state

evolution process (φ2) is statistically significantly different from zero. Furthermore, the AIC

measures indicate a weak preference for the robust NLM as in the main estimation. The

overall results are thus similar as in the general estimation shown in Table 5.

6.5.3. Alternative Models

In addition to the three decisions tested in the previous section, a natural fourth possibility

is that of a the robust random walk model. Here, the farmer solves (7) as before but he

believes that the underlying state follows a random walk (that is, φ2 > 0). Once again,

the farmer’s optimal choice of plating time follows the same linear equation (12) with the

corresponding parameters given by

Kt =
Σt

Σt + σ2(1− θΣt)
and Σt =

Σt−1σ
2

Σt−1 + σ2(1− θΣt−1)
+ φ2.

(Note the intuitive similarity to equations (11) and (9).) The fact that I fail to reject that

the state is time-invariant (φ2 = 0) for the NLM already provides suggestive evidence that

farmers do not perceive the state to be changing. An unconstrained estimation for the robust

random walk model conducted on the main sample results in a negative value for the variance

of the state evolution (φ2), which is clearly outside the permissible parameter value space.

Non-linear optimization restricting the parameters to be nonnegative yields an estimate of

0 for φ2. Thus, the additional degree of freedom in the robust random walk model does not

better explain the observed choices of farmers’ planting decisions.

Secondly, there is a possibility that the evolution is a more general AR(1) process µt =

ζµt−1 + vt, where ζ = 1 corresponds to the time-varying NLM when the parameter of

interest, the mean optimal planting time, follows a random walk. In fact, an even more

general process process, given by µt = ζtµt−1 + vt, is also possible. This is especially possible

if farmers perceive the optimal planting time to follow a cyclical process for instance. I

re-estimate this general NLM model allowing ζt to be estimable, time-varying parameters

instead of fixing it to 1. The average estimated value across is ζ = 0.87, and the estimated

value of σ is about 0.8.

Finally, and needless to say, the set of models I estimate and compare are not exhaustive

which, of course, is a limitation of estimating any structural model (as the existence of a

better alternate model can never be disproved). The purpose of this study is to develop

an empirical framework for robust learning, a model which has numerous advantages: it is

theoretically well founded, yields natural behavioral predictions, is simple to estimate and,

importantly, nests the canonical NLM. Furthermore, as indicated by the empirical results,

this model is a good representation of the kind of Knightian uncertainty generated by climate
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change, while also being consistent with the raw data, and thus studies of adaptation should

consider this model in estimating adaptive behavior.

6.6. Back of the Envelope Calculations About the Performance of Learning Rules

I end this section with some suggestive evidence that shows that robust learning can, at

times, also lead to the most accurate forecasts, depending on whether and how much the en-

vironment the agents operate in is changing over time. While I have shown that the farmers’

choice of planting times are best explained by a robust NLM, this does not necessarily imply

(as robust farmers maximize worst case profits) that they were planting at the profit max-

imizing level of rainfall evaluated ex post at the village-level. For villages that experienced

bigger changes in the historical distribution of the rainfall signal (which are also villages that

have more robust farmers), I evaluated the posterior prediction of optimal planting rainfall

for each year starting 2007 using the 2005 profit-maximizing planting rainfall as the prior and

the 2006 profit-maximizing planting rainfall as the first signal. I then computed the mean

squared error of the predictions relative to the actual levels of rainfall after which planting

led to maximal profits. The robust NLM has the least mean squared error (13753.38) relative

to either the NLM with time invariant (14888.33) or time varying state (14512.67). Thus,

in uncertain environments, making decisions robust to model misspecification (evaluating

actions from a set of possible distributions) can perform better even on average relative to

relying solely on one model (the baseline rainfall distribution), since the latter does not in-

corporate the uncertainty in the environment. The relative performance of these rules across

settings of course depends on the parameters of the rule itself as well as the environment,

and its rate of change.

7. Conclusion

Adaptation to climate change presents one of the major challenges of the 21st century.

The profits and output of farmers, especially those in the developing world, depend critically

on the weather and the agricultural decisions they make in response. In particular, their

capability to adapt and the nature of their adaption depends on their ability to learn about

and predict the weather conditions they will face, and climate change will add additional,

unknowable (in the short-term), uncertainty to this problem. In light of this, it is important

to understand their decision making process as this can help identify the most vulnerable

farmers, inform adaptation policies (by prioritizing specific information and resources to

enhance learning) and pinpoint the most effective adaptation measures.

This paper develops an empirical framework (to test the model and estimate the underlying

parameters driving learning) and finds support for the model in long-term panel data from

India on monsoon realizations and household-level planting times. A notable strength of

the robust learning model is that it generalizes the workhorse normal learning setting to

incorporate the kind of Knightian uncertainty generated by climate change, by weakening the

strong required informational assumptions while simultaneously maintaining the tractability.

I show that the planting decisions of the farmers in my sample (made in response to weather

signals) fits a robust learning framework better than the standard normal learning model with
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either a time-invariant or time-varying state (to the best of my knowledge, this paper is also

the first to estimate the latter model in micro data and test it across other canonical models).

Examining the heterogeneity in learning lends further support to the model, and shows that

the results from the structural estimation match patterns in the raw data. The degree of

robustness is more pronounced in villages which, in the last few decades, experienced a

bigger change in the distribution of the rainfall after which planting led to maximal profits.

In the raw data, farmers in these villages also have lower maximum forecast errors (which is

predicted by the model), a relationship that does not hold for minimum forecast errors.

As discussed in Section 6.6, in this case, robust learning allows for better adaptation to

uncertainty. Testing the relative benefits of other adaptive mechanisms to climate change

such as irrigation and migration opportunities, as well as how household beliefs about the

climate impact these decisions, remain interesting questions for future work.
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Figure 1. Cumulative Precipitation During the Year
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Figure 2. Kernel Density of Planting Time Relative to Onset Signal
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Figure 3. Relative Weights on Information: Varying Signal Variance
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Figure 4. Relative Weights on Information: Varying State Variance
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Figure 5. Relative Weights on Information:Varying Robustness
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Figure 6. Rainfall Signal Timing for a High KLD Village and a Low KLD Village
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Figure 7. Maximum Forecast Errors by High and Low KLD Villages
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Table 1. Updating Rules

Updating Rules
Model Kalman Gain V ar(η̂t − ηt)

Kt Σt+1

Normal Learning Model
Σt

Σt + σ2

Σtσ
2

Σt + σ2

Robust Normal Learning Model
Σt

Σt + σ2(1− θΣt)

Σtσ
2

Σt + σ2(1− θΣt)

Random Walk
Σt

Σt + σ2

Σtσ
2

Σt + σ2
+ φ2

Table 2. Estimated Parameters and Parameters Set to 0 in Each Learning Rule

Parameters

Model Signal Variance State Variance Ambiguity
Aversion

σ2 φ2 θ

Normal Learning Model X 0 0

Robust Normal Learning Model X 0 X

Random Walk X X 0

Notes: Prior Variance (ω2) normalized to 1.
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Table 3. Summary Statistics

Rainfall Signal

Profit Maximising Cumulative Rain Last Year

Plot-Level (Most Important Crop Planted)

Cumulative Planting Rain
1(Irrigation)
Plot Area (Acres)
Irrigated Area (Acres)
Total Plot Value (Rs)
Profit (Rs)

Number of Household-Year Observations:

The plot-year observations include data for plots that the household planted the most important crop earliest each
year. The mean planting cumulative rainfall corresponds to 25th June-29th June.

0.40 1.04
2.14 1.93

167221.70 203492.00
9811.74 16478.98

123.30 83.70
0.51 0.49

3,096

Mean SD

120.434 103.29
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Table 4. Impact of Rainfall Signal

(1) (2) (3) (4)

Profit-Maximizing Cumulative
Rainfall Last Year

(Contemporaneous Rainfall Signal)
0.134 0.226 0.0714 0.0884

(0.0136) (0.0157) (0.0167) (0.0226)

Fixed Effects None Year Village, Year Household, Year

Observations 2,551 2,551 2,551 2,551
Mean of Dependent Variable 123.84 123.84 123.84 123.84

Cumulative Planting Rainfall

Notes: Standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1).  Standard errors are clustered at the household level.
Profit-maximizing cumulative rainfall last year was the cumulative rainfall for the 5-day period planting in which maximized mean
profits in the village last year. The sample includes the first day the household is observed to plant in a given year.
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Table 5. Learning Models’ Structural Parameters

(1) (2) (3)

Normal Learning Model
Robust Normal Learning

Model
Random Walk Kalman

Filter

Variance of the rainfall signal
(σ2)

0.7938 1.1798 0.8269

(0.1012) (0.2291) (0.1148)

Robustness Parameter
(θ)

0.2438

(0.0661)

Variance of optimal planting time
(φ2)

 0.0184

(0.0189)

Observations 2227 2227 2227

Akaike Information Criterion (AIC) 20305.52 20300.80 20305.79
Corrected Akaike Information

Criterion (AICc) 20305.52 20300.81 20305.80
Bayesian Information Criterion

(BIC) 20309.22 20310.22 20315.21

Notes: Robust standard errrors in parenthesis
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Table 6. Learning Models’ Structural Parameters by Kullback Leibler Di-
vergence Criterion

Normal Learning
Model

Robust Normal
Learning Model

Random Walk Kalman
Filter

Variance of the rainfall signal
(σ2) 0.7526 1.6013 0.8935

(0.1454) (0.3725) (0.2272)

Robustness Parameter
(θ)  0.4153

(0.0406)

Variance of optimal planting time
(φ2)     0.2029

(0.1011)

Observations 1097 1097 1097

Akaike Information Criterion (AIC) 7390.14 7386.11 7388.17
Corrected Akaike Information

Criterion (AICc) 7392.83 7393.49 7395.56
Bayesian Information Criterion (BIC) 7392.83 7393.49 7395.56

Normal Learning
Model

Robust Normal
Learning Model

Random Walk Kalman
Filter

Variance of the rainfall signal
(σ2)  0.7407 0.7899 0.7253

(0.1360) (0.2823) (0.1366)

Robustness Parameter
(θ)     0.0471

(0.2162)

Variance of optimal planting time
(φ2) -0.0074

(0.0158)

Observations 1695 1695 1695

Akaike Information Criterion (AIC) 12089.16 12090.72 12091.75
Corrected Akaike Information

Criterion (AICc)
12089.17 12090.74 12091.77

Bayesian Information Criterion (BIC) 12092.35 12099.10 12100.13
Notes: Robust standard errrors in parenthesis

Panel A: Villages with High Kullback Leibler Divergence Criterion

Notes: Robust standard errrors in parenthesis

Panel B: Villages with Low Kullback Leibler Divergence Criterion
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Table 7. Learning Models’ Structural Parameters by Irrigation Status

Normal Learning
Model

Robust Normal
Learning Model

Random Walk Kalman
Filter

Variance of the onset signal
(σ2)  0.8339 1.6259 1.0115

(0.2606) (0.5471) (0.3420)

Robustness Parameter
(θ)     0.3694

(0.0859)

Variance of optimal planting time
(φ2)     0.1315

(0.1128)

Observations 260 260 260

Akaike Information Criterion
(AIC) 2328.76 2326.85 2327.84

Corrected Akaike Information
Criterion (AICc) 2328.81 2326.94 2327.93

Bayesian Information Criterion
(BIC) 2330.32 2331.97 2332.96

Normal Learning
Model

Robust Normal
Learning Model

Random Walk Kalman
Filter

Variance of the onset signal
(σ2) 3.3836 4.9776 4.5792

(0.8616) (1.9284) (1.7532)

Robustness Parameter
(θ)     0.1692

(0.0878)

Variance of optimal planting time
(φ2)     0.2177

(0.2260)

Observations 373 373 373

Akaike Information Criterion
(AIC) 3347.76 3348.75 3348.95

Corrected Akaike Information
Criterion (AICc) 3347.79 3348.82 3349.01

Bayesian Information Criterion
(BIC) 3349.68 3354.60 3354.79

Panel B. Irrigated Years

Notes: Robust standard errrors in parenthesis

Panel A. Unirrigated Years

Notes: Robust standard errrors in parenthesis
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Table 8. Learning Models’ Structural Parameters: Crop Specific Rainfall Signal

(1) (2) (3)

Normal Learning Model
Robust Normal Learning

Model
Random Walk Kalman

Filter

Variance of the onset signal
(σ2)

1.9174 2.8641 2.2677

(0.2668) (0.6029) (0.3836)

Robustness Parameter
(θ)     0.2261

(0.0669)

Variance of optimal planting time
(φ2)     0.1596

(0.1019)

Observations 1105 1105 1105

Akaike Information Criterion (AIC) 10068.56 10065.88 10066.49
Corrected Akaike Information

Criterion (AICc) 10068.57 10065.91 10066.51
Bayesian Information Criterion

(BIC) 10071.56 10073.90 10074.51

Notes: Robust standard errrors in parenthesis
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Table 9. Maximum and Minimum Forecast Errors by Kullback Leibler Di-
vergence Criterion

(1) (2) (3) (4)

1(High KLD Village) -17,844 -3,719 124.5 524.9
(8,452) (1,396) (208.6) (136.9)

Additonal Controls None Mean Forecast Error None Mean Forecast Error

Observations 678 672 686 668
R-Squared 0.110 0.804 0.002 0.154

Mean of Dependent Variable 24616 24053 529.4 514.8

Maximum Squared Forecast Error

Notes: Robust standard errrors clustered at the village level in parenthesis

Minimum Squared Forecast Error
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ONLINE APPENDIX



LEARNING, ADAPTATION, AND CLIMATE UNCERTAINTY 41

Figure A1. Location of Villages
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Table A1. Learning Models’ Structural Parameters By Wealth

Normal Learning Model Robust Normal Learning Model Random Walk Kalman Filter

Variance of the onset signal
(σ2)

0.5474 1.3019 0.6591

(0.1041) (0.2015) (0.1288)

Robustness Parameter
(θ)     0.4912

(0.0433)

Variance of optimal planting time
(φ2)     0.1192

(0.0479)

Observations 948 948 948

Akaike Information Criterion (AIC) 8697.40 8677.48 8683.49
Corrected Akaike Information Criterion

(AICc) 8697.41 8677.51 8683.52

Bayesian Information Criterion (BIC)
8700.26 8685.19 8691.20

Normal Learning Model Robust Normal Learning Model Random Walk Kalman Filter

Variance of the onset signal
(σ2)

0.7645 0.6326 0.6796

(0.0826) (0.2440) (0.0700)

Robustness Parameter
(θ)    -0.1781    -0.0504

(0.3714) (0.0067)

Variance of optimal planting time
(φ2)

Observations 1311 1311 1311

Akaike Information Criterion (AIC)
11784.71 - -

Corrected Akaike Information Criterion
(AICc) 11784.72 - -

Bayesian Information Criterion (BIC)
11787.89 - -

Notes: Robust standard errrors in parenthesis

Notes: Robust standard errrors in parenthesis

Panel B: Above Median Land Value Farmers

Panel A: Below Median Land Value Farmers
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Table A2. Impact of Deviation from Optimal Planting Time on Agricultural Profits

(1) (2) (3) (4)

Log(Squared Deviation from Optimal 
Planting Rainfall)

-0.201 -0.135 -0.241 -0.208

(0.0873) (0.0737) (0.0327) (0.0511)

Fixed Effects None Village, Year Village X Year
Household, Village 

X Year

Observations 3,083 3,083 3,083 3,083
R-Squared 0.053 0.170 0.337 0.546

Mean of Dependent Variable 6.00 6.00 6.00 6.00

Agricultural Profit

Notes: Standard errors at the village-level in parentheses. The dependent variable is the inverse hyperbolic sine of agricultural profits. Log(Squared Deviation from Optimal 
Planting Rainfall) is the log of the squared deviation between cumulative rainfall in which the household planted and the optimal cumulative rainfall in the village that year



44 NAMRATA KALA

Table A3. Planting Date Choice as a Function of Prior Belief and Previous
Year’s Signals

(1) (2) (3) (4) (5)

Prior (Planting Date in First Year) 0.379 0.264 0.0399 0.548 0.512
(0.137) (0.215) (0.188) (0.176) (0.184)

Profit-Maximizing Cumulative Rainfall Last 
Year 0.562 0.541 0.278 0.243 0.254

(0.155) (0.130) (0.0771) (0.258) (0.217)
Profit-Maximizing Cumulative Rainfall Two 

Years Ago 0.151 0.246 0.28 0.222

(0.170) (0.125) (0.0362) (0.174)
Profit-Maximizing Cumulative Rainfall 

Three Years Ago 0.215 0.127 0.196
(0.213) (0.137) (0.0887)

Profit-Maximizing Cumulative Rainfall Four 
Years Ago -0.00879 0.195

(0.119) (0.0910)

Profit-Maximizing Cumulative Rainfall Five 
Years Ago -0.303

(0.198)

Year of Data 3 4 5 6 7

Observations 582 545 452 199 161
R-squared 0.616 0.537 0.723 0.823 0.753

Cumulative Planting Rainfall

Notes: Robust standard errrors clustered at the village level in parenthesis
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Appendix A. Farmer Learns from Multiple Signals, of Which

Econometrician Observes Only One

Consider the case where the economic agent/the farmer has access to two signals, call

them y1 and y2, to form his best estimate of the underlying state η, but the econometrician

in trying to estimate the farmer’s forecast (or more to the point, estimate unbiased decision

weights assigned to signals in a given learning model) has access to only one of the signals,

y1.

In the econometrician’s case of a single error-ridden signal y1 generated according to

(14) y1 = η + ε1

with the distributional assumptions η ∼ N(µ, ω2) and ε1 ∼ N(0, σ2) known to the farmer.

Thus, the optimal predictor/estimate formed by the econometrician’s estimating the farmers

prediction will be:

(15) η̂1 ≡ E [η | y1] = (1− λ)µ+ λy1

where

(16) λ ≡ ω2

σ2 + ω2
=

1
σ2

1
σ2 + 1

ω2

≡ hσ2

hσ2 + hω2

Assume that the second signal y2 is generated by

(17) y2 = η + ε2

with the distributional assumption ε2 ∼ N(0, δ2). As with Hyslop and Imbens (2001),

the easiest assumption is to assume that the noise terms are uncorrelated, Cov (ε2, ε2) = 0

(This is relaxed later). In this case, the farmer’s true estimate is

η̂12 ≡ E [η | y1, y2] = (1− λ1 − λ2)µ+ λ1y1 + λ2y2

where λ1 ≡
hσ2

hσ2+hδ2+hω2
and λ2 ≡

hδ2
hσ2+hδ2+hω2

. The econometrician’s estimate of the

farmer’s estimate can thus be thought of as an error-ridden measure of the truth i.e. η̂1 ≡
η̂12 + ζ where the “measurement error” ζ is just by definition ζ ≡ η̂1 − η̂12

So if we look at the correlation of the measurement error ζ with the “true” (or correct)

estimator of the farmer, η̂12, the covariance is:

(18) Cov(η̂12, ζ) = Cov(η̂12, η̂1)− V ar(η̂12)

Intuitively, even from this expression alone, we can see that as the second signal y2 adds

little to the farmer’s forecast, then Cov(η̂12, η̂1) approaches V ar(η̂12) in the limit, and this

measurement error is zero.
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We can show that

Cov(η̂12, η̂1) = −λλ2σ
2(19)

Using this, we can show that the discrepancy between the “incomplete” estimate of the

farmer’s forecast given by the econometrician’s η̂1 is uncorrelated with the farmer’s estimate.

The implication of showing that the the discrepancy between the “incomplete” estimate of

the farmer’s forecast given by the econometrician’s η̂1 is uncorrelated with the farmer’s es-

timate is in contrast to the usual measurement error problem, where the observed variable

is (under the so-called Classical Measurement Error assumptions) correlated with the mea-

surement error, and it is this property that creates bias in OLS. In this case, because the

observed/constructed variable used by the econometrician is uncorrelated with the error as

regards the true measure η̂12, then in an OLS regression, for example, no measurement error

problem would manifest itself.

By definition of the measurement error, we have:

Cov(η̂1, ζ) = V ar(η̂1)− Cov(η̂12, η̂1)

The second term is computed to be

Cov(η̂12, η̂1) = λω2 =
hσ2ω2

hσ2 + hω2

The first term is

V ar(η̂1) = V ar (λy1) = λ2
(
ω2 + σ2

)
= λω2

Thus,

Cov(η̂1, ζ) = λω2 − λω2 = 0

Thus, the measurement error induced by the econometrician using only a subset of the

signals in her estimate of the farmer’s forecast is actually uncorrelated with her estimate,

This result holds even allowing for a non-zero covariance in ε1 and ε2

The derivation of this more general case starts by considering the each signal net of its

linear dependence on the other signal - i.e.

ξ1 ≡ y1 −
Cov (y1, y2)

V ar (y2)
y2

and

ξ2 ≡ y2 −
Cov (y1, y2)

V ar (y1)
y1

As these expressions exhibit obvious symmetry, we can derive results for one, then extrap-

olate to the other by the symmetry of the expressions. In addition,

λ1 ≡
Cov(η, ξ1)

V ar (ξ1)
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by the Frisch-Waugh Theorem. In terms of the numerator of λ1, we have that

Cov(η, ξ1) = ω2 − Cov (y1, y2)

V ar (y2)
ω2 =

ω2

V ar (y2)
[V ar (y2)− Cov (y1, y2)]

and for the denominator, we have that

V ar (ξ1) =
1

V ar (y2)

{
V ar (y1)V ar (y2)− [Cov (y1, y2)]2

}
So that in taking the quotient of these two expressions, and dividing out the common

denominator of V ar (y2), we thus have that

λ1 =
ω2 [V ar (y2)− Cov (y1, y2)]

V ar (y1)V ar (y2)− [Cov (y1, y2)]2

and thus by the symmetry of the problem, we can thus also immediately state that

λ2 =
ω2 [V ar (y1)− Cov (y1, y2)]

V ar (y1)V ar (y2)− [Cov (y1, y2)]2

Allowing for the more general case that Cov (y1, y2) 6= ω2,

Cov(η̂12, η̂1) = Cov(λ1y1 + λ2y2, λy1)

= λλ1V ar(y1) + λλ2Cov (y1, y2)

=
λω2 {[V ar (y2)− Cov (y1, y2)]V ar(y1) + [V ar (y1)− Cov (y1, y2)]Cov (y1, y2)}

V ar (y1)V ar (y2)− [Cov (y1, y2)]2
= λω2

Thus, we can conclude that

Cov(η̂1, ζ) = V ar(η̂1)− Cov(η̂12, η̂1) = λω2 − λω2 = 0

holds even when the signals used by the farmer have a common noise component - i.e. the

econometrician’s estimator of the farmer’s forecast/estimate remains uncorrelated with the

measurement errorζ ≡ η̂1 − η̂12.
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Appendix B. Equivalent Versions of the Robust Learning Model

Recall that the robust learning was captured by the following equation

η̂t+1 =
(
1−KR

t

)
η̂t +KR

t yt,

where

KR
t =

ΣR
t

ΣR
t + σ2(1− θΣR

t )
, ΣR

t =
ΣR
t−1

ΣR
t−1 + σ2(1− θΣR

t−1)
, ΣR

0 = ω2.

In this appendix, I provide two alternate versions of the robust learning model which lead

to the same updating equation. This serves the following purpose: (i) it highlights the gen-

erality of the framework, (ii) provides intuition on the derivation of the above equation and

(iii) demonstrates the role played by the particular functional form assumptions. Through-

out this section, I assume that the underlying state is time invariant (φ2 = 0) which is the

model I estimate.

In order to reduce notation, I eliminate the constants at from the farmer’s maximization

problem and express his max-min problem

argmax
η̂t

min
Gt

{
at −

∫
(η̂t − ηt)2 dGt(ηt) +

t−1∑
t′=1

[
at′ −

∫
(η̂t′ − ηt)2 dGt(ηt)

]
+

1

θ
KL(Gt, Ft)

}
as the following equivalent min-max problem instead

argmin
η̂t

max
Gt

{∫
(η̂t − ηt)2 dGt(ηt) +

t−1∑
t′=1

[∫
(η̂t′ − ηt)2 dGt(ηt)

]
− 1

θ
KL(Gt, Ft)

}
.

The following proposition is a summary of results that can be found in the literature. I first

discuss its implication and then provide a proof (for the ease of reference for the interested

reader).

Proposition 1. The following optimization problems are minimized by the same unique η̂t:

(A)

argmin
η̂t

max
Gt

{∫
(η̂t − η)2 dGt(η) +

t−1∑
t′=1

(∫
(η̂t′ − η)2 dGt(η)

)
− 1

θ
KL(Gt, Ft)

}
(B)

argmin
η̂t

max
η

{
(η̂t − η)2 +

t−1∑
t′=1

(η̂t′ − η)2 − 1

2θ

[
(η − µ0)2

w2
+

t−1∑
t′=1

(η − yt′)2

σ2

]}
.

(C)

argmin
η̂t

{
1

θ
logE

(
eθLt

)}
, where Lt := (η̂t − η)2 +

t−1∑
t′=1

(η̂t′ − η)2.

The objective function in (B) is the certainty equivalent version of the robust profit max-

imization problem (A) which was presented and discussed in Section 3. Note that in this

problem, nature is not choosing a distribution Gt of the optimal planting time but is instead
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choosing an actual planting time η itself to minimize the cumulative profits (captured by

the first two terms). As in (A), the problem is disciplined by the last penalty term (in the

square brackets); intuitively, nature receives a bigger penalty from picking a planting time

which makes the prior mean and the subsequent signals more “misleading.”

The derivation of the simple linear updating equation (9) is immediate from this restate-

ment of the farmer’s optimization problem. Observe that, the objective function is quadratic

which implies that the optimal planting time η picked by nature (for any choice η̂t by the

farmer) will be a linear function of chosen planting dates, the prior and the observed signals.

In turn, this implies the optimal choice of η̂t by the farmer will be a linear function of the

prior and the observed signals.

Finally, it is worth pointing out that there is also a purely Bayesian formulation given by

(C) (see Whittle (1981)) which yields the same updating equation (9). This formulation is

more appropriate for a learning environment where a statistician is trying learn an underlying

parameter by minimizing the cumulative loss given by 1
θ

logE
(
eθLt

)
. In this context, the

choice of loss function requires no economic interpretation per se. However, in my setting,

farmers choose planting dates to maximize period t profits and, hence, there is no obvious

compelling interpretation for an objective function such as that in part (C) which includes

the expected profits in all periods prior to t as well.

The following is the proof of the above proposition.

Proof of Proposition 1: I first show that in problems (A) and (B), the optimally chosen η̂t is

the same.

First observe that the objective function in (A) can be rewritten as follows:∫
(η̂t − η)2 dGt(η) +

t−1∑
t′=1

∫
(η̂t′ − η)2 dGt(η)− 1

θ
KL(Gt, Ft)

=

∫
(η̂t −m1(Gt) +m1(Gt)− η)2 dGt(η) +

t−1∑
t′=1

∫
(η̂t′ −m1(Gt) +m1(Gt)− η)2 dGt(η)

− 1

2θ
KL(Gt, Ft)

= (η̂t −m1(Gt))
2 +m2(Gt) +

t−1∑
t′=1

[
(η̂t′ −m1(Gt))

2 +m2(Gt)
]
− 1

θ
KL(Gt, Ft)

(20)

where m1(·) and m2(·) (the first and second moments) are used to denote the mean and

variance of a distribution (in this case Gt).

Recall, that the distribution Ft in the above expression is obtained from Bayesian updating

(as in the standard NLM) and is normal with mean and variance given by

(21) m1(Ft) =

∑t−1
t′=1

yt′
σ2 + µ0

w2

t−1
σ2 + 1

w2

and m2(Ft) =
1

t−1
σ2 + 1

w2

.
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A well known result in information theory is that for a fixed variance, the normal distribu-

tion has the highest entropy. A simple to show consequence of this result is that when nature

maximizes the above objective function (20) for any choice η̂t by the farmer, she will pick

Gt to be a normal distribution as this will minimize the Kullback-Liebler (KL) divergence

(for any mean and variance m1(Gt+1) and m2(Gt+1)) from the normal distribution Ft.

The KL divergence KL(Gt, Ft) between two normal distributions is given by

KL(Gt, Ft) =
1

2
log

(
m2(Ft)

m2(Gt)

)
+
m2(Gt) + (m1(Gt)−m1(Ft))

2

m2(Ft)
− 1

2
.

Thus nature effectively just picks the mean and variance of Gt (as we have argued that it

will be normal). This allows us to express the optimization problem (A) as

argmin
η̂t

max
m1(Gt),m2(Gt)

{
(η̂t −m1(Gt))

2 +m2(Gt) +
t−1∑
t′=1

[
(η̂t′ −m1(Gt))

2 +m2(Gt)
]

− 1

θ

[
1

2
log

(
m2(Ft)

m2(Gt)

)
+
m2(Gt) + (m1(Gt)−m1(Ft))

2

2m2(Ft)
− 1

2

]}
= argmin

η̂t

max
m1(Gt)

{
(η̂t −m1(Gt))

2 +
t−1∑
t′=1

(η̂t′ −m1(Gt))
2 − 1

θ

[
(m1(Gt)−m1(Ft))

2

2m2(Ft)

]}
(22)

where we can ignore nature’s maximization with respect to m2(Gt) as these terms are ad-

ditively separable and hence do not affect the farmer’s choice of η̂t. We change the variable

name and replace m1(Gt) by η and plug in the expressions for m1(Ft) and m2(Ft) to restate

(A) as

argmin
η̂

max
η

{
(η̂t − η)2 +

t−1∑
t′=1

(η̂t′ − η)2 − 1

2θ

[
(
∑t−1

t′=1
η−yt′
σ2 + η−µ0

w2 )2

t−1
σ2 + 1

w2

]}
.(23)

Observe that both (23) and (B) are both optimization problems with quadratic objective

functions that differ only in their last term. Observe also that the farmer’s choice η̂t only

enters the first term (which is identical across both problems). Thus, it suffices to show that

the η chosen by nature which minimizes the objective is the same across both problems.

This last step is easily show by noting that the first order conditions of both problems

(23) and (B) are identical and linear (since the objective function is quadratic, these are

also sufficient) which implies that they will both have the same unique solution. To see this,

note that the last terms (in the square brackets) are the only terms that differ in both the

objective functions but that they have the same derivatives:

d

dη

{
1

2θ

(
(η − µ0)2

w2
+

t∑
k=1

(η − yt)2

σ2

)}
=

d

dη

{
1

2θ

[
(
∑t−1

t′=1
η−yt′
σ2 + η−µ0

w2 )2

t−1
σ2 + 1

w2

]}

=
1

θ

(
(η − µ0)

w2
+

t−1∑
t′=1

(η − yt′)
σ2

)
.

Hence, in both problems (A) and (B), the optimally chosen η̂t is the same.
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I now show that in problems (A) and (C), the optimally chosen η̂t is the same.

Problem (C) is a minimization problem where the farmer minimizes 2θ−1 logE(e
1
2
θLt)

where the expectation is taken with respect to the distribution Ft obtained from Bayesian

updating (with mean and variance given in equation (21) above). Plugging in the distribu-

tion, this problem can be stated as

argmin
η̂t

1

θ

∫ ∞
−∞

exp

(
θ

(
(η̂t − η)2 +

t−1∑
t′=1

(η̂t′ − η)2

))
exp

−
(
η − σ2µ0+w2

∑t−1
t′=1

yt′

σ2+(t−1)w2

)2

2 σ2w2

σ2+(t−1)w2

 dη


= argmin

η̂t

{
1

θ

∫ ∞
−∞

exp

(
θ

[
(η̂t − η)2 +

t−1∑
t′=1

(η̂t′ − η)2 − 1

2θ

(
(
∑t−1

t′=1
η−yt′
σ2 + η−µ0

w2 )2

t−1
σ2 + 1

w2

)])
dη

}
.

I now invoke Lemma 1 (stated and proved below) which shows that the solution to the above

problem is the same as the following min-max problem.

argmin
η̂

max
η

{
(η̂t − η)2 +

t−1∑
t′=1

(η̂t′ − η)2 − 1

2θ

[
(
∑t−1

t′=1
η−yt′
σ2 + η−µ0

w2 )2

t−1
σ2 + 1

w2

]}
.

Observe that this problem is identical to (23) which shows the required equivalence to the

problem (A).

I end the proof with the lemma invoked above.

Lemma 1. Let

x∗ ∈ argmin
x

∫ ∞
−∞

exp
(
−ay2 + 2byx+ 2cy + ex2 + fx

)
dy,

where it is assumed that the solution exists. Then it follows that

x∗ ∈ argmin
x

max
y

{
−ay2 + 2byx+ 2cy + ex2 + fx

}
.

Proof. We prove this lemma by separately solving each of the two minimization problems.

We first consider

min
x

∫ ∞
−∞

exp
(
−ay2 + 2byx+ 2cy + ex2 + fx

)
dy

Integrating with respect to y, we can restate this problem as

min
x

√
π

a
exp

(
(2bx+ 2c)2

4a
+ ex2 + fx

)
.

It is equivalent to minimize the term in the brackets, or equivalently, to solve

min
x

(
(bx+ c)2

a
+ ex2 + fx

)
.

Taking a first order condition (which is also sufficient for a quadratic objective function), we

get

2b(bx∗ + c)

a
+ 2ex∗ + f = 0 =⇒ x∗ = − 2bc+ af

2(b2 + ae)
.



52 NAMRATA KALA

We now solve,

max
y

{
−ay2 + 2byx+ 2cy + ex2 + fx

}
,

for a fixed x. Taking a first order condition with respect to y, we get

−2ay∗(x) + 2bx+ 2c = 0 =⇒ y∗(x) =
bx+ c

a
.

Plugging into the minimization problem, we can rewrite it as

min
x

{
−a
(
bx+ c

a

)2

+ 2b
bx2 + cx

a
+ 2c

bx+ c

a
+ ex2 + fx

}
.

Taking a first order condition, we get

− 2b(bx∗ + c)

a
+ 2b

2bx∗ + c

a
+

2bc

a
+ 2ex∗ + f = 0

=⇒ − 2b2x∗ + 4b2x∗ + 2aex∗ = −(af + 2bc)

=⇒ x∗ = − 2bc+ af

2(b2 + ae)
,

which completes the proof. �

�
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