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Abstract

We analyze the optimal execution problem of a portfolio manager trading multiple assets. In
addition to the liquidity and risk of each individual asset, we consider cross-asset interactions
in these two dimensions, which substantially enriches the nature of the problem. Focusing
on the market microstructure, we develop a tractable order book model to capture liquidity
supply/demand dynamics in a multi-asset setting, which allows us to formulate and solve the
optimal portfolio execution problem. We find that cross-asset risk and liquidity considerations
are of critical importance in constructing the optimal execution policy. We show that even when
the goal is to trade a single asset, its optimal execution may involve transitory trades in other
assets. In general, optimally managing the risk of the portfolio during the execution process
affects the time synchronization of trading in different assets. Moreover, links in the liquidity
across assets lead to complex patterns in the optimal execution policy. In particular, we highlight
cases where aggregate costs can be reduced by temporarily overshooting one’s target portfolio.
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1 Introduction

This paper formulates and solves the optimal execution problem of a portfolio manager trading multiple

assets with correlated risks and cross price impact. The execution process, even for a single asset, exhibits

several main challenges: The at-the-money liquidity available is finite and the act of trading can influence

current and future prices. For instance, a large buy order can push prices higher, making subsequent pur-

chases more expensive. Similarly, a sell order can push prices lower, implying that subsequent sales generate

less revenue. The connection between trading and price is known as price impact and its consequence on

investment returns can be substantial.1 The desire to minimize the overall price impact prompts the man-

ager to split larger orders into smaller ones and execute them over time, in order to source more liquidity.

However, trading over longer periods leads to more price uncertainty, increasing risk from the gap between

remaining and targeted position. These considerations jointly influence the optimal execution strategy.

The execution of a portfolio generates two additional challenges: First, how to balance liquidity con-

siderations with risks from multiple assets? In particular, reducing costs may require trading assets with

different liquidity characteristics at different paces, while reducing risk may require more synchronized

trading across assets. Second, how to manage cross-asset liquidity? To the extent that liquidity can be

connected across assets, properly coordinating trades can help improve execution.

Controlling price impact is a challenging problem because it requires modeling how markets react to

one’s discrete actions. In practice, this requires a significant investment in information technology and

human capital, which can be prohibitive. Therefore, many firms choose to outsource their execution needs or

use black-box algorithms from specialized third parties, such as banks with sophisticated electronic trading

desks. Moreover, this execution services industry has been growing rapidly over the past decade. Not

surprisingly, there is a vast literature studying optimal execution. Most of the existing work focuses on a

specific type of execution objective, namely, the problem of optimal liquidation for a single risky asset.

One strand of literature seeks to develop parsimonious functional forms of price impact, grounded in

empirical observations, such as Bertsimas and Lo (1998) and Almgren and Chriss (2000).2 The other fo-

cuses on the market microstructure foundations of price-impact. Recent pro-technology regulations have

continued to fuel the wide-spread adoption of electronic communication networks driven by limit order

books. The order books aggregate and publish available orders submitted by market participants, which

represents the instantaneous supply/demand of liquidity available in the market. Consequently, more recent

papers incorporate this aspect into the analysis. In particular, Obizhaeva and Wang (2013) propose a market

microstructure framework in which price impact can be understood as the dynamic responses in the supply

and demand of liquidity.3 One advantage of this approach is that the optimal strategies obtained are robust
1E.g., Perold (1988) shows that execution can reduce returns, leading to a significant “implementation shortfall.”
2Also see Almgren (2009), Lorenz and Almgren (2012), He and Mamaysky (2005), and Schied and Schoeneborn (2009). For

empirical foundations, see Bouchaud et al. (2009) for a survey, as well as references in Alfonsi et al. (2008), Alfonsi et al. (2010)
and Obizhaeva and Wang (2013). For studies on how trade size affects prices see Chan and Fong (2000), Chan and Lakonishok
(1995), Chordia et al. (2002) and Dufour and Engle (2000).

3See also Alfonsi et al. (2008), Alfonsi et al. (2010), Bayraktar and Ludkovski (2011), Chen et al. (2013), Cont et al. (2010),
Obizhaeva and Wang (2013), Maglaras and Moallemi (2011), and Predoiu et al. (2011). In other related work, Rosu (2009) develops
a full equilibrium game theoretic framework and characterizes several important empirically verifiable results based on a model of
a limit order market for one asset. Moallemi et al. (2012) develop an insightful equilibrium model of a trader facing an uninformed
arbitrageur and show that optimal execution strategies can differ significantly when strategic agents are present in the market.

1



to different order book profiles. This literature highlights the fact that supply/demand dynamics are crucial.

The key question we seek to address in this paper is how managers can maximize their expected wealth

from execution, or more generally their expected utility, when trading portfolios composed of dynamically

interacting assets. As much interest as the single-asset case has generated, the multi-asset problem has been

less studied, perhaps because “the portfolio setting clearly is considerably more complex than the single-

stock case” (Bertsimas et al. (1999), page 2). Our motivation to pursue the multi-asset problem is based on

the following observation: Even when the execution object is about a single asset, in the general multi-asset

setting, it is optimal to consider transitory trades in other assets. There are at least two reasons. First, other

assets provide natural opportunities for risk reduction through diversification/hedging. Second, price-impact

across assets may provide additional benefits in reducing execution costs by trading in other assets. Thus, to

limit trading to the target asset is in general suboptimal. Of course, when the execution involves a portfolio,

we would need to consider both effects from correlation in risk and supply/demand evolution, respectively.4

To tackle the problem, we develop a multi-asset order book model with correlated risks and coupled

supply/demand dynamics. Here, an order executed in one direction (buy or sell) will affect both the currently

available inventory of limit orders and also future incoming orders on either side. This is in line with

the empirical results in Biais et al. (1995) who find that “downward (upward) shifts in both bid and ask

quotes occur after large sales (purchases).” Therefore, there is a priori no reason to rule out the possibility

that double-sided (buy and sell) strategies may be optimal even if the original objective is unidirectional

(e.g. in the standard liquidation problem). However, allowing for arbitrary dynamics leads to modeling

difficulties. In particular, there is no reason to assume that the supply and demand sides of the order books

are identical, implying that the manager’s buy and sell orders need to be treated separately. To this end, we

need to introduce inequality constraints on the optimization variables, which can render the optimization

computationally challenging.

To solve the problem, we show that in our setting the optimal policy is path independent, under some

restrictions on the asset price processes (namely, that they are random walks). This allows us to solve a

equivalent static reformulation of the problem, which is cast as a tractable quadratic program (QP) over the

manager’s inputs, without sacrificing optimality.

Our model implies that managers can utilize cross-asset interactions to significantly reduce risk-adjusted

execution costs. The resulting optimal policies involve advanced strategies, such as conducting a series of

buy and sell trades in multiple assets. In other words, we find that managers can benefit by over-trading

during the execution phase. This result may a priori seem counter-intuitive. Indeed, we demonstrate that one

can lower risk-adjusted trading costs by trading “more”. We show that this is the case because a unique trade-

off arises in the multi-asset setting. While consuming greater liquidity generally leads to higher charges, one
4The existence of cross asset price-impact effects has been empirically documented and theoretically justified. It can simply

result from dealers’ attempts to manage their inventory fluctuations, see for example Chordia and Subrahmanyam (2004) and
Andrade et al. (2008). Kyle and Xiong (2001) show that correlated liquidity shocks due to financial constraints can lead to cross-
liquidity effects. King and Wadhwani (1990) argues that in the presence of information asymmetry among investors, correlated
information shocks can lead to cross-asset liquidity effects among fundamentally related assets. Fleming et al. (1998) show that
portfolio rebalancing trades from privately informed investors can lead to cross-impact in the presence of risk aversion, even
between assets that are fundamentally uncorrelated. Pasquariello and Vega (2013) develop a stylized model and provide empirical
evidence suggesting that cross-impact may stem from the strategic trading activity of sophisticated speculators who are trying to
mask their informational advantage. Hasbrouck and Seppi (2001) find that both returns and order flows can be characterized by
common factors. Lastly, evidence of comovement stemming from sentiment-based views has been studied in Barberis et al. (2005).
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can also take advantage of asset correlation and cross-impact to reduce risk via offsetting trades.

We show that multi-asset strategies turn out to be optimal for simple unidirectional execution objectives.

Even in the trivial case where the objective is to either buy or sell units in a single asset, we find that the

manager can benefit by simultaneously trading back and forth in other securities. Previous work has focused

on modeling the available buy-side or sell-side liquidity independently of each other. Our results suggest

that these two cannot generally be decoupled when accounting for cross-asset interactions. Furthermore,

the associated strategies are often non-trivial. For instance, when liquidating (constructing) a portfolio, one

can reduce execution risk by simultaneously selling (purchasing) shares in positively correlated assets. Our

model explains why this type of trade provides an effective hedge against subsequent price volatility.

Extending the analysis to portfolios with heterogeneous liquidity across assets (e.g., portfolios composed

of small-cap and large-cap stocks, ETFs and underlying basket securities, stocks and options, etc.), we find

that the presence of illiquid assets in the portfolio drastically affects the optimal policies of liquid assets. In

particular, it can be optimal to temporarily overshoot targeted positions in some of the most liquid assets

in order to improve execution efficiency at the portfolio level. However, the different trading strategies

associated with each asset type could leave managers over-exposed to illiquidity at certain times during the

execution phase. This synchronization risk can be addressed by introducing constraints on the asset weights

that synchronize the portfolio trades, while maintaining efficient execution. The constrained optimal policies

obtained combine aspects of the optimal stand alone policies of both liquid and illiquid assets.

Our analysis has implications for other important problems in portfolio management. The DP and/or QP

formulations can be integrated into existing portfolio optimization problems that treat transaction costs as a

central theme. For example, the portfolio selection problem with transaction costs is one of the most central

problems in portfolio management (see Brown and Smith (2011) for recent advances). Our model provides

an understanding of the origin of these costs and of their propagation dynamics in the portfolio setting. The

insights we develop can thus allow portfolio managers to better assess the applicability of some common

cost assumptions in this strand of literature (such as assuming cost convexity and diagonal impact matrices,

and prohibiting counter-directional trading).5

There is prior work on the multi-asset liquidation problem. Bertsimas et al. (1999) develop an ap-

proximation algorithm for a risk-neutral agent, which solves the multi-asset portfolio problem while effi-

ciently handling inequality constraints. Almgren and Chriss (2000) briefly discuss the portfolio problem

with a mean-variance objective in their appendix and obtain a solution for the simplified case without cross-

impact. Engle and Ferstenberg (2007) solve a joint composition and execution mean-variance problem with

no cross-impact using the model from Almgren and Chriss (2000). They find that cross-asset trading can

become optimal even without cross-impact effects. Brown et al. (2010) treat a multi-asset 2-period liqui-

dation problem with distress risk, focusing on the trade-offs between liquid and illiquid assets. In contrast

to these papers, we analyze the more general multi-objective execution problem focusing on the market

microstructure origins of price impact. This allows us to characterize the optimal policies as a function of

intuitive order book parameters, such as inventory levels, replenishment rates and bid-ask transaction costs.
5A more concrete example of how price-impact models can be integrated in a broader portfolio selection problem can be found

in Iancu and Trichakis (2014), which focuses on the multi-account portfolio optimization problem. A discussion regarding the
applicability of advanced cross-asset strategies and how they relate to agency trading and best execution constraints can also be
found in the same paper.
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These parameters could be calibrated to tick by tick high-frequency data.6

The remainder of the paper is structured as follows: Section 2 details the multi-asset liquidity model.

Section 3 formulates and solves the manager’s dynamic optimization problem. Section 4 focuses on numer-

ical applications and economic insights. Section 5 treats mixed liquidity portfolios. Section 6 concludes.

The appendix contains proofs and some additional results.

2 The Liquidity Model

In this section, we develop a model specifying how the manager’s trades affect the supply/demand and price

processes of all assets. We start with the investment space and admissible trading strategies in Section 2.1.

Each buy or sell order submitted to the exchange will be executed against available inventory in the limit

order books. Section 2.2 explains the distribution of orders in the order book. Section 2.3 describes the

replenishment process: Following each executed trade, new limit orders arrive, reverting prices and col-

lapsing the bid-ask spread towards a steady state, which we define. This liquidity mean-reversion property

provides an incentive for the manager to split his original order over time. Doing so, he can take advantage

of more favorable limit orders arriving at future periods. However, delaying trading also introduces more

price uncertainty. We formulate and eventually solve this essential trade-off between risk and liquidity.

2.1 Investment Space and Admissible Strategies

We adopt the following notation convention: vectors/matrices are in bold and scalars in standard font. Time

t is discrete, with N equally spaced intervals. The manager has a finite execution window, [0, 1], where the

length of the horizon is normalized to 1 without loss of generality. Thus, there are N + 1, equally spaced,

discrete trading times, indexed by n ∈ {0, . . . , N}, with period length τ = 1/N .

Uncertainty is modeled by a probability space (Ω,F ,P). A filtration (Fn)n∈{0,...,N} models the flow of

information. The stochastic process generating the information flow is specified in Assumption 2.

We consider a portfolio of m assets indexed by i ∈ {1, . . . ,m} = I . Irrespective of the manager’s

objective, we assume that he has the option of purchasing or selling/shorting units in any of the assets

during any of the discrete times, as long as he satisfies his boundary conditions at the horizon N . Let

x+i,n ≥ 0 and x−i,n ≥ 0 be his order sizes for buy and sell orders respectively, in asset i at time n. These will

constitute the decision variables over the trading horizon. We also define the following corresponding buy

and sell vectors:

buy at n: x+
n =


x+1,n

...

x+m,n

 , sell at n: x−n =


x−1,n

...

x−m,n

 , aggregate: xn =

[
x+
n

x−n

]
.

Next, we define part of the execution objective by formulating the boundary conditions. Let zi,n be a state

variable representing the net amount of shares left to be purchased (or sold, if negative) in asset i at time
6Disentangling cross-impact from correlation for individual securities is a challenging statistical problem which is beyond the

scope of this paper. Empirical estimation of cross-impact is an active area of research for high-frequency trading firms and could
also be an interesting direction for future academic research.
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n, before the incoming order at n. Following the vector conventions defined above, the manager’s total net

trades in each asset must sum to z0, i.e.,

N∑
n=0

(
x+
n − x−n

)
=

N∑
n=0

δ′xn = z0,

where δ = [I;−I] and I the identity matrix of sizem. Thus, δ′xn = x+
n −x−n . Following these definitions,

it is easy to show that the dynamics for the state vector zn can be written as

zn = zn−1 − δ′xn−1, and zN = δ′xN . (1)

The manager’s trades must be adapted to the information filtration. The set S of admissible trading strategies

is specified in the definition below.

Definition 1 (Admissible Execution Strategies) The set S of all admissible trading strategies for n ∈
{0, . . . , N} takes the form

S =

{
xn ∈ R2m

+

∣∣∣∣∣Fn-adapted ;
N∑
n=0

δ′xn = z0

}
. (2)

The set of strategies in Definition 1 is broad in the sense that no restrictions (e.g., shorting or budget con-

straints) are imposed during the trading window, as long as the boundary constraints are satisfied by N .

Having established the preliminary notations, the next step is to model the manager’s price impact. In

other words, we need to describe how his actions affect asset prices over time. The next section is dedi-

cated to developing an adequate liquidity model, which will allow us to formulate the manager’s dynamic

optimization problem.

2.2 Order Book

In a limit order book market (Parlour and Seppi 2008), the supply/demand of each asset is described by

the order book. The basic building blocks of limit order markets consist of three order types: Limit orders

are placed by market participants who commit their intent to buy (bids) or sell (asks) a certain volume at

a specified worst-case (or limit) price. They represent the current visible and available inventory of orders

in the market. Market orders are immediate orders placed by market participants who want to buy or sell a

specific size at the current best prices available in the market. They are executed against existing supply or

demand in the limit order book. Cancelation orders remove unfilled orders from the book.

To preserve tractability, we follow the existing literature in assuming that the manager is a liquidity

taker, i.e., he submits market orders that are executed against available inventory in the book on a single

exchange.7 Although prices and quantities are discrete, we adopt a continuous model of the order book

which is entirely described by its density functions: qai,n(p) for the ask side and qbi,n(p) for the bid side.

7See Moallemi and Saglam (2013a) for a study regarding the optimal placement of limits orders. See Maglaras et al. (2012) for
a study on order placement in fragmented markets.
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The density functions map available units (q) to limit order prices (p) and thus describe the distribution of

available inventory in the order book over all price levels, at any given point in time.

To illustrate, Figure 1 displays a partial snap-shot of (a) the oil futures limit order book as of November

8, 2011 at 11:10am and as a comparison, an equivalent continuous-model (b) and a simplified continuous

model (c). The continuous model along with a simplifying assumption on the order book density functions

(i.e., Assumption 1) keeps the problem tractable and focused on the multi-asset aspect of the model.

bid-ask
spread

$96.12

20 @ $96.13

23 @ $96.14

30 @ $96.15

27 @ $96.16

...

21 @ $96.10

3 @ $96.11

23 @ $96.09

38 @ $96.08
...

best ask
price



market
supply

(ask side)

units
available

bid
density

ask
density

...

...

(a) Example of real order book (b) Continuous model

limit
prices

mid-price

best bid
price

bid
density

ask
density

...

...

(c) Block shape approxmiation

units
available

units
available

best ask
price

best bid
price

best ask
price

best bid
price

bid-ask
spread

market
demand
(bid side)

Figure 1: Partial snap-shot of (a) an order book: one-month oil futures contracts as of November 8, 2011, at 11:10am (to be read
as “units available” @ “limit price”), (b) an equivalent continuous model utilizing density functions, and (c) the shape of the order
book following Assumption 1.

Following Obizhaeva and Wang (2013), we assume that all assets in the portfolio have block-shaped

order books with infinite depth and time-invariant steady-state densities.

Assumption 1 (Order Book Shapes) Letting qai , qbi be constants, and denoting by ai,n, bi,n the best avail-

able ask and bid prices in each order book at n, right before the trade arrives at n,8 we have

qai,n(p) = qai 1{p≥ai,n} and qbi,n(p) = qbi1{p≤bi,n}, i ∈ {1, . . . ,m}. (3)

Figure 1(c) provides an illustration of this assumption.9

In addition to the shape of order book, we also need to specify the location of ai,n and bi,n and their

evolution over time. Two components are driving each asset’s best bid and ask prices: its fundamental value

and the price impact of trading. We will focus on the first component and return to the second later.

In absence of trading, the best bid and ask prices should be determined by the assets’ fundamental values.

We will assume these are given by a vector of random walks un:

Assumption 2 (Random-Walk Fundamental Values) Let εn ∼ N(0, τΣ) be a vector of normal random

8The best available ask price, ai,n, is the lowest price at which a market buy order could (partially or fully) be executed at time
n. Similarly, the best available limit bid price bi,n is the highest price at which a market sell order could be executed.

9We refer to Alfonsi et al. (2010) for a discussion about general types of density functions and to Predoiu et al. (2011) for an
equivalence between discrete and continuous models. A queuing-based approach can be found in Cont et al. (2010).
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variables with covariance τΣ, and ∀ n ∈ {1, . . . , N}, E[εi,nεi,n−1] = 0 and E[εi,nεj,n] = τσij . We have

un = un−1 + εn, u0 > 0, (4)

with E[ui,n|Fn−1] = ui,n−1.10

The possibility of relaxing Assumption 2 is discussed in Section 3.3. Thus, we can express the best bid and

ask prices, in the absence of the manager’s trades, as follows:

ai,n = ui,n + 1
2si, bi,n = ui,n − 1

2si, ∀ i, n. (5)

Here, si gives the bid-ask spread of asset i in steady-state.

2.3 Order Book Dynamics

Next, we need to describe the evolution of ai,n and bi,n when the manager trades in the market, which

impacts the supply/demand dynamics of the order books. For this purpose we extend the single-asset, one-

sided, order book model in Obizhaeva and Wang (2013) in two directions. First, we develop a single-asset,

two-sided, order book model with coupled bid and ask sides (i.e., a trade in one direction will affect both

sides of the order book) and bid-ask transaction costs. Second, we extend to allow multiple assets. We start

with the two-asset case and show that interactions between assets justify the need for a dynamic two-sided

order book model. We then provide the general multi-asset case (m assets).

A. Single Asset

We break down the price impact process into two phases: In phase 1, the manager submits an order which

is executed against available inventory of orders, creating an immediate change in the limit order book. The

order book updates itself and displaces the asset’s mid-price accordingly, creating both a temporary price

impact (TPI) and a permanent price impact (PPI). In phase 2, new limit orders arrive in the books, gradually

absorbing the temporary price impact and collapsing the bid-ask spread towards its new steady state. We

then describe how these dynamics could be affected in a two-sided model.

Consider a market order arriving at time n to buy x = x+i,n > 0 units in an arbitrary asset i.11 Figure

2 shows possible dynamics that i can face after getting hit by the order.12 At time n − 1, we illustrate i

in its steady state (see Figure 2(a)). At the next period in time n (see Figure 2(b)), the incoming order is

executed against available inventory on the ask side of i’s order book, starting from the best available price

and rolling up i’s supply curve towards less-favorable prices. This instantaneously drives i’s best ask price

from ai,n to a∗i,n, where the superscript denotes the moment immediately following an executed order. This

results in a displacement of a∗i,n(x)− ai,n. Given a density shape qai (p) the amount of units executed over a

10While the random walk assumption implies a non-zero probability of negative prices, it is not a concern in our framework given
the short-term horizon of optimal execution problems in practice. As such, this assumption is commonly used in this literature.

11We focus on a single buy order, implying x−i,n = 0, but the results are directly applicable to sell orders as well.
12We do not illustrate the impact of the random walk here to keep the figures clear. In order words, we are holding ui,n constant.
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Figure 2: Evolution of asset i’s order book, after being hit by a single buy order of size x+in at time n.

small increment in price is simply dx = qai (p)dp. An executed buy order of size x therefore shifts the best

ask price according to:∫ a∗i,n(x)

ai,n

qai (p)dp = x. (6)

Combining the above expression with Assumption 1 we have the following Lemma:

Lemma 1 (Impact of Trading on Order Book) An incoming market order to buy (sell) x+in (x−i,n) shares

at time n will instantaneously displace the ask (bid) price of asset i according to

a∗i,n = ai,n +
x+i,n
qai

and b∗i,n = bi,n −
x−i,n

qbi
. (7)

Clearly, the corresponding displacements in the best bid/ask limit order prices are linear in the order size:

a∗i,n − ai,n =
x+i,n
qai

and b∗i,n − bi,n = −x−i,n
qbi

.

The immediate cost the manager incurs in this phase can then simply be calculated by integrating the price

over the total amount of units executed:∫ x

0
a∗i,n(u)du.

Next, as shown in Figure 2(c), we assume that the current and future supply/demand will adjust accord-

ingly. In particular, we assume that trading gives rise to a permanent impact on prices, which is proportional

to the cumulative trade size.13 In order to capture the permanent price impact, we introduce what we will
13The linearity assumption on the permanent price impact function is consistent with Theorem 1 of Huberman and Stanzl (2004),

which provides conditions under which the price impact model does not admit arbitrage and price manipulation strategies.
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call the “steady-state” mid-price vi,n, (i = 1, . . . ,m), before the trade arrives at n, which is given by

vi,n = vi,n−1 + λii

(
x+i,n−1 − x−i,n−1

)
+ εi,n = ui,n + λii

n−1∑
k=0

(
x+i,k − x−i,k

)
, (8)

where the second term gives the permanent price impact of trades up to and including the previous period

(n− 1), and λii is the permanent price impact for each unit of trading in asset i itself. Hence, if the manager

doesn’t submit any trades after n, the best ask/bid prices of asset i will eventually converge to vi,n+1 + 1
2si

and vi,n+1 − 1
2si, respectively. For convenience, we introduce the “steady-state” best ask/bid prices:

Assumption 3 (Steady-State Prices) Asset i’s best ask and bid prices have steady-state levels, before the

trade arrives at n, which are given by

a∞i,n = vi,n + 1
2si, b∞i,n = vi,n − 1

2si, (9)

where the steady-state mid-price is given by equation (8).

The best available ask and bid prices may generally differ from their steady-state levels.

After the order is executed at n, the replenishment process (phase 2) begins (see Figure 2(d) for an

illustration). During this phase, supply/demand is replenished as new limit orders arrive to refill the order

books. Replenishment is spread over time, and the order book may remain in transitory state over an

extended period of time. In the absence of any new market orders after n, the new limit orders will gradually

push the best bid/ask prices towards their new steady states a∞i,n+1 and b∞i,n+1. The rate at which this happens

depends on the dislocation size, the inherent properties of the asset and the behavior of market participants.

We follow Obizhaeva and Wang (2013) in describing the order book replenishment process. For con-

venience, we define the order book displacement functions to keep track of the difference between the best

ask and bid prices and their steady state levels, i.e.:

dai,n = ai,n − a∞i,n, dbi,n = b∞i,n − bi,n. (10)

The order book replenishment process is given as follows:

Assumption 4 (Order Book Replenishment) The limit order demand and supply are replenished expo-

nentially, with constant decay parameters ρai and ρbi , for the ask and bid pries, respectively. Specifically,

over period τ , the order book displacements are given by

dai,n+1 = e−ρ
a
i τ

(
dai,n +

[
x+i,n
qai
− λii(x+i,n − x−i,n)

])
, (11a)

dbi,n+1 = e−ρ
b
iτ

(
dbi,n +

[
x−i,n

qbi
+ λii(x

+
i,n − x−i,n)

])
. (11b)

Clearly, as ρai and ρbi → ∞, the asset is highly liquid the displacements are null, and the order books are

replenished instantaneously after each trade. As ρai and ρbi → 0, the asset is highly illiquid no new limit

9



orders arrive, and the displacements are permanent (i.e., they do not decay over time).14

From the order book replenishment process described in equation (11) and the steady-state bid/ask prices

in equation (9), the dynamics of the best bid and ask prices at any time are simply given by equation (10).

B. Two Assets

Adding a second asset to the problem introduces several new features. We need to take into account the

correlation between the stochastic processes driving the mid-prices but also the cross-impact that a trade

in one asset can have on the supply/demand curves of the other. These two features are distinct. Corre-

lation is exogenous whereas cross-impact is a direct result of the manager’s action. While the former is

straightforward, we provide an example of the latter in Figure 3.

Asset 1

TPI

(a1)

density: qb1

λ11x
+
1,n

density: qa1

new
bids

new asks

self-PPI

(b1)

recovery

(c1)

Asset 2

(a2)

density: qb2

λ21x
+
1,n

density: qa2

new
bids

cross-PPI

(b2)

recovery

(c2)

canceled
asks

time time

TPI no TPI

Figure 3: Dynamics of a 2-asset portfolio in transient regime (non steady state) after getting hit by an incoming buy order in asset
1: {x+1,n > 0, x+2,n = 0}. Executing the order leads to a PPI on asset 2 given by λ21x

+
1,n and to a subsequent response in its

supply/demand curves.

Consider a portfolio composed of two assets, and an incoming order to buy x+1,n shares in the first

asset – the second asset being “inactive”. Let λ21 > 0 be the cross-impact parameter of asset 1 on asset

2. We illustrate how the buy order affects the mid-price of the inactive asset via the term λ21x
+
1,n, as

shown in Figure 3(b2). Given the resulting price change, the portfolio value could be significantly affected.

Furthermore, the cross-impact will have a secondary effect on the supply/demand curves of the inactive

asset. As is shown in Figure 3(c2), the change in the second asset’s mid-price defines a new steady state,

initiating a response in the bid/ask books. Specifically, new buy orders arrive to replenish demand while

existing ask orders are canceled as prices converge towards the new steady states. Thus, if any orders are

later submitted in the inactive asset, these would be executed at prices which could diverge from the initial

state. This effect is further exacerbated as the number of assets in the portfolio increases, since a trade in

one could affect the prices of all others. A numerical study is provided in Section 4.
14Assumption 4 could be relaxed with alternative functional form specifications. The exponential form has the advantage of

only requiring a single parameter to describe the replenishment process, keeping the problem tractable. Further, this form has been
adopted in previous literature and is in line with several empirical findings on the order book replenishment process. See e.g. Biais
et al. (1995) for a detailed empirical study.
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Analytically, for both assets, i = 1, 2, the steady-state mid-prices and best bid/ask prices are still given

by equations (8) and (9), with only the following modification required on the steady-state mid-prices to

incorporate the effect of cross-asset price impact:

Assumption 5 (Cross-Asset Price Impact) When there is trading in both assets, the steady-state mid-price

remains linear in the trade size and is given by

vi,n = ui,n +
∑
j=1,2

λij

n∑
k=1

(
x+j,k−1 − x−j,k−1

)
, i = 1, 2. (12)

The order book replenishment dynamics for both assets are still given by equation (11) with only a slight

modification required to adjust the permanent price impact term for both ask and bid sides:

dki,n+1 = e−ρ
k
i τ

dki,n +

x±i,n
qki
∓
∑
j=1,2

λij(x
+
j,n − x−j,n)

 , k = a, b.

C. Multiple Assets

Once the two-asset case is understood, the generalization to the m-asset case is straightforward. For ease in

exposition, we adopt simple vector notations. Let an and bn denote the vector of ask and bid prices for the

m assets in period n, n = 0, 1, . . . , T , un the vector of their fundamental values, s the vector of steady-state

bid-ask spread, zn the vector of positions in them assets, dan and dbn the vectors of order book displacements

from steady-state, and Λ the matrix of permanent price impact coefficients:

an =


a1,n

...

am,n

 , bn =


b1,n

...

bm,n

 , un =


u1,n

...

um,n

 , s0 =


s1
...

sm

 , (13a)

zn =


z1,n

...

zm,n

 , dan =


da1,n

...

dam,n

 , dbn =


db1,n

...

dbm,n

 , Λ =


λ11 · · · λ1m

...
. . .

...

λm1 · · · λmm

 . (13b)

Furthermore, let Im be the identity matrix of order m and

e−ρ
kτ =


e−ρ

k
1τ · · · 0

...
. . .

...

0 · · · e−ρ
k
mτ

 , Qk =


1

2qk1
· · · 0

...
. . .

...

0 · · · 1
2qkm

 , k = a, b (14a)

δa = [Im;0], δb = [0;−Im], (14b)

κa = 2Qaδ′a −Λδ′, κb = 2Qbδ′b +Λδ′. (14c)

Then, δ′axn−1 = x+
n−1 and δ′bxn−1 = x−n−1. The assets’ best ask and bid prices are given as follows:

11



Lemma 2 (Bid/Ask Price Processes) Following Assumptions 1-5 and Lemma 1, the best bid/ask prices

available in the order books at time n, are given by

an = un + 1
2s +Λ(z0 − zn) + dan, (15a)

bn = un − 1
2s +Λ(z0 − zn)− dbn. (15b)

where the state vector zn is defined in (1) and the vectors dan and dbn, which keep track of the replenishment

process for the ask and bid sides, are given by:

dan = e−ρ
aτ (dan−1 + κaxn−1), (16a)

dbn = e−ρ
bτ (dbn−1 + κbxn−1). (16b)

3 Optimal Execution Problem

3.1 Dynamic Program

Having detailed the liquidity model in Section 2, the next step is to derive the manager’s execution costs, as

a function of his trading strategy. Using Lemma 2, we can calculate the total costs and revenues resulting

from an order xn submitted at time n.

Lemma 3 (Costs and Revenues) An incoming order to execute xn shares at time n will have associated

total costs (cn) and revenues (rn), given by

cn = x+
n
′(an +Qax+

n ), rn = x−n
′(bn −Qbx−n ).

Let πn be the manager’s reward function at n which can be written as the difference between his total

revenues (from his selling orders) and his total costs (from his purchasing orders). It follows that

πn = rn − cn = x−n
′(bn −Qbx−n )− x+

n
′(an +Qax+

n ). (17)

The manager’s total terminal wealth is thus

WN =
N∑
n=0

πn,

which can recursively be written as

Wn = Wn−1 + πn = Wn−1 + x−n
′(bn −Qbx−n )− x+

n
′(an +Qax+

n ). (18)

For convenience, it is helpful to restate the wealth function in a more compact form. This requires some

additional notation. Let the (3m + 1) × 1 vector yn represent the aggregate state of the system at time n,

12



excluding the random walk:

yn =

 1

zn

dn

 , with dn =

[
dan

dbn

]
.

Using this notation, the state dynamics from (1) and the order books (16) can be aggregated as follows:

yn+1 = Ayn +Bxn, A =

Im+1 0 0

0 e−ρ
aτ 0

0 0 e−ρ
bτ

 , B =


0

−δ′
e−ρ

aτκa

e−ρ
bτκb

 , (19)

where Im+1 is the identity matrix of size m+ 1, and e−ρ
a,bτ and κa,b are given in (14). Using this compact

notation and the bid and ask expressions in (15a) and (15b), the wealth dynamics in (18) (after some algebra)

can be simplified to:

Wn+1 = Wn −
(
u′n+1δ

′ + z′0Λδ
′ + y′n+1N

)
xn+1 − x′n+1Qxn+1, (20)

whereQ andN are constant matrices that contain the problem parameters:

Q =

[
Qa 0

0 Qb

]
, N =


1
2s
′ι′

−Λδ′
I2m

 , with ι =

[
Im

Im

]
.

Having defined the wealth function in (20) at each time step, we can formulate the manager’s DP. To

capture the trade-off between liquidity and risk, we will assume an exponential utility function with risk-

aversion coefficient α, over the manager’s total terminal wealth . This choice is motivated by several factors:

First, it allows us to focus exclusively on the utility derived from execution, irrespective of the manager’s

initial wealth – a well-known property of constant absolute risk aversion (CARA) utility functions. Second,

in our framework, the exponential objective is equivalent to a mean-variance objective – a common modeling

choice in the existing portfolio management and price impact literature. Lastly, this form leads to a tractable

optimization problem which can be solved in polynomial time (see Section 3.2). Then, letting Jn(·) be the

value function at time n, the manager’s dynamic program ∀n ∈ {0, . . . , N}, is given by

Jn = maximize
xn≥0

En[Jn+1] (21)

s.t. δ′xN = zN (terminal trade),

JN+1 = −e−αWN (terminal value function),

with state dynamics: Wn+1 = Wn −
(
u′n+1δ

′ + z′0Λδ
′ + y′n+1N

)
xn+1 − x′n+1Qxn+1,

yn+1 = Ayn +Bxn,

un+1 = un + εn+1.
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Here, En denotes the conditional expectation given Fn. The initial conditions are W0− (initial wealth), u0,

y0 (specified by the user), in which without loss, we assume d0 = 0 (i.e., we assume the order books are

initially in their steady states). To ensure the dynamic problem above is well defined we impose sufficient

concavity conditions on the terminal value function WN .

To this end, we first reformulate WN to express it simply as a function of the trades x0, . . . ,xN . We do

this in two steps: First, notice from the recursive equation (20), the terminal wealth function can be written

as

WN = W0− − u′δ̄′x− z′0Λz0 − y′N̄x− x′Q̄x, (22)

where

x=


x0

...

xN

, u=


u0

...

uN

, y=


y0
...

yN

, δ̄=


δ · · · 0
...

. . .
...

0 · · · δ

, N̄=


N · · · 0
...

. . .
...

0 · · · N

, Q̄=


Q · · · 0
...

. . .
...

0 · · · Q

 (23)

and the term z′0Λz0 is a constant which comes from
∑

n z
′
0Λδ

′xn with
∑

n δ
′xn = z0. Second, notice that

we can use the linear state dynamics of yn (which tie it to yn−1,xn−1) to eliminate intermediate states by

substitution, that is,

y = Āy0 + B̄x, Ā =



I

A
...
...

AN


, B̄ =



0 0 · · · 0 0

B 0 · · · 0 0

AB B · · · 0 0
...

...
. . .

...
...

AN−1B AN−2B · · · B 0


. (24)

Substituting this back into the wealth function, we obtain a stochastic quadratic function of x:

WN = W0− − u′δ̄′x− z′0Λz0 −
(
Āy0 + B̄x

)′
N̄x− x′Q̄x

= W0− − u′δ̄′x− z′0Λz0 − (y′0Ā
′N̄)x− x′(B̄′N̄ + Q̄)x. (25)

LetD be the symmetric matrix characterizing the quadratic form x′(B̄′N̄ + Q̄)x. We have

D
def
= 1

2

(
(B̄′N̄ + Q̄) + (B̄′N̄ + Q̄)′

)
= 1

2(B̄′N̄ + N̄ ′B̄) + Q̄. (26)

We then have the following result.

Lemma 4 (Concavity Condition) Suppose D, defined in (26), is positive semi-definite (positive definite),

then the terminal wealth functionWN is (strictly) jointly concave in x0, . . . ,xN . It follows that the dynamic

problem (21) is (strictly) concave.

The proof is provided in Appendix A.3. Here and below, all results are subject to the concavity condition

stated above.
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In the appendix A.4, we show that the optimal policy which solves the problem (21) is path independent,

i.e., it does not depend on any un. This statement is formalized in Proposition 1.

Proposition 1 (Deterministic Property of Optimal Policy) The optimal trading policy x∗0, . . . ,x
∗
N which

solves the problem (21), is path independent, i.e., it does not depend on the random walk u0 . . . ,uN .

The proof is provided in Appendix A.4 and relies on three critical modeling features: The exponential utility

adopted, the random walk in Assumption 2, and a “separability” property of the wealth function Wn, in

which the random walk appears as an additive term. Proposition 1 does not describe how an optimal policy

can be obtained, yet it suffices to establish an equivalence between dynamic and static problem formulations

given in the next Section 3.2. Nonetheless before proceeding, we can provide more detail about the shape

of the optimal DP policy.

Proposition 2 (Shape of Optimal Policy and Value Function) The optimal trade at any time n, x∗n, is a

continuous, piecewise affine function of the deterministic state variables of the problem, zn and dn contained

in yn. The optimal policy can be written as

x∗n(yn) = Knyn, n ∈ {0, . . . , N}, (27)

whereKn = Kn(yn) is piecewise constant in yn. Furthermore, the value function takes the form:

Jn(Wn−1,yn,un) = − exp
[
−α

(
Wn−1 − u′nzn − z′0Λzn − y′nM̂nyn

)]
n ∈ {0, . . . , N}, (28)

where M̂n = M̂n(yn) is piecewise constant in yn.

The proof is provided in the Appendix A.4.

3.2 Equivalent Static Quadratic Program

Though Proposition 2 provides the structure of the optimal policy, directly solving the DP can be compu-

tationally tedious due to the positivity constraints on the controls, which lead to piecewise-defined value

functions. On the other hand, the path-independence property of the optimal policy described in Proposi-

tion 1 allows us to reformulate the problem (21) into a static one without loss of optimality. This type of

reformulation is often referred to as a “batch approach” in the predictive control literature (e.g., Borrelli

et al. (2015), Section 8.2). The batch approach can be more convenient when inequalities are present on the

controls as it effectively bypasses the need to compute the value function (see discussion in Borrelli et al.

(2015) Section 8.4). This reformulation leads to the following result.

Proposition 3 (Quadratic Program) The dynamic portfolio execution problem (21) is equivalent to the

following static quadratic program which minimizes risk-adjusted execution shortfall:

minimize
x≥0

1
2x
′D̄x+ (y′0Ā

′N̄)x+ z′0Λz0 (29)

s.t. Ī δ̄′x = z0 (total shares executed)
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where Ī = [Im, . . . , Im] is a collection of (N+1) identity matrices, each of sizem, and D̄ = 2D+αδ̄Σuδ̄
′,

withΣu being the covariance matrix of u.

The proof is provided in the Appendix A.5.

The sufficient condition in Lemma 4 requires that D̄ is positive (semi-)definite, which is also the suf-

ficient convexity conditions for the QP.15 For all the numerical examples in the paper, we verified positive

definiteness of D̄.

3.3 Discussion

We compare the static optimal policy described in Proposition 1 to other types of policies found in the

literature: Bertsimas et al. (1999) develop a static approximation algorithm, allowing the manager to re-

optimize his objective at every period, and show that their solution is close to optimal. Basak and Chabakauri

(2010) compare static pre-commitment strategies with “adaptive” strategies in the context of the portfolio

composition problem and argue that the manager can be better off by pre-committing in certain cases. In

contrast, Lorenz and Almgren (2012) develop an adaptive execution model and show that the gain in trading

flexibility can indeed be valuable for the manager.

In our framework, a static solution is optimal without exogenously enforcing pre-commitment – a result

which is sensitive to the random walk assumption, but which significantly simplifies the problem. Intuitively,

this result states that the generated filtration provides no useful information for the optimal policy in our

framework. This implies that the manager has nothing to gain by utilizing path dependent trading strategies

in the CARA framework, under the random walk assumption. Alfonsi et al. (2008) develop a comparable

static solution methodology in the context of an optimal liquidation problem for a single asset and a risk-

neutral investor. Similarly, Huberman and Stanzl (2005) find a comparable static solution in their framework

with a mean-variance objective.

Our formulation can be extended to include additional deterministic linear or quadratic constraints one

may want to impose on the set of feasible strategies. This feature is of consequence to practitioners. For

instance, in many large-scale portfolio execution programs, managers may want to exercise particular control

over certain assets. We provide an example in Section 5.2. Further, the model can easily incorporate agency

trading constraints which some execution desks may face when trading on behalf of their clients. For

example, an execution desk liquidating an agency position may not be allowed to trade counter-directionally

and conduct any purchasing orders. This constraint could be captured in our model by setting x+ = 0. A

more detailed discussion on agency trading can be found in Moallemi and Saglam (2013b).

Our formulation can also handle deterministic time-dependent parameters (relaxing the Assumptions 1,

3 and 4). Time dependence can be critical in many situations, for instance, when markets are in turmoil and

liquidity variations are expected to occur in the future (see Brown et al. (2010) for a detailed treatment with

uncertain liquidity shocks). In our framework, expected liquidity variations during the execution window

could be integrated into the model by adjusting the values of the density q, the replenishment rate ρ and

the steady-state bid-ask spread s, at the desired periods. Similarly, one could capture expected intra-day
15To see this, note that D is positive (semi-)definite in Lemma 4. As Σu is a covariance matrix, it is positive semi-definite by

definition, hence D̄ is a sum of positive (semi-)definite matrices and given α > 0, is thus positive (semi-)definite.
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fluctuations in volume of trade (thus accounting for the well-known intra-day “smile” effect). Details are

provided in Appendix A.1.

The liquidity model in Section 2 can capture various forms of transaction costs observed in the market,

including fixed, proportional and quadratic costs. The proportional (linear) trading costs are captured by

the constant bid-ask spread si. The quadratic trading costs are captured by the linear price impact assumed

in the liquidity model. The fixed trading costs are not directly modeled but reflected implicitly in our

setting. In particular, we assume a finite number of trading periods in part to reflect the fixed cost in trading.

Presumably, the number of trading periods N is connected to the fixed cost. Although in our model N is

taken as given, we can easily endogenize it as an optimal choice in the presence of fixed trading costs at say

c0. Clearly, larger N would decrease execution costs by allowing the manager more flexibility in spreading

trades. But it would also increase total fixed costs, which would be Nc0. An optimal choice of N will result

from this trade-off. See, for example, He and Mamaysky (2005) for a more detailed discussion on this issue.

4 Optimal Execution Policy

This section presents several case studies which illustrate the solution to problem (29). We highlight cases

where advanced execution strategies are optimal. These strategies constructively utilize order book cross-

elasticities to improve execution efficiency. In what follows, we set the steady-state bid-ask spread to zero

to simplify the exposition.16 Furthermore, we only consider the problem of liquidating assets. The asset

purchasing problem is fully equivalent (by interchanging “buy” and “sell” labels). The model can also treat

mixed buy and sell objectives without any modifications.

4.1 Base Case (No Correlation in asset fundamentals, No Cross-Impact in Liquidity)

Our base case consists of a portfolio with two identical assets, but with no correlation in their risks (γ = 0)

nor cross-impact (λ12 = λ21 = 0) in their liquidity. The manager needs to liquidate his position in the first

asset, but has no initial and final position, or pre-defined objective in the second. We refer to the first asset

as the active asset (with boundary conditions z1,0 6= 0 and z1,N = 0), while the second is inactive (with

boundary conditions z2,0 = z2,N = 0). Consider a long position in the active asset, consisting of z1,0 = 100

shares that need to be liquidated over N = 100 periods (i.e., z1,100 = 0). The horizon T = 1 day. The

mid-price is v1,0 = $1 at time 0, implying a pre-liquidation market value of $100.17

Figure 4 displays the manager’s optimal execution policy (OEP), in the form of his net position over

time, comparing the risk-neutral (RN) case to the risk-averse (RA) case. Unsurprisingly, in the absence of

correlation and cross-impact between the two assets, it is never optimal to trade the inactive asset (dashed

line). Doing so, would increase overall execution costs without any risk reduction. It is useful to provide

some intuition on the resulting OEP of the active asset (solid line).
16Note, this does not imply that the actual bid-ask spread is zero during the execution process. Unsurprisingly, increasing the

steady-state bid-ask spread leads to higher overall execution costs, reducing the applicability of advanced trading strategies. A
detailed analysis is provided in the Appendix A.1.

17The rest of the parameters used in this Section are: the volatilities σ1 = σ2 = 0.05, the order book densities q1 = q2 = 1500,
the replenishment rates ρ1 = ρ2 = 5, and the permanent impact parameters λ11 = λ22 = 1/(3q1). These parameters are used to
generate all the figures, unless otherwise specified.
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Figure 4: Optimal execution policies (OEPs) in the base case. Correlation (γ = 0) and cross-impact (λij = 0) are turned off
implying that it is never optimal to trade in the inactive asset. Other parameter values: σ1 = σ2 = 0.05, q1 = q2 = 1500,
ρ1 = ρ2 = 5, λ11 = λ22 = 1/(3q1).

In the RN case (Figure 4(a)), the OEP consists of placing two large orders at times 0 and N , and

splitting the rest of the order evenly across time. The slope of the execution curve represents the manager’s

trading rate. The steeper the slope, the faster he is executing shares. The slope is related to the order book

replenishment process. The faster the order book inventory gets replenished after each executed order, the

more sell orders the manager can submit per unit time. The liquidity spikes on the boundaries are related to

the replenishment and boundary conditions of the order book. Assuming that the order books are initially

“full”, it is natural that the first order should be large. In essence, one can obtain “cheaper” liquidity at

the start. Similarly, the last order should also be large because one cannot constructively utilize order book

dynamics after the execution horizon N . These spikes fade as the inventory recovery rate increases and

disappear at the limit when liquidity is infinite and inventories are instantaneously replenished after each

executed order, ρ→∞ (we omit the plot).

In the RA case (Figure 4(b)), the manager consumes greater liquidity early on in the liquidation process.

This dampens the adverse impact of future price uncertainty, reducing execution risk, but at a cost. To

understand this result, it is helpful to consider extreme values of α. When α → ∞, the manager is only

sensitive to the variance of his costs and the solution is trivial: execute everything at time zero (we omit the

plot). This strategy is effectively risk free, as it guarantees zero standard deviation in execution costs. But it

also understandably the worst-case scenario from a cost perspective.

The impact the OEP has on the expected ask and bid prices of the active asset is shown in Figure 5. The

ask and bid prices are initially equal to $1 before the first sell order is placed. The liquidation process pushes

the ask and bid prices of the active asset down over time. As there is no correlation or cross-impact between

assets, the price of the inactive asset remains unaffected at $1 (we omit the plot). At any fixed time t, the

gap between the ask and bid prices defines the instantaneous bid-ask spread, the dynamics of which depend

on two opposing forces: On the one hand, each executed order widens the bid-ask spread (as the manager

is consuming liquidity in the order books). On the other hand, new limit orders arrive over time collapsing

the bid-ask spread back towards its steady state. The mid-point of the bid-ask spread is the instantaneous

mid-price (this is not shown on the plot).

The trade sizes and utility implications of the aforementioned strategies are reported in cases 1 and 5, of

Table 1. The Table shows traded volume (in shares), the expected execution costs, the execution risk (stated
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Figure 5: Dynamics of the expected ask and bid prices of the active asset, responding to the manager’s execution policy. Both prices
are initially equal to $1 at time 0. Correlation (γ = 0) and cross-impact (λij = 0) are turned off implying that it is never optimal
to trade in the inactive asset. Prices are plotted beyond T = 1, to illustrate the convergence process towards a new steady state.

in terms of the standard deviation of the execution costs), the manager’s execution certainty equivalent, and

a measure of execution efficiency which we refer to as the execution Sharpe ratio. The latter is defined as the

ratio of the cost savings achieved over the most costly, risk-free, execution strategy (α→∞), divided by the

standard deviation of those costs. The higher the execution Sharpe ratio, the more efficient the execution.

4.2 Effect of Correlation in Risk

Next, we build on the base case by introducing correlation between the two assets, while maintaining cross-

impact at zero (see Table 1, case 2).

Figure 6 compares the impact of correlation (γ = .7) between the RN and RA cases. Unsurprisingly, if

the manager is RN (α = 0, Figure 6(a)), there are no trades in the inactive asset. On the other hand, risk

aversion (α = 0.5, Figure 6(b)), combined with correlation, leads to a complex strategy in the inactive asset.

In particular, it becomes optimal to 1) go short the inactive asset at time zero, 2) hold the short position

for some time, and 3) start covering the short at variable rates towards the end of the execution window,

to satisfy the boundary conditions. The resulting asset price dynamics for the inactive asset are shown in

Figure 7 while the number of shares traded with this strategy are reported in case 2 of Table 1.
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Figure 6: OEPs with correlation (γ = 0.7). In (a) the lack of RA implies no trades in the inactive asset. Introducing RA in (b)
triggers trades in the inactive asset. Cross-impact (λij = 0) is turned off in both cases. Other parameter values: σ1 = σ2 = 0.05,
q1 = q2 = 1500, ρ1 = ρ2 = 5, λ11 = λ22 = 1/(3q1).
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The results in Table 1 show that on the one hand, the RA strategy trades off higher execution costs for

risk reduction, compared to the RN case. In other words, in order to reduce execution risk, one generally

has to be willing to incur higher expected execution costs. On the other hand, the RA strategy has a higher

execution Sharpe ratio compared to the RN strategy, implying more efficient execution.

More importantly, a comparison between cases 1 and 2 in Table 1 suggests that shorting the positively

correlated inactive asset during the execution process (see Figure 6(b)) allows the manager to reduce both

his total execution costs (by $0.05) and execution risk (by $0.08), compared to the single-asset strategy in

Figure 4(b). The risk reduction is due to the fact that the short position acts as a hedge, dampening future

price volatility. Note that despite the assumed positive correlation, the trades at time 0 involve selling shares

in both assets simultaneously. This may seem counterintuitive given that positive correlation is generally

associated with offsetting trades (buy and sell) in the classical portfolio choice analysis. To understand

why, consider the following scenario: Assume the price of the active asset randomly decreases in the future,

implying that subsequent sell orders generate less revenue for the manager. In this case, his short position

in the positively correlated inactive asset will also accrue in value, thus compensating him for the decreased

revenues. An analogous argument holds for the opposite case of a random price increase.

Beyond a reduction in risk, we emphasize that expected costs are also reduced over the single-asset

case, despite that one is trading more shares and incurring additional price impact in the inactive asset. To

understand why, consider the risk-reduction/cost-reduction trade-off mentioned previously. In the RA case,

one can decrease execution costs at the expense of higher risk, and vice versa. Trading the inactive asset as

a hedge leads to more efficient risk reduction compared to the un-hedged strategy. In turn, this implies that

one does not have to give up as much “upside” in execution costs, to achieve a desired risk level.
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Figure 7: Dynamics of the expected ask and bid prices of both assets in the case with RA (α = 0.5) and correlation (γ = 0.7), as
depicted in Figure 6(b). Cross-impact (λij = 0) is turned off.

Figure 7(b) shows the evolution of the bid and ask prices of the inactive asset, resulting from the OEP

portrayed in Figure 6(b). The figure clearly demonstrates why one cannot generally model bid and ask

sides independently of one another, when considering cross-asset effects. As one is required to sell and

subsequently purchase back shares in the same asset, it is necessary to keep track of the price impact that

each order has on both sides of the book, over time.
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4.3 Effect of Cross-Impact in Liquidity

Here, we remain with the previous liquidation scenario, removing correlation between the two assets and

focusing instead on the effect of cross-impact. In contrast to correlation which is assumed exogenous,

cross-impact accounts for the impact an order in one asset has on the price and order book supply/demand

dynamics of the other (see Figure 3 for an illustration). Moreover, this impact does not need to be symmetric

between the two assets: An order in stock A may impact stock B in one way, while changing the order and

trading in stock B first, ceteris paribus, may impact stock A differently. Figure 8 illustrates this idea by

comparing a case with symmetric cross-impact (λ12 = λ21 in Figure 8(b)) to a case with asymmetric cross-

impact (λ12 = −λ21 in Figure 8(c)).
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(b) α = 0.5, λ12 = λ21 = .8λ11
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Figure 8: OEPs with cross-impact. In (a) the lack of RA implies no trades in the inactive asset. Introducing RA in (b) triggers
trades in the inactive asset. In (c), asymmetric cross-impact triggers trades in the inactive asset, even in the RN case. Correlation
(γ = 0) is turned off. Other parameter values: σ1 = σ2 = 0.05, q1 = q2 = 1500, ρ1 = ρ2 = 5, λ11 = λ22 = 1/(3q1).

A. Effect of cross-impact on the liquidation strategy

Symmetric cross-impact without RA (Figure 8(a)) does not result in any trades in the inactive asset and the

costs over the base case remain unchanged. Adding RA (Figure 8(b)) triggers trades in the inactive asset,

comparable to the ones observed in the case with correlation. Therefore, if RA is considered, symmetric

cross-impact and correlation can have similar implications for the manager’s OEP. The resulting trades are

reported in case 3 of Table 1, while the resulting price dynamics are reported in Figure 9.

Figure 8(c) presents a case that clearly differentiates correlation from cross-impact. We consider asym-

metric cross-impact between two assets and show that even a RN manager could be better off by trading in

both the active and the inactive asset. This is in stark contrast to the previous example of correlations which

become irrelevant for a RN manager.

B. Effect of cross-impact on execution utility

The results in case 3 of Table 1 suggest that the effect of symmetric cross-impact on execution costs and risk

reduction is comparable to that of correlation. Trading the inactive asset during the liquidation (Figure 8(b))

allows the manager to slightly reduce his total execution costs (by $0.02) and his execution risk (by $0.01)

over the optimal single-asset trading strategy (Figure 4(b)). In contrast, asymmetric cross-impact allows the
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manager to achieve the greatest cost reduction of all cases (although, this comes with increased execution

risk).
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Figure 9: Dynamics of the expected ask and bid prices of both assets in the case with RA (α = 0.5) and cross-impact, as depicted
in Figure 8(b). Correlation is turned off. The manager’s trades in the active asset affect the bid and ask side prices of the inactive
asset, and vice versa.

Introducing symmetric cross-impact has implications on the price dynamics of the inactive asset that are

not observed when only considering correlation. Figure 9(b) shows the cross-impact the active asset has

on the inactive one (λ21). The liquidation of the active asset pushes the price of the inactive asset down

over time. This effect may seem favorable to the manager. He could short the inactive asset at time 0 and

buy it back later at a lower price. However, putting in place the initial short position in the inactive asset

also adversely impacts the price of the active asset via the cross-impact term (λ12). This implies that the

manager would be liquidating his active position at lower prices. This effectively restricts the manager’s

ability to take advantage of the favorable price dynamics expected in the inactive asset. This trade-off is

fully internalized in the OEP.

C. Asymmetric cross-impact and arbitrage

Huberman and Stanzl (2004), Section 5, illustrates an example of asymmetric cross-impact that can lead

to price manipulation and arbitrage. The authors derive sufficient no-arbitrage conditions in the multi-asset

setting. Namely: 1) cross-impact symmetry between assets and 2 ) lack of temporary impact costs. As

the authors state, these conditions are sufficient, but they are not necessary. Case 3 of Table 1 shows that

asymmetric cross-impact does not necessarily lead to arbitrage opportunities when considering positive

temporary impact costs. While some cost benefits can be achieved under these scenarios over the RN base

case, net execution costs remain positive at $1.45. To understand this result, observe that every executed

order has both a permanent and temporary impact component, and while asymmetric cross-impact can

understandably reduce costs on the permanent component, the manager is also consistently incurring costs

from the temporary component during trade (i.e., he is “rolling” up or down the supply/demand curves

getting executed at increasingly costly limit price levels). This trade-off between temporary and permanent

price impacts is fully internalized in the OEP. Thus, similar to Proposition 3 in Huberman and Stanzl (2004),

absence of arbitrage will hold if temporary impact costs are sufficiently larger than permanent impact costs.

Formally, positive definiteness of D̄ implies no arbitrage.
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4.4 Joint Effect of Correlation in Risk and Cross-Impact in Liquidity

Here, we consider both correlation and cross-impact simultaneously. The results reported in Figure 10 and

in case 4 of Table 1, suggest that the cost benefits obtained exhibit positive convexity. In other words,

correlation and cross-impact work constructively, providing benefits that are greater than the sum of the

individual contributions each of them brings independently.
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Figure 10: OEP with RA (α = 0.5), cross-impact (λ12 = λ21 = 0.8λ11), and correlation (γ = 0.7). Other parameter values:
σ1 = σ2 = 0.05, q1 = q2 = 1500, ρ1 = ρ2 = 5, λ11 = λ22 = 1/(3q1).

The results in case 4 of Table 1 suggest that expected costs can be reduced to $2.05, while risk can be

reduced to $1.02, the lowest of all cases. The execution Sharpe ratio obtained is the greatest of all cases, at

1.25. To achieve these benefits, the OEP requires trading a significant volume in the inactive asset, equal to

approximately 1/3 of the total volume of the active asset. The price dynamics of the inactive asset observed

in Figure 11 combine the cross-impact and correlation effects we described previously. In this case, the

manager is generally selling “high” and buying “low” in the inactive asset, while also benefiting from a

reduced initial order size in the active asset, and limit order mean-reversion dynamics.
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Figure 11: Dynamics of the expected ask and bid prices of both assets in the scenario depicted in Figure 10.

5 Mixed Liquidity Portfolios

This section illustrates additional results that are of consequence to practitioners.
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5.1 Portfolio Overshooting

Execution objectives are typically richer than the ones illustrated in the previous section. Portfolio managers

often need to liquidate or acquire positions in multiple assets with different risk and liquidity characteristics.

This Section illustrates the optimal liquidation of a portfolio composed of 2 assets with different liquidity

levels. The first asset is considered liquid, with limit order replenishment rate ρ1 = 10 and limit order

density q1 = 3000, while the second is (comparatively) illiquid, with rate ρ2 = 1 and density q2 = 300.18

Figure 12 shows the OEPs obtained for different RA and correlation assumptions. The results suggest

that liquid assets will generally be executed more smoothly throughout the horizon, while illiquid assets

tend to corner solutions (i.e., it is optimal to execute two larger trades at times 0 and 1). The intuition here

is simple: illiquid assets have order books with low replenishment rates leading to asset prices with low

mean-reversion. The lack of replenishment implies that one cannot take advantage of order book dynamics

in any meaningful way and thus, the optimal solutions tend to be trivial. On the other hand, liquid assets

with high replenishment have more interesting dynamics that can be utilized towards the execution problem,

leading to richer optimal strategies.
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Figure 12: OEPs in the case of a portfolio with mixed liquidity. Parameter values: v1,0 = v2,0 =1, σ1 = σ2 = .05, λ11 = λ22 =
1/(3q1), and λ12 = λ21 = 0.

When the two assets are correlated (see Figure 12(c)), further advanced strategies become optimal.

We obtain two-sided buy and sell strategies, despite the simple unidirectional liquidation objective. The

position in the liquid asset becomes negative near time 0.25, implying overshooting. The excess shares sold

are gradually purchased back in order to meet the boundary conditions as the horizon approaches. From

a hedging perspective, the transient short position in the liquid asset dampens future price uncertainty and

reduces execution risk. We emphasize that while overshooting was also observed in the example of Section

4.2 (because any trades in the inactive asset could be considered as overshooting trades), here, this effect is

entirely driven by the assumed liquidity differences between the two assets.

5.2 Synchronization Risk

The results in the previous Section suggest that liquid and illiquid assets will be executed at different speeds.

The manager could therefore be left over/under-exposed to individual assets during the execution process,
18The portfolio is initially equally weighted, consisting of 100 shares of each asset. Unless otherwise specified, the rest of the

parameters used in this Section are: v1,0 = v2,0 =1, σ1 = σ2 = .05, λ11 = λ22 = 1/(3q1), and λ12 = λ21 = 0.
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i.e., he could be facing synchronization risk. To highlight this more clearly, we plot the weight of each asset

(expressed as the ratio of net shares held in each asset over total shares held in the portfolio) over time, in

Figure 13, for the same cases that were presented in Figure 12.

Assume that the manager’s initial optimal portfolio allocation is 50/50, and that there is some underlying

benefit (such as portfolio diversification) to preserve this optimal split during the execution window. All

three cases in Figure 13 show that the manager could be left over-exposed to the illiquid asset during the

execution window, as its weight can move above the optimal 0.5 line.
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Figure 13: Asset weights (expressed as % of total shares held) of the mixed liquidity portfolios depicted in Figure 12.

A simple way to mitigate the undesirable exposure is to constrain the admissible order quantities at each

trading period. For instance, one can restrict each asset’s weight to an interval, wi,n ∈ [w∗i − ξ, w∗i + ξ],

where w∗i is the desired weight targeted in asset i and ξ ∈ [0,∞) controls the desired margin of error. The

parameter ξ is chosen by the manager and can be thought of as the degree of tolerance to weight variability.

Figures 14 and 15 show the impact of different tolerance parameters on the OEPs and weight profiles. As

ξ → 0, both asset weights converge to the 0.5 line, and the OEPs converge to a single strategy. Interestingly,

the unique optimal strategy is a weighted combination of the two individual unconstrained OEPs of each

asset. Further, it is in the strict interior of the two.
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Figure 14: OEPs in mixed liquidity portfolios with (sub-figures b and c) and without (sub-figure a) synchronization constraints.

Adding these types of constraints to the problem reduces the set of feasible execution strategies, leading

to increased execution costs over the unconstrained global optimum. This raises the question of how costly
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Figure 15: Asset weights over time for the scenarios depicted in Figure 14.

it is to synchronize the portfolio in this fashion. We define the synchronization cost as the expense one

would have to incur over the most efficient (lowest cost) outcome, in order to maintain a targeted weight

profile during the execution process.

In our examples, the synchronization cost for ξ = 10% is equal to 18bps, while in the worst-case

scenario (ξ → 0), it is equal to 38 bps. The latter represents the maximum amount the manager would

expect to pay, in excess of the most efficient outcome, in order to remain fully in line with the optimal

targeted weight allocation throughout the entire execution window.

6 Conclusion

Controlling price impact is of central importance in portfolio management, and is particularly crucial in

practical situations where managers need to execute large positions in multiple assets. We have studied

the multi-asset execution problem demonstrating that it is far from being a simple extension to the single-

asset case. Assets can interact in complex ways and these interactions can have a substantial impact on the

aggregate portfolio execution cost and risk. Understanding the exact nature of these interactions requires an

extensive market microstructure model that can adequately capture coupled supply and demand dynamics

at the order book level.

Our results suggest that managing execution at the portfolio level needs to take account of links in both

risk and liquidity across assets. In the presence of such links, we find that managers can improve execution

efficiency by engaging in a series of non-trivial buy and sell trades in multiple assets simultaneously. The

trades are non-trivial in the sense that they may require temporarily trading positively correlated assets in

the same direction, or even overshooting one’s portfolio target during the execution window.

These results extend to portfolios with heterogeneous liquidity across assets. There, the liquidity dif-

ferential between assets can lead to complex strategies which utilize the liquid asset to improve execution

efficiency at the portfolio level. However, we also find that these advanced strategies can leave managers

overexposed to illiquid assets during the execution. This synchronization risk can be mitigated by introduc-

ing constraints that can synchronize the portfolio trades, at the cost of reduced execution efficiency. This

led to the concept of synchronization cost – a measure which allows managers to trade off these two factors,

based on their individual preferences.

Perhaps an even more compelling takeaway is that advanced strategies can be optimal for simple and
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common execution objectives (such as the liquidation of a single asset in the portfolio). This implies that it

may be crucial for managers to systematically take into account cross-asset interactions in risk and liquidity

in their risk-management and trading decisions. It also implies that market regulators should be aware of

the increased liquidity needs this can lead to, if deployed on a large-scale basis.
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Appendix

The Appendix is structured as follows: A.1 contains some additional results; A.2 contains proofs for some

preliminary results; A.4 contains proofs for the dynamic programming solution; A.5 contains proofs for the

equivalent static QP.

A.1 Additional Results

Effect of the Equilibrium Bid-Ask Spread / Proportional Transaction Costs

Figure 16 highlights the sensitivity of the inactive asset OEP, to its steady-state bid-ask spread, in the exam-

ple from Section 4.2. The OEP is plotted with values s2 = 0, 50, 100 and 200 bps. The reference point is

the inactive asset’s initial mid-price, v2,0 = $1, so that 100 bps corresponds to a bid-ask spread of 1 cent. At

a spread of 200 bps, any trading activity in the inactive asset is halted completely. The associated costs and

total volume traded in the inactive asset are provided in Table 2.
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Figure 16: Effect of the steady-state bid-ask spread on the inactive asset OEP from Figure 6(b).

Bid-Ask Spread s (bps) 0 50 100 200

Expected Costs ($) 2.12 2.41 2.68 3.17
Total Volume in Inactive Asset (Shares) 25.4 17.0 9.2 -

Table 2: Expected costs and volume traded for different values of s.

Intra-Day Liquidity Variations and Time-Dependent Parameters

Figure 17 shows the sensitivity of a single-asset OEP for a RN manager (α = 0) with a time-varying view

on the order book densities. The fact that liquidity can predictably change at different time scales has been

30



0 0.25 0.5 0.75 1
−20

0

20

40

60

80

100

Time

Po
si

tio
n

(a) qn/2, . . . , qN = .85q0

0 0.25 0.5 0.75 1
−20

0

20

40

60

80

100

Time

Po
si

tio
n

(b) qn/2, . . . , qN = 1.15q0

Figure 17: RN OEP with an order book density decrease in (a) and a density increase in (b).

empirically documented (see e.g., Chordia et al. (2001)). We plot the OEP for respective changes in the

value of q, both lower (Figure 17(a)), and higher (Figure 17(b)), in the interval [N/2, N ].

There is a significant change of trading velocity both immediately preceding and following the change

in liquidity. Furthermore, temporary “dead-zones” emerge around the time of the change in liquidity, where

it becomes optimal to halt all trading activity. Intuitively, these indicate that the manager should wait until

the liquidity changes are fully absorbed by the order books and supply/demand converges to the new regime

before finishing off the remaining orders.

A.2 Proof of Lemmas 1, 2 and 3

Proof of Lemma 1 (Temporary Price Impact)

A buy order of size x being executed against i’s ask-side inventory qai , displaces the best ask price from

ai,n → a∗i,n, according to
∫ a∗i,n(x)
ai,n

qai (p)dp = x. Combining this expression with Assumption 1, we have

∫ a∗i,n(x)

ai,n

qai 1p≥ai,ndp = qai
(
a∗i,n(x)− ai,n

)
= x⇒ a∗i,n(x) = ai,n +

x

qai
.

Therefore for x = x+i,n, we have a∗i,n = ai,n + x+i,n/q
a
i and the temporary price impact displacement is

defined as a∗i,n − ai,n = x+i,n/q
a
i . The derivation for a sell order follows similar steps. �

Proof of Lemma 2 (Best Prevailing Bid/Ask-Prices)

We present below an outline of the derivation for the best ask price dynamics the bid price dynamics are

derived in a similar way. The best available ask price for asset i at time n is given by

ai,n = ui,n + 1
2si + PPI + TPI,

where the first term accounts for the random walk driving the mid-price, the second term accounts for the

steady-state bid-ask spread, the third term accounts for the aggregate PPI of all orders up to (but excluding)

n, and the fourth term is the order book state vector which accounts for the TPI of all orders up to (and

including) n. Following equation (12) and the definition of the vector zn in Section 2.1, the aggregate PPI
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for asset i can be written as

n∑
k=1

∑
j∈I

λij(x
+
j,k−1 − x−j,k−1) = [Λ(z0 − zn)]i,

where [·]i returns the i-th line of a matrix. Following Assumption 4, the aggregate TPI can recursively be

written as dai,n = (dai,n−1 + κai (x
±
i,n−1))e

−ρai τ , where κai (x
±
i,n) is the net displacement in the ask-side order

book resulting from a buy trade in asset i at time n. The net displacement is given by the difference between

the TPI and PPI at time n: κai (x
±
i,n) =

x+i,n
qai
−∑j∈I λij(x

+
j,n−x−j,n). Using these expressions, and removing

the recursion in dai,n−1, the aggregate TPI can be written as

dai,n =

n∑
k=1

x+i,k−1
qai

−
∑
j∈I

λij(x
+
j,k−1 − x−j,k−1)

 e−ρai (n−k+1)τ .

Note, the recursive vector form of the aggregate TPI across all assets given in equation (16) follows im-

mediately from the previous expressions, in particular, dai,n =
[
(dan−1 + κaxn−1)e

−ρaτ ]
i

and thus dan =

(dan−1 + κaxn−1)e
−ρaτ .

Combining the aggregate PPI and TPI terms, and repeating similar steps for the bid side, we obtain the

following expressions for the best available ask and bid prices of asset i at each time n:

ai,n = ui,n + si/2 +
n∑
k=1

∑
j∈I

λijδxj,k−1 +
n∑
k=1

x+i,k−1
qai

−
∑
j∈I

λijδxj,k−1

 e−ρ
a
i (n−k+1)τ ,

bi,n = ui,n − si/2 +
n∑
k=1

∑
j∈I

λijδxj,k−1 +
n∑
k=1

−x−i,k−1
qbi

−
∑
j∈I

λijδxj,k−1

 e−ρ
b
i (n−k+1)τ .

where δxj,k−1 = (x+j,k−1 − x−j,k−1). Extending the above steps to all assets, and using vector notation, we

can obtain the final vector forms for the best available ask and bid prices in equations (15a) and (15b). �

Proof of Lemma 3 (Execution Costs/Revenues)

Following an executed order, the associated costs/revenues can simply be calculated by integrating the best

available bid/ask prices over the total amount of units executed x. It follows that

ci,n(x) =

∫ x

0
a∗i,n(u)du and ri,n(x) =

∫ x

0
b∗i,n(u)du,

where a∗i,n(x) and b∗i,n(x) are given in (7). Specifically, for an incoming order x = x+i,n or x = x−i,n, we find

ci,n(x+i,n) =

(
ai,n +

x+i,n
2qai

)
x+i,n and ri,n(x−i,n) =

(
bi,n −

x−i,n

2qbi

)
x−i,n.

Equivalently, in vector notation: cn = x+
n
′(an +Qax+

n ) and rn = x−n
′(bn −Qbx−n ). �
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A.3 Proof of Lemma 4 – Concavity

This section proves Lemma 4 by showing that the iterative structure of the dynamic problem preserves

concavity at all times. The procedure follows closely from the results presented in Section 3.2 “Operations

the preserve convexity” of Boyd and Vandenberghe (2004) (BV). The next Lemma summarizes these results.

Lemma A1 (BV) Denote by x[0,n]
def
= [x0; . . . ,xn] and u[0,n]

def
= [u0; . . . ;un] the vector of the first n

trade and shock vectors x and u, respectively. Further, let f : R2mn×mn → R and g : R2m(n−1) → R.

Suppose f
(
x[0,n]; ·

)
is concave in x[0,n]. Then:

(a) for α > 0, the composite function −e−αf(x[0,n];·) is concave in x[0,n];

(b) for k ≤ n, the conditional expectation E[f
(
x[0,n];u[0,n])

)
|u[0,k]] is concave in x[0,n];

(c) the maximization over element xn, g
(
x[0,n−1]

) def
= maxxn≥0 f

(
x[0,n], ·

)
, is concave in x[0,n−1].

Proof. (a) Follows from BV Section 3.2.4 (simple composition results with exponentials). (b) Follows from

BV Section 3.2.1 (infinite non-negative weighted sums and integrals of convex functions). (c) Follows from

BV Section 3.2.5 problem 3.16 (minimization over convex sets). �

Now, consider the dynamic program Jn = maxxn≥0 E[Jn+1]. At time 0, this can be written in nested

expectations:

J0 = max
x0≥0

E0

[
max
x1≥0

E1

[
. . . max

xN−1≥0
EN−1

[
max
xN≥0

EN [−e−αWN ]
]
. . .
]]
,

where the stochastic wealth function is given by (25):

WN = W0− − u′δ̄′x− z′0Λz0 − (y′0Ā
′N̄)x− x′Dx, D

def
= 1

2(B̄′N̄ + N̄ ′B̄) + Q̄.

Suppose WN is concave in x[0,N ], for any realizations of u[0,N ]. Then, (a) by Lemma A1(a), WN

concave ⇒ −e−αWN concave for α > 0; (b) by Lemma A1(b), −e−αWN concave ⇒ EN [−e−αWN ]

concave; (c) by Lemma A1(c), EN [−e−αWN ] concave ⇒ maxxN≥0 EN [−e−αWN ]
def
= JN concave in

x[0,N−1].

The above shows that all relevant operators preserve concavity. Now consider the next iteration. By

Lemma A1(b), JN concave inx[0,N−1] implies EN−1[JN ] concave inx[0,N−1]. By Lemma A1(c), EN−1[JN ]

concave in x[0,N−1] implies maxxN−1 EN−1[JN ]
def
= JN−1 concave in x[0,N−2]. Rolling the argument back-

wards, we obtain that for all n ∈ {1, . . . , N}, the stage objective Jn is concave in x[0,n−1].

Therefore, to ensure that the DP is strictly concave, it suffices to impose strict joint concavity in all xn
on the terminal wealth WN . Given its quadratic form in (25), this is ensured ifD is positive definite. �

A.4 Proof of Propositions 1 and 2 – DP Solution

This section proves Propositions 1 and 2 by solving the DP through induction. Before proceeding, we

introduce intermediate results.
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Piecewise quadratic (PWQ) optimization

We begin by introducing a preliminary result which will be useful in stating our main results later. Let

x ∈ Rm1 and y ∈ Rm2 . Define the following PWQ optimization problem:

J(y)
def
= maximize

x∈D,x≥0
f(x,y), (A1)

with f : Rm1 × Rm2 → R being a strictly concave, continuous, PWQ function with L pieces indexed by j:

f(x,y) = f j(x,y) if (x,y) ∈ Dj , where f j(x,y) = −1
2x
′M jx− y′N j′x,

with associated regions defined by general polyhedral sets Dj (for example, Dj = {(x,y)|Ajx ≤ Bjy}),
where D = {Dj : j ∈ L} is a polyhedral decomposition of domf . We have the following result:

Result A1 (a) The solution to (A1), denoted x∗(y), exists, which is single valued, continuous, and has a

piecewise-affine structure, i.e., it can be written as

x∗(y) = K(y)y, whereK(y) is piecewise constant. (A2)

(b) J(y) is a continuous PWQ function in y.

(c) x∗(y) and J(y) are subdifferentiable.

(d) The generalized KKT conditions associated with problem (A1) are sufficient to characterize the solu-

tion (A2), given by

(K1) Optimality: 0 ∈ ∂x[f(x,y) +ν ′x], where ν is the Lagrange non-negativity multiplier and ∂(·)
denotes the subdifferential.

(K2) Primal feasibility: x ≥ 0.

(K3) Dual feasibility: ν ≥ 0.

(K4) Complementary slackness: ν ⊗ x = 0.

The KKT regularity conditions are automatically satisfied since all constraints are polyhedral.

Proof. Problem (A1) can be considered as a subcase of the more general PWQ program studied in Patrinos

and Sarimveis (2011) (PS), Problem (4), whose properties are given in PS Proposition 5. We only need

to establish the connection to their setting, namely, the parameter y ↔ p, the solution x∗ ↔ X and the

objective J(y)↔ V (p).19 Thus, (A1) is a subcase of the PWQ problem (4) studies in PS.

19For completeness, match the objective functions by changing max to min, and observe j ↔ k, Qk ↔ M j , R′k ↔ N j′ ,
Sk = 0, qk = 0, rk = 0, sk = 0. Matching the constraints: Cj ↔ Dj , Aj ↔ Ak, Bj ↔ Bk, and bk = 0. The authors also
require the objective function to be proper, a property that is trivially satisfied in the case of strict concavity, as long as the function’s
effective domain is non-empty, dom f 6= ∅ (Kumar (1991) Proposition 2.1.5). Also note, the additional positivity constraint in our
setting x ≥ 0 is without loss. This could be readily incorporated in the definition of the polyhedral regions Dj , however, we
explicitly separate it out for later convenience.
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(a) Result A1(a) follows from PS Proposition 5(b), which states that under strict convexity (concavity in

our case), the solution to PS problem (4) is single-valued, piecewise affine and (Lipschitz) continuous in p.

Thus, (A2) follows directly from the piecewise affine structure of the solution.20

(b) The PWQ structure in Result A1(b) follows directly from PS Proposition 5(a). Continuity of J(y)

follows directly from the continuity property of the optimal solution.

(c) Subdifferentiability in Result A1(c) follows directly from Result A1(a) and Result A1(b). In partic-

ular, the subdifferentiability of a piecewise linear and a convex PWQ function follows from the fact their

subgradients are polyhedral (Rockafellar and Wets (1998), Proposition 10.21).

(d) The generalized KKT conditions for subdifferentiable functions are established in the literature, for

instance, see Ruszczynski (2006), Chapter 3.6, pages 133-135. �

Note, PWQ problems have been extensively studied in the literature and the results in Patrinos and

Sarimveis (2011) and by extension, in Result A1(a)-(d) have been established in more general settings.

A classic reference is Rockafellar and Wets (1998), Chapters 10.E and 11.D. The authors provide a for-

mal Definition of a PWQ in 10.20, establish continuity and subdifferentiability in Propositions 10.21, and

11.32(b)(c) (and by extension, in Exercise 7.45), and establish the general polyhedral structure of the optimal

solution in exercise 10.22 and Corollary 11.16.

Terminal time N

We now turn to our problem. We first examine the problem at the final time N , which reveals the structure

of the solution. Following (20), the wealth at the terminal time is

WN = WN−1 −
(
u′Nδ

′ + z′0Λδ
′ + y′NN

)
xN − x′NQxN , (A3)

which is a continuous strictly concave quadratic function of xN . The assumption in Lemma 4 that WN is

strictly concave in x0, . . . ,xN trivially implies that WN is strictly concave in the optimization variable xN .

Further, uN is realized at N , thus the terminal optimization problem is deterministic, given by:

JN = maximize
xN≥0

− e−αWN s.t. δ′xN = zN .

By monotonicity of the exponential, arg maxxN
−e−αWN = arg maxxN

WN , for α > 0, which turns our

problem into a standard concave linear quadratic problem, with polyhedral constraints. From the equality

constraint, the terms δ′xN = zN , leading to

maximize
xN≥0

WN−1 − u′NzN − z′0ΛzN − y′NNxN − x′NQxN ,

s.t. δ′xN = zN .

20Any single-valued piecewise affine function can be written as in (A2) for properly chosen piecewise constant K(y) and
vector y. To see this, consider that if X (in the PS setting) is single-valued and piecewise affine, then by definition, each piece
can be written as X k(p) = Zkp + ck if p ∈ Dk(p), for some constants Zk, ck, and where the regions Dk(p) combine
to form a polyhedral decomposition. Through a change of variable, letting y = [1 p] and Kk = [ck Zk], observe that
X k(p) = Zkp+ ck = [ck Zk][1 p′]′ =Kky. Then, define the piecewise constantK(y) =Kk if y ∈ Dk(y), which leads to
the desired result in (A2).
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Ignoring the terms that do not depend on the optimization variable (i.e., WN−1 − u′NzN − z′0ΛzN ), the

problem atN becomes a special case of the general PWQ problem (A1), with a single piece j = L = 1, and

polyhedral constraints δ′xN = zN and xN ≥ 0. As the problem is deterministic at time N , the solution

x∗N is deterministic as well. Also, from Result A1, x∗N is continuous in yN , and can be written as in (A2).

Though it is not required for the proof, we can take a few more steps to explicitly characterize x∗N by

using the standard KKT conditions at N . For any asset i, there are three cases to consider: if zi,N > 0, then

the optimal trade is a buy order: x+i,N = zi,N , and x−i,N = 0; if zi,N < 0, then the optimal trade is a sell

order: x+i,N = 0, and x−i,N = −zi,N ; if zi,N = 0, then x+i,N = x−i,N = 0 and this can be viewed as a buy or a

sell order of size 0. Using indicator functions we can compactly write the solution as follows:

x∗N = kN (zN )zN , kN (zN ) =

[
diag

[
1z1,N>0, . . . , 1zm,N>0

]
−diag

[
1z1,N<0, . . . , 1zm,N<0

]] . (A4)

Note, from the above, one can also see that x∗N is continuous in zN . The regions that define its pieces,

Dj
N (zN ), are given through the inequalities in the indicator functions, and their closure constitutes a poly-

hedral decomposition of dom x∗N . Lastly, using the simple transformation zN = i′yN , with i = [0; I;0;0],

we can rewrite the solution as:

x∗N = KN (yN )yN , KN (yN ) = kN (i′yN )i′, (A5)

whereK(yN ) is a piecewise constant matrix, containing 1’s and 0’s.

For convenience, we introduce the following quantity:

QN (yN ) = y′NNx
∗
N + x∗′NQx

∗
N = y′NM̂NyN ,

where x∗N = KNyN and

M̂N = 1
2

(
(NKN +K ′NQKN ) + (NKN +K ′NQKN )′

)
. (A6)

QN (yN ) represents the cash (net of fundamental value) generated by the optimal trade x∗N at t = N — the

first equation expresses it in terms of the optimal policy at t = N and the second equation expresses it in

terms of the underlying state variables. The wealth WN in (A3) now can be expressed as

WN (x0, . . . ,xN−1,x
∗
N ) = WN−1 − u′NzN − z′0ΛzN −QN (yN )

def
= ŴN . (A7)

We refer toWN (x0, . . . ,xN−1,x
∗
N ) = ŴN as the “wealth-to-go”, i.e, the wealth under the optimal strategy

at terminal time N . By Lemma A1(c), strict concavity of WN (·) in x0, . . . ,xN guarantees strict concavity

of ŴN in x0, . . . ,xN−1. The value function can then be expressed as

JN (WN−1,yN ,uN ) = −e−αŴN . (A8)

By Lemma A1(a), strict concavity of ŴN implies strict concavity of JN in x0, . . . ,xN−1. From Result

A1, x∗N is continuous and subdifferentiable in yN . It then follows that QN (yN ) is also a continuous and
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subdifferentiable PWQ in yN .

Two important observations are in order: First, we will refer to the value function in (A8) as separable,

in the sense that the noise term u′NzN appears as an additive linear term inside the exponential. Separability

will be key to ensure that the optimal policy remains deterministic at all n.

Induction

Following the above results for N , we propose that they continue to hold at time n+ 1, namely:

(P0) At time n+ 1 we have:

x∗n+1
def
= Kn+1yn+1, (A9a)

Jn+1
def
= −e−αŴn+1 , (A9b)

Ŵn+1
def
= Wn − u′n+1zn+1 − z′0Λzn+1 −Qn+1(yn+1), Qn+1(yn+1)

def
= y′n+1M̂n+1yn+1, (A9c)

and Jn+1 and Ŵn+1 are strictly concave in x[0,n] = [x0; . . . ;xn], where Qn+1(yn+1) is PWQ, continuous,

subdifferentiable, and its pieces, defined by polyhedral sets Dj
n+1(yn+1), constitute a polyhedral decompo-

sition of dom Qn+1.

Clearly, (P0) holds for n+ 1 = N . We want to show that (P0) being true at n+ 1 implies that it is also

true at n, namely:

(P1) x∗n retains the piecewise linear form of (A9a), and is continuous and subdifferentiable; and

(P2) Jn retains the separable form of (A9b), and is continuous, subdifferentiable.

Proof of (P1) – The optimal trade at n

The value function at n can be obtained through the value function at n+ 1 from

Jn = maximize
xn≥0

En[Jn+1] = maximize
xn≥0

En
[
−e−αŴn+1

]
def
= −e−αŴn . (A10)

We proceed to express Ŵn+1 (Wn,yn+1,un+1) as a function of the optimization variable xn and the current

state dynamics. First, we deal with Wn. Following (20), we have

Wn = Wn−1 −
(
u′nδ

′ + z′0Λδ
′ + y′nN

)
xn − x′nQxn.

Plugging this expression for Wn into Ŵn+1 in (A9b) gives

Ŵn+1 = Wn−1−
(
u′nδ

′+z′0Λδ
′+y′nN

)
xn−x′nQxn−u′n+1zn+1−z′0Λzn+1−y′n+1M̂n+1yn+1.

First, we deal with the term z′0Λzn+1 = z′0Λ(zn − δ′xn) = z′0Λzn − z′0Λδ′xn. This leads to

Ŵn+1 = Wn−1 −
(
u′nδ

′ + y′nN
)
xn − x′nQxn − u′n+1zn − z′0Λzn − y′n+1M̂n+1yn+1.
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Next, we deal with the random walk term −u′n+1zn+1 using the dynamics for un+1 and zn+1:

−u′n+1zn+1 = −(u′n + ε′n+1)(zn − δ′xn) = −u′nzn + u′nδ
′xn − ε′n+1(zn − δ′xn).

Substituting this expression back into Ŵn+1, we have:

Ŵn+1 = Wn−1 −
(
�
��u′nδ
′ + y′nN

)
xn − x′nQxn − u′nzn +����u′nδ

′xn − ε′n+1(zn − δ′xn)− z′0Λzn − y′n+1M̂n+1yn+1

= Wn−1 − y′nNxn − x′nQxn − u′nzn − ε′n+1(zn − δ′xn)− z′0Λzn − y′n+1M̂n+1yn+1.

Next, we need to express yn+1 as a function of the state at n using the state dynamics (19), i.e., yn+1 =

Ayn+Bxn, which gives

Ŵn+1 = Wn−1−z′0Λzn−y′nNxn−x′nQxn−(Ayn+Bxn)
′
M̂n+1 (Ayn+Bxn)−u′nzn−ε′n+1(zn−δ′xn).

Given Fn (including un and yn), the only remaining source of risk is ε′n+1, which is normally distributed.

Thus Ŵn+1 is normally distributed and we have:

Jn = maximize
xn≥0

En[−e−αŴn+1 ] = maximize
xn≥0

−e−α
(
En[Ŵn+1]−1

2αVarn[Ŵn+1]
)
.

By the induction definition (A9b), Jn
def
= −e−αŴn . Then, by monotonicity of the exponential, and identifi-

cation, the optimization problem above is equivalent to

Ŵn
def
= maximize

xn≥0
En[Ŵn+1]− 1

2αVarn[Ŵn+1]. (A11)

Computing the mean and variance given Fn is straightforward:

En[Ŵn+1] = Wn−1 − z′0Λzn − y′nNxn − x′nQxn − u′nzn − (Ayn +Bxn)′ M̂n+1 (Ayn +Bxn)

Varn[Ŵn+1] = (zn − δ′xn)′(τΣ)(zn − δ′xn) = (i′yn − δ′xn)′(τΣ)(i′yn − δ′xn). (A12)

Before computing the solution, we can further simplify the stage objective

f̃n
def
= En[Ŵn+1]− 1

2αVarn[Ŵn+1]

by dropping the terms that do not impact the optimization over xn (i.e., the additive termsWn−1−z′0Λzn−
u′nzn − y′n

(
A′M̂n+1A+ 1

2ατiΣi
′
)
yn). We refer to this simplified objective as fn. This allows us to

conveniently write the manager’s optimization problem at n in compact form

maximize
xn≥0

fn(xn,yn)
def
= −1

2x
′
nMnxn − y′nNnxn (A13)

where

Mn =
(
B′M̂n+1B +Q+ 1

2ατδΣδ
′)+

(
B′M̂n+1B +Q+ 1

2ατδΣδ
′)′, (A14a)

Nn = N +A′(M̂n+1 + M̂ ′
n+1)B − ατiΣδ′. (A14b)
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From (A13), it is clear that we are dealing with a deterministic maximization problem over a piecewise

quadratic and continuous objective function, with non-negativity constraints on the control variables. All

noise terms have been canceled out, or are irrelevant with respect to the optimization. Thus, the optimal

maximizer, if it exists, is deterministic.

Solution at time n

To characterize the solution, we need to show that the problem fits the framework of PWQ program described

in Section A.4. First, we show that the stage problem preserves concavity. We have the following result.

Result A2 If Ŵn+1 is strictly concave in x[0,n], then: (a) f̃n is strictly concave in x[0,n], and therefore fn
is strictly concave in the optimization variable xn; (b) Ŵn is strictly concave in x[0,n−1].

Proof. (a) The objective f̃n is a sum of expectation and variance terms. By Lemma A1(b), Ŵn+1 strictly

concave in x[0,n] implies En[Ŵn+1] strictly concave in x[0,n]. Next, notice that Varn[Ŵn+1] is a quadratic

form in x[0,n]. In particular, from (1), zn − δ′xn = z0 −
∑n

i=0 δ
′xi

def
= z0 − δ′[0,n]x[0,n], where δ′[0,n]

def
=

diag(δ′, . . . , δ′) and z0 is constant. Substituting this into (A12) gives:

Varn[Ŵn+1] =
(
z0 − δ′[0,n]x[0,n]

)′
(τΣ)

(
z0 − δ′[0,n]x[0,n]

)
.

GivenΣ is a covariance matrix, it is positive semi-definite, and since τ > 0 is a positive scalar, Varn[Ŵn+1]

is convex in x[0,n]. Hence −1
2αVarn[Ŵn+1] is concave in x[0,n], for α > 0. As f̃n is the sum of a strictly

concave function with a concave function, it is strictly concave in x[0,n]. It follows the simplified objective

fn is strictly concave in xn.

(b) From (A11) and Result A2(a), Ŵn
def
= maxxn f̃n, with f̃n strictly concave in x[0,n]. Therefore, by

Lemma A1(c), Ŵn is strictly concave in x[0,n−1]. �

Second, we need to show that the pieces of fn constitute a polyhedral decomposition.

Result A3 The regions of fn(xn,yn) constitute a polyhedral decomposition (in yn) of the domain of fn.

Proof. Observe that from the induction assumption (P0), the pieces ofQn+1 (and hence of M̂n+1,Mn,Nn)

constitute a polyhedral decomposition in yn+1. This implies that the regions can generally be written

as Dj
n+1 = {(xn+1,yn+1)|Aj

n+1xn+1 ≤ Bj
n+1yn+1}. From the induction assumption (A9a), x∗n+1 =

Kn+1yn+1, and from the system dynamics, yn+1 = Ayn+Bxn, thusDj
n+1 = {(xn,yn)|Aj

n+1Kn+1(Ayn+

Bxn) ≤ Bj
n+1(Ayn +Bxn)}, which is clearly polyhedral in yn. Furthermore, the additional positivity

requirement xn ≥ 0 is trivially polyhedral in yn (without loss, it can be written as xn ≥ 0yn). Thus

fn(xn,yn) is PWQ and its regions constitute a polyhedral decomposition. �

Following Result A3, Result A1 holds, implying that the optimal trade can be written as

x∗n = Kn(yn)yn,

for some piecewise constant Kn(yn). Lastly, from Result A1, x∗n is continuous and subdifferentiable with

respect to yn. This completes the induction property (P1). �
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Before moving on to show (P2), we can provide some additional guidance as to how the structure of the

solution emerges through the generalized KKT conditions in Result A1(d). We provide an outline below

and refer interested readers to the literature (e.g., Patrinos and Sarimveis (2011)) that has developed efficient

algorithms to deal with the required computations.

Let νn = [ν+n ;ν−n ] be the associated Lagrange non-negativity multipliers at n. We have the following

generalized KKT conditions:

(K1) Optimality: 0 ∈ ∂xn [fn(xn,yn) + ν ′nxn].

(K2-K4) xn ≥ 0, νn ≥ 0 and νn ⊗ xn = 0.

To observe how the piecewise affine structure emerges from the above KKT conditions, it is helpful to

split the domain of f between differentiable points, and non-differentiable points which can occur at the

boundaries between regions Dj
n+1.

In the differentiable regions, the subdifferential condition (K1) reduces to a standard first-order condition

(FOC) on the gradients:

0 = Mnxn +N ′nyn − νn, (A15)

which leads to a standard piecewise linear solutions. To see this, note that we can write without loss of

generality:

xn =

[
x
(+)
n

0

]
, νn =

[
0

ν
(+)
n

]
,

where [xn](+) denotes the sub-vector of nonzero trades, [νn](+) denotes the sub-vector of nonzero multipli-

ers. Clearly, νn ⊗ xn = 0. We can then write (A15) as21

0 =

[
Mn,11 Mn,12

Mn,21 Mn,22

][
x
(+)
n

0

]
+

[
N ′n,1
N ′n,2

]
yn −

[
0

ν
(+)
n

]
. (A16)

This leads to the following linear structure for xn and νn in this region:

xn =

[
−M−1

n,11N
′
n,1

0

]
yn, νn =

[
0

−Mn,12M
−1
n,11N

′
n,1 +N ′n,2

]
yn.

Therefore, the solution in this region clearly has the piecewise linear structure of (A2). In fact, the piecewise

linear structure also applies to the multiplier.

Next, we deal with any non-differentiable point, which can occur at the boundaries of regions Dn+1. At

any such a boundary point xCn , if 0 ∈ ∂xC
n

[fn(xCn ,yn)+ν ′nx
C
n ], then it is the global maximum. From Result

A3, regions Dn+1 constitute a polyhedral decomposition in yn and hence any point xCn at the boundary of

these regions is necessarily polyhedral in yn. Therefore in this region, any optimal solution xbn has the same

general structure of (A2).
21Note that since (A16) is re-expressed in terms of the re-sorted vectors xn and νn, this implies that the correspondingMn and

Nn have also undergone the necessary transformations such that (A15) continues to hold.
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Proof of (P2) – The value function at n

The next step is to compute the value function Jn. Substituting the optimal trade policy x∗n = Knyn into

the objective we just optimized in (A13) yields

f∗n = −1
2x
∗
n
′Mnx

∗
n − y′nNnx

∗
n = −y′n

(
1
2K
′
nMnKn +NnKn

)
yn.

Plugging this into Jn and adding back the irrelevant terms omitted pre-optimization, we obtain:

Jn = −e−αŴn

with

Ŵn
def
= max

xn≥0
f̃n =

(
Wn−1 − u′nzn − z′0Λzn − y′nM̂nyn

)
, where

M̂n = 1
2K
′
nMnKn + 1

2(NnKn +K ′nN
′
n) +A′M̂n+1A+ 1

2ατiΣi
′. (A17)

As the last step, let

Qn(yn) = y′nM̂nyn.

Then we can write the value function as

Jn(Wn−1,un,yn) = −e−αŴn = − exp
[
−α

(
Wn−1 − u′nzn − z′0Λzn −Qn(yn)

)]
.

Thus, the value function retains the same form as in (A9b). Lastly, we need to verify concavity and continu-

ity. For concavity, from Result A2(b), Ŵn is strictly concave in x[0,n−1], and thus by Lemma A1(a), Jn is

strictly concave in x[0,n−1] for α > 0. The recursion thus preserves concavity at all iterations (concavity at

the terminal time N was shown in subsection A.4). For continuity, following Result A1, the value function

is continuous everywhere. This concludes the induction property (P2).

It follows by induction that (P1) and (P2) hold for all time periods, and the proof is complete for Propo-

sitions 1 and 2. �

A.5 Proof of Proposition 3 – Static QP Equivalence

Proposition 1 allows us to reformulate the problem (21) as a large, but static, Quadratic Program. We prove

this in two steps: First, Section Section A.5 shows that under Proposition 1, static and dynamic formulations

are equivalent at all times. Second, Section A.5 reformulates the static problem into a QP.

DP/Static equivalence

Let Vn represent the static problem, truncated to arbitrary time n ∈ {0, . . . , N}, i.e.,

Vn = max
xn,...,xN≥0

En
[
−e−αWN

]
, (A18)
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where En[·] = E[·|Fn]. We have the following result.

Corollary 1 Under Proposition 1, the static and dynamic formulations are fully equivalent, i.e., Jn =

Vn,∀n ∈ {0, . . . , N}.

Proof. We proceed by induction, starting at the terminal time N . The equality VN = JN is trivial to show:

We have VN = maxxN≥0 EN
[
−e−αWN

]
= maxxN≥0−e−αWN = JN , where the second equality follow

from the fact that uN is realized at time N , and the third equality follows from the definition of JN .

At an arbitrary time n, assume:

Vn+1 = Jn+1. (A19)

We want to show this implies Vn = Jn. We have:

Jn = max
xn≥0

En[J∗n+1] = max
xn≥0

En[Vn+1] = max
xn≥0

En
[

max
xn+1,...,xN≥0

En+1

[
−e−αWN

]]
,

where the first equality follows from the induction assumption (A19) and the second follows from the defi-

nition of Vn+1 in (A18) with n → n + 1. From Proposition 1, xn+1, · · · ,xN are path independent, hence

the max and expectation operators at are commutable at n. This leads to:

Jn = max
xn≥0

max
xn+1,...,xN≥0

En
[
En+1

[
−e−αWN

]]
= max

xn,...,xN≥0
En
[
En+1

[
−e−αWN

]]
= max

xn,...,xN≥0
En
[
−e−αWN

]
= Vn,

where the third equality follows from the law of iterated expectations (i.e., tower property) and the fourth

follows from the definition of Vn in (A18). This allows us to conclude that J0 = V0 by induction. Hence,

any optimal solution to the static problem is also an optimal solution to the dynamic problem. �

QP reformulation

Next, we show how V0 can be transformed into a QP. From (25), the stochastic terminal wealth function can

be compactly written as

WN = W0− − u′δ̄′x− z′0Λz0 − (y′0Ā
′N̄)x− x′Dx.

Using Proposition 1, we can treat the optimal controls as deterministic variables. It follows that the only

source of uncertainty in the problem is the random walk, implying that the manager’s total post-execution

wealth is normally distributed. We have that WN ∼ N (µWN
, σ2WN

), where

µWN
= E0[WN ] = W0− − u′0Ī δ̄′x− z′0Λz0 − (y′0Ā

′N̄)x− x′Dx (A20)

and

σ2WN
= Var0[WN ] = x′δ̄Σuδ̄

′x, (A21)
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where u′0 contains the initial asset prices (assumed > 0) and Σu is the covariance matrix of the noise

process vector u =
[
u0; . . . ;uN

]
.

A consequence of the normal distribution is that we can establish equivalence between the manager’s

exponential utility and the mean-variance objective often used in the execution literature. This follows

directly from the identity E[eαW ] = eE[αW ]+
1
2α

2 Var[W ], for any normally distributed W , and from the

monotonicity of the exponential. The manager’s original optimization problem over his exponential utility

can thus be equivalently written as

max
x∈Sx

µWN
− 1

2ασ
2
WN

, (A22)

where the feasible set Sx = {x|x ≥ 0, Ī δ̄′x = z0}. The first condition is the positivity constraint on the

inputs, and the second ensures that all inputs sum to the manager’s total order size z0. Using this equivalent

form and the equations (A20) and (A21), the manager’s optimization problem becomes

max
x∈Sx

W0− − u′0z0 − z′0Λz0 − (y′0Ā
′N̄)x− x′(D + 1

2αδ̄Σuδ̄
′)x.

The above problem can be equivalently written as a minimization problem over the risk-adjusted execution

shortfall (i.e., risk-adjusted net execution cost) by subtracting the constant (W0− −u′0z0), that is, the initial

wealth and pre-execution value of the portfolio, and multiplying the objective by (−1). The problem then

becomes

min
x∈Sx

z′0Λz0 + y′0Ā
′N̄x+ x′(D + 1

2αδ̄Σuδ̄
′)x.

Let D∗ = D + 1
2αδ̄Σuδ̄

′. Since we have x′D∗x = x′
(
D∗+D∗′

2

)
x, we set the symmetric form 1

2D̄ =(
D∗+D∗′

2

)
. So finally, the optimization problem is equivalent to

minimize
x∈Sx

1
2x
′D̄x+ (y′0Ā

′N̄)x+ z′0Λz0.

�
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