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DYNAMIC ANALYSIS OF CONSUMER RESPONSE TO
MARKETING STRATEGIES*

JOHN R. HAUSER} anp KENNETH J. WISNIEWSKI}

This paper develops a methodology for modeling consumer response that integrates previ-
ous research in Won, diffusion of innovation, test market analysis, and
new product design. The methodology makes it practical to extend brand Fel6cEon models to
irﬁ&?ﬂﬁﬁou phenomena such as awareness, trial, and information flow. Purchase timing
and brand selection are interdependent and both phenomena depend jointly on managerial
controls such as advertising, coupons, price-off promotion, product positioning, and consumer
characteristics.

Within this general structure, we provide practical estimation procedures (a least squares
approximation to the maximum likelthood estimates) to determine the parameters which link
managerial controls to consumer response. Closed form solutions are derived for cumulative
awareness, cumulative trial, penetration, expected sales, and purchases due to promonon——all
as a function of time. We also provide simplified expressions for ethbnum (t-> 00).mna
share. Tradeoffs among complexity of the diffusion process,
nonstationarity, complexity of purchase timing, consumer ség¥fientation, and sample size are
made explicit so that the marketing scientist can customize his analyses to the managenal
problems that he faces.

The effects of sample size, data interval frequency, and collinearity in the explanatory
variables are investigated with simulations based on a five- statem
which depends on 8-10 markeﬂng variables. -

The paper closes with a brief description of the application and predictive test of a

consumer response model based on the methodology.
(MARKETING; CONSUMER BEHAVIOR; MARKOV ANALYSIS)

1. Perspective

An important goal in modeling consumer response is to understand and forecast the
impact of marketing strategies. For example, if a marketing manager mails out free
samples during a new product launch, he wants to know how many consumers will try
the sample and how this will affect long run market share. But, particularly during a
test market or a new product launch, the dynamics of consumer response are
important. For example, the marketing manager also wants to know how quickly
consumers will try the sample and what impact this has on the speed with which the
new product achieves its long run share. Furthermore, today’s manager wants to
improve strategy as he gains more experience with his market and adapt strategy as
market conditions change. To address these issues a consumer response model should
be dynamic and dependent on managerial controls (marketing strategy) and the
market environment.

For example, suppose we are in a market where the only brands of analgesics are
Bayer, Excedrin, and Tylenol. Suppose we recruit a panel of consumers and periodi-
cally observe what brand was last purchased. The observations are simple, but the
stochastic process generating the observations is quite complex. The interpurchase time
is a random variable which may depend on the brand last purchased (Excedrin may be
more effective and hence used up at a slower rate) and on marketing strategy (a
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consumer decides to buy earlier because of a ‘limited time offer’). The switching
among brands may depend on marketing strategy (Bayer users may be more likely to
switch to Excedrin which contains some aspirin than to Tylenol which contains none),
and on diffusion phenomena (a consumer may be more likely to adopt Tylenol if other
consumers are using it). Finally, there are often multiple purchases. If on July 1 the
consumer was using Bayer and on July 15 he says his last purchase was Tylenol, he
may have purchased Tylenol in the two week period, but alternatively he may have
purchased Bayer, Bayer, Excedrin, and then Tyleno! in the two week period. Thus a
“flow” from Bayer to Tylenol may be a series of “flows” which depend jointly on the
strategies of all the brands. This complex consumer response process is the process we
seek to model.

We seek a mathematical structure which allows switching and interpurchase times to
depend upon marketing strategies and other explanatory variables such as word of
mouth. We seek a practical estimation procedure that allows us to estimate the
parameters of this continuous time process (which relate marketing strategies to
consumer response) by observing the process at discrete points in time (e.g., weekly).
Finally, once the process parameters are estimated, we seek closed form expressions
which dynamically forecast sales, market share, and penetration for new marketing
strategies.

We seek a flexible evolutionary structure. For example, suppose the manager
believes that consumer response depends upon whether or not the last purchase was
made “on deal”. Such a consumer response can be described by expanding the three
“behavioral states” (Bayer, Excedrin, Tylenol) to six “behavioral states” (Bayer-regular
price, Bayer-deal, Excedrin-regular price, Excedrin-deal, Tylenol-regular price,
Tylenol-deal). Similar state expansions can handle diffusion phenomena such as
awareness, trial, and repeat. Thus we seek a general model that can handle any
number of “behavioral states” and explanatory variables—subject of course to data
limitations.

Fortunately there has been a wealth of research in marketing, sociology and
operations research that has investigated consumer response. This work is diverse, but
when examined within a common framework it provides the basis for a practical,
theory-based, evolutionary model of consumer response. This paper provides an
analysis methodology that integrates many of the important models in these diverse
literatures. Although the methodology is designed to handle complex phenomena, we
provide estimation procedures and managerially relevant statistics that are implement-
able with standard regression and eigenstructure computer packages. Tradeoffs among
the complexity of the consumer process, the number of behavioral states, the number
of control variables, non-stationarity, and consumer segmentation are based on data
requirements (sample size), not analytic or computational limitations.

The basic model is a dynamic, semi-Markov model of consumer response. Transi-
tion probabilities and purchase timing jointly depend upon consumer characteristics
and marketing strategy and change as the market environment or marketing strategy
changes. Diffusion phenomena such as awareness, trial and brand switching are
modeled explicitly and depend upon marketing strategy. We derive methods to
estimate the parameters of the system from panel data (mature products) or question-
naire data (new products). Once the parameters are estimated, we provide closed form
expressions for statistics of managerial interest such as the expected sales over time, the
penetration of the market over time, cumulative awareness, and cumulative trial.
Analytic arguments and simulation provide the modeler with the tradeoffs necessary to
customize the analysis to a wide variety of managerial problems.

We begin with a review of the relevant literature.
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2. Existing Literatures

Because of the breadth of the research on consumer response, the following brief
review can only highlight some of the important issues. We refer the reader to the
references for more detail.

Stochastic Models of Brand Selection

Since the early 1950s researchers have used probabilistic models as a modeling
strategy to describe consumer response (Brown [18)], Cunningham [23], [24], Maffei
[76), Harary and Lipstein [40], Howard [52], Styan and Smith [104], Massy [79],
Morrison [89], Kuehn and Day [68], Rao [96], and Bass, Pessemier, and Lehmann
[13]). These models address two primary issues: brand selection and purchase timing.
For example, Herniter {44] uses a homogeneous Markov process (all consumers have
the same probabilities) to describe brand selection and a heterogeneous Erlang
distribution (the parameters vary across the population) to model the time between
purchases. He assumes brand selection is independent of purchase timing. Other
researchers extended these models to include learning (Kuehn [67], Carman [19], Jones
[58,59], Aaker and Jones [1]), heterogeneity in the parameters of brand selection
(Frank {36], Bass [10], Bass, Jeuland, and Wright [12], and Kalwani and Morrison
[63]), non-stationarity (Howard [52], Montgomery [86], Ehrenberg [31}, Massy and
Morrison [80]), more complex models or purchase timing (Zufryden [111]), heteroge-
neity in models (Jones [58], Blattberg and Sen [17}], Givon and Horsky [37]), and risk
aversion (Hauser [41]). But all models assume independence of brand selection and
purchase timing (or do not address purchase timing). Many models limit their analytic
solutions to a two-state process consisting of “purchase our brand” and “purchase all
other brands” although most do suggest extensions to the multibrand case. See
Blattberg and Sen [17] for a discussion of the dangers of two-state processes. Recently,
Jeuland, Bass, and Wright [57] have extended their multinomial multibrand brand
selection model to include an independent model of heterogeneous Erlang purchase
times. Other notable exceptions to two-state models are Bass [10], Herniter [44, 45],
and Kalwani and Morrison {63] who are primarily concerned with using observations
on interbrand switching to identify hierarchies within the market. Except for identify-
ing hierarchies, all of the above models describe consumer response rather than
prescribe managerial action. More recently, researchers have used stochastic models to
diagnose market research data such as purchase intentions (Morrison [91]) and taste
tests (Morrison and Brockway {92]).

Early attempts to model the effect of marketing mix vanables were moderately
successful, although limited to one or a few marketing mix variables. For example,
Herniter and Magee [48] suggest that different transition matrices should be used for
different levels of marketing expenditure. Albright and Winston {2] extended their
model and provided theorems to indicate the directionality of advertising and price
strategies. Telser [105] modeled transition probabilities in a two-state homogeneous
Markov process as a linear function of price and then modified this model to include
advertising rather than price (Telser [106]). Horsky [50] added an optimization compo-
nent to Telser’s model while Lilien [72],[73] extended the concept to a two-state,
heterogeneous, linear learning model. Haines [39] also used a linear learning model to
represent consumer response. After estimating the parameters of the model, he let
equilibrium market share and “approach-to-equilibrium™ depend on a linear combina-
tion of marketing variables. (Advertising and availability were significant.) MacLach-
lin [75] modeled brand switching with a Markov transition matrix in which the
probabilities were linear functions of marketing variables. Finally, Massy, Mont-
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gomery, and Morrison [81, p. 429] suggested that parameters of their stochastic
evolutionary model be modeled as linear functions of the marketing mix variables.
However, they were careful to point out that estimation is potentially very difficult.

In economics, McFadden [82], [83] has developed a multinomial model (probabili-
ties independent of last purchase) that models purchase probabilities as a function of
any number of marketing variables. McFadden’s model, called the logit model, has
been utilized by Jones and Zufryden [61] in a two-state, heterogeneous multinomial
model and by Zufryden [110] in a two-state homogeneous Markov model. Both models
include purchase timing but model it as independent of brand selection. Zufryden’s
model is a practical application of a homogeneous semi-Markov model proposed by
Howard [52]. While theoretically quite general, Howard’s model has not been widely
applied because it is not dependent on marketing variables and because, as Mont-
gomery and Urban [87, p. 78] point out, “there is a need for development of statistical
methods to render this model more empirically viable . . . and the model may place
excessive burdens orf a data base when used in its most general form.” Recently
Lerman [71] has applied a four-state version of Howard’s model to the choice of
transportation mode and destination. What is interesting about his application is that
he uses the logit model for brand selection and allows purchase timing to be dependent
on .whether or not the trip was the first trip of the day. However, because Lerman
relied heavily on Laplace transforms he found it difficult to extend his model to more
complex processes and did not model purchase timing as dependent on managerial
controls.

In other applications Ezzati [34], Kao [65], and Shachtman and Hogue [99] have
used homogeneous Markov models to successfully project consumer response to
services.

Diffusion of Innovation

Sociologists have long recognized the diffusion of information through the popula-
tion as important phenomena affecting consumer response. (Rogers and Shoemaker
[98] review approximately 1500 articles and books on the communication of innova-
tions.) These phenomena have formed the basis for some important models of
consumer information acquisition (Lavidge and Steiner [70], Rogers {97]) and behavior
(Midgley [84], [85]), and have led to the definition and identification of those
consumers, called innovators, who have a major effect on the communication process.
In marketing, diffusion phenomena have been particularly effective in modeling the
growth, and possibly decline, of sales in new product categories (Bass [9], Nevers [94],
Dodds [25], Mahajan and Peterson [78], Mahajan and Muller [77]). While these models
are primarily descriptive, recent extensions have added the influence of marketing mix
variables on the growth of a product category (Bass [11], Dodson and Muller [27],
Horsky and Simon [51], Dolan and Jeuland [28]). Balachandran and Deshmukh [7]
provide a theoretical five-state semi-Markov diffusion model for arbitrary communica-
tions processes. However, their model becomes intractable for practical problems, does
not address heterogeneity, and is limited to one or a few marketing mix variables.

A major contribution of this literature is the recognition and explicit modeling of the
dynamics of consumer response. To date all applications have dealt with product
categories and have not modeled the dynamics of brand selection within a product
class. Nonetheless, the empirical evidence and theory suggest that the concept of
communication through advertising, trial incentives, and word of mouth is an impor-
tant phenomena for marketing strategy affecting brand selection for new and mature
products. A model that is sensitive to these decision variables should include consumer
information acquisition states such as awareness, trial, and repeat purchase.
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Test Market Models

One model that uses concepts from the diffusion of innovation to model consumer
response is Urban’s SPRINTER [108]. Urban models consumer response during new
product test markets as a homogeneous, discrete time Markov process. He allows the
parameters of the system to change over time (nonstationarity) and achieves sensitivity
to marketing mix variables by having the transition probabilities be functionally
dependent on managerial actions. Although he combines data from panels,
questionnaires, and store audits, Urban’s model requires a large number of nonstation-
ary parameters which put a strain on data resources. Furthermore the flows are
estimated independently and period by period and thus do not make full use of the
stochastic properties of the Markov model. Other researchers (Assmus [5], Wachsler et
al., [109]) have developed similar analyses based on Urban’s model.

Blattberg and Golanty [15] present an alternative approach to test market modeling.
They use recursive regression equations to operationalize an awareness, trial, and
repeat process. While much simpler than Urban’s model, their model is quite success-
ful in projecting test market trends. In other models, Eskin [33] and Fourt and
Woodlock [35] recognize the importance of consumer dynamics in models of aware-
ness, trial, and repeat.

New Product Design Models

While stochastic models postulate a distribution of purchase probabilities across the
population and test market models use homogeneous probabilities to incorporate
consumer dynamics, new product design models have concentrated on estimating
purchase probabilities based on product characteristics and managerial actions. See
Shocker and Srinivasan [100] for a recent review of these models. For example, Hauser
and Urban [42] provide a means to estimate heterogeneous multinomial probabilities
based on product positioning strategy and advertising and distribution strategy. While
these models have been successful in predicting equilibrium market share they have
not addressed purchase timing or consumer dynamics.

Discussion and Integration

Although consumer response has been studied extensively, it is clear that the
research is quite diverse. Each literature has approached an aspect of consumer
response with different methods, interests and outputs. Stochastic modelers have
explicitly recognized the probabilistic nature of consumer response. They have ad-
dressed the relationship between brand selection and purchase timing, the potentially
Markovian nature of the process, and consumer heterogeneity. But all analyses deal
with markets in equilibrium and assume independence of purchase timing and brand
selection. But most managerial actions, by their very nature, are designed to upset the
equilibrium and gain advantage for the firm that is acting. For example, if General
Mills uses a 50%-off promotion, consumers stock up (thus affecting next purchase
timing) and there is a diffusion process as consumers become aware of the deal and
perhaps try the product for the first time. Most importantly, the stochastic models are
cither not dependent on managerial controls, limited by estimation difficulty to one or
a few managerial controls, or limited to only a few behavioral states. In all cases,
extensions of the models are theoretically possible, but limited by practical consider-
ations in either estimation or analytic tractability.

Diffusion modelers have explicitly recognized consumer dynamics, but their models
have not been modified for brand strategies (rather than product categories) and have
not incorporated the complexities (purchase timing, Markovian nature, consumer
heterogeneity) that have been addressed with stochastic models. Furthermore the



460 JOHN R. HAUSER AND KENNETH J. WISNIEWSKI

modeling of managerial actions has been restricted by analytic necessity to one or a
few managerial variables. On the other hand, test market modelers have incorporated
diffusion phenomena for individual brands but have not included some of the
phenomena identified by stochastic modelers and, in some cases, require more parame-
ters to be estimated than are needed to control the process. Finally, new product
design models do not address consumer dynamics or purchase timing, but provide a
theory-based link from product positioning to (multinomial) purchase probabilities.

While each literature has successfully modeled a specific aspect of consumer
response, we believe that each application can be improved and new issues addressed
with a methodology that integrates these diverse, yet complementary, literatures. We
provide a modeling approach that incorporates consumer dynamics, allows interdepen-
dence among purchase timing and brand selection, is theoretically and practically
dependent on managerial actions, and is non-stationary in the sense that transition
probabilities depend on the state of the system and managerial actions.

3. Mathematical Model

In this section we derive the mathematical model. The theory applies to both
transient processes (test markets and new product launches) and equilibrium processes
(mature products).

Semi-Markov Process

We model consumer response as a semi-Markov process. In particular, there is some
set of consumer states, S,, that consumers occupy and flow between over time. In a
general semi-Markov process there are transition probabilities, 4,;, which determine the
probability of a transition to state S, given that the consumer is now in state S, but the
time, ¢, at which the consumer makes a transition is a2 random variable with density
function dependent upon state S;.

For example, Figure 1 is one simplified model (including diffusion) for a new
product entering a market dominated by two existing products. Note that a purchase is
a flow (including self-loops) into a purchase state. (We use this simple model to
illustrate the mathematics. In theory, the analysis can handle any consumer response
process representable by behavioral states. Flows can include communication,
forgetting, inventory effects, or brand purchase. We discuss tradeoffs among simplicity
vs. complexity and sample size in §4.)

Although the evidence is mixed on whether the equilibrium consumer response
process is first-order Markov, we model it as such because: (1) simpler models such as
multinomial probabilities can be modeled as a zero-order Markov process, (2) higher-

N

Using New Product

PN y
Using Product |, Using Producti,
Unaware New Product Aware of New Product
i 1 ,
Using Product 2, Using Product 2,
Unawore New Product Awagre of New Product

) N

Figure 1. Example Semi-Markov Model for Simplified Market.
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order processes can be represented as first-order processes by properly defining the
consumer response states, and (3) even if the equilibrium process is zero-order we
expect the dynamic process to be at least first order. (E.g., purchase may depend upon
whether or not the consumer is aware of the product.)

In order to achieve tractibility and estimation capabilities for large problems, we
model the probability of making a transition as either a Poisson random variable or as
a compound Poisson random variable. For example, we might expect flow rates into
awareness and trial to be Poisson' (the distribution of the time until the next transition
being negative exponential) while interpurchase intervals such as flow rates from
product 1 to product 2 might be compound Poisson (the distribution of time until the
next purchase being Erlang and thus having its maximum value at some time other
than 7 = 0). While this may seem restrictive, there is empirical and theoretical evidence
that either a negative exponential or an Erlang distribution is a good model of
purchase timing (Ehrenberg [30], [33], Massy, Montgomery and Morrison [81], Her-
niter [44}, Jeuland, Bass, and Wright [57], Chatfield and Goodhardt [20], and Zufryden
[111]). Furthermore, the Poisson and compound Poisson processes can approximate a
wide range of phenomena.

Mathematically, we model a pth order Erlang transition time as p sequential Poisson
processes with the same flow rates, y,, where we are concerned only with the last
transition. (The probability of a transition from state S, in time Az is w,Ar.) Thus, to
handle Erlang transition times we expand our state space to include what we will call
“shadow states” such as in Figure 2. If we assume p, is known for each state, the
“shadow states” do not increase the number of unknown parameters since the flow
rates are equal for “shadow states” and the extra transition probabilities are uniquely
defined (g, ,,, = 1, g, = 0 otherwise). With this construction the semi-Markov process
of consumer response is transformed to a continuous time Markov process consisting
of a set of real and “shadow” behavioral states with transition probabilities, 9y and
state dependent Poisson flow rates, p,. The continuous time process is easier to handle
mathematically but can be transformed back to the semi-Markov process for interpre-
tation.

We provide analytic procedures for estimating the dependence of ¢, and p, on
explanatory variables. The integers, p,, can be determined by (1) a priori theory as
illustrated in our empirical example, (2) statistical examination of interpurchase times
(Lerman {71}, Dodson [26]), or (3) iterative search. For example, one can estimate the
process assuming p; = 1,2,3, . . ., & and select the best fit if 2 X (number of states) is
not too large. For small & this is reasonable computationally since each estimation for
fixed p, costs only a few dollars.

Product 2

FIGURE 2. Shadow States to Model Erlang (Order 2) Interpurchase Times.

!For example, the well-known Lanchester advertising response model is a two-state semi-Markov process
with Poisson flow rates proportional to advertising. See discussion in Littie [74].
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We consider collecting data in at least two ways (1) periodic questionnaires and (2)
panel data. In both cases we observe the state the consumer was in at the beginning of
the nth measurement, S;(7,_,), and the state he is in at the end of that measurement,
S(T,) (Define §,(T,) =1 if the consumer is in state i at time 7, and S(7,)=0
otherwise.) Thus the statistic we use to describe the process is the probability, p,(Z,),
that the consumer is in state S, at time 7, given that he started in state S; at time 7,,_,.

le.,
pq(t,,)=Prob{Sj(T,,)= US(T,.)=1} )

where t, = T, —~ T,_,. Any data collection procedure that provides observations on
S,(T,) and S(T,_,) can be used to implement the model.

To derive an expression for p,(f,) for each consumer we consider small time
intervals, Ar, (Cox and Miller [21], Drake [27]). Using the Poisson nature of the
process, the only two ways for the consumer to be in state S, at time ¢, + Az, are (1) to
be in state S, at time 7, and remain there (probability = 1 -3, p¢,Af) and (2) to
be in a state S at time 7, and flow to state S; in Az, (probability = g, At,). Thus,
algebraically we write these conditions as:

py(tn + Atn) =Pij(tﬂ)[l - Z p’jqjkAtn] + 2 pik(tn)“'qu/Atn' (2)
k+y k#y

By redefining notation we can simplify (2). Define q;; = pq,, for k +j and a, =
— 2k and if we let Az, >0 we can write (2) as:

d

a7 P = 3 pult)a ®
or in matrix form:

A [Pu(t)] = P14, @

where we have added a subscript, n, to the 4, matrix to indicate possible non-
stationarity because of different managerial actions (which will be shown to affect 4,)
in different time periods of observation. ((4) is known as the Chapman-Kolmogorov
forward equation.) Note that the length of observation periods, ¢,, can vary freely. This
allows data collection strategies such as weekly sampling at the beginning of a new
product launch and monthly sampling after the first few months.

The solution to (4) with initial conditions, p;;, (¢, = 0) = 1, p;;,, (¢, = 0) = 0 for j # i, is
given by (Cox and Miller [21], Athans and Falb [6]):

P.(1,) =exp(4,1,) = ioA er /. )

While simple in appearance, (5) is complex since it requires the exponentiation of the
matrix A,1,. The elements of P,(z,) are not* exp (a;1,) but rather given by the infinite

ZFor example, if
010
A, =11 0 0)
0 01
then
cosh(z,) sinh{s,) 0

exp(A,1,) =| sinh(s,) cosh(z,) O
0 0 exp(1)
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convergent series in equation 5. Fortunately, optimal control theory provides a
computational procedure for P,(r,). Athans and Falb [6] show that if P,(z,) has
independent eigenvectors,® P,(t,) can be computed analytically as E, [exp (A,Z,)]E, "
where A, is the diagonal matrix of eigenvalues, A,, of A,, [exp(A,z,)] is a diagonal
matrix with elements exp(A, 1), and E, is the matrix of eigenvectors. Since 4, is a
differential matrix by definition (rows sum to zero), it has at least one eigenvalue equal
to zero. The other eigenvalues can be shown to have negative real components. Thus
each element of exp (4,t,) is equal to a constant (the equilibrium probability) plus a
series of exponentially decaying terms. Furthermore, by using the series definition of
P, (1,) one can show that P,(z,) is a stochastic matrix (positive values, rows sum to 1.0)
for any A, satisfying the definitions above. Together these results are computationally
convenient since (1) P,(z,) can be readily obtained from A4, using widely available
eigenstructure computer packages and (2) P,(z,) is automatically a matrix of probabili-
ties for any A, with nonnegative off-diagonal elements and with a, defined such that
the rows sum to zero.

To this point we have dealt with one consumer. To achieve market response we have
to aggregate consumers in some manner. We address this issue in the next section. For
ease of exposition only, the present development assumes complete heterogeneity (each
consumer has a different A, matrix).

Explanatory Variables

The above analysis is useful for predicting behavior once the parameters of the
process (a}kn’s) are known. However, for modeling consumer response to managerial
actions we must allow the parameters of the process to depend on variables, such as
advertising or price, that managers can control.

We first recognize that both the transition probabilities, Gijns and the flow rate

parameters, p,,, can be recovered from A4, if we know g,,. Le., g, = a,,(1 — ¢;,)/
Dkoeidpn and p, =3, a,,/(1 = g;,)- Thus we let the explanatory variables directly
affect the elements of 4,. Note that the elements, q,,, of 4, have an intuitive
interpretation as the flow rates from state S, to state S;. Le., the probability that the
consumer (who is in state S) flows to state S, in time A¢, is simply a;,,Az,. We discuss
estimation of g; below.
Let x;;, be the value that the /th explanatory variable takes on during the nth
observation period for transitions from state S, to state S,. The dependence on the
transition (i - j) is important since it lets some variables, such as trial incentives, affect
only certain states, such as flows into trial states while other variables, such as relative
preference, take on different values depending on the two states that are involved.

For example, if, for ease of exposition, we model the process in Figure 1 as having
Poisson flows (p, = 1 for all i), we have five states, (1U) using product 1 unaware of
new product, (2U) using product 2 unaware of new product, (14) using product 1
aware of new product, (24) using product 2 aware of new product, and (NA) using
new product. Suppose we hypothesize that flows among purchase states depend on the
relative advertising for each product. This hypothesis is shown mathematically in
Table 1a. The minus sign (—) indicates the diagonal values are chosen so the rows sum
to zero. We might also hypothesize that the rate at which consumers become aware of
the new product is independent of whether they are using product 1 or product 2 but
dependent upon the advertising of the new product. This hypothesis is shown in Table
1b. Other hypotheses would imply different structures for the X, matrices. Table 1

3If the eigenvalues are not independent, one can use a generalized diagonalization, known as the Jordan
canonical form (Noble [95, Theorem 11.12}), which is only slightly more complex. Alternatively, one can
perturb the eigenvectors to make them independent (Noble [95, p. 374)).
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TABLE 1

Example X,, Matrices for Relative Advertising Affecting Purchase and Actual Advertising Spending
Affecting Awareness (a, = advertising index for product j)

XY U 14 24 NA 1U 2U 14 24 NA
WUl —  aya W — ay
2U lay/ay — 2U — ay
14 — &/ an/ay)| W, |14 W,
24 a/a;  —  an/a, 24
NA afay ay/ay — NA

might represent only two of many explanatory variables in the model. Table 2 lists a
few of the explanatory variables that we have used in applications of the methodology

As Table 2 illustrates, the explanatory variables can be defined directly, e.g.,
advertising, or cafx;,hn.lhc_guj.pmof submodels, e.g., relative-preferenee-can be based

on pr teristics or produc’_posmonlng For example, in the empirical test,
preference was the output of a logit model which was based on perceived product
features. Similarly, one can use retail price as an explanatory variable but model retail
price as a function of other variables such as wholesale price.

We allow each of the explanatory variables to have a differential impact on the flow
rates and we assume that the causal relationship can be modeled as linear-in-the

parameters.* Le.,

gn 2 Wlxyln (6)

where the w, are parameters to be estimated. To assure that @, = — 3 . a, we define

Xum = — 2,2 %jim- We also define variables x%,, to carry the mformatxon about flow

from S, to ;. For example, in Table la we would define x?,, = a,/a, and in Table 1b,
x3, = 0. If we define af, by 3°,w,x7, then g,, can be determined by the equation,

Giin = agn/(agn + 2 aljn)’
i
once the w, are estimated. By having the explanatory variables carry information on
self-flows we avoid the usual continuous time analysis problem of unidentified self-
flows. In the empirical tests of the methodology (section 8) the definition of xJ, was
obvious, e.g., advertising for i, and the models appear to predict well. However, we

TABLE 2
Example Explanatory Variables
Variable Flows Affected
' 1. Innovator index to awareness, trial
' 2. Introductory price-off deal to trial
‘3. Advertising (absolute) to awareness
(relative) among products
" 4. Social and personal norms to new product
5. Relative preference including among products
a) product improvements
b) product positioning
6. Word of mouth (cumulative trial) to awareness
7. Consumer search to awareness

“Nonlinearities and interactions are handled as in regression by properly redefining the explanatory
variables.
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caution the reader that great care should be exercised in the selection of xJ,.
Alternatively one can double the number of behavioral states to avoid self-flows. This
formulation avoids the issue of defining xJ,,, but comes at a cost of increased sample
size requirements.

(6) is a generalization of the relative attractiveness measures axiomatically developed
by Bell, Keeney, and Little [14] and Barnett [8]. To see this recognize that for
mdependent Poisson processes the underlying transmon probablhtles, G,n» aTE given by
q, j,, =a,/ S%a,., where the summation notation, 3%, indicates a?, is substituted for
Thus the event-wise transition probabilities are given by

= (El:wlxyln)/é:o(;wlxxkln) (M

which is an (US)/(US + THEM) model in the tradition of Luce’s model [83] and the
logit model (McFadden [82]). Viewed in this way, our procedure is a generalization of
this class of models to continuous time and with the added potential of a wide range of
behavior states to include diffusion and experience phenomena.

llﬂ

4. Estimation

In order for our model to be practical we must be able to estimate the w,’s. In
general P,(1,) varies across the population. If the model is well specified then the
variation in the explanatory variables (x,,,’s) should explain the variation in consumer
response. Alternatively one can group consumers into homogeneous segments and
analyze each segment separately. We introduce the subscript, ¢, for consumer to
indicate variation in the explanatory variables and resulting consumer response. (5) is
rewritten as:

Pnc(tn) = exp(Anctn) = CXp( ; wIanctn)’ (8)

where X, is the matrix (i — transitions) for the /th explanatory variable for the cth
consumer in the nth observation period. (In a segmented analysis w, would vary by
segment.)

This method of handling variation across consumers is somewhat different than the
technique normally used in the stochastic brand selection literature. For example, Bass
(10}, Blattberg and Sen [16], {17], Givon and Horsky [37], Jones and Zufryden [61],
Kalwani and Morrison [64], and Lilien [72], [73] characterize heterogeneity as a
probability distribution over brand selection probabilities where the distribution de-
pends on aggregate or segmented statistics. As in the econometric literature (e.g.,
McFadden [83]), (8) assumes that the explanatory variables vary across consumers and
affect P,(t,) through the w/s. The result is a derived distribution over P,.(z,). To
avoid confusion, we use the econometric term, ‘disaggregate’, to describe variation in
explanatory variables and the marketing term, ‘heterogeneous’ to describe probability
distributions over brand selection probabilities.

General Maximum Likelihood

Since our model predicts probabilities and we observe events, §;(7,_,) and S,(7,)
we can use maximum likelihood estimates to determine the w,. (Maximum likelihood
estimators are consistent, asymptotically efficient, and a function of minimal sufficient
statistics.)Let §;, be a state indicator variable such that §,,. = 1 if consumer c is in
state S; at time T ; and in state S, at time 7, and §,c —-Ootherwxse Let {M }, be the
i — jth element of matnx M. Thcn the general log-hkehhood function, L,, for our
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model is:

= log[ I;I ICI I {exp(zw,Xm,tn)}%}_ %)

! y

If we define ¢, = {¢|8,,. = 1} then L, can be simplified to be:
y yne

Lo—"'z 2 > log{exp(sz nc[t)}y‘ (10

7o(1 ) ceCyy

The maximum likelthood estimators, w}, are then the w, that maximize L,. The
maximization is unconstrained’ since the definition of x, assures that 4, is a
differential matrix (rows sum to zero) hence exp (4,.2,) is a stochastic matnx (rows
sum to one). If X, , were a scalar rather than a matrix we could simplify (10) further,
but exp(M,)*exp(M,) # exp(M, + M,) for matrices unless M, and M, commute and
[I.{M},# {I].M}, for matrices (Aleksandrov, et al, [3, p. 93]).

Maximization of L, is not yet computationally feasible without further simplifica-
tion. For example, a gradient search algorithm would require N - C exponentiations of
a large matrix for every iteration. [N - C = (number of time periods)*(number of
consumers in sample)]. Thus, while general maximum likelihood estimators exist in
theory, we require simplification for practical solutions. What follows are three
potentially practical maximum likelihood solutions, each successively less restrictive.

Case 1: Homogeneous process. As indicated in §2, many of the stochastic models
have described consumer behavior quite well with homogeneous processes, which in
our case is X, ;, = X,, for all c. Furthermore, Givon and Horsky [35] present theoretical
arguments that in many cases a homogeneous process is a good approximation to a
heterogeneous process. Similar results may hold for a disaggregate process. If X, is
homogeneous then equation 10 can be simplified and each iteration of the gradient
search algorithm requires at most N+ S§? matrix exponentiations where S is the
number of states. If the Givon-Horsky conditions apply to disaggregate processes, we
will show such processes can be approximated with a least squares solution.

Case 2: Macro-flow analysis. In 1970, Urban [108] introduced the concept of
macro-flow to deal with the infeasibility of implementing the micro-analytic models of
Amstutz [4] and Herniter and Cook [47]. We face a similar problem. In macro-flow
analysis we represent the population as a composite process. (This is not an assump-
tion of homogeneity but rather a representative approximation of consumer response
as an aggregation of individuals with varying explanatory variables.) Urban shows
empirically it is indeed a good approximation for many test market analyses.

For sufficiently small Az,, the probability that consumer ¢ flows from S, to S, is
a,,At,. If we have a variety of consumers in state §;, then for very small As, the
probability that one consumer flows from §; to S; is 3 .a;;,.AZ,. But we are interested
in the number of consumers flowing from S, to Sj thus we represent the process as C,,
consumers with flow rates, r;, = (1/C,)X .4;,At,. (C,, =number of consumers in
state S; at the beginning of observation period n.) Following the same derivation for
each consumer we get a representative process, R,, with state equation P,(1,)
= exp(R,1,). Since each independent consumer is now characterized by P,(z,), the
log-likelihood function, L,, for macro-flow analysis is given by

,= 2 > ,j,,log{ exp( > w,R,,,t,,) } an
G C)) ! i
>Technically, problems could occur if enough w, were sufficiently negative to force the a; <0forjsiln
such cases we would constrain the w;’s or a subset of the w,’s to be non-negative. However, we have yet to
see these problems in practice and thus leave this issue to future research.
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where C;, is the number of consumers flowing from s, to s, in ¢,,
nl = (1/ 2 nel>
cec,,,

and ¢, = {c|S(T,_;)=1}. Note that L, reduces to the homogeneous case if X
= X,, for all c. Again L, requires at most N - §? matrix exponentiations for each
iteration and we will show it can be approximated with a least squares solution. See
appendix for gradient search procedure and equations. The empirical examples in §8
use the macro-flow analysis.

Case 3: Intermediate analysis. Once we have defined the macro-flow analysis, it is
straightforward to extend the analysis to mutually exclusive and collectively exhaustive
segments. Thus, depending on computer resources and data resources, the analyst can
choose any level of intermediate analysis. If each consumer is a segment by himself
then we have (10), if we group all consumers into one segment then we have (11). The
consumer-segment likelihood function, L,, is the same as (11) except that we subscript

Cjns and R, by s to indicate segment s.

=>>> Umlog{exp(Zw,Rn,:t,,)} . (12)

s (i) ! y
Thus, in principle, we can obtain estimates of w, for homogeneous, macro-flow, and
disaggregate processes. But, practically, the maximum-likelihood estimates are difficult
to obtain without specialized computer software.

Least Squares Approximation

Because case | and case 2 are specializations of case 3 we deal with the segmented
analysis. Since the optimization is unconstrained we maximize equation 12 by setting
0L;/3w, = 0 for all w, where:

"o = Ca ns ikn 13

aw[ g Z (123) v % tenls Ppu'(tn) ( )
See appendix for algebra. We show in the appendix that if p,,(%,) = pyn = Cyns/ Cins
then the expression in (13) vanishes and we have achieved at least a local maximum.
(The second order conditions, negative definite Hessian, are given in the appendix.)
Thus a good approximation to the maximum likelihood solution is:

exp(z W, R, ,,) ~ P, forallnands (14)

where P, is the matrix with elements equal to the observed frequencies, Cy;,,/ Cin

However, (14) is still a highly nonlinear set of equations. To simplify (14) we use the
special eigenstructure properties of exp(A). Let A, be the diagonal matrix of eigenval-
ues for P, and let E,, be the corresponding eigenvectors. Let [logA ] be a diagonal
matrix wnh elements eq_ual to the logarithms of the elgenvalues

If the elements of A, are not positive then [logA,,] has imaginary components
(Hildebrand [49, pp. 514—516]) A sufficient condition for the elements of A to be
positive is that P be positive definite, but in general a stochastic matrix, P, s 1S TIOt
necessanly posmve definite. A necessary condition for P to be positive definite is that
Pins t Pijns > Pins + Pjins for all i and j,i#j. Empmcally this will occur when the

SAs before, we cither use the Jordan canonical form or the perturbation theory for A when the
eigenvectors of P are not independent. It is easy to show that a Jordan canonical form also exists for
flog A,,]. Fortunately, the need for the Jordan form “tends to occur with a frequency near zero” (Singer and

Spilerman {102, p. 28)).



468 JOHN R. HAUSER AND KENNETH J. WISNIEWSKI

diagonal elements are relatively large (e.g., p;; + p,, > | for the two states). Thus if we
select the interval of measurement, ¢,, to be sufficiently short, the matrix, [log A, ], will
have only real components. This condition makes intuitive sense since we expect that it
would be easier to determine the dynamic effects of the control variables if we make
observations of short enough duration to observe those effects. For example, if, on
average, consumers purchase analgesics once per month, 7, should not be significantly
larger than a month. Yearly measurements would miss the purchase dynamics. For
alternative necessary conditions and for perturbation techniques to deal with violations
in the necessary conditions see Singer and Spilerman [102, p. 11].

We further investigate this phenomena with the simulations in §7. The simulation
results show that the estimation is still feasible when ¢, is large enough to produce
imaginary elements in [log A,,], however, the mean absolute errors of the estimates of
w, increase for large 7,. Thus the positive definite conditions provide guidelines for
selecting the periods of observation. However, the model still applies (but with greater
estimation error) when P, is not positive definite.

To simplify (14), let U be a matrix defined such that exp(U,,) = P Note that
exp[log A,,] = A, because both are diagonal matrices. Reduce P to its diagonal form
(Noble [95, Theorem 11.3]), ie, P =EAE;". Combmxng these results we get
exp(U,) = E exp[log A,,S]E = P Athans and Falb [6, pp. 132-138] show that e
and M have the same eigenvectors and functionally related eigenvalues, thus U,
= E, [logA,)E,; . Finally recognizing that U, = 3 w,R,,t, we substitute in (14) to
obtain:

S wRyt, ~ E[logA, ES" foralln,s. (15)

(15) is the computational result we seek. The right hand side of equation 15 is simply a
transformation of the frequency data. Intuitively, it is useful to think of the right hand
side as a numerical estimate of the flow rates, 4. Efficient computer algorithms exist
for such eigenstructure transformations (e.g., IMSL [56]). The left hand side is linear in
the unknown parameters. Thus a least squares regression solution to (15) will approxi-
mate the maximum likelihood estimates, w*. As illustrated in Table 3, for one time
period and one segment, (15) is a matrix equation which represents & - N - § 2 scalar
equations where § is the number of segments. Since the shadow state and diagonal
flows are functions of the other (independent) flows, the regression is run across the
$ + N+ 8°%S°— 1) equations that are independent where S? is the number of real (not
shadow) states. Of course, if a flow is defined as zero (e.g., purchase new product to
unaware of new product) it is not included in the regression. §7 provides simulation

TABLE 3
Schematic Representation of the Regression Equations Implied by (15) for One Time Period
and One Consumer Segment
-5 2 3
0o -1 1 <.
Wl M . + Wz + -+ WL
: Xons Xins
4 2 ... -6
LOG A, x5 0 .
=(1/T)| Ens LOG Azys Eys
0 .
-084 032 036 --- 0.15 . .
0 -21 IF L1 E, = EIGENVECTORS OF Py

: As = JTH EIGENVALUE OF Py
0.6 1.2 0.9 cee =27




CONSUMER RESPONSE TO MARKETING STRATEGIES 469

results testing the accuracy of the least squares approximation for one consumer
model.

At this point we digress to better understand (15) by considering a two-state process.
For a one segment, two-state process, (15) becomes

;WI"u{n’n = —(Pr2n/Pi2n * P21n)108(1 = P12 — Pa1n)s

2“"1’211’,’" = —(Pain/Pr2n + P21n)108(1 = fr2, — P211)

which gives us 2N equations to estimate L parameters. Note also that the right hand
side is real iff p,, + p,,, <1. With (5§) we can show that p,,, + p,,,=1-
exp[ —(ayy, + a3;,)1,). Thus as ¢, gets large, p,, + pyy, =1 and log(l — py, = p1n)
- — 0.

Interpreting these equations intuitively we see that estimates can be obtained as long
as the process has_not_reached equilibrium (, > o). Indeed, E, [logA, 1E;" (as
opposed to E [logA ]E -1y is unique for finite #,. Since the p, Pyn are estimates of the
Pyn> the above equations indicate that as the process nears equlhbrlum (t1,— o0) and
(1 = p13, = P21,) 0, the right hand side, log(1 — ,,, — p4,,), of the two-state process
becomes extremely sensitive to errors in j,,. We extend these results to § 0 states, to
show that (15) will give reasonable estimates of the w; if:

(1) there are enough consumers in each segment so that g, is a good estimate of p, ,,
and

(2) the observation period, ¢,, is short relative to the time it takes the process to
reach equilibrium.

These conditions provide useful guidelines to the model builder. While there is no
conceptual limit on the number of explanatory variables, the complexity of the
diffusion process, nonstationarity, and consumer segmentation, the regression format
shows explicitly what sample sizes are required to identify these effects. First recognize
that the dependent measure is a transformation of pj;,. Thus, if C 0is the average
number of observations per cell to get a “reasonable” estimate of a probability,” then
the sample must be at least as large as C° times the number of independent p, Pyjns’s- This
implies the number of observations per behavioral state per time period must be greater
than C°-§ - SO Finally, the number of independent variables, L, must be less than
the number of independent equations, S « N - §%+(S% - 1).

Summary of Estimation

This section has derived a battery of estimation procedures for the general continu-
ous time Markov process which, in our case, represents semi-Markov consumer models
with negative exponential or Erlang holding times. The three maximum-likelihood
procedures, which vary in their degree of consumer aggregation, provide the theoreti-
cal structure for estimation. While they are thoeretically feasible, we know of no
existing computer software that can readily implement these procedures. (A gradient
search maximum-likelihood algorithm is sketched in the appendix.)

The key result of this section, (15), shows that there is a simple approximation to the
general maximum likelihood estimators. (15) provides a number of practical advan-
tages. Besides making estimations feasible for large problems (many behavioral states,
explanatory variables, time periods, and segments) it enables the model builder to

"For example, if we have C® observations per cell then the standard deviation of the probability in the

i-jth cell is 1/ Pyl = Pyas)/ C® . Thus a larger C?° gives less sampling error. §7 investigates how large C°
should be.
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make explicit tradeoffs among (1) the complexity of the behavioral process (S 9, (2)
the number of managerial variables (L), (3) the number of observation periods (N), (4)
the length of the observation periods (t,), (5) the number of consumer segments (3),
and (6) sample size.

5. Statistics of Managerial Interest

Once the w,/’s are estimated, the stochastic consumer response process is fully
specified. A marketing scientist can use the w,’s to determine A4,,, and hence P,.(¢,), for
any set of levels of the marketing variables (X,,,’s). For example, Table 4 provides an
abridged process specification for 10 explanatory variable matrices (X,,’s) and an
example set of levels for the managerial control variables (the new product’s advertis-
ing, preference, and promotional deals) for a five-state process consisting of aware of
new product (4), intent to purchase new product (/), purchase of new product (NP),
purchase product 1 (P1), and purchase product 2 (P2). Assume Erlang (p, = 2) flows
out of NP, P1, and P2 and Poisson (p, = 1) flows our of 4 and /.

The manager is likely to be interested in further descriptions of the process such as
expected sales, market share, cumulative trial, cumulative awareness, and purchases on
deal. While such statistics can be obtained from a stochastic process by Monte Carlo
simulation, e.g., see Urban [108], it is possible by exploiting the matrix properties of
the continuous time Markov model to provide closed form solutions for these statistics.

TABLE 4
Example Process Specification and Levels of the Marketing Variables over 10 Periods
PROCESS SPECIFICATION
Advertising Flows Elements in X, matrix
w; =0.1 Product — Product Relative Adv. Index
w, =04 Into Awareness (1 - B,_Dag
wy =02 Awareness — Intent
Intent - Purchase ay
Preference
wy =04 Product to Product Relative Preference Index
ws = 0.3 Out of Awareness P/ Po
we =03 Out of Intent P,/ Po
Promotion (e.g., deals) '
wy=02 Out of Product | dy
wg =02 Out of Product 2 dy
Word of Mouth
wg = 0.1 Into Awareness Bu
Active Search by Consumers
wio =04 Into Awareness (1 = B,_ )P/ ps

LEVELS OF THE MARKETING MIX VARIABLES*
n= 1 2 3 4 ] 6 7 8 9 10

New Product Advertising (ag) 005 0.10 020 030 040 050 040 030 030 030
Product 1 Advertising (a;) 072 068 060 053 045 038 045 053 053 053
Product 2 Advertising (ay) 023 022 020 0.17 015 012 015 017 0.7 0.17
Pre-trial Preference (py) 040 040 040 040 040 040 040 040 040 040
Post-trial Preference (py 030 030 030 030 030 030 030 030 030 030
Product 1 Preference (py) 049 049 049 049 049 049 049 049 049 049
Product 2 Preference (p 021 021 021 021 021 021 021 021 021 021
Deal Level (dg) 1 i 1 0 0 0 05 05 0 0

*Units are illustrative and hence arbitrary B,_, = cumulative trial at time 7,,_;.
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FiGure 3. Flow Matrix for Calculating Penetration.

The advantage of closed form solutions is that they simplify the computational
demands of the model.

We derive formulas for three types of statistics: (1) cumulative statistics for one time
only events such as trial, (2) rate statistics for repeated events such as sales, and (3)
equilibrium statistics. For simplicity of exposition we drop the subscript 5. Aggregation
of these statistics over segments requires summation (averaging) over segments (s).

Penetration and Other Cumulative Statistics

Penetration, the percent of consumers purchasing a given product at least once in
time 7,, is an important output from stochastic models. Because the process is
stochastic, a greater percentage of consumers actually purchase a product at least once
than would be suggested by market share. To compute penetration we redefine state S,
as an absorbing state (trapping state) such that g, = 1 and g, = 0 for j + i. In other
words, every consumer who flows into state S; stays there. If §; corresponds to
purchasing product j then, for the trapping process, penetration is simply the weighted
sum of the probabilities that the consumer flows from §, to §,.

If we define 4, such that ,a, =a, for i# k and ,a, =0 (see Figure 3) then
penetration is given by:

penetration (into state S,) = > 7,(T,_ 1) Pyn (%) (16)

where
1Pa(t) = exp(14,1,)

and 7,(T,_,) is the probability that the consumer is in state S, at time 7,_,. (16) is
used recursively when calculating penetration over more than one observation period.
Le., 7(T,) =3 p,(t,)7(T,_,), recursively back to n—1=0. The starting states,
7,(T,), must be based on direct measurement or assumption.

Cumulative trial, cumulative awareness, cumulative penetration of a deal, cumula-
tive use of a free sample, and other cumulative statistics are all computed by suitably
defining the absorbing states. For example, if we want to compute cumulative
awareness for the process in Figure 1, we make “awareness” an absorbing state. If we
want to separate awareness due to advertising and promotion from awareness due to
diffusion phenomena (word of mouth and active search) we define two (or more)
absorbing states such that flows due to advertising go into one awareness state and
flows due to other variables go into the other awareness state. Figure 4 displays
cumulative awareness computed in this manner for the example process in Table 4.

Sales (Mean and Variance) and Other Rate Statistics

To determine the number of purchases, M,, of product j we determine the number
of times the consumer flows into state S, in time #,. Let f,(m;,1,) be the probability
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FiGure 4. Cumulative Awareness (for the Process in Table 4).
that the consumer has made m, purchases in time ¢, and is in state S, given he started
in state S, at the beginning of the observation period. L.e.:
fim(m,, 1,) = Prob{m, purchases, S;(T,) = 1|S(T,_,) = 1}. 17

Following the same type of reasoning used to derive (2), we get:

f;ln(mj’ In + Atn) = (1 - kzlalknAtn)ﬁln('n]a t") + kzlfik"('nj, tn)aklnAtm 1#=]’
* 5

fon(my.t, + A1) = (l -> a0, — al(,)-,,At")ﬁ],,(mj,tn)

kg
+ D fan(m = Lt)ay, A, + f(m — 1,8,)a) AL, (18)
k#j

We redefine matrices to simplify (18) Let ,A, be defined such that ,aq,, = g, for
I j, ya, =0 for k #j, ,a,=a, — a,. See anure 5. Let 34, be defined such that
3y —0 for I1#j, 3a,, = akj,, for k;& ], 34, = a;,. See Figure 5. Note that 4,
M.+

With these definitions we can rewrite (18) in matrix form:
d
ZI?F"(mf’t”) = F,,(mj,t,,)[zA,,] + F,(m; — l,tn)[3A,,]. (19)

To calculate the mean and variance of sales we first determine the moment generating
function, F, n(2,1,), for F (m,,1,) by taking the discrete geometric transform of (19).

1 = - 7
RS R
{ \ 1o
| o | %n |

%tn ’0 -a° :oktn 0 : o 1 O
: i i | %in :
I o b
. a

I f | kin ;
| : | oy

- R - | I r -
jth column jth column

FiGURE 5. Partition of the Flow Matrix to Calculate Sales.
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This gives us:
;1‘-1; F(z.1) = F(2,0)[24, + 2(4,) ] (20)

The solution to (20) with boundary conditions, F,(z,0) = I, is:
F",,(z,t,,) = exp[zA,, + z(3A,,)]. (2h

Those readers who are familiar with Howard’s [53], [55, pp. 604-611] transform
analysis for counting transitions will recognize Figure 5 as a matrix formulation of
Howard’s flow graph procedure for “tagging”. However the closed form solution in
(21) provides computational simplifications over the flow graph analysis since we can
proceed from (21) to determine direct formulae for the mean and variance of sales.

We use the properties of the moment generating function to determine the mean and
variance of conditioned sales. Let €,,(m,,1,) be the expected value of sales given that
the consumer began in state §; and is in state S, at time ¢,, let v,,(m,?,) be the
corresponding variance, then in matrix notation:

E(m,1,) = L (z,0)],, = [exp(Anty) | [3400s]

dz
or
En(”{/”ﬂ) = Pn(tn)[3Antn]' (22)
A similar derivation gives:
Va(m,t,) = Po(1){34ats + 6 4a5,)[1 = Po(1)]'}- (23)

Finally we recognize that expected sales is simply the weighted sum of conditional
sales, thus:

Expected sales = > 7( T, _ ,){ > eun(m.t,) }
7 X

or using (22):
Expected sales = ) > %,( T, - 1)Pin (1) 8ignl, (24)
Tk

where 3% means we use al‘,)-,, in the sum. The variance in sales can be computed by
expanding (23) in a similar manner.

(24) is intuitive and particularly simple to use. Given 4,, (24) is a function of known
values which lends itself readily to computation via an electronic computer. Further-
more since it is explicitly dependent on ¢,, we can plot the growth (or decline) in
expected sales over time. Finally we use (24) recursively if we want expected sales over
a number of observation periods.

For example, the solid curve in Figure 6 is a plot of expected sales for the example
process in Table 4. The downturn in periods 4 and 9 result from the retraction of a
deal in those periods. To gain further insight into the effect of marketing variables we
used (24) to compute what expected sales would be without any dealing (dotted curve)
and without any advertising (dashed curve). The marginal impact of dealing (or
advertising) can then be computed by subtracting the dotted curve (or dashed curve)
from total sales.

Other statistics such as the number of purchases of a new product (including trial)
and the number of purchases of a product being sold with a reduced price can be
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FiGure 6. Expected Sales per Million Customers (for the Process in Table 4).

computed by suitably partitioning the 4, matrix. The dynamics of market share are
obtained by computing the expected sales for each product in the market.

Equilibrium Statistics

In test markets and new product launches we are concerned with the transient
nature of consumer response, but in the long run we are concerned with market share
and penetration under equilibrium conditions. We can calculate equilibrium condi-
tions by allowing ¢, — oo in the appropriate equations. For simplicity let A be the long
run managerial actions. (Drop the subscript 7.)

Let +=0 be the time at which the managerial actions stablize. Let #, be the
equilibrium probability that the consumer is in state S,. Then if the process is ergodic,
m, = lim,_, . p, (¢) for all i (Howard, [55]). In other words, the equilibrium probabili-
ties are equal to any row of lim,_, exp(Ar). (If, in equilibrium, the transient states such
as awareness and trial are empty, we deal with the ergodic subchain.) Thus one way to
determine #, is to use the non-decaying portion of p,(f) corresponding to the zero
eigenvalue of 4. These probabilities are the same for all i. A simpler method, derived
by Howard [55], is to solve the matrix equation []'4 = 0 subject to >, 7, = 1. Using
these results in (24) yields:

Expected equilibrium sales rate = >’ m,a, = 7,(a] — a;) (25)
P

where the right hand side comes from using [['4 = 0. Thus the equilibrium market
share of product j is given by

Equilibrium market share = 7(a) — a,)/ > m (adk — o) (26)
x

which is both intuitive and particularly simple to implement since the =, comes from

an algebraic equation rather than matrix exponentiation.

The penetration rate under equilibrium conditions can be calculated in a similar
manner using the limiting values for 4.

6. Summary of Theoretical Development

Many innovative marketing science models have been developed over the past 20
years to model consumer response. Stochastic models, which have their roots in
empirical data, have been quite successful in describing consumer response and more
recently have been modified to include managerial control variables. Diffusion models
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have a good record of predicting consumer response and recently, they too have been
extended to include control variables. Test market and new product models have
proven valuable in diagnosing consumer response and suggesting managerial actions.
The published evidence in these four research streams (as reviewed in §2) is extensive.

The semi-Markov theory developed in §3 provides an integrative framework for
essential elements from these four research streams. For example, the Jeuland, Bass
and Wright [57] model is a semi-Markov process where each behavioral state repre-
sents ‘last purchase was product j.” Transitions are multinomial (g, = g, for all /) and
interpurchase times are Erlang. §§3, 4, and 5 provide a practical framework to extend
the Jeuland-Bass-Wright model to include diffusion states and explanatory variables.
The Jones and Zufryden [61] model is a homogeneous two-state semi-Markov process
where g; is determined by a formula similar to (7). Transitions are multinomial and
interpurchase times Erlang. §§3, 4, and 5 provide a practical framework to extend the
Jones-Zufryden model to include multiple products, diffusion states, and interpurchase
times dependent on explanatory variables. Similarly §§3, 4, and 5 provide a theoretical
framework and closed form solutions for Urban’s [108] model and practical estimation
procedures for the Midgley {84] and Balachandran and Deshmukh [7] models.

But generalization alone is not sufficient. A theory must be practical in order to be
used. While many of our derivations are algebraically tedious, the end results (estima-
tion and managerial statistics) are easy to implement with standard computer pack-
ages. The estimation derived in §4 is feasible because it relies solely on eigenstructure
routines to transform the data and on regression to obtain the unknown parameters.
Regression is well studied, easy to implement, and readily lends itself to generaliza-
tions. The diagnostic use of the model is practical because all cumulative, rate, and
equilibrium statistics (such as penetration, sales, and equilibrium share) are given by
closed-form formulae that computationally require, at most, matrix manipulation and
eigenstructure transforms.

Finally the semi-Markov model is a flexible methodology for representing consumer
response. While, in theory, the model can handle highly complex diffusion processes,
non-stationarity, disaggregate data, and any number of managerial controls, the
estimation regression equation makes explicit the tradeoffs among these effects and
sample size so that the marketing scientist can customize the model to his application.
We envision the following typical modeling scenario: (1) The modeler first selects the
consumer states appropriate for modeling the phenomena he needs to model. More
states mean more detail but larger samples. Fewer states mean less detail but greater
simplicity for evolutionary development. (2) The modeler next determines what vari-
ables the manager can control, how these variables impact flows, and formulates the
X,, matrices. (3) The needed sample size and observation periods are determined from
the theoretical guidelines. Data is collected and regression determines the w)’s. (4)
Using the formulae in section 5, the modeler computes the cumulative, rate, and
equilibrium statistics for various levels of the managerial control variables. And (5)
together the manager and modeler search alternative combinations of the control
variables until a “best” set of levels are found. At present step 5 is a manual search
aided by the model’s diagnostic information. Future research may provide optimiza-
tion algorithms to automate step 5 and value of information guidelines to allow
iteration through steps 1, 2, and 3. Steps 1 through 4 are illustrated with Tables 1-4
and Figures 1, 2 and 4. Other application scenarios might begin with data limitations,
the control variables or the consumer process. For example, one might use F-tests
based on the regression approximation to investigate whether certain consumer states
or control variables add significant explanatory power to the model.

We feel the semi-Markov analysis addresses many important problems. Limitations,
unsolved problems and future research are discussed in §9, but first we address the
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questions: “How well does the least squares approximation recover known data? And,
what are the effects of sample size, observation period length, and collinearity?

7. Sample Size, Observation Period, and Collinearity—Simulation Analysis

The literature provides good evidence for the basic modelling assumption—a nega-
tive exponential or Erlang semi-Markov stochastic process. However, any specific
model (set of consumer states and structure for the X,, matrices) must be empirically
validated before it is used to describe managerial actions.

An empirical test confounds a number of errors including specification error,?
sampling error and estimation error. Before proceeding with an empirical test, we use
Monte Carlo simulation to investigate sampling and estimation error without con-
founding it with specification error. We do this by investigating whether or not the
least squares approximation can recover a known model.

We use the illustrative model and example parameters in Table 4 as the known
model. If the least squares approximation cannot recover this model, it is unlikely to
recover more complex models. If the approximation does recover this model, then our
faith in the estimation is increased and the simulation results suggest a first set of
guidelines for more complex models. Generalizations beyond the specific results
should be viewed with caution and taken as propositions not “theorems”.

The accuracy of the approximation will depend upon sample size, observation
period and collinearity. The theory suggests the required sample per behavioral state
per time period should be larger than C®-§ - §°, that the number of control variables
should be less than § - N+ S%S°— 1), and that the estimation works best if the
observation period is short compared to the time it takes the process to reach
equilibrium. Simulation investigates (1) how large is C°, (2) how short is short enough,
and (3) how badly does the estimation degrade if “long” observation periods are used.
Finally all linear systems are subject to problems of multicollinearity -among the
explanatory variables. Simulation provides a rough guideline to compare errors due to
collinearity to errors due to sampling and long observation periods.

Simulation Design

For our analyses we chose a 5 X 3 X 2 design. The 5 levels of sample size include
small (50), moderate (100), large (500), very large (1000), and asymptotic (o0). All
numbers are per period per behavioral state. The 3 levels of observation period include
short relative to purchase cycle (7, + pux » Pox + Pug fOr k # j), near the purchase
cycle (p,; + Pk = P + Pug)» and long relative to the purchase cycle ( Pryj + Prick
< Pk + Puy)- With the parameters in Table 4, these levels correspond to 7, = 0.25, 1.0,
and 3.0 respectively. Finally, the 2 levels of collinearity are (1) the full process of 10
variables (high collinear case) and (2) the same process with two collinear variables
deleted (low collinear case).’

In empirical applications there are at least four types of error: specification error,
measurement error, sampling error, and error due to the fact that the least squares
solution approximates the maximum likelihood solution. We call the last error
“estimation error”. We chose simulation to avoid confounds with specification error
and because specification error for regression is well studied. (Theil [107], Green [38],
and Morrison [88]). Measurement error for regression is also well studied and there are
a variety of analytic results available. See Theil [107, pp. 607-613]. Here we make the

8By specification error we mean errors introduced because the selection of consumer states and control
variables is only an approximation to the “real world”. For a discussion of error types in probabilistic
modeling see Koppelman [66}.

In the collinear case cor(X,,, X,,) = 0.676, cor(X,,, X15,) = 0.604. In the independent case X, and X,
are deleted. Similar results were obtained when other pairs were deleted.
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standard assumption of general linear models (Green [38, p. 61] that the X, ’s are
random variables but “once a particular realization of X, occurs, for some observa-
tion, that realization is held constant and the dependent measure is observed condi-
tionally on that fixed realization.” Thus we are most interested in sampling error and
estimation error. We introduce sampling error by using a random number generator
(SPURT [21]) with the known probabilities, P,, to create a stochastic process from
which a sample is drawn. Estimation error is the error inherent in the approximation.
Note that sampling error disappears for asymptotic (c0) sample sizes. lLe., f’; =P,

For each level of sample size, observation period, and collinearity we (1) use the
X,’s and the known w/’s to create a “true” P,, (2) use a random number generator to
create C,, observations from P, for each starting state S, and time period n, (3) use the
regression across states and time periods to estimate the w,’s and (4) compare the
process resulting from the w/’s to that resulting from the known w,’s. For ease of
exposition we report mean absolute error (MAE) in the w,’s and adjusted R? for the
regression. Other statistics such as the correlation between the estimated P, (or 4,) and
the “true” P, (or A,) follow the same pattern as MAE and R2.

Note that for our process, S = 1, §®=5, N = 10, and L = 8 or 10. Thus the degrees
of freedom in the regression are more than sufficient to identify L parameters. C° will
be approximately one-fifth (1/S - §°=1/5) of the sample size required to obtain
reasonable estimates.

Simulation Results

The basic simulation results are shown in Table 5. To help visualize these results we
have plotted the marginal values (main effects plus grand mean) of R? and MAE for
each of the treatment levels. See Figure 7. All ANOVA main effects are significant at
the 0.01 level except observation time for MAE which has a significance level of 0.12.
(Very short (z, =0.25) observation periods cause a qualitative upswing in MAE
[downswing in R?] for the low collinear case, but the ANOVA suggests this may be
random error. It does not occur for the high collinear case.)

It appears from Table 5, that estimation error is manageable, especially for large
samples (C,, > 500), short observation periods (7, < 1.0), and low collinearity, i.e.,
R?=0.95 and MAE < 0.20. Furthermore, it appears that samples should be at least
100 consumers to get reasonable goodness of fit measures for a 5-state process. If these

TABLE §
Simulation Results

ADJUSTED R?

Con
&'501005001000 wxsomosoomooeo

025 059 080 094 096 1.00 025 068 080 095 097 1.00

1.0 077 087 098 098 100 10 029 053 088 095 1.00

30 038 061 0388 077 100 30 001 009 033 009 1.00
(low collinearity) (high collinearity)

MEAN ABSOLUTE ERROR

G Cin
£\ 50 100. 500 1000 oo Asomo 500 1000 oo

025 1.11 052 023 024 000 025 181 051 094 0.14 0.00
1.0 103 022 0.19 014 000 10 249 156 1.03 075 001
30 078 095 056 022 000 3.0 637 094 147 168 0.50
(low collinearity) (high collinearity)
Key: c¢,, = sample size (c0 means no sampling error)
t, = observation period
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FIGURE 7. Marginal Effects of Sample Size, Observation Period, and Collinearity (R? is Adjusted R?,
MAE is the Mean Absolute Error of the Estimates).

results are generalizable then the theoretical sample size guidelines could be used with
Cc%=20.

Overall, the simulation results are encouraging. They suggest that under the right
conditions, the least squares estimation can recover known parameters. However, the
simulation results also suggest caution for small samples, long observation periods, and
conditions of high collinearity. Finally, it is interesting to note that each simulation run
(including data generation, eigenstructure manipulation and regression) for the 5-state,
10-time period model costs less than $5 on a CDC-6600 at $900 per cpu hour.

8. Empirical Applications

The methodology has now been applied twice, once to the launch of a new
transportation service (Hauser and Wisniewski [43]) and once to the analysis of
purchases of ground coffee (Lange [69]). We describe briefly the former application.

In October 1979 the Village of Schaumburg, Ill. launched a new demand-actuated
transportation service, DART, in a community that was previously served only by
automobile and conventional bus. To monitor this service we mailed out randomly 16
waves of periodic surveys averaging 625 surveys per wave (response rate 30.4%) This
provided the dependent measures and explanatory variables to test the Markov
methodology. In addition, we monitored dispatch records for the survey periods to
obtain actual ridership. This data is used to test the predictive and external validity of
the model based on the methodology.

The basic model consisted of 5 behavioral states: (1) unaware of DART and aware
of DART but last mode used was (2) car as a driver, (3) car as a passenger, (4)
conventional bus, and (5) DART. The explanatory variables were direct mail (# of
pieces), advertising (probabilistic sum of readership times insertions), word of mouth
(cumulative trial by the beginning of the observation period), availability (self-
reported), budget allocation (self-reported), inertia (a dummy variable for DART),
preference, and a constant. Preference was derived from a submodel, a logit model,
that computed the probability of a mode being preferred. The explanatory variables in
the submodel were measured perceptions of “convenience”, “case of use”, “safety”
and “normative beliefs”. All estimation data were obtained from the surveys after
corrections for recall bias.

The model was estimated using data from the first 8 time periods with the regression
approximation yielding an adjusted R? of 0.82. The significant variables were direct
mail /advertising, preference, availability, and the constant.
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FiGURE 8. Predictive Test for Dynamic Consumer Model Based on Seven Months of DART Service in
Schaumburg, Il

To test the predictive validity of the model we forecasted for the estimation period
(first 8 time periods totalling 11 weeks) and for the next 7 time periods totalling 19
weeks. The explanatory variables were obtained from the survey but the model, i.e.,
the w,’s, were based only on the estimation period. The results are shown in Figure 8.

Note that the dependent variables are transition probabilities in the first 11 weeks,
(15), but the predictions are structural outputs of the model in the next 19 weeks, (24).
Furthermore, the explanatory measures are taken from surveys, with all their potential
biases, but the predictions are compared to actual ridership as measured by dispatch
records.

Based on Figure 8 we conclude that the empirical application of a model based on
the methodology is encouraging. The correlation between predicted and actual ri-
dership is 0.94 in the estimation period and 0.83 in the prediction period although
there is a slight upward bias in the prediction period. Many tradeoffs were made in the
empirical application and much was learned about the measurements used to imple-
ment the methodology. The interested reader is referred to Hauser and Wisniewski
[43].

In another application Lange [69] used automated supermarket checkout data (UPC
data) to observe last brand and size (of coffee) purchased. His explanatory variables
were price, price-off deal, promotion, inventory, and whether the brand was in or out
of stock. Adjusted R? was lower, 0.32, but he obtained predictions of transition
probabilities which appear promising.

Together these applications indicate the potential empirical utility of the methodol-

ogy.
9. Conclusions, Limitations and Future Work

The emphasis of this paper is to provide a practical, flexible and integrative
structure for modeling dynamic consumer response to marketing strategies. Our main
analytic contribution is (1) a practical estimation procedure for a general continuous
time Markov process with flow rates linearly dependent on explanatory variables, (2)
an ability to estimate the parameters of the continuous time process by observing the
process only at discrete intervals, (3) closed form expressions for statistics of manage-
rial interest, including the dynamics of the system, and (4) guidelines for tradeoffs
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among process complexity, managerial controls, observation period, segmentation, and
sample size. In addition, our simulation results suggest quantitatively how estimation
error depends on sample size, length of observation period and collinearity.

Limitations

We feel that the semi-Markov interpretation holds many advantages for implement-
ing marketing science consumer models. But to achieve these advantages we have had
to make a number of tradeoffs in deriving our equations.

We have already discussed the limitations that the complexity of the process is
limited by sample size and that the observation periods must be short enough to
capture the dynamics of the system. In addition, we limit the process to either negative
exponential or Erlang interpurchase distributions and require a priori specification of
the order of the Erlang process. These are not major restrictions since the Erlang
family is quite flexible and the order of the Erlang often can be identified empirically
through a priori testing or iterative estimation.

A practical limitation is the segmented macro-flow approximation to the fully
disaggregate process. Segmented macro-flow is not an assumption of homogeneity, but
neither is it a fully disaggregate process. Instead it is an approximation which is made
necessary by the need to group consumers together to obtain I‘;,ls for the regression
approximation. This assumption can be relaxed when full maximum-likelihood estima-
tion software is available.

Another limitation is the stationary Markov assumption between periods. In particu-
lar, between T,_, and T,, the explanatory variable matrix, X,, or R,, does not
depend on the evolution of the process since T, _,. For most variables this does not
matter. However for accumulated variables, such as word of mouth, this requires that
we use variables such as “cumulative trial at 7,,_,” throughout the period 7,,_, to 7,,.
Thus for accumulated variables we make the same “discrete” analog approximation
that Bass [9] and his colleagues make in their diffusion models. To date, empirical
evidence seems to support the discrete analog, but this assumption does represent an
area of caution in using our methodology to model diffusion processes.

Future Work

As we develop empirical experience with the semi-Markov methodology, we will be
able to identify priority areas for future research. Among these might be (1) relaxation
of the macro-flow assumption by developing practical computer software for full
maximum likelihood estimators of the w,, (2) incorporation of nonlinear regression in
(15), (3) simultaneous estimation of the w, and the p,, (4) investigation of the discrete
analog for diffusion processes, (5) generalizations beyond negative exponential or
Erlang purchase timing, and (6) modeling of heterogeneity with mixing distributions
on the parameters of the continuous time Markov process. See discussions by Morri-
son [90], Morrison and Schmittlein [93], Singer and Spilerman [103] and Zufryden
{111]. Some sample size considerations for heterogeneous processes are given in
Kalwani and Morrison [64]. One might investigate the need for mixing distributions by
simulating a heterogeneous process and analyzing it with segmented w;’s.

Appendix: Necessary and Sufficient Conditions for the
Maximum Likelihood Estimators

In this appendix we deal with intermediate level likelihood function, L, since the
other likelihood functions can be derived from L,. From the text we have:

Li=333 Cy’mlog{exp(gwlkmtn)}

n s (;', 1)

.

y
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Since the R, are differential matrices, the maximum likelihood estimates, w*, are
those (unconstrained) values that maximize L,.
Necessary Conditions ( First Order Conditions)

For w/* to maximize L, it is necessary that dL,/dw, = 0 for w, = w} for all /. Let W
be the vector of the w,’s. Then since p,,,(t,, W) = {exp(T w,R,,1,)},, we have:

9L, 1 d
_—= C,M(——-){—ex ( wR,,St,,)}
aw[ ; g (%) s Pyn.r(tn’W) dwl P EI: 1ot i
- 1 .
_;;(g)cym( p’]m(tn, W) ){R"lst" Pns(tn9 W)}y
zkrlknlstnpkjm(tm W) )
= Cos =0 27
R S @

for all / as necessary conditions.
While (27) (for all /) can be solved by gradient search procedures, it is clear that the
solution is difficult unless we have a good starting solution.

Approximate Solution (Starting Solution)
Suppose that p;, (¢,, W) = C;,,/ C,,,. Substituting in (27) we get:

6L3 zkr:knlstnck/m/ckm
—6;)7 B 2 Z 2 Cyns( C:jm/clm

N )]

= ; Z 2 qm[ 2 (rrknlstn ° Zjijm/Ckm )}
=223 Cm:[ Z’iknls]tn= 0 forany!/ (28)
n 5 i k

where we have used 3,C;,, = Cj,, to obtain the third expression and 3,7, =0 to

obtain the result.

Thus if we can select W such that p,, (1, W)= p,, = C,/C, we satisfy the
necessary condition for a maximum. Since in general this requires S +(S%?-N
equations for L unknowns we use the least squares solution derived in the text as a

starting solution.

Sufficient Conditions (Second Order Conditions)

The sufficient conditions for W* to be a maximum are that the matrix of second
partial derivatives be negative definite. (Negative definite Hessian.) Taking the partial
derivative of (27) with respect to w,, we obtain after suitable manipulation:

&L, 1 2
S = | =775 )
dw,bw,, ; 2 (;j) i’ ( Pins(Las W)

{; ;rikbuphjm(tn’ W)[rkhmnspym'(tn’ W) = FiimnsPins(tns W)] } 29)

The matrix of {9L,/3w,6w,,} must then be negative definite at W* for W* to be a

maximum.
For example, for two behavioral states, two control variables, one segment and one

time period, the Hessian, evaluated at p;(¢,, W) = pj;, is given bx (suppress the n and
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the s subscripts and the arguments, 7,, W):

2 2
Ciria Cyran Ciriainizz . G
K, Tk k K
. 12 21 12 21
Hessian = K R s
Cirinny , G, Cirin | Goran
+ +
kl2 kZl k12 k2]

where K = 2(p,, + py) — (p12 + p2))* — 1 and k;, = p,;(1 = p,). The proof is by expan-
sion of (29). Calculus shows that K <0 for all p,,, p,; €[0,1] and K=0 iff P is
singular. Furthermore it can be shown that the matrix multiplying K is positive definite
for all R, #R,. (The proof is by completing the square to show that the diagonal
elements and the determinant are positive.) Thus, for two behavioral states and two
controls the Hessian is negative semi-definite at p, = j, for all P, R,, R, and negative
definite for all nonsingular P. The extension to multiple segments, multiple time
periods, multiple behavioral states, and multiple control variables represents future
research. However, we have found that the Hessians in our simulations (§7) are
negative definite at the regression solutions.

Gradient Search Procedure

Let W" be the best solution after the hth iteration of the gradient search. Let W° be
the starting solution obtained from the least squares approximation. Let G" be the
vector of dL,/dw, evaluated at W". Then a gradient search procedure of step size A
and stopping rule & is: (1) Compute G* for W*. (2) Is |G*| < 82 If yes, go to step 3. If
no W"*'= W" + G*A and return to step 1. (3) Are the second order conditions
approximately satisfied? If yes, stop. If no, select another starting solution and return

to step 1.

Since W° approximates the necessary conditions and since the condition p;;, (¢,, W)
& P,ns 1S intuitive, we expect a gradient search procedure to converge rapidly. Even
without the true maximum likelihood estimates, w,*, we expect the least squares
approximation to be sufficient for many managerial needs, especially for large samples

and relatively short observation periods.'

10The authors wish to thank Steve Graves, John Little, Don Morrison, Al Silk and Glen Urban for their
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