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Supplementary material to accompany: 

Effects of Feedback Delay on Learning 

The following supplementary material includes the detailed formulations of the four learning 

heuristics discussed in the paper, an alternative method for measuring the speed of internal 

dynamics of the models, the statistics for parameters and results of robustness analysis, 

formulations for Q-learning heuristic tested for comparison with the four learning models 

discussed in the text, as well as instructions for inspecting and running the simulation learning 

models discussed in the paper and the Q-learning model. The table of contents is followed by the 

supplementary material.  
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Mathematics of the model 
This appendix includes the formulation details for all four learning heuristics; Regression, 

Correlation, Myopic Search, and Reinforcement; as well as the exploration procedure. Please see 

the online material for the simulation models and applets that allow you simulate the models and 

run different experiments. 
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Table S1- Reinforcement Learning Heuristic1 

Reinforcement Learning Heuristic 

Variable Formulation 

)(tV
dt
d

j  )()( tGtI jj −  
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Table S2- Myopic Search heuristic 

Myopic Search Heuristic 
Variable Formulation 

)(tV
dt
d

j  )(*))()(( tDirectiontVtV Myojj λ−∗    

Direction(t) 1    if P(t) > Historical Payoff(t)  
0    if P(t) ≤ Historical Payoff(t) 

Historical 
Payoff(t) 

Smooth(P(t), Historical Averaging Time Horizon) 

Where smooth function is defined by: 
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Table S3- Correlation heuristic 

Correlation heuristic 
Variable Formulation 

                                                 
1The literature on reinforcement learning has different goals and heuristics in different 
fields.  In the context of machine learning, reinforcement learning is developed as an 
optimization heuristic.  Game theory literature on reinforcement learning focuses on 
providing simple heuristics that give good descriptive accounts of individual learning in 
simple games.  Our use of reinforcement learning here is more aligned with the game 
theoretic reinforcement learning models.  For a survey of machine learning literature on 
reinforcement learning see Sutton and Barto’s book (1998) and Kaelbling et al.  (1996).  
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 and γ is Sensitivity of Allocations to Correlations 
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Table S4- Regression Heuristic 

Regression Heuristic 
Variable Formulation 

)(tV
dt
d

j  λ))()(( tVtV jj −∗  

)(tV j
∗  )),()(( εαα ssMax

J
jj ∑ ∗∗ ,  if at least one )(sj

∗α  is non-zero otherwise 

)()( tVtV jj =∗  
s = E* INT(t/E) 
where E is the evaluation period (the decision maker runs the regression model 
every E time periods).  INT function gives the integer part of t/E 

)(sj
∗α  ))(',0()( sMaxs jj αα =∗  

The )(' sjα  are the estimates of jα  in the following OLS regression model: 

∑ ++=
j

jj tetAtP )())(log(*)log())(log( 0 αα  

The regression is run every Evaluation Period (EP) periods, using all data 
between time zero and the current time (every time step is an observation). 
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Table S5- Exploration procedure 

Exploration 
Variable Formulation 

)(ˆ tV j  )(ˆ)( tNtV jj +  

)(ˆ tN j  ∑
J

jj tVtN )().(  

Var ( )(tN j ) Minimum Action Standard Deviation+(Maximum Action Standard Deviation-
Minimum Action Standard Deviation)*S.D.  Selector(t) 

S.D.  Selector(t) Min(1,Max(0, 1/Slope Inverse for S.D.  Selection*(Recent Improvement(t)/Min 
Improvement-1)) 
Where Recent Improvement equals: 
Smooth(Max(0, P(t)-Historical Payoff(T)), PayoffImprovementUpdatingTime), 
Initial Recent Improvement=1  

 

 
 

 

Speed of internal dynamics of the model 
In the paper we used the convergence times of different models in the base case as a proxy for the 

speed of internal dynamics of the models.  An alternative measure which does not directly depend 

on our implementation of convergence criteria can be obtained by fitting a first order negative 

exponential curve to the base case (no delay) average performances of the heuristics.  Following 

the practice in control theory, we measure four times the time constant of the fitted curve, which 

gives the time needed for the model to settle in the 2% neighborhood of final value.  We use this 

as a sensible measure for the time needed for the organization to settle down into a policy, and 

therefore a good measure of the speed of internal dynamics of the model.  The following table 

shows the values of this measure for different heuristics: 

Table S6- The alternative measure for speed of internal dynamics. 

Model Regression Correlation Myopic Reinforcement 

Exponential Time 38.32 190.64 227.76 60.4 
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Constant* 4 

These results are consistent with the premise that delays tested in the model are not too long 

compared to internal dynamics of the system. 

Statistics for detailed analysis parameters and results 
The independent parameters in the regressions included all those changed randomly for the 

Monte-Carlo simulation analysis, picked from uniform distributions, reported below. For each 

parameter we report the low, high, and base case values, as well as the description of the 

parameter. In table 7 we also report the summary statistics for the dependent variables of the 

regressions. 

Table S7- Parameter settings for detailed analysis 

Parameter  Heuristic Low High BaseDescription 
Payoff Generation 
Delay[activity 1] 

T1 All 0 20 0 How long on average it take for resources 
allocated to activity 1 to become effective and 
influence the payoff 

Perceived Payoff 
Generation 
Delay[activity1] 

1T  All 0 20 0 The decision maker’s estimate of the delay 
between resources allocated to activity 1 and 
the payoff. 

Action Noise 
Correlation Time 

δ  All 1 9 3 The correlation time constant for the pink 
noise used for model exploration  

Value Adjustment 
Time Constant 

λ  Regression 
Correlation 

3 20 10 How fast the activity value system moves 
towards the indicated policy 

Value Adjustment 
Time Constant 

λ  Myopic 0.5 8 2 How fast the activity value system moves 
towards the indicated policy 

Maximum Action 
Standard Deviation 

 All 0.05 0.2 0.1 What is the standard deviation of exploration 
noise, when the exploration is most vigorous 

Minimum Action 
Standard Deviation 

 All 0 0.05 0.01 What is the standard deviation of exploration 
noise, when the exploration is at minimum 

Minimum 
Improvement of 
Payoff 

 All 0.005 0.02 0.01 Normalizing factor for changes in payoff.  
Changes lower than this will trigger minimum 
standard deviation for exploration 

Slope Inverse for 
Standard Deviation 

 All 0 20 9 Inverse of the slope for relating recent 
improvements to standard deviation of 
exploration.  Higher values suggest smoother 
transition from high exploration to low. 

Payoff Improvement 
Updating Time 

 All 3 20 5 The time constant for updating the recent 
payoff improvements (which is then 
normalized to determine the strength of 
exploration) 
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Action Lookup Time 
Horizon 

 Correlation 2 10 6 The time horizon for calculating correlations 
between an activity and the payoff 

Sensitivity of 
Allocations to 
correlations 

 Correlation 0.05 0.8 0.2 How aggressive the activity values (and 
therefore allocations) respond to the perceived 
correlations between each activity and the 
payoff 

Reinforcement 
Forgetting Time 

 Reinforceme
nt 

3 20 10 The time constant for forgetting past activity 
values. 

Reinforcement 
Power 

 Reinforceme
nt 

4 20 12 How strongly the differences in payoff will be 
reflected in action value updates. 

Evaluation Period E Regression 1 9 3 How often a new regression is conducted to 
recalculate the optimal policy 

 

 

Table S8- Summary Statistics for Dependent variables   

Variable Observations Mean Std Dev Median 
Achieved Payoff Percentage[Rgr] 3000 87.2 17.8 93.0 
Achieved Payoff Percentage[Crr] 3000 75.6 25.4 83.3 
Achieved Payoff Percentage[Myo] 3000 79.6 20.2 85.0 
Achieved Payoff Percentage[PfR] 3000 81.7 18.7 86.7 
Distance Traveled[Rgr] 3000 18.1 11.5 15.1 
Distance Traveled[Crr] 3000 17.5 11.0 14.8 
Distance Traveled[Myo] 3000 18.4 12.2 15.4 
Distance Traveled[PfR] 3000 18.0 12.3 14.7 
Convergence Probability[Rgr] 3000 0.236 0.424 0 
Convergence Probability[Crr] 3000 0.122 0.328 0 
Convergence Probability[Myo] 3000 0.178 0.383 0 
Convergence Probability[Pfr] 3000 0.200 0.400 0 

 

A Q-learning model for resource allocation learning task 
Among different learning heuristics we considered in the original design of this study, a 

Q-learning heuristic taken from machine learning literature had some interesting properties to 

make it a potential candidate for inclusion in the original paper, however, it was excluded from 

the final draft under space constraints, its relative inefficiency in comparison with other models 

discussed for a comparable number of trials, and complexity considerations. Here we briefly 

discuss this heuristic because it gives a better insight into optimization-oriented learning 

heuristics available in machine learning and artificial intelligence literatures, it has been 
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introduced into organizational learning literature (Denrell, Fang and Levinthal 2004; Rahmandad 

2007), and it helps build a more concrete mathematical framework to relate complexity of 

learning to action-payoff delays. In comparison with other reported models, this heuristic has a 

relatively high level of information processing and rationality, however, it does not use any 

cognitive search, i.e. it assumes no knowledge of payoff landscape. Consequently the heuristic is 

quite general.  

In the development of this model we follow the general formulation of Q-learning 

(Watkins 1989) as discussed by Sutton and Barto (Sutton and Barto 1998). Typical reinforcement 

learning heuristics in machine learning (The general category to which Q-learning heuristic 

belongs) work based on a discrete state-space and use discrete time. Therefore to adopt this 

heuristic to our task which has both continuous time and action space, we break state-action space 

of our problem into discrete pieces and use a discrete time in the simulations reported here. Also, 

here we only report the development of the Q-learning model for the case with no delays. As the 

analysis reported here and the discussions regarding the extension of the model into delayed 

feedback show, such extension is possible but increases the complexity of the model 

exponentially with the size of delays considered and therefore the number of experimental data-

points to allow for a successful performance under that condition goes beyond the neighborhood 

of what is considered feasible in an organizational setting.  

The action space in our setting depicts what resource allocation the organization is using 

at the current time, i.e. resources allocated to each of the 3 actions, Aj (j=1..3), however, since 

sum of these resources equals a constant total resource (R=100) at each time, we have a 2-

dimensional action space, A1 and A2, each changing between 0 and 100, and with the constraint 

that 100≥ A1+A2. We break down each action dimension into N possible discrete values. We 

choose N=12 in the following analysis since that allows for observation of the peak of the Cobb-

Douglas payoff function used in our analysis (PF=A1
0.5.A2

0.3333.A3
0.1667), consequently, each Aj can 

take one of the R/N*i values (i=0..N) provided that sum of Aj equals R. 
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To define the action space, we assume that at each period the organization can only 

explore one of the neighboring states, i.e. by shifting 1/N resources from one activity to another, 

or can stay at the last state. Consequently the action space includes 7 possible actions (No change, 

A1 to A2, A2 to A1, A1 to A3, …). However, at the boundaries of the state space (where Aj=0 for 

any of js) the feasible action set reduces to exclude possibility of existing the feasible state space. 

Consequently our action-state space, (S, a), includes 559 possibilities, where each S consists of a 

(A1, A2) pair and “a” can take one of its feasible values.  

At each period the organization takes an action (goes from state S to state S’, through 

action “a”), observes a payoff (P) from that move, and updates the value of the action-states 

Q(S,a) according to the following updating rule: 

))','(..(),().1(),(
'

aSQMaxPaSQaSQ
a

γαα ++−←  

Parameter α is used to avoid too-fast an adjustment of values in case of stochastic payoff 

functions. Since here the payoff is deterministic, we use a very high discount rate,  α=0.9, in the 

analysis below. Central to the contribution of Q-learning heuristic is that it not only takes into 

account the reward received from the last action-state, but also gives a reward for how good a 

state that action has brought us to (maximum value available from S’ through any action a’). 

Therefore this heuristic allows for taking into account the contributions of different states in 

leading us towards better regions of payoff landscape and creates a potential avenue through 

which one can capture the effects of time-delays more efficiently, i.e. by rewarding not only what 

payoff we get at this step, but also what new state the action takes us to, a future looking 

perspective. Parameter γ determines the strength of that feedback on model performance.  

The action taken at each period depends on the last state, the value of different actions 

originating from that state, and the tendency of the organization to explore different possibilities. 

Here we can have two types of exploration, one includes exploring actions which we have never 

taken from the current state (exploring new (S,a)’s), the other reflects organizations propensity to 
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try an action which has a lower value than maximum, even though it has been tried before 

(exploring (S,a)’s which have already been explored). Both these types of exploration are needed 

to lower the chances that the organization gets stuck exploiting a low-payoff location on the state-

space. Starting from a value of 0 for all Q(S,a)s and taking into account that all actions in this 

landscape, except for those on the borders, give a positive payoff, we use the following equations 

to define the probability of taking action “a” from state S, P(S, a): 

KZ
aSP

).1(.
),(

υυ
υ
−+

=  if Q(S,a)=0 

KZaSQ
aSQaSP

a
).1(.

)1(.
)',(

),(),(

'
υυ

υ
ω

ω

−+
−

=
∑

 if Q(S,a)>0 

Here υ represents the attention given to exploring new actions and ω represents the 

priority given to exploring already-tried state-action pares. In the following analysis we use the 

values of 0.3 for υ and 4 for ω which maximized the speed of learning for this model on the given 

task within a 3 by 3 ([0.1, 0.3, 0.5]*[1, 4, 7]) grid of values for υ and ω.2  

Since this model follows a different logic both in defining the space and time states and 

in exploration and value adjustment heuristics, we have to find the appropriate simulation length 

to make a comparison between this model and those reported in the paper meaningful. This is 

important in the light of the fact that given enough time/experimental data and exploration, the Q-

learning heuristic is guaranteed to find real values (their expected payoff in an optimal policy) of 

different state-action pairs, and therefore be able to make optimal allocations (Watkins and Dayan 

1992). The important question is then whether such convergence can happen faster or slower than 
                                                 
2 To find these parameter values, we ran linear regressions with dependent variable of 

average payoff over 10 simulations of 100 periods and independent variable of TIME, to 

find the largest learning rate (the largest regression coefficient on TIME) within the given 

parameter settings. 
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the other learning models, and what is the impact of introducing delays on the time/trial 

requirements of this model. 

The basic idea behind such comparison is the availability of similar amount of data about 

the payoff landscape3. Since such data arrives through the learning agent’s exploration of the 

landscape, gathering comparable amounts of data requires similar speeds for different heuristics 

when walking on the state-space in a non-converging mode. That is, the distance traveled on the 

state-space should be similar through the length of simulation for Q-learning and other four 

heuristics.  

In the case of other four models the total distance traveled remains below 204 for most of 

the cases (See table S8) where most simulations have not converged. Therefore a reasonable 

comparison allows the Q-learning heuristic enough time to walk on the state-space for a similar 

distance.  

In the case of the Q-learning heuristic where activity dimension is divided to N discrete 

values for each dimension, each step to a new position moves the organization on the state-space 

for distance d: 

                                                 
3 Note that because of the continuous-time nature of the four original heuristics, the auto-

correlation of exploration term, and the independence of their behavior from time-step of 

simulation (for dt<0.2), it is not realistic to count the total number of time steps in 300 

periods of continuous simulation and do a direct comparison with same periods for the Q-

learning method. Such logic will give increasing number of trial periods to Q-learning, as 

we reduce the dt for the continuous model, which is obviously wrong. 

4 The distance traveled on state-space is calculated in four original models based on 

summing the Euclidian distance between points the heuristic visits every period on the 3-

dimensional space of fraction of resources allocated, we follow the same logic here.  
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NNN
d 2)1()1( 22 =+=  

Taking into account the probability that the organization stays where it is in a random walk 

(which equals
559
91

), the distance traveled with each step is d’~ 1/N. Consequently, M, total 

number of periods the Q-learning model needs to run to travel the distance of 20 is: 

M=20*N=240 

Therefore a reasonable comparison between the Q-learning and other models can be 

made when the Q-learning model is simulated for about 240 periods. 

Using the parameter values reported above, we run the Q-learning heuristic for as long as 

600 periods in order to make sure that we observe the behavior of the learning heuristic outside 

the range of data-availability allowed for other models. We average the results over 400 

simulations for higher confidence. 
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Figure S1- The behavior of Q-learning heuristic (average of 400 simulations) in the resource 

allocation task, no-delay condition, as compared to the other four heuristics (as reported in the 

paper). Note that the Time scale is adjusted for the other heuristics to represent the equivalence of 

data availability. Also note that by making the state-space discrete, the expected payoff of a 

random allocation has decreased (mainly because of the 0 payoffs in the boundaries) thus the 

lower start-point for the Q-learning heuristic.   

As the graph shows, the Q-learning model does not find the optimum allocation even 

after receiving over two times the data used by other models. The behavior of the Q-learning 

heuristic under these conditions suggests that in order to find good policies this heuristic requires 

far more data than the other four models, even under no delay condition. This should come as no 
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great surprise since the discrete state-action space of this heuristic includes many points for which 

a few trials need be realized before a useful mental model of the space is built. Moreover, this 

heuristic does not use any information about the slope of the payoff landscape in moving to better 

allocation policies. Nevertheless, the amount of data needed by this heuristic puts it in a 

disadvantage in terms of applicability for typical organizational learning instances, where few 

data points are available. In fact this is the main reason we did not include this heuristic in the 

analysis reported in the paper. 

Extension of this model to capture action-payoff delays through an enhanced 

representation of state-spaces is possible (See (Rahmandad 2007) for and example), however it is 

very costly in terms of data requirements for the model. In the simplest case, where we only can 

have delays of 1 period between action and payoff, our state-space will need to include not only 

the current location on the payoff landscape (the number of its members are O(N2)), but also the 

last action.  This is necessary because both the current state and the state from last period (which 

can be deduced from last action) contribute to the payoff for the current period. This additional 

complexity results in expansion of the state-space and the corresponding data requirement to 

O(N2.A), where A is the size of the potential action space (in our setting 7)5.  Consequently to be 

able to learn about processes with delays of length K the heuristic needs a state-space of size 

                                                 
5 In fact our model is limiting search to local exploration of neighboring states, and 

therefore size of A is limited to 7 (boundary states have smaller sizes; for a m-

dimensional allocation problem, size of A becomes m*(m-1)+1; here m=3).  If long-

distance explorative moves were possible, as most models of organizational learning 

assume, the A set will expand to all the states, and will itself be of size O(Nm), which 

increases the speed of complexity growth as a function of delays even further.   
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O(N2.AK), which is exponentially growing with the length of the maximum delay in the space, 

resulting in exponential growth of data requirements to learn about such payoff function.  

In the very general case one can consider a maximum delay length of K and arbitrary 

distributed delay structure, an arbitrary m-dimensional state space where each dimension can take 

one of the N possible values, where exploratory actions are possible, and under an arbitrary 

payoff function.  The “NK” type models (Kauffman 1993), widely used in organizational learning 

literature, are a special case of this general model (where N=2 in our terminology and no delay is 

present).  For our general case the complexity of state-action space is of the order O(Nm.(Nm)K) 

where the first term, Nm, represents, in Levinthal’s (2000) terms, the spatial complexity and the 

latter term, (Nm)K, represents the temporal complexity.  This clearly shows how temporal 

complexity quickly dominates the complexity of organizational learning for larger values of 

delays (K>1 period).  

Simulating the Q-learning model 

Two versions of the Q-learning model are posted with the supplementary material. Both are 

developed through Anylogic ™ software. One interface is a stand alone Java applet with 

accompanying files and runs under any Java enabled browser with no need to install additional 

software, the second includes the source code and equations of the model and can be used for 

detailed inspection of model implementation after installation of Anylogic software, as well as 

running the model. 

To open the stand-alone applet, unzip the “Q-Learning_Applet_Files.zip” into one folder (all 

three files need be in the same folder). You can then open the “Q-Learning-Visual Applet.html” 

file in any web browser (e.g. Internet Explorer). You can change different model parameters and 

extend the simulation time as you desire. 

To open the detailed Anylogic model, you need to first download and install the Anylogic 

software (you can get the 15-day free trial version from http://www.xjtek.com/download/ ). You 

can then open “Q-Learning-Visual.alp” in Anylogic.  Different objects and modules of code are 
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observable on the left hand column and you can navigate through them and inspect different 

elements of the model. You can run the model by clicking on run button (or F5) which compiles 

the model and brings up a similar page as the attached Java applet. You can inspect the behavior 

of the model both through the interface accompanying the model and applet, or by browsing 

different variables and graphing them as long as you are in the run mode in Anylogic.  For the 

second purpose, go to “root” tab in the run time mode, where you can see all model variables and 

can inspect their runtime behavior as well as final value.    

 
The implemented interface allows you to observe payoff performance as well as the path of the 

organization on the state-space, as well as change the following aspects of the model within a 

simulation (just click pause, make the desired parameter changes, and click run to continue the 

simulation): 

1- Change the simulation time to allow for more information for the learning heuristic. 

2- Change exploration parameters, υ and ω, for changing the propensity of the model to explore 

new action-states or re-visit those already tried. 

3- Change the value adjustment parameters, discount rate and strength of feedback to states that 

become stepping stones for better payoffs (Parameter γ in the heuristic above). 

4- Change the shape of payoff function with changing the exponents of different activities’ effect 

on payoff. Note that Cobb-Douglas function requires the exponents to add up to 1. 

 You can reload the model by pressing the refresh button of your browser. You can also change 

the speed of the simulation through  the simulation control slider on the top left corner of the 

applet.  

 

Simulating the four other learning models 
The simulation model used to examine the other four learning heuristics is also posted with the 

online material.  To open the model, download and install the Vensim Model Reader from 
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http://vensim.com/freedownload.html.  Then open “LearningModelPresent.vmf “ from Vensim 

file menu.  Navigate through different views of the model using the “Page Up” and “Page Down” 

buttons or by the tab for selecting views at the bottom left of the screen, or by use of navigation 

buttons enabled on most of the views.  View the equation for each variable by selecting that 

variable and clicking the “Doc” button in the left toolbar. 

Note that this model includes more functionalities than discussed in the paper. It allows you to 

introduce noise in payoff and perception delays, and change the payoff function to linear. 

Moreover, you can change any of the model parameters and explore different scenarios with this 

model.  

   

Simulating the model: 

- First choose a name for your simulation and enter it in the field for simulation name in 

the middle of the top toolbar:  

- Click on the SET button to the left of this name. 

- Now change the parameters of the model as desired. The best place to do so is to go to 

the “control panel” view (Press Page Down until you arrive at the second view) where 

you can change all the main parameters. The current values of the parameters are shown 

if you click on each parameter. 

- Simulate the model by clicking the Run button in the  top toolbar: .  

Examining the behavior: 

- The control panel includes graphs of the payoff, distance traveled in the space, 

convergence time, and climbing time (time during which an heuristic improves its 

performance), based on your latest simulation. 

- You can also use the tools in the left toolbar to see the behavior of different variables. 

Select a variable by clicking on it and then click on the desired tool. 
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Additional notes on model formulations and performance metrics  
- Different types of delay, including first- and third-order Erlang delays, were examined; 

the results were qualitatively the same. 

- The model is formulated in continuous time but simulated by Euler integration with a 

time step of 0.125 period.  Sensitivity analysis shows little sensitivity of the results to 

time steps < 0.2  

- Note that by optimum we mean the best payoff one can achieve over the long-term by 

pursuing any policy which need not to be the highest possible payoff.  For example, with 

a one period delay for activity 1 and no delay for the two others, the organization can 

allocate all 100 units to activity 1 during the current period and allocate all the resource 

between two other activities during the next period.  Under these conditions, it can 

achieve higher than optimum payoff for the next period, at the expense of getting no 

payoff this period (because activities 2 and 3 receive no resources) and the period after 

the next (because activity 1 receives no resources in that period).  A constant returns to 

scale payoff function prevents such policies from yielding higher payoffs than the 

constant allocations in the longterm. 

- We consider a particular learning procedure to have converged when the variance of the 

payoff falls below 1% of its historical average.  If later the variance increases again, to 

10% of its average at the time of convergence, we reset the convergence time and keep 

looking for the next instance of convergence. 

References 

Denrell, J., C. Fang and D. A. Levinthal (2004). "From T-Mazes to labyrinths: Learning from 
model-based feedback." Management Science 50(10): 1366-1378. 

Kaelbling, L. P., M. L. Littman and A. W. Moore (1996). "Reinforcement learning: A survey." 
Journal of Artificial Intelligence Research 4: 237-285. 

Kauffman, S. A. (1993). The origins of order : self organization and selection in evolution. New 
York, Oxford University Press. 

Levinthal, D. (2000). Organizational capabilities in complex worlds. The Nature and Dynamics of 
Organizational Capabilities. G. Dosi, R. Nelson and S. Winter. New York., Oxford 
University Press. 



 18

Rahmandad, H. (2007). "Effect of delays on complexity of organizational learning." Under 
Review in Management Science. 

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An Introduction. Cambridge, The 
MIT Press. 

Watkins, C. (1989). Learning from delayed rewards. Ph.D. Thesis. Cambridge, UK, Kings’ 
College. 

Watkins, C. J. C. H. and P. Dayan (1992). "Q-Learning." Machine Learning 8(3-4): 279-292. 
 


