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This appendix provides the summary of the solution of the basic model, solutions for
extensions of the basic model discussed in Section 3, and two supplementary results: the
result that it is without loss of generality to assume that the division manager consumes
monetary transfers immediately and the result about existence of the solution to the basic
model.

I. Basic Model: Summary of the Solution

Given value function P (W ), the optimal investment k∗ (θ,W ) and audit threshold θ∗ (W )
are given by:

• investment k∗ (θ,W ) solves:

Vk (k, θ) = 1 + γP ′ (W − γk) , if θ < θ∗ (W ) ,
Vk (k, θ) = 1 + γP ′ (W ) , if θ > θ∗ (W ) ;

• audit threshold θ∗ (W ) solves:

F n (θ,W ) = F a (θ,W )− c,

where

F n (θ,W ) = max
k∈R+

{V (k, θ)− k + P (W − γk)− P (W )} ,

F a (θ,W ) = max
k∈R+

{V (k, θ)− k + P (W )− γkP ′ (W )} .

If the solution does not exist, then θ∗ (W ) = θ (θ), if the left-hand side is higher (lower)
than the right-hand side for all θ ∈

[
θ, θ
]
.

The value function P (W ) is the maximal solution to the integro-differential equation

rP (W ) = ρWP ′ (W ) + λ

∫ θ̄

θ

max {F n (θ,W ) , F a (θ,W )− c} dF (θ) , if W ∈ (0,W c] ,

P (W ) = P (W c) +W c −W , if W ∈ (W c,∞) ,
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with initial value condition P (0) = 0 and where threshold W c is determined by P ′ (W c) =
−1. Function P (W ) is weakly concave on W ∈ (0,∞) and strictly concave on W ∈ (0,W c).

II. Multiple Audit Technologies

Because there are two audit technologies, the stochastic process describing audit decisions
of headquarters needs to be redefined. Let (dAt)t≥0 be such that A0 = 0, dAt = 1 if
headquarters audit at time 1 using technology 1, dAt = 2 if headquarters audit at time t
using technology 2, and dAt = 0 if headquarters do not audit at time t. First, I solve for the
optimal direct mechanism. Second, I show how the policies implied by the optimal direct
mechanism can be implemented using a budgeting mechanism with two thresholds.
Let st ∈ {0, 1} denote the success of the audit at time t. If headquarters audit the report

using technology 2, then st = 1 with probability 1. If headquarters audit the report using
technology 1, then st = 1 with probability p. If the report is not audited, then st = 0 with
probability 1. By analogy with Lemma 1, the evolution of the division manager’s promised
utility to her report dX̂t from message space {0} ∪Θ as

dWt = ρWt−dt− γdKt − dCt +Hma,t

(
dX̂t, st

)
− λEθ,s [Hma,t (θ, s)] dt, (A1)

where Hma,t

(
dX̂t, 0

)
is the sensitivity of the division manager’s utility to her report when

audit was not informative or did not occur and Hma,t

(
dX̂t, 1

)
is the sensitivity of the divi-

sion manager’s utility to her report when audit was informative and confirmed the division
manager’s report. As before, a standard argument implies that if audit reveals that the
division manager lied, then it is optimal to decrease her utility to zero: dWt = −Wt.
Let DA1

t =
{
dX̂t|dAt = 1

}
, DA2

t =
{
dX̂t|dAt = 2

}
, and DN

t =
{
dX̂t|dAt = 0

}
be the

“audit using technology 1,” “audit using technology 2,”and “no audit” regions of reports
at time t, respectively. Because c1 > 0, {0} ∈ DN

t . By analogy with Lemma 2, truth-telling

is incentive compatible if and only if Hma,t

(
dX̂t, 0

)
and Hma,t

(
dX̂t, 1

)
satisfy the following

restrictions:

Lemma 1. At any time t ≥ 0, truth-telling is incentive compatible if and only if:

1. ∀dX̂t ∈ DN
t : Hma,t

(
dX̂t, 0

)
= 0;

2. ∀dX̂t ∈ DA1
t : pHma,t

(
dX̂t, 1

)
+(1− p)Hma,t

(
dX̂t, 0

)
≥ 0 and (1− p)Hma,t

(
dX̂t, 0

)
≤

pWt;

3. ∀dX̂t ∈ DA2
t : Hma,t

(
dX̂t, 1

)
≥ 0.

Proof of Lemma 3. Consider any dXt ∈ DN
t . Report dXt dominates any report dX̂t ∈

DA2
t , because the latter leads to zero expected utility with certainty. Report dXt dominates

any report dX̂t ∈ DA1
t if and only if

Hma,t (dXt, 0) ≥ −pWt + (1− p)Hma,t

(
dX̂t, 0

)
. (A2)
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Finally, report dXt dominates any report dX̂t ∈ DN
t , dX̂t 6= dXt if and only ifHma,t (dXt, 0) ≥

Hma,t

(
dX̂t, 0

)
. Because this inequality must hold for any dXt, dX̂t ∈ DD

t and Hma,t (0, 0) =

0, truth-telling is incentive compatible for all dXt ∈ DN
t if and only if

Hma,t (dXt, 0) = 0 ∀dXt ∈ DN
t , (A3)

0 ≥ −pWt + (1− p)Hma,t

(
dX̂t, 0

)
∀dX̂t ∈ DA1

t , (A4)

where the second inequality follows from (A2) - (A3). Consider any dXt ∈ DA1
t . Again,

report dXt dominates any report dX̂t ∈ DA2
t , because the latter leads to zero expected

utility with certainty. By analogy with (A2), report dXt dominates report dX̂t ∈ DA1
t ,

dX̂t 6= dXt if and only if

pHma,t (dXt, 1) + (1− p)Hma,t (dXt, 0) ≥ −pWt + (1− p)Hma,t

(
dX̂t, 0

)
. (A5)

Finally, report dXt dominates report dX̂t ∈ DN
t if and only if

pHma,t (dXt, 1) + (1− p)Hma,t (dXt, 0) ≥ Hma,t

(
dX̂t, 0

)
= 0. (A6)

Notice that constraint (A5) is implied by conditions (A4) and (A6). Therefore, truth-telling
is incentive compatible for all dXt ∈ DA1

t if and only if (A6) is satisfied for all dXt ∈ DA1
t .

Finally, consider any dXt ∈ DA2
t . Again, report dXt dominates any report dX̂t ∈ DA2

t ,
dX̂t 6= dXt, because the latter leads to zero expected utility with certainty. Report dXt

dominates report dX̂t ∈ DA1
t if and only if

Hma,t (dXt, 1) ≥ −pWt + (1− p)Hma,t

(
dX̂t, 0

)
. (A7)

Finally, report dXt dominates report dX̂t ∈ DN
t if and only if

Hma,t (dXt, 1) ≥ Hma,t

(
dX̂t, 0

)
= 0. (A8)

Constraint (A7) is implied by constraints (A4) and (A8). Therefore, truth-telling is incentive
compatible for all dXt ∈ DA2

t if and only if (A8) is satisfied for all dXt ∈ DA2
t . Combining

the three cases yields the conditions in the lemma.

Given Lemma 3, I can solve for the optimal direct mechanism using the dynamic pro-
gramming approach. Let Pma (W ) denote the value to headquarters under the optimal direct
mechanism in this extension as a function of W . Let W c

ma and W
∗
ma denote the lowest W at

which P ′ma (W ) = −1 andW at which Pma (W ) is maximized, respectively.1 As in Section 2.2,
the optimal monetary compensation of the division manager is given by the same threshold
rule with threshold W c

ma. The same argument as in Section 2.2 leads to the following HJB

1W c
ma =∞ if P ′ma (W ) > −1 for all W .
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equation in the range W < W c
ma:

rPma (W ) = max{aθ,k1
θ ,k

0
θ ,h

1
θ,h

0
θ}θ∈Θ

{
λ
∫ θ̄
θ

(
V (kθ, θ)− kθ − c11{aθ=1} − c21{aθ=2}

)
dF (θ)

+
[
ρW − λ

∫ θ̄
θ

[
h0
θ

(
1{aθ=0} + (1− p) 1{aθ=1}

)
+ h1

θ

(
p1{aθ=1} + 1{aθ=2}

)]
dF (θ)

]
P ′ma (W )

+λ
∫ θ̄
θ

[
Pma (W + h0

θ − γk0
θ)
(
1{aθ=0} + (1− p) 1{aθ=1}

)
+Pma (W + h1

θ − γk1
θ)
(
p1{aθ=1} + 1{aθ=2}

)
− Pma (W )

]
dF (θ)

}
,

(A9)
where the maximization is subject to constraints aθ ∈ {0, 1, 2}, k1

θ ≥ 0, k0
θ ≥ 0, and the

incentive compatibility constraints

h0
θ = 0, if aθ = 0, (A10)

ph1
θ + (1− p)h0

θ ≥ 0, if aθ = 1, (A11)

(1− p)h0
θ ≤ W, if aθ = 1, (A12)

h1
θ ≥ 0, if aθ = 2. (A13)

Taking the first-order condition of (A9) with respect to hiθ, i ∈ {0, 1} yields h1
θ = γk1

θ and
h0
θ = min {W/ (1− p) , γk0

θ}.
Using this, I solve for the optimal investment. Taking the derivative of (A9) with respect

to kθ yields:

∂V (kθ, θ)

∂θ
− 1− γP ′ma (W − γkθ) = 0, if aθ = 0, (A14)

∂V (kθ, θ)

∂θ
− 1− γP ′ma

(
min

{
W

2− p
1− p − γkθ,W

})
= 0, if aθ = 1, st = 0, (A15)

∂V (kθ, θ)

∂θ
− 1− γP ′ma (W ) = 0, if aθ = 1, st = 1 or aθ = 2,(A16)

Let kna (θ,W ), kua (θ,W ), and kia (θ,W ) denote the solutions of (A14), (A15), and (A16),
respectively. By concavity of Pma (W ) 2, kna (θ,W ) < kua (θ,W ) ≤ kia (θ,W ). Finally, the
next lemma, which is the analogue of Property 4, solves for the optimal audit strategies:

Lemma 2. There exist points θ∗a (W ) ∈ Θ and θ∗∗a (W ) ∈ Θ, θ∗∗a (W ) > θ∗a (W ), defined
below, such that the optimal audit strategy is

a∗ (θ,W ) =


0, if θ ≤ θ∗a (W ) ,
1, if θ ∈ (θ∗a (W ) , θ∗∗a (W )) ,
2, if θ ≥ θ∗∗a (W ) .

(A17)

2In this and other extensions, the value function is weakly concave, because the mechanism can specify
randomization between any two levels of the division manager’s promised utility. Furthermore, the value
function is strictly concave in the range in which no monetary compensation is paid by the argument similar
to Proposition 2 in the base model. I omit repeating it for each extension for brevity.
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Proof of Lemma 4. Let

F ia (θ,W ) = max
k∈R+

{V (k, θ)− k + Pma (W )− γkP ′ma (W )} , (A18)

F ua (θ,W ) = max
k∈R+

{
V (k, θ)− k + Pma

(
min

{
W

2− p
1− p − γk,W

})
(A19)

−min

{
γk,

γW

1− p

}
P ′ma (W )

}
,

F na (θ,W ) = max
k∈R+

{V (k, θ)− k + Pma (W − γk)− Pma (W )} . (A20)

Strategy dAt = 1 is weakly better than dAt = 0 if and only if

pF ia (θ,W ) + (1− p)F ua (θ,W )− F na (θ,W ) ≥ c1. (A21)

By the envelope theorem, the derivative of the left-hand side of (A21) with respect to θ is

p
∂V (kia (θ,W ) , θ)

∂θ
+ (1− p) ∂V (kua (θ,W ) , θ)

∂θ
− ∂V (kna (θ,W ) , θ)

∂θ

= p

∫ kia(θ,W )

kna(θ,W )

∂2V (k, θ)

∂k∂θ
dk + (1− p)

∫ kua(θ,W )

kna(θ,W )

∂2V (k, θ)

∂k∂θ
dk ≥ 0, (A22)

because kia (θ,W ) ≥ kna (θ,W ), kua (θ,W ) ≥ kna (θ,W ), and ∂2V (k, θ) /∂k∂θ > 0 by As-
sumption 1. Therefore, the left-hand side of (A21) is increasing in θ. Let θ1 (W ) ∈ Θ denote
a point at which (A21) holds as equality, if it exists. If the left-hand side of (A21) is below
c1 for all θ ∈ Θ, let θ1 (W ) be any point above θ̄. If the left-hand side of (A21) is above c1

for all θ ∈ Θ, let θ1 (W ) be any point below θ.
Next, strategy dAt = 2 is weakly better than dAt = 1 if and only if

(1− p)
(
F ia (θ,W )− F ua (θ,W )

)
≥ c2 − c1. (A23)

By the envelope theorem, the derivative of the left-hand side of (A23) with respect to θ has
the same sign as

∂V (kia (θ,W ) , θ)

∂θ
− ∂V (kua (θ,W ) , θ)

∂θ

=

∫ kia(θ,W )

kua(θ,W )

∂2V (k, θ)

∂k∂θ
dk ≥ 0. (A24)

Therefore, the left-hand side of (A23) is increasing in θ. Let θ2 (W ) ∈ Θ denote a point at
which (A23) holds as equality, if it exists. If the left-hand side of (A23) is below c2 − c1 for
all θ ∈ Θ, let θ2 (W ) be any point above θ̄. If the left-hand side of (A23) is above c2− c1 for
all θ ∈ Θ, let θ2 (W ) be any point below θ.
Finally, let θ∗a (W ) = min {θ1 (W ) , θ2 (W )}. Then, in the range θ ≤ θ∗a (W ) strategy

dAt = 0 is more optimal than dAt = 1 and dAt = 2. If θ2 (W ) > θ1 (W ), then let θ∗∗a (W ) =
θ2 (W ). Then, in the range θ ∈ (θ∗a (W ) , θ∗∗a (W )] strategy dAt = 2 is better than dAt = 0 by
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the argument in the first paragraph of the proof and than dAt = 1, because it is dominated
by dAt = 0 by the argument in the second paragraph of the proof. Similarly, in the range
θ > θ∗∗a (W ) strategy dAt = 2 is better than dAt = 1 by the argument in the second paragraph
of the proof and than dAt = 0, because it is dominated by dAt = 1 by the argument in the
first paragraph of the proof. If θ1 (W ) > θ2 (W ), let θ∗∗a (W ) = θ∗a (W ) = θ2 (W ). Then, in
the range θ > θ∗∗a (W ) = θ∗a (W ) strategy dAt = 2 is better than dAt = 1 by the argument
in the second paragraph of the proof and than strategy dAt = 0, because it is dominated by
strategy dAt = 1 by the argument in the first paragraph of the proof.

To finish characterization of the optimal direct mechanism, I need to define the evolution
of Wt when dX̂t = 0. Using (A1), I get

dWt = gma (Wt)Wtdt, (A25)

where

gma (W ) = ρ− λ
∫ θ̄

θ∗a(W )

γkia (θ,W )

W
dF (θ) (A26)

+λ

∫ θ∗∗a (W )

θ∗a(W )

γ (1− p) (kia (θ,W )− kua (θ,W ))

W
dF (θ) .

We next formulate the proposition, analogous to Proposition 3, that the policies implied
by the optimal direct mechanism can be implemented using a simple mechanism, similar to
the budgeting mechanism with threshold separation of financing in the basic model:

Proposition 1. Consider the following mechanism. At the initial date, headquarters allocate
a spending account with balance B0 to the division manager. The division manager is allowed
to draw on it for investment at her discretion. At time t ≥ 0, the account is replenished with
rate gma (γBt): dBt = gma (γBt)Btdt, if Bt < W c

ma/γ, and with rate zero, otherwise, where
gma (·) and W c

ma are defined in the online appendix. In addition, there are two thresholds
on the size of individual investment projects, k∗t and k

∗∗
t , given by k

∗
t = kia (θ∗a (γBt) , γBt),

k∗∗t = kia (θ∗∗a (γBt) , γBt), where kia (·, ·), θ∗a (·), and θ∗∗a (·) are defined in the online appendix.
At any time t the division manager can pass the project to headquarters claiming that it
requires an investment of k, where k > k∗t :
1. If k > k∗∗t , the project is audited using technology 2. If the audit reveals that

kia (θ, γBt) ≥ k∗∗t , headquarters invest k
ia (θ, γBt) and do not alter the spending account

balance. If the audit reveals that kia (θ, γBt) < k∗∗t , headquarters do not invest and punish
the division manager by reducing the account balance to zero.
2. If k ∈ (k∗t , k

∗∗
t ), the project is audited using technology 1. If the audit is informative

and reveals kia (θ, γBt) = k, headquarters invest kia (θ, γBt) and do not alter the spending
account balance. If the audit is informative and reveals kia (θ, γBt) 6= k, headquarters do not
invest and punish the division manager by reducing the account balance to zero. If the audit
is uninformative and k ≤ k∗∗∗t ≡ Bt/ (1− p), where k∗∗∗t ∈ [k∗t , k

∗∗
t ] is defined in the online

appendix, headquarters invest k and do not alter the spending account balance. If the audit is
uninformative and k > k∗∗∗t , headquarters invest k∗∗∗t and do not alter the spending account
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balance, and the division manager adds investment k − k∗∗∗t out of her account balance.
Suppose that dCt = 0 if Bt < W c

ma/γ, dCt = g (W c
ma)W

c
madt if Bt = W c

ma/γ, and that if
R > W c

ma, an immediate payment of R −W c
ma is made to the division manager. Then, the

manager finds it optimal to (i) invest out of her spending account in the way that maximizes
headquarters’value; (ii) pass a project to headquarters if and only if kia (θ, γBt) > k∗t ; (iii)
if she passes a project to headquarters, claim k = kia (θ, γBt). If, in addition, the initial
account balance is B0 = W0/γ, then this mechanism is optimal.

Proof of Proposition 5. First, using the argument of Proposition 3, it is easy to show
that the evolution of γBt is the same as the evolution ofWt in the optimal direct mechanism.
The starting point is equal to γB0 = W0 and the increments of γBt and Wt are the same if
investment policies are the same. Because in region DN

t the change in the division manager’s
utility does not depend on dKt, allocating the spending account between the current and
future investment opportunities in the way that maximizes headquarters’value, V (dKt, θ)+
Pma (γ (Bt − γdKt)), is incentive compatible. The implied investment policy is kna (θ, γBt) =
kna (θ,Wt). Similarly, consider region DA1

t and suppose that audit is uninformative. If
headquarters provide only k∗∗∗t of capital, then additional investment of the division manager
does not affect her expected payoff. Hence, the division manager has incentives to co-finance
the project in a way that maximizes headquarters’value. The implied investment policy is
kua (θ, γBt) = kua (θ,Wt). The same argument as in Proposition 3 applies here to show that
the division manager has incentives to pass the project to the headquarters and state the
optimal investment truthfully.

III. Observable Realized Values

This section contains the proof of Proposition 4. First, I establish the incentive compatib-
ility conditions for the division manager and set up the optimization problem. Second, I
characterize the solution of the optimization problem. Slightly abusing notations, I use the
same letters as in the basic model to denote all stochastic processes.

Incentive Compatibility

Since there is no audit, the past history can be summarized using the report process X̂ =(
dX̂t

)
t≥0
and the project verifiable success process Y = (dYt)t≥0, defined by Y0 = 0, dYt = 1,

if the project that the firm invests in at time t pays off immediately, and dYt = 0, otherwise.
By analogy with the basic model, let Wt

(
X̂, Y

)
denote the continuation utility of the

division manager at time t after a history of reports
{
dX̂s, s ≤ t

}
and project successes

{dYs, s ≤ t}, conditional on reporting truthfully in the future:

Wt

(
X̂, Y

)
= Et

[∫ ∞
t

e−ρ(s−t) (γdKs + dCs)

]
. (A27)
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The dynamics of Wt

(
X̂, Y

)
can be expressed using the martingale representation theorem.

The lifetime expected utility of the division manager Ut (X, Y ), evaluated as of time t, is

Ut (X, Y ) =

∫ t

0

e−ρs (γdKs + dCs) + e−ρtWt (X, Y ) . (A28)

Process U (X, Y ) = {Ut (X, Y )}t≥0 is a right-continuous F-martingale by definition. Apply-
ing the martingale representation theorem for marked point processes, we can write

dUt =

−
(
λ
∫ θ̄
θ

(pθht (θ, 1) + (1− pθ)ht (θ, 0)) dF (θ)
)
dt, if t 6= Tn for any n ≥ 1,

ht (θn, dYt)−
(
λ
∫ θ̄
θ

(pθht (θ, 1) + (1− pθ)ht (θ, 0)) dF (θ)
)
dt, if t = Tn for some n ≥ 1.

(A29)
for some function ht (θ, y), which is F-predictable for any fixed θ ∈ Θ and y ∈ {0, 1} .
Defining Ht (·) to be scaled (by factor eρt) ht (·) and writing it as a function of dXt ∈ {0}∪Θ
and dYt ∈ {0, 1}, defining it to be zero if dXt = 0, we can write:

dUt = e−ρt

(
Ht (dXt, dYt)−

(
λ

∫ θ̄

θ

H̄t (θ) dF (θ)

)
dt

)
, (A30)

where H̄t (θ) ≡ pθHt (θ, 1) + (1− pθ)Ht (θ, 0) is the expected change in the promised utility
of the division manager with project of quality θ.
Equating (A30) with the increment of Ut (X, Y ), given by

dUt = e−ρt (γdKt + dCt)− ρe−ρtWt− (X, Y ) + e−ρtdWt (X, Y ) , (A31)

yields

dWt = ρWt−dt− γdKt − dCt +Ht (dXt, dYt)−
(
λ

∫ θ̄

θ

H̄t (θ) dF (θ)

)
dt. (A32)

Consider the division manager with project of quality θ at time t. For now, consider only
reports θ̂ ∈ Θ, i.e., ignore the report “no project available.”Given (A32), truth-telling is
incentive-compatible if and only if

θ ∈ arg max
θ̂∈Θ

{
pθHt

(
θ̂, 1
)

+ (1− pθ)Ht

(
θ̂, 0
)}

. (A33)

Equivalently, we can write (A33) as

θ̂ ∈ arg max
θ∈Θ

{
pθHt

(
θ̂, 1
)

+ (1− pθ)Ht

(
θ̂, 0
)
− H̄t (θ)

}
. (A34)

Differentiating the objective in θ, we obtain that at any point at which H̄ ′t (θ) exists, it is
given by

H̄ ′t (θ) = p (Ht (θ, 1)−Ht (θ, 0)) ≡ p∆t (θ)
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I refer to ∆t (θ) as the pay-performance sensitivity for the project of quality θ. Assuming
that ∆t (θ) is uniformly bounded, H̄t (θ) is Lipshitz continuous. Hence, it is differentiable,
so

H̄t (θ) = H̄t (θ) + p

∫ θ

θ

∆t (τ) dτ . (A35)

This is the first-order condition for the optimality of truth-telling. The second-order con-
dition for the optimization problem (A34) is that ∆t (θ) is nondecreasing. Finally, consider
the possibility of reporting that no project is available. Reporting the project truthfully is
better for the division manager than concealing the project if and only if H̄t (θ) ≥ 0. When
the division manager has no project available, truthful reporting is optimal if and only if
0 ≥ Ht (θ, 0) for all θ ∈ Θ, which can be re-written as pθ∆t (θ) ≥ H̄t (θ). Since ∆t (θ) is non-
decreasing, if pθ∆t (θ) ≥ H̄t (θ) holds for θ = θ, then it also holds for any θ > θ. Therefore,
truthful reporting that no project is available is optimal if and only if pθ∆t (θ) ≥ H̄t (θ).
To sum up, truthful reporting is incentive compatible if and only if the sensitivity of the

division manager’s utility to her report satisfies (A35) with the initial condition H̄t (θ) ∈
[0, pθ∆t (θ)] and the pay-performance sensitivity ∆t (θ) is non-decreasing.

Solution to the Optimization Problem

As in the basic model, let P (W ) denote the value that headquarters obtain in the optimal
mechanism that delivers expected utilityW to the division manager. By the same argument,
the optimal payment to the division manager at time t is given by zero, if Wt < W c

ov, and
Wt −W c

ov, if W > W c
ov, where W

c
ov is the lowest W at which P ′ (W ) = −1. In particular,

this implies that P (W ) = P (W c
ov) +W −W c

ov in the region W > W c.
Consider region W < W c

ov. The expected flow of value to headquarters over the next

instant is λdt
∫ θ
θ

(θV (dKt)− dKt) dF (θ). To evaluate the expected change in P (Wt), I
apply Itô’s lemma:

E [dP (Wt)] =
(
ρWt− −

(
λ
∫ θ̄
θ
H̄t (θ) dF (θ)

))
P ′ (Wt−) dt

+λdt
∫ θ
θ

[pθP (Wt− +Ht (θ, 1)− γdKt) + (1− pθ)P (Wt− +Ht (θ, 0)− γdKt)− P (Wt−)] dF (θ) .

The difference compared to (9) is in the second term on the right side of the equation.
For each project type θ, it contains two terms, one corresponding to the case in which the
immediate success is realized and the other corresponding to the case in which it is not
realized. Equating the sum of E [dP (Wt)] and the expected flow of value with rP (Wt) and
using Ht (θ, 1) = H t (θ) + (1− pθ) ∆t (θ) and Ht (θ, 0) = H t (θ)− pθ∆t (θ), I obtain the HJB
equation for the headquarters’value function P (W ):

(r + λ)P (W ) = max{kθ,hθ,δθ}

{
λ
∫ θ̄
θ

(θv (kθ)− kθ) dF (θ)

+
(
ρW − λ

∫ θ
θ
hθdF (θ)

)
P ′ (W )

+ λ
∫ θ̄
θ

[pθP (W + hθ + (1− pθ) δθ − γkθ) + (1− pθ)P (W + hθ − pθδθ − γkθ)] dF (θ)
}
,

(A36)
where the maximization is subject to the four constraints: (1) kθ ≥ 0; (2) hθ = h+p

∫ θ
θ
δτdτ ;
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(3) δθ is non-decreasing in θ; (4) 0 ≤ h ≤ pθδθ.
This problem is solved using techniques from the optimal control theory. Intuitively,

think of θ ∈
[
θ, θ
]
as time, hθ and δθ as state variables, and yθ = δ′θ and kθ as the control

variables. I focus on piecewise continuously differentiable δθ, as typical in control theory.
Moving ρWP ′ (W ) from (A36) on the left-hand side and dividing by λ, the optimization
program can be written as:3

max
{kθ,hθ,δθ,yθ}

∫ θ

θ

J (kθ, hθ, δθ, θ,W ) f (θ) dθ (A37)

subject to

h′θ = pδθ ∀θ (A38)

δ′θ = yθ ∀θ (A39)

yθ ≥ 0∀θ, (A40)

where

J (k, h, δ, θ,W ) = θv (k)−k−hP ′ (W )+pθP (W + h+ (1− pθ) δ − γk)+(1− pθ)P (W + h− pθδ − γk)

is the virtual surplus of headquarters for the type-θ project. This is a bounded control
problem (e.g., see Kamien and Schwartz (1991)). Note thatW is a parameter in this problem,
and since P (·) is concave, J (·) is pseudo-concave in the policy variables (k, h, δ). Let µθ and
νθ denote the shadow values of the transition equations for hθ and δθ, respectively. Then,
the Hamiltonian is

H (θ, hθ, δθ, yθ, kθ, µθ, νθ,W ) = f (θ) J (kθ, hθ, δθ, θ,W ) + µθδθ + νθyθ.

The first-order conditions with respect to hθ and δθ are:

− µ′θ = f (θ)

(
pθP ′ (W + hθ + (1− pθ) δθ − γkθ)

+ (1− pθ)P ′ (W + hθ − pθδθ − γkθ)− P ′ (W )

)
, (A41)

−ν ′θ = µθ + f (θ) pθ (1− pθ)
(
P ′ (W + hθ + (1− pθ) δθ − γkθ)
−P ′ (W + hθ − pθδθ − γkθ)

)
. (A42)

In addition, according to Portryagin’s maximum principle, H (·) should be maximized with
respect to control variables yθ and kθ. Therefore

νθ ≤ 0, with νθyθ = 0,

θv′ (kθ) = 1 + γ

(
pθP ′ (W + hθ + (1− pθ) δθ − γkθ)

+ (1− pθ)P ′ (W + hθ − pθδθ − γkθ)

)
. (A43)

Consider, first, types at which the monotonicity constraint does not bind (θ : yθ > 0).
The complementary slackness condition vθyθ = 0 implies that vθ = 0. Therefore, when

3W is a parameter in this optimization problem, so I do not write it as one of the arguments of J (·).
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yθ > 0 over an interval, the first-order condition with respect to δθ becomes:

f (θ) pθ (1− pθ) (P ′ (W + hθ + (1− pθ) δθ − γkθ)− P ′ (W + hθ − pθδθ − γkθ)) = −µθ.
(A44)

Therefore, if the monotonicity constraint does not bind, optimal policies kθ and δθ are given
by (A43) and (A44), given hθ and µθ. Transition equations (A38) and (A41) pin down the
increments to hθ and µθ.
Second, consider types at which the monotonicity constraint binds (θ : yθ = 0). In

this case, optimal policies are obtained via the “ironing”procedure. Consider a (maximal)
interval of types [θ1, θ2] over which the monotonicity constraint binds. Then, δθ = δθ1

∀θ ∈ [θ1, θ2]. The transition equation (A38) implies hθ = hθ1 + p (θ − θ1) δθ1 ∀θ ∈ [θ1, θ2].
Thus, the equation for kθ simplifies to

θv′ (kθ) = 1+γ (pθP ′ (W + hθ1 + (1− pθ1) δθ1 − γkθ) + (1− pθ)P ′ (W + hθ1 − pθ1δθ1 − γkθ)) .
(A45)

Since the monotonicity constraint does not bind at the ends of the interval, we have νθ1 =
νθ2 = 0. Using (A42), this implies∫ θ2

θ1

(µθ + f (θ) pθ (1− pθ) (P ′ (W + hθ1 + (1− pθ1) δθ1 − γkθ)− P ′ (W + hθ1 − pθ1δθ − γkθ))) dθ = 0.

(A46)
Therefore, for an interval of types [θ1, θ2] at which the monotonicity constraint does not bind,
investment kθ is given by (A45), δθ = δθ1 , hθ = hθ1 + p (θ − θ1) δθ1 . Transition equations
(A38) and (A42) pin down the dynamics of µθ and νθ over [θ1, θ2] with the initial value
conditions νθ1 = 0 and µθ1

, coming from the range at which the monotonicity constraint
does not bind. The bounds of the interval [θ1, θ2] are pinned down by δθ1 = δθ2 and (A46).
Having characterized the solution to the optimal control problem (A37)-(A40), denote it

by kov (θ,W ), hov (θ,W ), and δov (θ,W ). Eq. (A32) implies that if no project is reported
and Wt < W c, the evolution of Wt is dWt = gov (Wt)Wtdt, where

gov (W ) ≡ ρ− λ
∫ θ̄

θ

hov (θ,W )

W
dF (θ) . (A47)

Implementation

Define the bonus and fine parameters in the performance-sensitive budgeting mechanism:

B+
t = B+ (k,Bt−) =

hov (k−1
ov (k, γBt−) , γBt−) + (1− pk−1

ov (k, γBt−)) δov (k−1
ov (k, γBt−) , γBt−)

γ
,(A48)

B−t = B− (k,Bt−) =
pk−1

ov (k, γBt−) δov (k−1
ov (k, γBt−) , γBt−)− hov (k−1

ov (k, γBt−) , γBt−)

γ
. (A49)

Also, define the accumulation limit Bc
ov as:

Bc
ov ≡

W c
ov

γ
. (A50)
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First, I show that the evolution of γBt is the same as the evolution of Wt in the optimal
direct mechanism if the investment policies are the same. The starting point is γB0 = W0

and the evolution of γBt if Bt < Bc
ov and there is no arrival of the investment project is the

same as Wt. Consider the evolution of γBt if Bt < Bc
ov and the project of type θ arrives. If

the project results in immediate verifiable success,

d (γBt) = gov (γBt)Btdt+ γ
hov (θ,W ) + (1− pθ) δov (θ,W )

γ
.

Otherwise,

d (γBt) = gov (γBt)Btdt+ γ
hov (θ,W )− pθδov (θ,W )

γ
.

Hence, the evolutions of γBt andWt are the same if investment policies are the same. Second,
I show that the implied investment policy in the budgeting mechanism is the same as the
investment policy in the optimal direct mechanism. Suppose that a project of type θ arrives
to the division manager. The investment amount satisfies:

maxk{θv (k) + pθP (γ (Bt − k) + hov (k−1
ov (k, γBt) , γBt) + (1− pk−1

ov (k, γBt−)) δov (k−1
ov (k, γBt) , γBt))

+ (1− pθ)P (γ (Bt − k) + hov (k−1
ov (k, γBt) , γBt)− pk−1

ov (k, γBt−) δov (k−1
ov (k, γBt) , γBt))}.

Since truth-telling is optimal in the direct problem, k = kov (θ,W ) solves this problem.

Special cases

It can be interesting to consider two special cases, p = 1 and p → 0. First, consider the
case of p = 1, i.e., when the project of quality θ results in immediate verifiable success with
probability θ. In this case, we can plug p = 1 in the optimization problem above, and the
solution is conceptually similar to the case of p ∈ (0, 1). Second, consider the case of p→ 0,
i.e., when the project results in immediate verifiable success with an infinitesimal probability.
In this limit case, the transition equation (A38) implies that hθ = h for any θ. In addition,
recall that truthful reporting that no project is available requires h ∈ (0, pθδθ), which in this
limit case implies h = 0. Thus, the HJB equation simplifies to

(r + λ)P (W ) = max
{kθ}

{
λ

∫ θ̄

θ

(θv (kθ)− kθ) dF (θ) + ρWP ′ (W ) + λ

∫ θ̄

θ

P (W − γkθ) dF (θ)

}
,

(A51)
which coincides with the HJB equation (10) in the basic model in the case of a prohibitively
expensive audit. Also notice that B−t converges to zero, implying that the “fine” for lack
of verifiable immediate success, which in the limit case occurs with certainty, becomes non-
existent. Thus, in the limit case of project values being almost unobservable, the solution of
the model with observable realized values approximates the solution of the basic model.

IV. Random Auditing

In the basic model, I assumed that headquarters can only commit to pure audit strategies.
This assumption follows classic costly state verification models (Townsend, 1979; Gale and
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Hellwig, 1985), but it is with loss of generality: headquarters could do better by committing
to random audit strategies. In this section, I consider the basic model with the additional
change that headquarters can commit to any random audit strategy.
Consider time t. Depending on report dX̂t, the mechanism prescribes headquarters to

audit with probability qt
(
dX̂t

)
∈ [0, 1], where function qt (·) is measurable with respect to{

dX̂s, s ≤ t, dXs, s < t : dAs = 1
}
. As in the basic model, because audit is costly, it is not

optimal to audit if the division manager reports that there is no project available: qt (0) = 0.
The analysis is unchanged up to Lemma 1 specifying the evolution of the division manager’s
promised utility W . Since for each report dX̂t, audit may or may not occur, the sensitivity
of the division manager’s promised utility to her report may be contingent not only on
the report itself, but also on whether it is audited. Let HN

t

(
dX̂t

)
denote the sensitivity

of the division manager’s utility to her report if it does not get audited. Similarly, let
HA
t

(
dXt, dX̂t

)
denote the sensitivity of the division manager’s utility to her report if it gets

audited and headquarters learn the true project quality dXt ∈ {0} ∪Θ. Since audit reveals
project quality with certainty and lying does not occur on equilibrium path, it is without loss
of generality to impose maximum punishment if the audit reveals that the division manager’s
report is not truthful. Therefore, HA

t

(
dXt, dX̂t

)
= −Wt− for dXt 6= dX̂t. The following

lemma is an analogue of Lemma 2 for a model with random audit:

Lemma 3. At any time t ≥ 0, the evolution of the division manager’s promised utility Wt

following report dX̂t ∈ {0} ∪Θ is

dWt = ρWt−dt− γdKt − dCt +HN
t

(
dX̂t

)
(1− dAt) +HA

t

(
dXt, dX̂t

)
dAt

−
(
λ

∫ θ̄

θ

(
HN
t (θ) + qt (θ)

(
HA
t (θ, θ)−HN

t (θ)
))
dF (θ)

)
dt. (A52)

Functions HN
t (·) and HA

t (·) satisfy: (i) HN
t (0) = 0 and HA

t (0, 0) = 0; (ii) for any fixed
θ ∈ {0} ∪ Θ, HN

t (θ) is F-predictable; (iii) for any fixed θ̂ ∈ {0} ∪ Θ and θ ∈ {0} ∪ Θ,

HA
t

(
θ, θ̂
)
is F-predictable.

The proof of Lemma 5 is identical to the proof of Lemma 2 with the change that the
change in the lifetime expected utility of the division manager is driven by two functions,
one corresponding to the case of an audited report and the other corresponding to the case
of an unaudited report.
In the optimal mechanism, the division manager finds it optimal to send a truthful report:

dX̂t = dXt. Depending on report dX̂t, headquarters audit it with probability qt
(
dX̂t

)
.

Because audit is costly, it is never optimal to audit if the division manager reports that
there is no project: qt (0) = 0. Sending report dX̂t 6= dXt is suboptimal if and only if

HN
t

(
dX̂t

)(
1− qt

(
dX̂t

))
−qt

(
dX̂t

)
Wt− ≤ HN

t (dXt) (1− qt (dXt))+qt (dXt)H
A
t (dXt, dXt) .

(A53)
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This inequality must hold for all dXt and dX̂t 6= dXt in {0} ∪Θ. The intuition for (A53) is
as follows. The right-hand side is the expected change in the utility if the division manager
sends a truthful report dXt. If the report is not audited (probability 1 − qt (dXt)), the
division manager’s expected utility changes byHN

t (dXt); if the report is audited (probability
qt (dXt)), the division manager’s expected utility changes by HN

t (dXt, dXt). The left-hand
side of the inequality denotes the expected change in the division manager’s utility if she
sends report dX̂t 6= dXt. This report gets audited with probability qt

(
dX̂t

)
. If the report

is not audited, the division manager’s expected utility changes by HN
t

(
dX̂t

)
; if the report

is audited, headquarters learn dXt, so the division manager’s expected utility drops to zero.
Let Pra (W ) denote the value that headquarters obtain in the optimal mechanism in the

model with random auditing. Becase Pra (W ) must be concave, the optimal compensation
policy is given by threshold W c

ra, defined by the lowest point at which P
′ (W c

ra) = −1. Con-
sider region W < W c

ra. The expected instantaneous change in headquarters’value function
is rPra (Wt−) dt. It must be equal to the sum of the expected flow of value over the next
instant and the change in Pra (Wt) due to the evolution of Wt. Since zero investment is
optimal if the division manager reports that no project arrives, the expected flow of value of
an instant is

λ

(∫ θ

θ

(V (dKt, θ)− dKt − cqt (θ)) dF (θ)

)
dt. (A54)

To evaluate the expected instantaneous change in Pra (W ), I apply Itô’s lemma and use
(A52):

E [dPra (Wt)] =

[
ρWt−dt−(

λ
∫ θ
θ

(
HN
t (θ) + qt (θ)

(
HA
t (θ, θ)−HN

t (θ)
)))

dF (θ)

]
P ′ra (Wt−)

+λdt
∫ θ
θ

[
(1− qt (θ))Pra

(
Wt− +HN

t (θ)− γdKt

)
+qt (θ)Pra

(
Wt− +HA

t (θ, θ)− γdKt

)
− Pra (Wt−)

]
dF (θ) .

(A55)
Combining (A54) with (A55) and equating their sum to rPra (Wt) dt yields the following
HJB equation:

rPra (W ) = max{qθ,knθ ,kaθ ,hnθ ,haθ}
{
λ
∫ θ̄
θ

((1− qθ) (V (knθ , θ)− knθ ) + qθ (V (kaθ , θ)− kaθ − c)) dF (θ)

+
[
ρW − λ

∫ θ̄
θ

((1− qθ)hnθ + qθh
a
θ) dF (θ)

]
P ′ra (W )

+ λ
∫ θ̄
θ

[(1− qθ)Pra (W + hnθ − γknθ ) + qθPra (W + haθ − γkaθ )− Pra (W )] dF (θ)
}
,

(A56)
where the maximization is subject to knθ ≥ 0, knθ ≥ 0, qθ ∈ [0, 1], and the incentive compat-
ibility constraints

(1− qθ)hnθ + qθh
a
θ ≥ (1− qθ̂)h

n
θ̂
− qθ̂W ∀

(
θ, θ̂
)
∈ ({0} ∪Θ)2 . (A57)

Compared to the HJB equation in the basic model without random audit, (A56) has one
difference. There are two investment levels (knθ and k

a
θ ) and two changes in the promised
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utility (hnθ and h
a
θ) for each project type θ, corresponding to cases in which the report does

not get audited and gets audited and confirmed to be truthful, respectively. In contrast, in
the basic model, each project type is either audited or not, so it is suffi cient to specify one
investment and one change in the promised utility for each project type θ.
Denote the optimal policies that solve this optimization problem by knra (θ,W ), kara (θ,W ),

hnra (θ,W ), hara (θ,W ), and qra (θ,W ). Let I ≡ maxθ∈{0}∪Θ {(1− qθ)hnθ − qθW}. Then, (A57)
can be written as (1− qθ)hnθ + qθh

a
θ ≥ I. Let Θ̃ denote the subset of {0} ∪ Θ at which

(1− qθ)hnθ−qθW < I. The derivatives of (A56) with respect to haθ and h
n
θ are proportional to

P ′ra (W + haθ − γkaθ )−P ′ra (W ) and P ′ra (W + hnθ − γknθ )−P ′ra (W ), respectively. Consider type
θ ∈ Θ̃. Since (A57) is slack, (A56) is maximized at haθ = γkaθ and h

n
θ = γknθ . Differentiating

(A56) with respect to knθ and k
a
θ yields k

n
θ = kaθ = k∗ra (θ,W ), implicitly defined as

∂V (k∗ra (θ,W ) , θ)

∂k
= 1 + γP ′ra (W ) . (A58)

This implies haθ = hnθ = γk∗ra (θ,W ). The derivative with respect to qθ is proportional to −c.
Therefore, for any θ ∈ Θ̃, it must be that qθ = 0.
Thus, if qθ > 0, then either (1− qθ)hnθ + qθh

a
θ = I or (1− qθ)hnθ − qθW = I. Let me

show that it cannot be (1− qθ)hnθ + qθh
a
θ = I . By contradiction, suppose this is the case.

Then, (1− qθ)hnθ − qθW < I. Denoting the Lagrange multiplier of the equality by µθ, the
maximization problem becomes

max
haθ ,h

n
θ ,k

n
θ ,k

a
θ ,qθ

(1− qθ) (V (knθ , θ)− knθ − hnθP ′ra (W ) + Pra (W + hnθ − γknθ ))

+qθ (V (kaθ , θ)− kaθ − haθP ′ra (W )− c+ Pra (W + haθ − γkaθ ))
+µθ ((1− qθ)hnθ + qθh

a
θ − I)

This implies knθ = kaθ and h
n
θ = haθ = I. However, if this is the case, then the objective

function is strictly decreasing in qθ, implying qθ = 0, which contradicts qθ > 0. Hence, if
qθ > 0, then (1− qθ)hnθ − qθW = I, which implies (1− qθ)hnθ + qθh

a
θ > I. Therefore, (A56)

is maximized at haθ = γkaθ and k
a
θ = k∗ra (θ,W ). Denoting the Lagrange multiplier of the

equality by λθ, the maximization problem becomes:

max
hnθ ,k

n
θ ,qθ

(1− qθ) (V (knθ , θ)− knθ − hnθP ′ra (W ) + Pra (W + hnθ − γknθ ))

+qθ (V (kaθ , θ)− (1 + γP ′ra (W )) kaθ − c+ Pra (W ))

+λθ ((1− qθ)hnθ − qθW − I) .

Taking the first-order conditions and re-arranging the terms yields:

∂V (knθ ,θ)
∂k

= 1 + γ (P ′ra (W )− λθ) ,
P ′ra (W + hnθ − γknθ ) = P ′ra (W )− λθ,

V (kaθ , θ)− (1 + γP ′ra (W )) kaθ − c+ Pra (W )− λθW
= V (knθ , θ)− knθ − hnθ (P ′ra (W )− λθ) + Pra (W + hnθ − γknθ ) .

These equations pin down knθ = knra (θ,W ), hnθ = hnra (θ,W ), and λθ. Then, qθ = qra (θ,W )

15



is given by hnra(θ,W )−I
hnra(θ,W )+W

. We can re-write the last equation as:

maxk {V (k, θ)− (1 + γP ′ra (W )) k}
−maxk,h {V (k, θ)− k + Pra (W + h− γk)− h (P ′ra (W )− λθ)} = c+ λθW − Pra (W ) .

(A59)
By the envelope theorem, the derivative of the left-hand side in θ is∫ k∗ra(θ,W )

knθ

∂2V (k, θ)

∂k∂θ
dk − ∂λθ

∂θ
hnθ = 0.

Since k∗ra (θ,W ) > knθ and
∂V (k,θ)
∂k∂θ

> 0 by part (c) of Assumption 1, λθ is increasing in θ. By
Topkis’s theorem applied for the second maximization problem in (A59), hnθ is increasing in
θ. Since qθ =

hnθ−I
hnθ+W

and hnθ is increasing in θ, qθ is increasing in θ too.
Next, I find I. Above, I have shown that (1− qθ)hnθ − qθW = I for any θ : qθ > 0. This

and (A57) imply that hnθ = I for any θ : qθ = 0. In particular, this must hold for θ = 0,
which implies I = 0. Hence, qθ = hnra(θ,W )

hnra(θ,W )+W
.

It remains to find when qθ = 0 or qθ > 0. If qθ = 0, then hnθ = 0 and the investment knθ
solves

∂V (knθ , θ)

∂k
= 1 + γP ′ra (W − γknθ ) .

Denote the solution to this equation by k0
ra (θ,W ). Differentiating (A56) in qθ, we obtain

that qθ = 0 is optimal if and only if

V (k∗ra (θ,W ) , θ)− (1 + γP ′ra (W )) k∗ra (θ,W )− c−
(
P ′ra (W )− P ′ra

(
W − γk0

ra (θ,W )
))
W

< V
(
k0
ra (θ,W ) , θ

)
− k0

ra (θ,W ) + Pra
(
W − γk0

ra (θ,W )
)
− Pra (W ) ,

or, equivalently,

c > F a
ra (θ,W )− F n

ra (θ,W ) +
(
P ′ra
(
W − γk0

ra (θ,W )
)
− P ′ra (W )

)
W, (A60)

where

F a
ra (θ,W ) ≡ max

k∈R+

{V (k, θ)− (1 + γP ′ra (W )) k} ,

F n
ra (θ,W ) ≡ max

k∈R+

{V (k, θ)− k + Pra (W − γk)− Pra (W )} ,

by analogy with (26)—(27). Using the envelope theorem, it is easy to see that the right-hand
side of (A60) is increasing in θ:∫ k∗ra(θ,W )

k0
ra(θ,W )

∂2V (k, θ)

∂k∂θ
dk − γP ′′ra (W )W

∂k0
ra (θ,W )

∂θ
,

which is positive, since ∂2V (k,θ)
∂k∂θ

> 0 by Assumption 1 and P ′′ra (W ) ≤ 0 and ∂k0
ra(θ,W )
∂θ

≥ 0 by
concavity of Pra (·). Therefore, qθ = 0 if and only if θ < θ∗ra (W ), where θ∗ (W ) is defined as
the lowest θ ∈ Θ at which c ≤ F a

ra (θ,W )−F n
ra (θ,W )+(P ′ra (W − γk0

ra (θ,W ))− P ′ra (W ))W .
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Plugging the solution into (A52), we obtain the evolution of Wt following the report
dX̂t = 0:

dWt = gra (Wt−)Wt−dt− dCt,
where

gra (W ) = ρ− λ
∫ θ̄

θ∗ra(W )

(γk∗ra (θ) +W )hnra (θ,W )

W (hnra (θ,W ) +W )
dF (θ) . (A61)

Combining these results characterizes the investment, audit, and the evolution of the
division manager’s promised utility in the optimal mechanism. If the division manager
reports that no project arrives, then her promised utility accumulates continuously at rate
gra (Wt−), provided that Wt− < W c

ra. Once it reaches W
c
ra, the division manager gets paid a

flow of constant bonus payments of gra (W c
ra)W

c
ra per unit time until the division manager

reports an arrival of a project. If the division manager reports a project with quality θ <
θ∗ra (Wt−), headquarters do not audit the report, the firm invests k0

ra (θ,Wt−), and the post-
investment promised utility of the division manager changes by dWt = −γk0

ra (θ,Wt−). If
the division manager reports a project with quality θ ≥ θ∗ra (Wt−), the report is audited
with probability hnra(θ,Wt−)

hnra(θ,Wt−)+Wt−
. If the report is audited and audit confirms that the project’s

quality is θ, amount k∗ra (θ,Wt−) is invested and the post-investment promised utility of the
division manager is kept constant at Wt−. If the report is audited and the audit does not
confirm that the quality of the project is θ (this never occurs on equilibrium path), then
nothing is invested and the division manager’s promised utility is set to zero. Finally, if
the report is not audited, the firm invests knra (θ,Wt−), and the post-investment promised
utility of the division manager changes by dWt = −γknra (θ,W ) + hnra (θ,W ). The following
proposition summarizes these findings:4

Proposition 2. The following mechanism is optimal. If R ≤ W c
ra, then the initial value W0

is max {R,W ∗
ra}, where W ∗

ra is the point at which Pra (W ) is maximized. If R > W c
ra, then

an immediate payment of R−W c
ra is made to the division manager and W0 = W c

ra. At any
t, the division manager sends a report dX̂t from message space {0} ∪Θ.

1. If dX̂t = 0, then dKt = 0 and dAt = 0. If Wt− < W c
ra, then

dWt = gra (Wt−)Wt−dt, (A62)

and dCt = 0. If Wt− = W c
ra, then dWt = 0 and dCt = gra (W c

ra)W
c
radt.

2. If dX̂t ∈ [θ, θ∗ra (Wt−)), then dAt = 0, dKt = k0
ra (θ,Wt−), and dWt = −γdKt.

3. If dX̂t ∈
[
θ∗ra (Wt−) , θ̄

]
, then dAt = 1 with probability hnra(θ,Wt−)

hnra(θ,Wt−)+Wt−
and dAt = 0 with

probability Wt−
hnra(θ,Wt−)+Wt−

.

(a) If dAt = 1, then dKt = k∗ra

(
dX̂t,Wt−

)
and dWt = 0, if the audit reveals that

dXt = dX̂t. Otherwise, dKt = 0 and dWt = −Wt−.

4The verification is very similar to the proof of Proposition 2, so I omit it.
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(b) If dAt = 0, then dKt = knra

(
dX̂t,Wt−

)
and dWt = hnra (θ,Wt−)− γdKt.

The following proposition shows how the above mechanism can be implemented via a
capital budgeting process, which is similar in many dimensions to the budgeting mechanism
with threshold separation of financing in the basic model:

Proposition 3. Consider the following mechanism. At the initial date, headquarters allocate
a spending account B0 = W0/γ to the division manager, who is allowed to use this account
at her discretion to invest in projects. At time t, the spending account is replenished at rate
gra (γBt). In addition, headquarters specify a project size threshold k∗t = kara (θ∗ra (γBt) , γBt),
such that at any time t the division manager can pass the project to headquarters claiming
that the investment should be kara (θ, γBt−) ≥ k∗t−, where θ is the quality of the current
project. If the division manager passes the project claiming the optimal investment should
be kara (θ, γBt−), it gets audited with probability hnra(θ,γBt−)

hnra(θ,γBt−)+γBt−
. If the audit reveals that

the report is truthful, then headquarters invest kara (θ, γBt−) and do not alter the account
balance. If the audit reveals that the report is not truthful, then headquarters punish the
division manager by reducing her spending account balance to zero. If the project is not
audited, headquarters invest hnra (θ, γBt−) /γ and the division manager is offered to co-invest
any extra amount from her spending account. The monetary compensation of the division
manager is dCt = 0, if Bt < W c

ra/γ, and dCt = gra (W c
ra)W

c
radt, if Bt = W c

ra/γ. Then, this
mechanism implements the optimal mechanism of Proposition 6. In particular, the division
manager finds it optimal to (i) pass a project to headquarters if and only if θ ≥ θ∗ra (γBt−)
and report the asked investment amount truthfully; (ii) allocate investment account between
current and future investment opportunities in the way that maximizes headquarters’value.
Specifically, the division manager finds it optimal to invest dKt that maximizes V (dKt, θ) +
Pra (γ (Bt− − dKt)) in projects of quality θ < θ∗ra (γBt−) and to co-invest amount dKt −
hnra (θ, γBt−) /γ that maximizes V (dKt, θ) + Pra (γ (Bt− − dKt) + hnra (θ, γBt−)).

This proposition can be proven in the same way as Proposition 3. The evolution of
γBt is the same as the evolution of Wt in Proposition 6. The starting point is γB0 = W0

by construction and the evolution of γBt if Bt < W c
ra/γ and the project is not passed to

headquarters is
d (γBt) = (gra (γBt)Btdt− dKt) γ. (A63)

Hence, the evolutions of γBt and Wt are the same if the investment policies are the same.
Because the change in the division manager’s utility, dWt + γdKt = gra (Wt)Wtdt, does not
depend on dKt, allocating the spending account between the current and future investment
opportunities in the way that maximizes V (dKt, θ) +Pra (γ (Bt− − dKt)) is optimal for the
division manager. This investment solves

max
k
{V (θ, k) + Pra (γ (Bt− − k))} , (A64)

yielding k0
ra (θ, γBt−). Similarly, because the division manager’s expected utility after headquar-

ters invest hnra (θ, γBt−) /γ does not depend on any additional investment she adds from the
spending account, the total investment in the project θ ≥ θ∗ra (γBt−) solves

max
k
{V (θ, k) + Pra (γ (Bt− − k) + hnra (θ, γBt−))} ,
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yielding knra (θ, γBt−).

V. Private Savings of the Division Manager

The basic model assumes that the agent consumes the monetary transfer immediately upon
receiving it. In other words, the division manager cannot save the compensation for the
future. In this section, I show that this assumption is not material provided that the division
manager has no savings at the start of the game and her savings account grows at rate r,
i.e., at the discount rate of headquarters, which is below the discount rate of the division
manager ρ.
To show this, I introduce additional notation. Let St denote the division manager’s

balance on the savings account at time t, and let
(
dC̃t

)
t≥0

denote the stochastic process

governing the division manager’s consumption (dC̃t represents her consumption at time t).
Then, the evolution of the division manager’s savings account is

dSt = rStdt+ dCt − dC̃t. (A65)

The starting value is S0 = 0. The division manager must maintain a nonnegative balance
on the savings account, St ≥ 0.
First, consider the case in which the division manager’s savings are contractible. In this

case, a direct mechanism Γ is described by a quadruple (A,K,C, S) of stochastic processes

(the consumption process
(
dC̃t

)
t≥0
is implied by (dCt)t≥0 and (dSt)t≥0. As before, processes

(dKt)t≥0 and
(
dC̃t

)
t≥0

must satisfy dKt ≥ 0 and dC̃t ≥ 0, i.e., investment and consumption

of the division manager must be non-negative. Note, however, that monetary transfers dCt
may be negative, i.e., the mechanism may specify the division manager to make transfers
to headquarters from her savings account provided that the savings account balance does
not go negative. Consider any incentive compatible mechanism Γ = (A,K,C, S). Let C̃
denote the consumption process implies by C and S: dC̃t = rStdt + dCt − dSt for any t.
Consider another mechanism Γ′ = (A,K,C ′, 0) with C ′ = C̃. Because mechanism Γ′ results
in the same investment and consumption of the division manager as mechanism Γ, it is also
incentive compatible and results in the same payoffof the division manager. Because S0 = 0,
(A65) implies:

E
[∫ ∞

0

e−rtdCt

]
= E

[∫ ∞
0

e−rtdC̃t

]
+ E

[
lim
t→∞

e−rtSt

]
.

Therefore, E
[∫∞

0
e−rtdCt

]
≥ E

[∫∞
0
e−rtdC̃t

]
, so mechanism Γ′ also results in the expected

payoff to the headquarters that is not lower than mechanism Γ. Therefore, it is without
loss of generality to assume that the division manager has no savings if her savings are
contractible.
Second, consider the case in which the division manager’s savings are hidden. Consider

any incentive-compatible direct mechanism Γ = (A,K,C), and let
(
S, C̃

)
be the saving and

consumption policies chosen by the division manager given Γ. Since the outcome of this prob-
lem can be replicated as an outcome of the problem in which the division manager’s savings
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are contactible and the contract is (A,K,C, S), the optimal mechanism in the problem with
hidden savings results in weakly lower payoff to the headquarters than the optimal mechan-
ism in the problem with contractible savings, which is equivalent to the optimal mechanism
in the basic model by the argument in the previous paragraph. Lastly, I argue that the
optimal mechanism in the basic model remains incentive compatible even if we relax the
assumption that the division manager does not save monetary transfers. The proof of this
point follows the argument in the proof of Proposition 2 in DeMarzo and Sannikov (2006).
Consider an arbitrary feasible reporting and consumption strategy of the division manager,(
X̂, C̃

)
. Let Ût denote the lifetime expected utility of the division manager, evaluated as of

time t, that the division manager attained if she consumed the outstanding savings account
balance St immediately:

Ût =

∫ t

0

e−ρs
(
γdKs + dC̃s

)
+ e−ρt (St +Wt) .

I show that Ût is a supermartingale. Using (A65), we can write dÛt as:

eρtdÛt = γdKt + dC̃t + dSt − ρSt−dt+ dWt − ρWt−dt.

Plugging in (7) and (A65) and simplifying the terms,

eρtdÛt = (r − ρ)Stdt+Ht(dX̂t)−
(
λ

∫ θ̄

θ

Ht (θ) dF (θ)

)
dt.

Because ρ > r and St ≥ 0, (r − ρ)St ≤ 0, so Û is a supermartingale. If there are no savings
and the agent reports truthfully, then Û is a martingale. Therefore, for any incentive-
compatible mechanism from the basic model, the division manager finds it optimal to report
truthfully and maintain no savings in the problem where she is able to save in a hidden way.
In particular, this is also true for the optimal mechanism in the basic model. Therefore, the
mechanism from Proposition 2 is also optimal in the model with hidden savings.
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