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We examine how the premature death of eminent life scientists
alters the vitality of their fields. While the flow of articles by col-
laborators into affected fields decreases after the death of a star sci-
entist, the flow of articles by non-collaborators increases markedly.
This surge in contributions from outsiders draws upon a different
scientific corpus and is disproportionately likely to be highly cited.
While outsiders appear reluctant to challenge leadership within a
field when the star is alive, the loss of a luminary provides an op-
portunity for fields to evolve in new directions that advance the
frontier of knowledge.
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“A new scientific truth does not triumph by
convincing its opponents and making them

see the light, but rather because its

opponents eventually die, and a new
generation grows up that is familiar with it.”

Max Planck

Scientific Autobiography and Other Papers

Whether manna from heaven or the result of the purposeful application of
research and development, technological advances play a foundational role in all
modern theories of economic growth (Solow 1957, Romer 1990, Aghion and Howitt
1992). Only in the latter part of the nineteenth century, however, did techno-
logical progress start to systematically build upon scientific foundations (Mokyr
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1992, 2002). Economists—in contrast to philosophers, historians, and sociologists
(Kuhn 1962, Shapin 1996, Merton 1973)—have devoted surprisingly little effort
to understanding the processes and institutions that shape the evolution of sci-
ence.1 How do researchers identify problems worthy of study and choose among
potential approaches to investigate them?

Presumably these choices are driven by a quest for recognition and scientific
glory, but the view that scientific advances are the result of a pure competition
of ideas—one where the highest quality insights inevitably emerge as victori-
ous—has long been considered a Panglossian but useful foil (Kuhn 1962; Akerlof
and Michaillat 2017). Indeed, the provocative quote from Max Planck in the
epigraph of this paper underscores that even the most celebrated scientist of his
era understood that the pragmatic success of a scientific theory does not entirely
determine how quickly it gains adherents, or its longevity.

Can the idiosyncratic stances of individual scientists do much to alter, or at
least delay, the course of scientific advance? Perhaps for the sort of scientific
revolutions that Planck—the pioneer of quantum mechanics—likely had in mind,
but the proposition that established scientists are slower than novices in accept-
ing paradigm-shifting ideas has received little empirical support whenever it has
been put to the test (Hull, Tessner, and Diamond 1978; Gorham 1991; Levin,
Stephan, and Walker 1995). Paradigm shifts are rare, however, and their very
nature suggests that once they emerge, it is exceedingly costly to resist or ignore
them. In contrast, “normal” scientific advance—the regular work of scientists
theorizing, observing, and experimenting within a settled paradigm or explana-
tory framework—may be more susceptible to political jousting. The absence of
new self-evident and far-reaching truths means that scientists must compete in
a crowded intellectual landscape, sometimes savagely, for the supremacy of their
ideas (Bourdieu 1975).

In this paper, we use a difference-in-differences setup to test “Planck’s Princi-
ple” in the context of academic biomedical research, an enormous domain which
has been the province of normal scientific change ever since the “central dogma”
of molecular biology (Crick 1970) emerged as a unifying description of the infor-
mation flow in biological systems. Specifically, we examine how the premature
death of 452 eminent scientists alter the vitality (measured by publication rates
and funding flows) of subfields in which they actively published in the years im-
mediately preceding their passing, compared to matched control subfields. In
contrast with prior work that focused on collaborators (Azoulay, Graff Zivin, and
Wang 2010; Oettl 2012; Jaravel, Petkova, and Bell 2018; Mohnen 2018), our work
leverages new tools to define scientific subfields which allows us to expand our
focus to the response by scientists who may have similar intellectual interests with
the deceased stars without ever collaborating with them.

To our surprise, it is not competitors from within a subfield that assume the

1A notable exception is the theoretical model of scientific revolutions developed by Bramoullé and
Saint-Paul (2010).
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mantle of leadership, but rather entrants from other fields that step in to fill
the void created by a star’s absence. Importantly, this surge in contributions
from outsiders draws upon a different scientific corpus and is disproportionately
likely to be highly cited. Thus, consistent with the contention by Planck, the
loss of a luminary provides an opportunity for fields to evolve in novel directions
that advance the scientific frontier. The rest of the manuscript is dedicated to
elucidating the mechanisms responsible for this phenomenon.

It does not appear to be the case that stars use their influence over financial
or editorial resources to block entry into their fields, but rather that the very
prospect of challenging a luminary in the field serves as a deterrent for entry by
outsiders. Indeed, most of the entry we see occurs in those fields that lost a star
who was especially accomplished. Even in those fields that have lost a particularly
bright star, entry can still be regulated by key collaborators left behind. We find
suggestive evidence that this is true in fields that have coalesced around a narrow
set of techniques or ideas or where collaboration networks are particularly tight-
knit. We also find that entry is more anemic when key collaborators of the star
are in positions that allow them to limit access to funding or publication outlets
to those outside the club that once nucleated around the star.

To our knowledge, this manuscript is the first to examine the dynamics of
scientific evolution using the standard empirical tools of applied microeconomics.2

We conceptualize the death of eminent scientists as shocks to the structure of the
intellectual neighborhoods in which they worked several years prior to their death,
and implement a procedure to delineate the boundaries of these neighborhoods in
a way that is scalable, transparent, and does not rely on ad hoc human judgment.
The construction of our dataset relies heavily on the PubMed Related Citations
Algorithm [PMRA], which groups scientific articles into subfields based on their
intellectual content using abstract words, title words, and very detailed keywords
drawn from a controlled vocabulary thesaurus curated by the National Library
of Medicine. As such, we are able to delineate circumscribed areas of scientific
inquiry whose boundaries are not defined by shared training, collaboration, or
citation relationships.

In addition to providing evidence regarding a central question for scholars study-
ing the scientific process, our paper is among the very few economic studies that
attend to the ways in which scientists position themselves in intellectual space (cf.
Borjas and Doran [2015a, 2015b] and Myers [2018] for other notable examples).
As such, our work can be understood as integrating the traditional concerns of
economists—understanding how incentives and institutions influence the rate of

2Considerable work outside of economics has examined the evolution of scientific fields through net-
work and community detection techniques (e.g., Rosvall & Bergstrom 2008; Börner, Chen, and Boyack
2003; cf. Fortunato and Hric (2016) for a review of this fast-evolving research area). These approaches
rely on collaboration or citation links to define the vertices of the knowledge network used to partition
a scientific space into subfields. While social scientists have utilized these techniques to explain a wide
range of phenomena (e.g., Foster, Rzhetsky, and Evans 2015), these approaches are less well-suited to
our setting where citation and collaboration are among the primary outcomes of interest.
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knowledge production or diffusion—with those of cognate disciplines such as so-
ciology and philosophy, who have traditionally taken the direction of scientific
change as the central problem to be explained.

The rest of the paper proceeds as follows. In the next section, we examine the
institutional context and lay out our broad empirical strategy. In section II, we
then turn to data, methods and descriptive statistics. We report the results in
section III. Section IV concludes by outlining the implications of our findings for
future work.

I. Institutional Context and Empirical Design

Our empirical analyses are centered on the academic life sciences. The merits
of this focus are several fold. First, the field has been an important source of
scientific discovery over the past half century. Many modern medical therapies
can trace their origins to research conducted in academic laboratories (Sampat
and Lichtenberg 2011; Azoulay, Li, and Sampat 2017). These discoveries, in
turn, have generated enormous health and welfare gains for economies around
the world.

Second, the life science research workforce is large and specialized. The Faculty
Roster of the Association of American Medical Colleges lists more than 200,000
faculty members employed in U.S. medical schools and academic medical cen-
ters in 2015.3 Moreover, scientific discoveries over the past half-century have
greatly expanded the knowledge frontier, necessitating increasing specialization
by researchers and a greater role for collaboration (Jones 2009). If knowledge
and techniques remain at least partially tacit long after their initial discovery,
tightly-knit research teams may be able to effectively control entry into intellec-
tual domains. The size and maturity of this sector, including its extensive variety
of narrowly-defined subfields, makes it an ideal candidate for an inquiry into the
determinants of the direction of scientific effort in general, and how it is influenced
by elite scientists in particular.

Third, the academic research setting also offers the practical benefits of an
extensive paper trail of research inputs, outputs, and collaboration histories. On
the input side, reliance of researchers on one agency for the majority of their
funding raises the possibility that financial gatekeeping by elite scientists could
be used to regulate entry into scientific fields. Data on NIH funding at the
individual level, as well as membership in “study sections” (the peer-review panels
that evaluate the scientific merits of grant applications) will allow us to examine
such concerns directly. Most importantly for our study, the principal output of
researchers—publications—are all tagged by a controlled vocabulary of keywords
managed by the National Library of Medicine. This provides the raw material
that helps delineate scientific subfields without appealing to citation linkages or

3This figure excludes life science academics employed in graduate schools of arts and science or other
non-medical school settings such as MIT, Rockefeller University, The Salk Institute, UC Berkeley, the
intramural campuses of NIH, etc.
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collaborative relationships (the specifics of this process are described in detail in
Section II.B and Appendix C in the supplementary online material).

These many virtues, however, may come at the expense of generalizability.
While the life sciences span a wide range of research styles—from small-team data-
driven epidemiology, to medium-size laboratories under the helm of a single prin-
cipal investigator, to large-scale multi-institution clinical trials—most biomedical
researchers cluster topically and socially in small, quasi-independent subfields.
This broad domain seldom features exceedingly small research teams (as in pure
mathematics) or “big science” efforts where capital needs are so extensive and
specialized as to fully consolidate the field into a single or a handful of large
authorship teams (as in high-energy particle physics, e.g., Aad et al. 2015). As
such, one should refrain from applying our findings to other fields of science where
the structure of collaborative efforts and the degree of intellectual clustering are
likely to generate different patterns of succession, compared to those observed in
the life sciences.

Accounts by practicing scientists indicate that collaboration plays a large role
in both the creation and diffusion of new ideas (Reese 2004), and historians of
science have long debated the role of controversies and competition in shaping
the direction of scientific progress and the process through which new subfields
within the same broad scientific paradigm are born and grow over time (Hull
1988; Morange 1998; Shwed and Bearman 2010). Our study presents a unique
opportunity to test some of their insights in a way that is more systematic and
can yield generalizable insights on the dynamics of field evolution.

II. Empirical Design, Data, and Descriptive Statistics

Below, we provide a detailed description of the process through which the
matched scientist/subfield dataset used in the econometric analysis was assem-
bled. We begin by describing the criteria used to select our sample of superstar
academics, with a particular focus on “extinction events”; the set of subfields in
which these scientists were active prior to their death and the procedure followed
to delineate their boundaries. Finally, we discuss the matching procedure imple-
mented to identify control subfields associated with eminent scientists who did
not pass away but are otherwise similar to our treatment group.

A. Superstar sample

Our basic approach is to rely on the death of “superstar” scientists as a lever to
estimate the extent to which the production of knowledge in the fields in which
they were active changes after their passing. The study’s focus on the scientific
elite can be justified both on substantive and pragmatic grounds. The distribution
of publications, funding, and citations at the individual level is extremely skewed
(Lotka 1926; de Solla Price 1963) and only a tiny minority of scientists contribute,
through their published research, to the advancement of science (Cole and Cole
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1972). Stars also leave behind a corpus of work and colleagues with a stake in the
preservation of their legacy, making it possible to trace back their careers, from
humble beginnings to wide recognition and acclaim.

The elite academic life scientist sample includes 12,935 individuals, which cor-
responds to roughly 5% of the entire relevant labor market. In our framework,
a scientist is deemed elite if they satisfy at least one of the following criteria for
cumulative scientific achievement: (1) highly funded scientists; (2) highly cited
scientists; (3) top patenters; and (4) members of the National Academy of Sci-
ences or of (5) the National Academy of Medicine. Since these criteria are based
on extraordinary achievement over an entire scientific career, we augment this
sample using additional criteria to capture individuals who show great promise at
the early and middle stages of their scientific careers (so-called “shooting stars”).
These include: (6) NIH MERIT awardees; (7) Howard Hughes Medical Investiga-
tors; and (8) early career prize winners. Appendix A provides additional details
regarding these metrics of “superstardom” and explores the sensitivity of our core
set of results to the type of scientists (“cumulative stars” vs. “shooting stars”)
included in the sample.

For each scientist, we reconstruct their career from the time they obtained
their first position as independent investigators (typically after a postdoctoral
fellowship) until 2006. Our dataset includes employment history, degree held,
date of degree, gender, and department affiliations as well as complete list of
publications, patents and NIH funding obtained in each year by each scientist.4

The 452 scientists who pass away prematurely, and who are the particular focus
of this paper, constitute a subset of this larger pool of 12,935. To be included in
our sample, their deaths must intervene between 1975 and 2003 (this allows us to
observe at least three years’ worth of scientific output for every subfield after the
death of a superstar scientist). Although we do not impose any age cutoff, the
median and mean age at death is 61 with 85% of these scientists having passed
away before the age of 70 (we explore the sensitivity of our results to the age at
death in Appendix E). We also require evidence, in the form of published articles
and/or NIH grants, that these scholars were still in a scientifically active phase
of their career in the period just preceding their death (this is the narrow sense
in which we deem their deaths to have occurred prematurely).

Within this sample, 229 (51%) of these scientists pass away after a protracted
illness, whereas 185 (41%) die suddenly and unexpectedly. We were unable to
ascertain the particular circumstances of 37 (8.20%) death events.5 Table 1 pro-
vides descriptive statistics for the deceased superstar sample. The median star
received her degree in 1957 and died at the age of 61. 40% of the stars hold an

4Appendix B details the steps taken to ensure that the list of publications is complete and accurate,
even in the case of stars with frequent last names. Though we apply the term of “star” or “superstar” to
the entire group, there is substantial heterogeneity in intellectual stature within the sample (see Table 1).

5Table A3 in Appendix A provides the full list of deceased superstars, together with their year of birth
and death, cause of death, institutional affiliation at the time of their passing, and a short description of
their research expertise.
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MD degree (as opposed to a PhD or MD/PhD), and 90% of them are male. On
the output side, the stars each received an average of roughly 16.6 million dollars
in NIH grants, and published 138 papers that garnered 8,341 citations over the
course of their careers (as of 2015).

B. Delineating Research Fields

The source of the publication data is PubMed, an online resource from the
National Library of Medicine that provides fast, free, and reliable access to the
biomedical research literature. PubMed indexes more than 40,000 journals within
the life sciences.

To delineate the boundaries of the research fields in which each deceased star
was active, we develop an approach based on topic similarity between each article
where the star appeared as a last author in a window of five years prior to her
death, and the rest of the scientific literature.6 Specifically, we use the PubMed
Related Citations Algorithm (Lin and Wilbur 2007) which relies heavily on Med-
ical Subject Headings (MeSH), but not in any way on citation or collaboration
linkages.

MeSH terms constitute a controlled vocabulary maintained by the National Li-
brary of Medicine that provides a very fine-grained partition of the intellectual
space spanned by the biomedical research literature. Importantly for our pur-
poses, MeSH keywords are assigned to each publication by professional indexers
who focus solely on their scientific content. That said, the PubMed Related Ci-
tations Algorithm (hereafter PMRA) also uses title and abstract words as inputs,
which are selected by the authors, and may reflect their aspirations. While this
raises the possibility that our subfield definitions are not impervious to social
influences, it does offer one advantage, namely that our subfield boundaries can
quickly reflect the emergence of new terms whose inclusion in the official MeSH
thesaurus will occur with some lag.7 Regardless, as will become clear in the next
section, our difference-in-differences design alleviates the concern that idiosyn-
cratic features of PMRA might affect our conclusions, since these would influence
treatment and control subfields in a symmetric fashion.

We then use the “Related Articles” function in PubMed to harvest journal
articles that are intellectually proximate to the star scientists’ own papers in the
last five years of her life.8 Appendix C describes the algorithm in more detail and

6A robust social norm in the life sciences systematically assigns last authorship to the principal
investigator, first authorship to the junior author who was responsible for the conduct of the investigation,
and apportions the remaining credit to authors in the middle of the authorship list, generally as a
decreasing function of the distance from the extremities (Zuckerman 1968; Nagaoka and Owan 2014).
Only in the case of last authorship can we unambiguously associate the star with a subfield.

7Importantly, defining subfields as isomorphic to the set of articles related (in a PMRA-sense) to a
source article does not imply a fixed number of articles per subfield. On the contrary, PMRA-generated
subfields can be of arbitrary large size. In Appendix C, we document the variation in subfield size
and explore the sensitivity of our results to alternate subfield definitions, including those that exclude
potentially endogenous intellectual linkages.

8To facilitate the harvesting of PubMed-related records on a large scale, we have developed an
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performs extensive robustness checks. In particular, we verify that the cutoff rules
used by PMRA to generate a set of intellectual neighbors for a given source article
do not induce treated subfields to exhibit idiosyncratic truncation patterns—from
above or from below—compared to control subfields. Using a tunable version of
PMRA, we also assess the robustness of our core results to manipulations of these
cutoff rules. Reassuringly, our results are qualitatively similar regardless of the
rule employed.

To fix ideas, consider “The transcriptional program of sporulation in budding
yeast” [PubMed ID 9784122], an article published in the journal Science in 1998
originating from the laboratory of Ira Herskowitz, an eminent UCSF biologist
who died in 2003 from pancreatic cancer. As can be seen in Appendix Figure C4,
PMRA returns 72 original related journal articles for this source publication.
Some of these intellectual neighbors will have appeared before the source to which
they are related, whereas others will have only been published after the source.
Some will represent the work of collaborators, past or present, of Herskowitz’s,
whereas others will represent the work of scientists he may never have come in
contact with during his life, much less collaborated with. The salient point is that
nothing in the process through which these related articles are identified biases us
towards (or away from) articles by collaborators, frequent citers of Herskowitz’s
work, or co-located researchers.

Consider now the second most-related article to Herskowitz’s Science paper
listed in Figure C4, “Phosphorylation and maximal activity of Saccharomyces
cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2.” Fig-
ure C5 in Appendix C displays the MeSH terms that tag this article along with
its source. As a byproduct, PMRA also provides a cardinal dyadic measure of in-
tellectual proximity between each related article and its associated source article.
In this particular instance, the relatedness score of “Phosphorylation...” is 94%,
whereas the relatedness score for the most distant related article in Figure C4,
“Catalytic roles of yeast...” is only 62%.

In the five years prior to his death (1998-2002), Herskowitz was the last author
on 12 publications, the publications most closely associated with his position as
head of a laboratory. For each of these source publications, we treat the set of
publications returned by PMRA as constituting a distinct subfield, and we create
a subfield panel dataset by counting the number of related articles in each of these
subfields in each year between 1975 and 2006. An important implication of this
data construction procedure is that the subfields we delineate are quite limited in
scope. One window into the degree of intellectual breadth for subfields is to gauge
the overlap between the articles that constitute any pair of subfields associated
with the same star. In the sample, the 452 deceased stars account for 3,076
subfields, and 21,661 pairwise combination of subfields (we are only considering

open-source software tool that queries PubMed and PMRA and stores the retrieved data in a MySQL
database. The software is available for download at http://www.stellman-greene.com/FindRelated/.
Prior research leveraging the intellectual linkages between articles generated by PMRA include Azoulay
et al. (2015), Azoulay et al. (2019), and Myers (2018).
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pairs of subfields associated with the same individual star). Appendix Figure C6
displays the histogram for the distribution of overlap, which is extremely skewed.
A full half of these pairs exhibit exactly zero overlap, whereas the mean of the
distribution is 0.06. To find pairs of subfields that display substantial amounts of
overlap (for example, half of the articles in subfield 1 also belong in subfield 2),
one must reach far into the right tail of the distribution, specifically, above the
98th percentile.

As such, the subfields we delineate are relatively self-contained. Performing
the analysis at the level of the subfield—rather than lumping together all the
subfields of an individual star—will provide us with an opportunity to exploit
variation in the extent of participation of the star within each of her subfields.
We will also check the validity of the main results when rolling the data up from
the subfield level to the star level in Appendix F. Finally, since even modest
amounts of overlap entail that the observations corresponding to the subfields
of individual stars will not be independent in a statistical sense, we will cluster
standard errors at the level of the star scientist.9

C. Identification Strategy

Given our interests in the effect of superstar death on entry into scientific sub-
fields, our empirical strategy is focused on changes in published research output
after the superstar passes away, relative to when she was still alive. To ensure
that we are estimating the effect of interest and not some other influence that
is correlated with the passage of time, our specifications include age and period
effects, as is the norm in studies of scientific productivity (Levin and Stephan
1991). These temporal controls are tantamount to using subfields that lost a
superstar in earlier or later periods as an implicit control group when estimating
entry into subfields that currently experienced the death of a superstar. If the
death of a superstar only represented a one-time shift in the level of entry into the
relevant subfields, this would not be problematic. But if these unfortunate events
affect trends—and not simply levels—of scientific activity, this approach may not
suffice to filter out the effect of time-varying omitted variables, even when flexible
age and calendar time controls are included in the econometric specification. One
tangible concern about time-varying effects relates to the life cycle of subfields,
where productive potential may initially increase over time before peaking and
then slowly declining.

To mitigate this threat to identification, our preferred empirical strategy relies
on the selection of a matched scientist/subfield for each treated scientist/subfield.
These control observations are culled from the universe of subfields in which su-
perstars who do not die are active (see Section II.A and Appendix D). Combining
the treated and control samples enables us to estimate the effect of superstar death

9The compactness of these subfields likely reflect the technology of research within the life sciences,
a similar exercise performed in a different domain of science, particularly those characterized by large
collaborative projects, might well result in subfields with substantially more overlap.
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in a difference-in-differences framework. Appendix Figure D1 illustrates the pro-
cedure used to identify control subfields in the particular case of the Herskowitz
publication highlighted above.

We begin by looking at all the articles that appeared in the same journal and
in the same year as the treated source articles. From this set of articles, we
keep only those that have one of the still-living superstars in the last author-
ship position. Then, using a “coarsened exact matching” procedure detailed in
Appendix D, the control source articles are selected such that (1) the number
of authors in the treated and control are approximately similar; (2) the age of
the treated and control superstars differ by no more than five years; and (3) the
number of citations received by the treated and source article are similar. For the
Herskowitz/“sporulation in budding yeast” pair, we can select 10 control articles
in this way. All of these controls were also published in Science in 1998, and
have between five and seven authors. One of these controls is “Hepatitis C Viral
Dynamics in Vivo...,” whose last author is Alan Perelson, a biophysicist at Los
Alamos National Lab. Perelson and Herskowitz obtained their PhD only a year
apart. The two papers had received 514 and 344 citations respectively by the
end 2003. Though this is a large difference, this places both well above the 99th

percentile of the citation distribution for 5-year old articles published in 1998.
One potential concern with the addition of this “explicit” control group is that

control subfields could be affected by the treatment of interest. What if, for
instance, a control source article happens to be related (in a PMRA sense) with
the treated source? Because the subfields identified by PMRA are narrow, this
turns out to be very infrequent. Nonetheless, we remove all such instances from
the data. We then find all the intellectual neighbors for these control source
articles using PMRA; a control subfield is defined by the set of related articles
returned by PMRA, in a manner that is exactly symmetric to the procedure used
to delineate treated subfields. When these related articles are parsed below to
distinguish between those published by collaborators and non-collaborators of the
star, or between those by intellectual outsiders and insiders, covariates for treated
and control observations will always be defined with perfect symmetry.

D. Descriptive Statistics

The procedure described above yields a total of 34,218 distinct subfields; 3,076
subfields correspond to one of the 452 dead scientists, whereas 31,142 subfields
correspond to one of 5,809 still-living scientists. Table 2 provides descriptive
statistics for control and treated subfields in the baseline year, i.e., the year of
death for the deceased scientist.10

Covariate balance. In the list of variables displayed in Table 2, a number of
covariates are balanced between treated and control subfields solely by virtue of

10We can assign a counterfactual year of death for each control subfield, since each control subfield is
associated with a particular treated subfield through the matching procedure described above.
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the coarsened exact matching procedure—for instance, (star) investigator year
of degree, the source article number of authors, or the source article number of
citations at baseline. However, there is nothing mechanical to explain the balance
between treated and control subsamples with respect to the stock of our main
outcome variable: the number of articles in the star’s field. Figure 1 compares
the distributions of the cumulative number of articles published in our sample of
subfields up to the year of death, broken down by treatment status. Overall, one
can observe a great deal of overlap between the two histograms; the means and
medians are virtually identical. Of course, balance in the levels of the outcome
variable is not technically required for the validity of the empirical exercise.11

Yet, given the ad hoc nature of the procedure used to identify control subfields,
this degree of balance is reassuring.

Another happy byproduct of our matching procedure is that treated and control
scientists also appear quite similar in the extent of their eminence at the time of
(counterfactual) death, whether such eminence is measured through NIH funding,
the number of articles published, or the number of citations these articles received.

Collaborators vs. non-collaborators. One critical aspect of the empirical
analysis is to distinguish between collaborators and non-collaborators of the star
when measuring publishing activity in a subfield. It is therefore crucial to describe
how this distinction can be made in our data. Information about the superstars’
colleagues stems from the Faculty Roster of the Association of American Medical
Colleges (AAMC), to which we secured licensed access for the years 1975 through
2006, and which we augmented using NIH grantee information (cf. Azoulay, Graff
Zivin, and Wang [2010] for more details).

An important implication of our reliance on these sources of data is that we
can only identify authors who are faculty members in U.S. medical schools, or
recipients of NIH funding. We cannot systematically identify scientists working
for industrial firms, or scientists employed in foreign academic institutions.12 The
great benefit of using AAMC data, however, is that they ensure we have at our
disposal both demographic and employment information for every individual in
the relevant labor market: their (career) age, type of degree awarded, place of
employment, gender, and research output, whether measured by publications or
NIH grants.

To identify authors, we match the authorship roster of each related article in
one of our subfields with the AAMC roster.13 We tag as a collaborator any
author who appeared as a co-author of the star associated with the subfield on
any publication prior to the death. Each related article is therefore assigned to

11What is required is that the trends in publication activity be comparable between treated and control
subfields up until the death of the treated scientist. We verify that this is the case below.

12We can identify trainees who later go on to secure a faculty position, but not those who do not stay
in academia.

13We limit ourselves to authors with relatively infrequent names. Though this may create some
measurement error, there is no reason to suspect that the wrongful attribution of articles to authors will
impact treated and control subfields in a differential way.



12 THE AMERICAN ECONOMIC REVIEW JANUARY 2019

one of two mutually-exclusive bins: the “collaborator” bin comprises the set of
publications with at least one identified author who coauthored with the star
prior to the year of death (or counterfactual death); the “non-collaborator” bin
comprises the set of publications with no identified author who coauthored with
the star prior to the year of death (or counterfactual death).14 As can be seen in
Table 2, roughly 11% of the publication activity at baseline can be accounted for
by collaborators. Moreover, this proportion is very similar for control and treated
subfields.15

A first look at subfield activity. Figure E1 in Appendix E confirms that the
treated and control subfields are on similar trajectories in publication activity
up to the time of superstar death (though they diverge after the death event).
This provides suggestive evidence for the validity of our research design, and is
notable since the coarsened exact matching procedure that generated the sample
of control subfields did not make any use of these outcomes. Moreover, the absence
of differential trends can be observed for overall activity, for activity restricted to
collaborators of the star, and for the publishing activity of non-collaborators.

More boldly, we can use these averages in the raw data to examine changes
in outcomes after the death. For both treated and control subfields, the curves
exhibit a pronounced inverted U-shaped pattern, with activity first increasing
until it reaches a peak roughly two years before the death of the star (or counter-
factual death for the control subfields and their associated stars). Activity then
decreases steadily, but the slope of the decrease appears more pronounced for
control subfields, relative to treated subfields (Panel A). This pattern is flipped
when examining activity due to collaborators (Panel B): the relative decline is
much more pronounced for treated subfields, which is consistent with the results
in Azoulay, Graff Zivin, and Wang (2010). Panel C, which focuses on subfield
activity limited to non-collaborators, provides the first non-parametric evidence
that the downward-sloping part of the activity curve is less steep for treated
subfields.

Figure E1 provides a transparent illustration of subfield publication activity
over time, which proceeds directly from averaging the raw data, but the evidence
it provides should be handled with an abundance of caution. First, it conflates cal-
endar time and experimental time, when in actuality the death events in the data
occur at varying frequencies between the years 1975 and 2003. Second, covariates
like field age are not perfectly balanced across the treated and control groups,
since the number of control subfields is not identical across treated subfields. Fi-
nally, it abstracts away from robust inference, and particularly from clustering:
one would expect the subfield outcomes associated with an identical star to be

14We identify the publications in the subfield for which the superstar is an author and eliminate them
from these calculations. As a result, any decrease in activity within the subfield cannot be ascribed to
the mechanical effect of its star passing away.

15We define collaboration status by looking at the authorship roster for the entire corpus of work
published by the star before or in the year of death, and not only with respect to the articles of the star
that belong to the focal subfield.
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correlated. Our econometric framework, described below, addresses these limita-
tions and as a result provides a more solid foundation for the estimation of the
causal effect of star death on the dynamics of subfield activity.

III. Results

The exposition of the econometric results proceeds in stages. After a review
of methodological issues, we provide results that pertain to the main effect of
superstar death on subfield growth, measured by publication rates and funding
flows. Next, we attempt to elucidate the mechanism (or set of mechanisms) at
work to explain our most robust finding, that of relative subfield growth in the
wake of a star’s passing, a growth entirely accounted for by contributions from
non-collaborators. We do so by examining the characteristics of the articles pub-
lished by non-collaborators, before turning to the characteristics of their authors.
We also explore heterogeneity in the treatment effect through the interaction
of the post-death indicator variable with various attributes of the stars and the
subfields.

A. Econometric Considerations

Our estimating equation relates publication or funding activity in subfield i in
year t to the treatment effect of losing a superstar:

E [yit|Xit] = exp
[
β0 + β1AFTER DEATHit

+ β2AFTER DEATHit × TREATi + f(AGEit) + δt + γi

]
(1)

where y is a measure of subfield activity, AFTER DEATH denotes an indicator
variable that switches to one in the year after the superstar associated with i
passes away, TREAT is an indicator variable for treated subfields, f(AGEit)
corresponds to a flexible function of the field’s age, the δt’s stand for a full set of
calendar year indicator variables, and the γi’s correspond to subfield fixed effects,
consistent with our approach to analyze changes in activity within subfield i
following the passing of a superstar.16

The subfield fixed effects control for many time-invariant characteristics that
could influence research activity, such as the need for capital equipment or the
extent of disease burden (e.g., for clinical fields). A pregnant metaphor for the
growth of scientific knowledge has been that of biological evolution (Hull 1988;
Chavalarias and Cointet 2013): a field is born when new concepts are introduced,
resulting in an accelerating production of “offspring” (articles), until the underly-
ing scientific community loses its thematic coherence, ushering in an era of decline

16To avoid confusion, we have suppressed any subscript for the superstars. This is without loss of
generality, since each subfield is uniquely associated with a single star.
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(or alternatively, splitting or merging events). To flexibly account for such life
cycle effects, we include subfield age indicator variables (where subfield age is
computed as the number of years since the year of publication for the source arti-
cle). The calendar year effects filter out the effects of the general expansion of the
scientific enterprise as measured by the number of journals and articles published
each year.17

We follow Jaravel et al. (2018) in including in our specification an indicator
for the timing of death that is common to treated and control subfields (whose
effect will be identified by the coefficient β1) in addition to the effect of inter-
est, an interaction between AFTER DEATH and TREAT (whose effect will
be identified by the coefficient β2). The effects of these two variables are sep-
arately identified because (i) death events are staggered across our observation
period and (ii) control subfields inherit a counterfactual date of death because
they are uniquely associated with a treated subfield through the matching proce-
dure described in section II.C. The inclusion of the common term addresses the
concern that age, calendar year, and subfield fixed effects may not fully account
for shifts in subfield activity around the time of the star’s passing. If this is
the case, AFTER DEATH will capture the corresponding transitory dynamics,
while AFTER DEATH × TREAT will isolate the causal effect of interest. Em-
pirically, we find that in some specifications, the common term has substantial
explanatory power, though its inclusion does not radically alter the magnitude of
the treatment effect.

Estimation. The dependent variables of interest, including publication counts
and NIH grants awarded, are skewed and non-negative. For example, 31.40% of
the subfield/year observations in the data correspond to years of no publication
activity; the figure climbs to 56.70% if one focuses on the count of NIH grants
awarded. Following a long-standing tradition in the study of scientific and tech-
nical change, we present quasi-maximum likelihood (hereafter QML) estimates
based on the conditional fixed effects Poisson model developed by Hausman,
Hall, and Griliches (1984). Because the Poisson model is in the linear expo-
nential family, the coefficient estimates remain consistent as long as the mean of
the dependent variable is correctly specified (Gouriéroux, Monfort, and Trognon
1984).

Inference. QML (i.e., “robust”) standard errors are consistent even if the under-
lying data generating process is not Poisson. In fact the Hausman et al. estimator
can be used for any non-negative dependent variables, whether integer or contin-
uous (Santos Silva and Tenreyro 2006), as long as the variance/covariance matrix
is computed using the outer product of the gradient vector (and therefore does

17It is not possible to separately identify calendar year effects from age effects in the “within subfield”
dimension of a panel in a completely flexible fashion, because one cannot observe two subfields at the
same point in time that have the same age but were born in different years (Hall, Mairesse, and Turner
2007).
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not rely on the Poisson variance assumption). Further, QML standard errors are
robust to arbitrary patterns of serial correlation (Wooldridge 1997), and hence
immune to the issues highlighted by Bertrand, Duflo, and Mullainathan (2004)
concerning inference in DD estimation. We cluster the standard errors around
superstar scientists in the results presented below.18

Dependent Variables. Our primary outcome variable is publication activity
in a subfield. However, we go beyond this raw measure by assigning the related
articles that together constitute the subfield into a variety of bins. For instance,
we can decompose publication activity in the subfield into two mutually exclusive
subfields: articles with a superstar on the authorship roster vs. articles without
a superstar; etc. Articles in each bin can then be counted and aggregated up to
the subfield/year level.

Capturing funding flows at the field level is slightly more involved. PubMed
systematically records NIH grant acknowledgements using grant numbers. Un-
fortunately, these grant numbers are often truncated and omit the grant cycle
information that could enable us to pin down unambiguously the particular year
in which the grant was awarded. When it is missing, we impute the award year
using the following rule: for each related publication that acknowledges NIH
funding, we identify the latest year in the three-year window that precedes the
publication during which funding was awarded through either a new award or a
competitive renewal. To measure funding activity in a subfield, we create a count
variable that sums all the awards received in particular year, where these awards
ultimately generate publications in the focal subfield.

B. Main effect of superstar death

Table 3 and Figure 2 present our core results. Overall, we find that publica-
tion activity increases slightly following the death of a star scientist who was an
active contributor to it, but the magnitude of the effect is modest (about 5.2%)
and imprecisely estimated (column 1). Yet, this result conceals a striking pattern
that is uncovered when we distinguish between publications by collaborators and
non-collaborators. The decline in publication activity accounted for by previous
collaborators of the star is large, on the order of 20.7% (column 2). This evidence
is consistent with previous findings, which showed that coauthors of superstar
scientists who die suffer a drop in output, particularly if their non-collaborative
work exhibited strong keyword overlap with the star, i.e., if they were intellectu-
ally connected in addition to being coauthors (Azoulay, Graff Zivin, and Wang
2010, Table VI, column 2).

18Knowledge spillovers and scientific breakthroughs, including the adoption of research tools, could
encourage innovation across related fields. This possibility is not entirely dealt with by clustering inference
at the star level, since spatial dependence in knowledge space could occur between any pair of subfields,
whereas clustering only allows for dependence among the subfields associated with the same star. As
it turns out, the Poisson conditional fixed effects estimator also provides a consistent estimator of the
variance in the presence of time-invariant patterns of spatial auto-correlation (Bertanha and Moser 2016).
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A limitation of the previous work focusing on the fate of collaborators after
the loss of an eminent scientist always lied in the failure to distinguish between
social and intellectual channels of influence, since every treated scientist was by
definition a collaborator, even if merely a casual one. In this study, we can relax
this constraint, and when we do, we find that relative publication activity by non-
collaborators in the subfield increases by a statistically significant 100× (e0.082 −
1) = 8.6% (column 3).19

We also explore the dynamics of the effects uncovered in Table 3. We do so by
estimating a specification in which the treatment effect is interacted with a set of
indicator variables corresponding to a particular year relative to the superstar’s
death, and then graphing the effects and the 95% confidence interval around them
(Panels A, B, and C of Figure 2 correspond to columns 1, 2, and 3 in Table 3).20

Two features of the figure are worthy of note. First, the dynamics amplify the
previous results in the sense that we see the effects increasing (in absolute value)
monotonically over time—there is no indication that the effects we estimated in
Table 3 are merely transitory. Five years after a star’s death, the relative increase
in publication activity by non-collaborators is large enough in magnitude to fully
offset the decline in activity by collaborators. Second, there is no discernible
evidence of an effect in the years leading up to the death, a finding that validates
ex post our identification strategy.

Nevertheless, the case for the exogeneity of death events with respect to the
course of knowledge growth and decline within a subfield is stronger for sudden
causes of deaths than for anticipated causes of death. Figure E2 in Appendix E
provides a version of Figure 2, Panel C (event study graphs for non-collaborators)
broken down by causes of death (anticipated vs. sudden). While there is more
variability in the estimated path of outcomes in the years leading up to the death
event in the anticipated case (Panel A) than in the sudden case (Panel B), it
is imprecisely estimated and non-monotonic. In both panels, however, one can
observe a slow but steady increase after the event in the rate of contributions by
non-collaborators in treated subfields, relative to control subfields. The distinc-
tion between sudden and anticipated events is explored further in section III.D.

The last three columns of Table 3 focus on funding flows from the National
Institutes of Health (NIH) rather than publication flows. More precisely, the
outcome variable in columns 4, 5, and 6 is the number of distinct NIH awards
that acknowledge a publication in the subfield in the three-year window before
the year of publication for the related article (summing the financial total of
grant amounts, as opposed to the number of grants, yields similar results). The
patterns are very similar to those obtained in the case of publication activity,

19The number of observations varies ever so slightly across columns because the conditional fixed effects
specification drops observations corresponding to subfields for which there is no variation in activity over
the entire observation period. This is true as well for the results reported in Tables 4 through 7.

20In these specifications, the AFTER DEATH term which is common to treated and control subfields
is also interacted with a complete series of lags and leads relative to the year of death or counterfactual
death.
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both in terms of magnitudes and in terms of statistical significance.

C. Subfield growth patterns

In the remainder of the manuscript, we seek to characterize the kind of contribu-
tion, and the type of investigators that give rise to the novel empirical regularity
we uncovered: that of relative growth for subfields following the death of their
superstar anchor, a phenomenon entirely accounted for by research activity un-
dertaken by scientists who never collaborated with the star while alive. As a
consequence, all the results below pertain to contributions by non-collaborators;
any article with even one author who collaborated with the star is excluded from
the count of articles that constitute the dependent variable.

The impact and direction of new research. What characterizes the addi-
tional contributions that together lead to increased activity in a subfield after a
star has passed on? Are these in fact important contributions to the subfield? Do
they continue to focus on mainstream topics within the subfield, or should they
be understood as taking the intellectual domain in a novel direction? Tables 4
and 5 explore these issues.

In Table 4, we parse every related article in the subfields to assign them into
one of six mutually exclusive bins, based on their vintage-specific long-run cita-
tion impact: articles that fall in the bottom quartile of the citation distribution;
in the second quartile; in the third quartile; articles that fall above the 75th per-
centile, but below the 95th percentile; articles that fall above the 95th percentile,
but below the 99th percentile; articles that fall above the 99th percentile of the
citation distribution.21 Each column in Table 4 (with the exception of the first
which simply replicates the effect for all papers, regardless of impact, that was
previously displayed in Table 3, column 3) reports the corresponding estimates.
A startling result is that the magnitude of the treatment effect increases sharply
and monotonically as we focus on the rate of contributions with higher impact.
In contrast, the number of lower-impact articles contributed by non-collaborators
contracts slightly, though the effect is not precisely estimated.22

21A vintage is comprised of all the articles published in a given year. When we are referring to the
vintage-specific, article-level distribution of citations, the relevant universe to compute quantiles is not
limited to the articles that constitute the subfields in our data. Rather, the relevant universe includes
the entire set of 17,312,059 articles that can be cross-linked between PubMed and the Web of Science.
As a result, there is no reason to suspect that individual stars, or even our entire set of stars, could ever
alter the shape of these distributions. For example, the article by Sopko et al. highlighted on Figure C5
(in Appendix C) received 40 citations from other articles in PubMed by 2015. This puts this article
above the 79th percentile of the citation distribution for articles published in 2002.

22Table E3 and Figure E3 in Appendix E break down these results further by examining separately
the growth of subfields by cause of death (anticipated vs. sudden). As mentioned earlier, the case for
exogeneity is stronger for sudden death, since when the death is anticipated, it would be theoretically
possible for the star to engage in “intellectual estate planning,” whereby particular scientists (presumably
close collaborators) are anointed as representing the next generation of leaders in the subfield. Our core
results continue to hold when analyzed separately by cause of death. However, we gain statistical power
from pooling these observations, and some empirical patterns would be estimated less precisely if we
chose to focus solely on observations corresponding to subfields for which the star died suddenly and
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Table 5 parses the related articles in each subfield to ascertain whether contribu-
tions by non-collaborators constitute a genuine change in intellectual direction.
Panel A distinguishes between contributions that are proximate in intellectual
space to the source article from those that are more distant (though still part
of the subfield as construed by PMRA). Because we have at our disposal both
a cardinal and an ordinal measure of intellectual proximity, we present two sets
of estimates. In both cases, the magnitude of the treatment effect pertaining
to PMRA-proximate publication activity is larger, and more precisely estimated
than the magnitude corresponding to PMRA-distant publication activity (relative
to the same patterns for the control group of subfields). We can certainly rule out
the conjecture that non-collaborators enter the field from the periphery. Rather,
their contributions appear to tackle mainstream topics within the subfield.

Panel B sheds light on the intellectual direction of the field, by examining the
cited references contained in each related article. The first two columns separate
related articles in two groups: publications that cite at least some work which
belongs to the subfield identified by PMRA for the corresponding source and
publications that cite exclusively out of the PMRA subfield. Only articles in
the second group appear to experience growth in the post-death era. The next
two columns proceed similarly, except that the list of references is now parsed to
highlight the presence of articles authored by the star (Column 3), as opposed
to all other authors (Column 4). We find that subfield growth can be mostly
accounted for by articles from non-collaborators who do not build on the work of
the star.

Whereas Panel B highlighted the extent to which contributors were bringing
new sources of inspiration into the subfield, Panel C focuses on the extent to
which the treated subfields move closer to the scientific frontier in the wake of
the superstar’s passing. The first two columns do so by distinguishing between
contributions that draw on recent versus more dated references. This exercise
is repeated in Columns 3 and 4, with a focus on the vintage of the MeSH term
combinations for each article in the subfield.23 Both sets of results indicate that
these new contributions are more likely to build on science of a more recent
vintage.

Taken together, the results presented in Table 5 paint a nuanced picture of
directional change in the wake of superstar passing. The new contributions do not
represent a radical departure from the subfield’s traditional concerns (Panel A).
At the same time, the citation and MeSH evidence (Panels B and C) make it clear
that these additional contributions are more likely to draw on new-to-the-subfield
as well as new-to-the-world ideas. In short, they both rejuvenate the subfield, and
alter its angular velocity by shifting its intellectual center of gravity away from
its pre-death position.

unexpectedly.
23A two-way MeSH term combination is born in the year where an article is annotated by the keyword

pair for the first time.
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It is important to note, however, that the findings above do not imply that
the published results of entrants necessarily contradict or overturn the prevailing
scientific understanding and assumptions within a subfield. We provide indirect
evidence regarding these contributions’ disruptive impact by leveraging a measure
recently proposed by Funk and Owen-Smith (2017). Their index captures the de-
gree to which an idea consolidates or destabilizes the status quo, by measuring
whether the future ideas that build on the focal idea also rely on its acknowledged
predecessors. The results in Table E4 of Appendix E suggest that these contri-
butions do not radically disrupt the subfield. Rather, they appear to reflect the
impact of a myriad “small r,” permanent revolutions whereby new ideas come to
the fore without necessarily eclipsing prior approaches.

Outsiders vs. competitors. The next step of the analysis is to investigate the
type of scientists who publish the articles that account for subfield growth in the
wake of a star’s death. We examine the proximity in intellectual space between
non-collaborators in the subfield and the deceased superstar. One possibility is
that non-collaborators are competitors of the star, with much of their publication
activity falling into the subfield when the star was alive. Another possibility is
that they are recent entrants into the subfield—intellectual outsiders. To distin-
guish these different types of authors empirically, we create a metric of intellectual
proximity for each related author we can match to the AAMC Faculty Roster, by
computing the fraction of their publications that belongs to the star’s subfields
up to the publication year for each related article.24 The distribution of this field
overlap measure is displayed on Panel A of Figure 3. The distribution is skewed,
with a pronounced mass point at the origin: approximately 50% of the related
articles turn out to have authors with exactly zero intellectual overlap with the
star’s subfield, and another 1.24% are authored by new scientists for whom this
publication within the subfield is also their first publication overall.

We now use this metric to gauge the extent to which the post-death publication
activity by non-collaborators (relative to the control group) can be attributed to
related authors whose outsider status falls into one of twelve separate bins. This
includes one bin for new scientists, one bin for the bottom half of the overlap
distribution, one bin for every five percentiles above the median (50th to 55th

percentile, 55th to 60th percentile,. . . , 95th to 99th percentile), as well as a top
percentile bin. We then compute the corresponding measures of subfield activity
by aggregating the data up to the subfield/year level. These results are presented
graphically in Panel B of Figure 3. Each dot corresponds to the magnitude of
the treatment effect in a separate regression with the outcome variable being the
number of articles in each subfield that belong to the corresponding bin.

A striking pattern emerges. The authors driving the growth in relative publi-

24Whenever we match more than one author on a related article, we assign to that article the highest
proximity score for any of the matched authors. Appendix E, Table E9 defines overlap with respect to
all the subfields associated with a given star, rather than simply the focal subfield. This does not alter
our conclusions.
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cation activity following a star’s death are largely outsiders. They do not appear
to have been substantially active in the subfield when the star was alive. In
other words, they are predominantly new entrants into these subfields, though
not necessarily novice scientists.

D. The Nature of Entry Barriers

The evidence so far points to fields of deceased stars enjoying bursts of activity
after the death event. The influx of outsiders documented above suggests that
stars may be able to regulate entry into their field while alive. In this section, we
attempt to uncover the precise nature of barriers to entry into the subfields where
the stars were prominent prior to their untimely demise. Methodologically, we
do so by splitting the sample of fields across the median for a series of relevant
covariates. Because there is no presumption that death events are exogenous
with respect to subfield growth and decline within the strata delineated by these
covariates, it should be clear that we will only be able to document conditional
correlations, and not causal effects in what follows.25

While it is tempting to envisage conscious effort by the stars to block entry
through the explicit control of key resources, such as funding and/or editorial
goodwill (Brogaard, Engelberg, and Parsons 2014; Li 2017), this explanation ap-
pears inconsistent with the facts on the ground. In the five-year window before
death, only three of our stars (out of 452) were sitting on study sections, the fund-
ing panels that evaluate the scientific merits of NIH grant applications. Another
three were journal editors in the same time window. This handful of individuals
could not possibly drive the robust effects we have uncovered.26 If barriers to
entry are not the result of explicit control by stars, what is discouraging entry?

Goliath’s shadow. One possibility is that outsiders are simply deterred by the
prospect of challenging a luminary in the field. The existence of a towering figure
may skew the cost-benefit calculations from entry by outside scholars toward
delay or alternative activities. Table 6 examines this role of implicit barriers to
entry by focusing on the eminence of the star. Eminence is measured through the
star’s publication count, the star’s cumulative number of citations garnered up
to the year of death, and the star’s cumulative amount of NIH funding. We also
have a “local” measure of eminence: the star’s importance to the field, which is
defined as the fraction of papers in the subfield that have the star as an author.
Splitting the sample at the median of these measures reveals a consistent pattern
of results. Stars that were especially accomplished appear to be an important
deterrent to entry, with their passing creating a larger void for non-collaborators

25Instead of interacting the treatment effect with covariates, we prefer to estimate our benchmark
specifications on subsamples corresponding to below and above the median of these covariates. For
these two approaches to yield comparable results, one would need to also saturate the specification with
interaction terms between the covariates and year/field age effects. In practice, we have found that the
fixed effects Poisson models fail to converge with this full set of interactions.

26We verified that omitting these scientists from the sample hardly change the core results.
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to fill. Rather than directly thwarting the efforts of potential entrants, it appears
that the mere presence of a preeminent scholar is sufficient to dissuade intellectual
outsiders from engaging with the field.

Of course, the accomplishment of the star alone may not be the only factor
influencing entry. We next turn our attention to how the characteristics of the
field and the star’s coauthors may also modulate this relationship. Since entry is
largely confined to those fields that have lost an eminent star, the analysis that
follows limits attention to those subfields in which the most eminent among the
stars were active, as measured by our citation metric in Table 6.27

Subfield coherence. Entry into a field, even after it has lost its star, may
be deterred if the subfield appears unusually coherent to outsiders. A subfield
is likely to be perceived as intellectually coherent, when the researchers active
in it agree on the set of questions, approaches, and methodologies that propel
the field forward. Alternatively, a field might be perceived as socially coherent,
when the researchers active in it form a tightly-knit clique, often collaborating
with each other, and perhaps also reviewing each other’s manuscripts. To explore
these purported barriers to subfield entry, we develop two alternative measures
of intellectual coherence, and one measure of social coherence.

Our first index of intellectual coherence leverages PMRA to capture the extent
to which articles in the subfield pack themselves into a crowded scientific neigh-
borhood. Recall that for each article in a subfield, we have at our disposal both a
cardinal and an ordinal measure of intellectual proximity with the source article
from which all other articles in the subfield radiate. Focusing only on the set of
articles published in the subfield before the year of death, we measure intellectual
coherence as the cardinal ranking (expressed as a real number between zero and
one) for the 25th most related article in the subfield.28 According to this metric,
subfields exhibit wide variation in their degree of intellectual coherence, with a
mean and median equal to 0.60 (sd = 0.13). The second index of intellectual
coherence exploits the list of references cited in each article in the subfield before
the star’s death. In the spirit of Funk and Owen-Smith (2017), for all related
articles published in the five years prior to the star’s death, we compute the frac-
tion of references that fall within the subfield. Our contention is that subfields
that are more self-referential will tend to dissuade outsiders from entering. Once
again, we observe meaningful variation across subfields using this second index
(mean = 0.05; sd = 0.04).

Our measure of social coherence summarizes the degree of “cliquishness” within

27More precisely, Table 7 below drops from the sample subfields associated with stars who fall below
the median of cumulative citations garnered by the year of death. Results are qualitatively similar when
focusing on the most eminent stars as defined by publications or NIH funding. Table F6 in Appendix F
presents the results corresponding to the subsample of less-eminent stars.

28The choice of the twenty fifth-ranked article is arbitrary, and also convenient. After purging from
each subfield reviews, editorials, and articles appearing in journals not indexed by WoS, 95% of the
subfields contain 25 articles or more in the period that precedes the star’s death. In those rare cases
where the number of articles is less than twenty-five, we choose as our measure of coherence the cardinal
measure for the least-proximate article in the subfield.
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a subfield by computing the clustering coefficient in its coauthorship network.
The clustering coefficient is simply the proportion of closed triplets within the
network, an intuitive way to measure the propensity of scientists in the field to
choose insiders as collaborators.29

Panel A of Table 7 investigates the role of these intellectual and social barri-
ers in modulating the post-death expansion of fields. We find tentative evidence
of a role for both types of barriers, in that the magnitude of the treatment ef-
fect for coherent fields is always smaller than the magnitude for less coherent
fields, regardless of how coherence is measured. The difference between the es-
timates for more or less coherent subfields does not reach statistical significance
at conventional levels. What seems notable, however, is that the magnitudes are
consistently ordered across the three measures.

Incumbent resource control. While we noted earlier that stars do not appear
especially well positioned to directly block entry through the control of key re-
sources, it is possible that those resources can be controlled indirectly through
the influence of collaborators. If incumbent scholars within a field serve as gate-
keepers of funding and journal access, they may be able to effectively stave off
threats of entry from outsiders. The same may be implicitly true if collaborators
are the recipients of the lion’s share of funding within the field. To assess financial
gatekeeping, we use information regarding the composition of NIH funding pan-
els, to tabulate, for each star, the number of collaborators who were members of
at least one of these committees in the five years preceding the death of the star.
We would like to proceed in a similar fashion using the composition of editorial
boards, but these data are not easily available for the set of PubMed-indexed
journals and the thirty-year time period covered by our sample. As an alterna-
tive, we develop a proxy for editorial position based on the number of editorials or
comments written by every collaborator of the star.30 We then sum the number
of editorials written by coauthors in the five years before the death. Together,
the editorial and study section information allow us to distinguish between the
stars whose coauthors were in a position to channel resources towards preferred
individuals or intellectual approaches from those stars whose important coauthors
had no such power.

Panel B of Table 7 presents the evidence on the role of indirect control. The
results paint a consistent, if not always statistically significant, picture. While
subfield expansion is the rule, it appears more pronounced when stars have rela-

29The clustering coefficient is based on triplets of nodes (authors). A triplet consists of three authors
that are connected by either two (open triplet) or three (closed triplet) undirected ties. The clustering
coefficient is the number of closed triplets over the total number of triplets (both open and closed, cf.
Luce and Perry [1949]).

30We investigated the validity of this proxy as follows. In the sample of deceased superstars, every
individual with five editorials or more was an editor. In a random sample of 50 superstars with no
editorials published, only one was an editor (for a field journal). Finally, among the sixteen superstars
who wrote between one and four editorials over their career, we found two whose CV indicate they
were in fact editors for a key journal in their field. We conclude that there appears to be a meaningful
correlation between the number of editorials written and the propensity to be an editor.
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tively few collaborators in influential positions, or collectively capture a smaller
portion of the funding that supported research in the subfield. Indirect control
therefore appears to be a potential mechanism through which superstars can exert
influence on the evolution of their fields, even from beyond the grave. Coauthors,
either through their direct effort to keep the star’s intellectual flame alive or sim-
ply by their sheer (financial) dominance in the field, appear to erect barriers to
entry into those fields that prevent its rejuvenation by outsiders.

Taken together, these results suggest that outsiders are reluctant to challenge
hegemonic leadership within a field when the star is alive. They also highlight a
number of factors that may constrain entry even after she is gone. Intellectual,
social, and resource barriers all seem to play a role in impeding entry, with out-
siders only entering subfields whose topology offers a less hostile landscape for
the support and acceptance of “foreign” ideas.

E. Reallocation and Welfare

What are the implications of our results for welfare? We approach this question
with a great deal of caution, since much of the evidence presented thus far pertains
to changes in the direction, rather than the rate, of scientific progress. Making
welfare statements in this context is tantamount to valuing the importance of the
new directions in which related authors take their fields (compared to the prior
agenda inherited from the superstar), as well as ascertaining the fate of fields that
the new entrants departed, and the agenda they otherwise might have pursued
had the star remained alive. Such an exercise is fraught with peril. Below we
synthesize the results that already speak to these questions, and provide a few
additional suggestive pieces of evidence.

Our earlier evidence suggests that entrants bring different and more recent ideas
into the subfields they enter to create highly impactful output (Tables 4 and 5).
In Appendix E we further show that the subfields that experience the largest
post-death boost in activity are those in which the star was presiding over an
empire that was losing momentum in the years immediately preceding the star’s
death (Tables E5 and E8). These subfields are also those in which the star’s close
collaborators were less able to regulate entry (Table 7B).

It is important to note, however, that the additional output by entrants in
treated subfields is largely offset by commensurate declines in output by the star’s
collaborators (Table 3). Moreover, these new contributions appear to come at the
expense of the entrants’ prior agenda. In Appendix G, we examine changes in
total output at the related author level, using a difference-in-differences set-up
that parallels our analyses at the subfield level. The results in Table G1 show
that non-collaborators do not increase their overall output, measured in terms of
publications and NIH grants awarded. Since we know from our main analysis that
related authors are contributing more within the subfields of dead superstars, the
absence of changes in total output imply that this additional work is displacing
work they were doing in other subfields. Their new output replaces, at least in
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part, articles that these authors would have written in other intellectual domains
had the star remained alive.31

As a whole, these results imply that entrants are moving subfields in productive
directions relative to the period immediately preceding the passing of the star, but
without increasing scientific output in the aggregate. However, the impacts in the
final years of a star’s life are not necessarily indicative of their contributions writ
large. Indeed, the lofty accomplishments which earned them superstar status
suggest that their net contribution to society is likely positive. A longer view
would also recognize that the scientific journeymen of today may well become
the stars of tomorrow (as shown in Table E10 of Appendix E) with a career that
slowly builds to an apex of socially valuable accomplishments, that will someday
experience a similar decline (see Figure E4 in Appendix E).

F. Extensions and robustness

Appendix E presents results pertaining to extensions of the main analyses.
Appendix F provides a number of robustness checks. In the interest of space, we
only call out a subset of the analyses presented therein, but we have written these
appendices as stand-alone documents, such that the interested reader can consult
them for additional details.
Impact of research infrastructure needs. Our analysis is limited to the
life sciences. Though this area accounts for a large fraction of publicly funded,
civilian research funding in the United States, it is not necessarily representative
of all fields of science. In particular, some domains of research require access
to expensive and specialized capital equipment. When capital needs are large
and lumpy, the evolution of subfields in the wake of an eminent scientist’s death
will likely depend on the institutions that govern access to the scarce capital
equipment.

Within biomedical research, large-scale clinical trials most closely—albeit im-
perfectly—resemble the characteristics of capital-intensive scientific fields. These
require a large infrastructure of data collection, monitoring, and management,
which is why these activities are often consolidated in large cooperative groups
such as the AIDS Clinical Trials Group, the Children’s Oncology Group, or the
Framingham Heart Study. PubMed has a “publication type” field which allows
us to identify the subfields that are clinical-trial intensive (10% of the subfields)
versus those that are not (the remaining 90%). Table E6 replicates the results
of Table 3 separately for these two subsamples. Although our ability to estimate
statistically significant effects is limited by sample size, the magnitudes are very
similar.

Impact of star age and experience. As explained earlier, we do not impose

31We also estimate a dynamic version of these specifications and display the corresponding event study-
style graphs in Figure G1 (publication output) and Figure G2 (grant output). In general, it appears
from these figures that the total output of related authors neither expands nor contracts in the wake of
a star’s passing.
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a strict age cutoff for the deceased star, we merely insist that they exhibit tangi-
ble signs of research activity, such as publishing original articles, obtaining NIH
grants, and training students. Among our 452 departed superstars, the median
age at death is 61, the seventy-fifth percentile 67, and the top decile 73. How do
the core results change when the scientists who passed away at an advanced age
are excluded from the sample? As can be observed in Table E7, the subfields of
stars who passed away more prematurely are responsible for most of the effect.
The effect for the fields associated with older stars is small in magnitude and
imprecisely estimated. We chose to keep these older stars in the sample because
a larger sample affords us opportunities to explore mechanisms without losing
power to detect nuanced effects statistically.

Star level analyses. In Table F1, we probe the robustness of the core results
presented in Table 3 after rolling up the data to the level of the star scientist
(deceased or control). Recall that the treatment variable exhibits variation at the
level of the star scientist, and not at the level of a single subfield. In this robustness
check, we lump all related articles for each star together as if they belonged to
a single subfield. The results in Table F1 are quite similar to those in Table 3,
both in terms of magnitude and statistical significance. One exception is the
coefficient on the effect of entry by collaborators, which is negative as expected,
but smaller in magnitude, relative to the corresponding coefficient in Table 3. The
corresponding event-study graphs, displayed in Figure F3, also display patterns
fully consistent with those observed for our benchmark set of results. As explained
in Section II.B, we strongly prefer performing the analyses at the the subfield
level, for two reasons. First, the subfields delineated by PMRA exhibit limited
overlap (see Figure C6 in Appendix C), and as a result the within-star, between
subfield variation in publication activity can be exploited meaningfully. Second,
we can track the differential position of the star across the subfields in which she
was active. The covariates that leverage these differences help us shed light on
mechanisms, as in Tables 7, E5, and E8.

Alternate functional forms. In Table F2, we examine the sensitivity of our
benchmark set of results to the choice of alternative functional forms. In the
three columns to the left, we simply use the “raw” number of articles in the sub-
field as the outcome, and perform estimation by OLS. Of course, the estimates
are not directly interpretable in terms of elasticities. At the mean of the data,
however, the treatment effect in the third column implies that subfield entry by
non-collaborating authors expands by 0.409/3.335 = 12.26%, which is not all that
different from the 8.2% reported in Table 3. In the three columns to the right,
we report results corresponding to OLS estimation, but this time with the out-
come variables transformed using the inverse hyperbolic sine function (Burbidge,
Magee, and Robb 1988). In this case, coefficient estimates can be interpreted as
elasticities, as an approximation. They are quite similar once again to those re-
ported in Table 3, except for the effect on entry by collaborators, which is smaller
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in magnitude.

IV. Conclusion

In this paper, we leverage the applied economist’s toolkit, together with a novel
approach to delineate the boundaries of scientific fields, to explore the effect that
the passing of an eminent life scientist exerts on the dynamics of growth—or de-
cline—for the fields in which she was active while alive. We find that publications
and grants by scientists that never collaborated with the star surge within the
subfield, absent the star. Interestingly, this surge is not driven by a reshuffling
of leadership within the field, but rather by new entrants that are drawn from
outside of it. Our rich data on individual researchers and the nature of their
scholarship allows us provide a deeper understanding of this dynamic.

In particular, this increase in contributions by outsiders appears to tackle the
mainstream questions within the field but by leveraging newer ideas that arise
in other domains. This intellectual arbitrage is quite successful—the new articles
represent substantial contributions, at least as measured by long-run citation
impact. Together, these results paint a picture of scientific fields as scholarly
guilds to which elite scientists can regulate access, providing them with outsized
opportunities to shape the direction of scientific advance in that space.

We also provide evidence regarding the mechanisms that may enable the regula-
tion of entry. While stars are alive, entry appears to be effectively deterred where
the shadow they cast over the fields in which they were active looms particularly
large. After their passing, we find evidence for influence from beyond the grave,
exercised through a tightly-knit “invisible college” of collaborators (de Solla Price
and Beaver 1966; Crane 1972). The loss of an elite scientist central to the field
appears to signal to those on the outside that the cost/benefit calculations on the
avant-garde ideas they might bring to the table has changed, thus encouraging
them to engage. But this appears to occur only when the topology of the field
offers a less hostile landscape for the support and acceptance of “foreign” ideas,
for instance when the star’s network of close collaborators is insufficiently robust
to stave off threats from intellectual outsiders.

In the end, our results lend credence to Planck’s infamous quip that provides
the title for this manuscript. Yet its implications for social welfare are ambiguous.
While we can document that eminent scientists restrict the entry of new ideas and
scholars into a field, gatekeeping activities could have beneficial properties when
the field is in its inception; it might allow cumulative progress through shared
assumptions and methodologies, and the ability to control the intellectual evolu-
tion of a scientific domain might, in itself, be a prize that spurs much ex ante risk
taking. Because our empirical exercise cannot shed light on these countervailing
tendencies, we must refrain from drawing concrete policy conclusions from our
results.

All of the evidence we have presented pertains to the academic life sciences. It
is unclear how the lessons from that setting might apply to other fields inside the
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academy. In particular, when frontier research requires access to expensive and
highly-specialized capital equipment—as is sometimes the case in the physical sci-
ences—the rules governing access to that capital are likely to favor succession by
insiders. At the other end of the spectrum, more atomistic fields where scientists
generally work alone or in very small groups may evolve in a more frictionless man-
ner. Whether our findings apply to industrial research and development is also an
open question. In that setting, the choice of problem-solving approaches is guided
by market signals (however imperfectly, cf. Acemoglu [2012]), and thus likely
to differ from those selected under the more nuanced system of pecuniary and
non-pecuniary incentives that characterizes academic research (Feynman 1999;
Aghion, Dewatripont, and Stein 2008). Assessing the degree to which our results
extend to other settings, and the reasons they might differ, represents a fruitful
area for future research.
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Figure 1: Cumulative Stock of Publications at Time of Death 

  
Note: We compute the cumulative number of publications, up to the year that immediately precedes the year of 

death (or counterfactual year of death), between 3,076 treated subfields and 31,142 control subfields. 
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Figure 2 
Effect of Star Scientist Death on Subfield Growth and Decline 

 
 

A. All Authors B. Collaborators C. Non-Collaborators 

   

Note: The dark dots in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows in 
subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/after the death event 
(the indicator variable for treatment status interacted with the year of death is omitted). The specifications also include a full set of lead and lag terms common to both 
the treated and control subfields to fully account for transitory trends in subfield activity around the time of the death. The 95% confidence interval (corresponding to 
robust standard errors, clustered at the level of the star scientist) around these estimates is plotted with vertical light grey lines; Panel A corresponds to a dynamic version 
of the specification in column (1) of Table 3; Panel B corresponds to a dynamic version of the specification in column (2) of Table 3; Panel C corresponds to a dynamic 
version of the specification in column (3) of Table 3. 
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Figure 3 
Characteristics of Related Authors: Competitors or Outsiders? 

 
A. Distribution of Intellectual Proximity B. Entering Authors & Field Overlap 

  
Note: Panel A displays the distribution of overlap between the past output of related authors and each star’s subfield. For each author on a related article matched 

to the AAMC Faculty Roster, we create a metric of intellectual proximity by computing the fraction of their publications that belongs to the star’s subfield. 
Slightly more than half of related articles have authors with zero overlap, i.e., this related article is their first contribution to the star’s subfield. 1.24% of 
related articles are authored by new scientists for whom this publication within the subfield is also their first publication overall. Using this information, we 
aggregate the number of related articles in a particular subfield and in a particular year, e.g., “the number of articles in the subfield in year t that have 
authors above the 95th percentile in our measure of field overlap.” In Panel B, each dot corresponds to the magnitude of the treatment effect in a separate 
regression where the dependent variable is the number of articles in each subfield authored by scientists who belong to a particular bin of intellectual 
proximity, as measured by field overlap above. 
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Table 1: Summary Statistics — Deceased Superstar Scientists (N=452) 
 Mean Median Std. Dev. Min. Max. 
Year of Birth 1930.157 1930 11.011 1899 1959 
Degree Year 1957.633 1957 11.426 1928 1986 
Year of Death 1991.128 1992 8.055 1975 2003 
Age at Death 60.971 61 9.778 34 91 
Female 0.102 0 0.303 0 1 
MD Degree 0.403 0 0.491 0 1 
PhD Degree 0.489 0 0.500 0 1 
MD/PhD Degree 0.108 0 0.311 0 1 
Sudden Death 0.409 0 0.492 0 1 
Nb. of Subfields 6.805 4 7.308 1 57 
Career Nb. of Pubs. 138.221 112 115.704 12 1,380 
Career Nb. of Citations 8,341 5,907 8,562 120 72,122 
Career NIH Funding $16,637,919 $10,899,139 $25,441,933 0 $329,968,960 
Sits on NIH Study Section 0.007 0 0.081 0 1 
Career Nb. of Editorials 0.131 0 0.996 0 17 

Note: Sample consists of 452 superstar life scientists who died while still actively engaged in research. See Appendix A for more details on 
sample construction. 
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Table 2: Summary Statistics — Control & Treated Subfields at Baseline 
 Mean Median Std. Dev. Min. Max. 
Control Subfields (N=31,142)      
Baseline Stock of Related Articles in the Field 76.995 59 64.714 0 384 
Baseline Stock of Related Articles in the Field, Non-Collaborators 68.390 51 60.222 0 381 
Baseline Stock of Related Articles in the Field, Collaborators 8.604 5 10.358 0 125 
Source Article Nb. of Authors 3.970 4 1.901 1 15 
Source Article Citations at Baseline 16.331 8 30.305 0 770 
Source Article Long-run Citations 70.427 38 116.108 1 4495 
Investigator Gender 0.067 0 0.249 0 1 
Investigator Year of Degree 1960.546 1962 10.998 1926 1991 
Death Year 1991.125 1991 7.968 1975 2003 
Age at Death 58.100 58 8.795 34 91 
Investigator Cumulative Nb. of Publications 164 131 123 1 1,109 
Investigator Cumulative NIH Funding at Baseline $18,784,517 $11,904,846 $25,160,518 0 $387,558,656 
Investigator Cumulative Nb. of Citations 12,141 8,010 12,938 9 157,581 

Treated Subfields (N=3,076)      
Baseline Stock of Related Articles in the Field 76.284 58 64.046 0 368 
Baseline Stock of Related Articles in the Field, Non-Collaborators 67.752 51 59.725 0 357 
Baseline Stock of Related Articles in the Field, Collaborators 8.532 5 9.841 0 86 
Source Article Nb. of Authors 3.987 4 1.907 1 14 
Source Article Citations at Baseline 16.694 8 36.334 0 920 
Source Article Long-run Citations 70.432 35 180.528 1 6598 
Investigator Gender 0.099 0 0.299 0 1 
Investigator Year of Degree 1960.141 1961 10.898 1928 1986 
Death Year 1991.125 1991 7.970 1975 2003 
Age at Death 58.100 58 8.796 34 91 
Investigator Cumulative Nb. of Publications 170 143 118 12 1,380 
Investigator Cumulative NIH Funding at Baseline $17,637,726 $12,049,690 $24,873,018 0 $329,968,960 
Investigator Cumulative Nb. of Citations 11,580 8,726 10,212 120 72,122 

Note: The sample consists of subfields for 452 deceased superstar life scientists and their matched control subfields. See Appendix D for details on the 
matching procedure. All time-varying covariates are measured in the year of superstar death. 
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Table 3: Effect of Superstar Death on Subfield Entry Rates 

 Publication Flows  NIH Funding Flows (Nb. of Awards) 

 All Authors Collaborators 
Only 

Non-
Collaborators 

Only 

 
All Authors Collaborators 

Only 

Non-
Collaborators 

Only 
 (1) (2) (3)  (4) (5) (6) 

After Death 0.051† -0.232** 0.082**  0.046 -0.265** 0.110** 
(0.029) (0.057) (0.029)  (0.035) (0.076) (0.033) 

Nb. of Investigators 6,260 6,124 6,260  6,215 5,678 6,202 
Nb. of Fields 34,218 33,096 34,218  33,912 29,163 33,806 
Nb. of Field-Year Obs. 1,259,176 1,217,905 1,259,176  1,049,942 902,873 1,046,678 
Log Likelihood -2,891,110 -729,521 -2,768,252  -1,350,204 -472,329 -1,223,913 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications 
in a subfield in a particular year (columns 1, 2, and 3), or the total number of NIH grants that acknowledge a publication in a subfield 
(columns 4, 5, and 6). All models incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from zero to one after the death of the star, to address the concern that age, year and individual fixed 
effects may not fully account for trends in subfield entry around the time of death. Exponentiating the coefficients and differencing from 
one yield numbers interpretable as elasticities. For example, the estimates in column (3) imply that treated subfields see an increase in 
the number of contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.082]-1)=8.55%. 
The number of observations varies slightly across columns because the conditional fixed effects specification drops observations 
corresponding to subfields for which there is no variation in activity over the entire observation period. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 4: Scientific Impact of Entry 
 Vintage-specific long-run citation quantile 

 All Pubs Bttm. Quartile 2nd Quartile 3rd Quartile Btw. 75th and 
95th pctl. 

Btw. 95th and 
99th pctl. 

Above 99th 
pctl. 

After Death 0.082** -0.028 0.008 0.031 0.125** 0.232** 0.320** 
(0.029) (0.036) (0.033) (0.032) (0.035) (0.049) (0.081) 

Nb. of Investigators 6,260 6,222 6,260 6,257 6,255 6,161 5,283 
Nb. of Fields 34,218 33,714 34,206 34,212 34,210 33,207 21,852 
Nb. of Field-Year Obs. 1,259,176 1,240,802 1,258,738 1,258,954 1,258,880 1,221,952 804,122 
Log Likelihood -2,768,252 -689,465 -1,125,555 -1,432,223 -1,469,096 -542,735 -156,519 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications by non-collaborators 
in a subfield in a particular year, where these publications fall in a particular quantile bin of the long-run, vintage-adjusted citation distribution for the 
universe of journal articles in PubMed. All models incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and differencing from one yield numbers 
interpretable as elasticities. For example, the estimates in column (1), Panel A, imply that treated subfields see an increase in the number of contributions 
by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.082]-1)=8.55%. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 5: Entry and Research Direction 
Panel A Cardinal Measure  Ordinal Measure 

 
Intllct. 

Proximate 
Articles 

Intllct. 
Distant 
Articles 

 
Intllct. 

Proximate 
Articles 

Intllct. 
Distant 
Articles 

After Death 0.091** 0.028  0.117** -0.024 
(0.030) (0.035)  (0.028) (0.037) 

Nb. of Investigators 6,228 6,099  6,260 6,017 
Nb. of Fields 33,375 32,232  34,218 31,712 
Nb. of Field-Year Obs. 1,228,157 1,186,589  1,259,176 1,167,423 
Log Likelihood -1,628,374 -1,816,449  -1,893,982 -1,628,170 

Panel B In-field vs. 
Out-of-field References  Backward Citations to 

the Star’s Bibliome 

 w/ in-field 
references 

w/o in-field 
references  w/ references 

to the star 
w/o references 

to the star 

After Death -0.023 0.128**  0.078* 0.152** 
(0.041) (0.031)  (0.036) (0.034) 

Nb. of Investigators 6,195 6,260  6,247 6,259 
Nb. of Fields 32,721 34,218  34,179 34,147 
Nb. of Field-Year Obs. 1,204,315 1,259,176  1,257,747 1,256,576 
Log Likelihood -792,795 -2,510,344  -1,914,448 -1,767,571 

Panel C Vintage of Cited 
References  Vintage of 2-way MeSH 

Term Combinations 

 Young Old  Young Old 

After Death 0.071* -0.010  0.090** 0.029 
(0.035) (0.034)  (0.033) (0.036) 

Nb. of Investigators 6,260 6,260  6,258 6,260 
Nb. of Fields 34,218 34,214  34,206 34,210 
Nb. of Field-Year Obs. 1,259,176 1,259,044  1,258,732 1,258,906 
Log Likelihood -2,124,598 -1,613,457  -1,853,062 -1,784,275 

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. In Panel A, the dependent variable 
is the total number of publications by non-collaborators in a subfield in a particular year, where these 
publications can either be proximate in intellectual space to the star’s source publication, or more distant (in 
the PMRA sense). Since PMRA generates both a cardinal and an ordinal measure of intellectual proximity, we 
parse the related articles using both measures, yielding a total of four different specifications. For the cardinal 
measure, a related article is deemed proximate if its similarity score is above .58, which corresponds to the 
median of relatedness in the sample. For the ordinal measure, a related article is deemed proximate if its 
similarity rank is below 90, which also corresponds to the median of similarity in the sample. In Panel B, we 
focus on whether the content of entrants’ contributions in the subfield change after the superstar passes away. 
Each cited reference in a related article can either belong to the subfield, or fall outside of it; it can cite a 
publication of the star scientist associated with the subfield, or fail to cite any of the star’s past contributions. 
In Panel C, the dependent variable is the total number of publications by non-collaborators in a subfield in a 
particular year, where these publications can either be “fresh” (citing young references, or being annotated by 
MeSH terms of recent vintage) or stale (citing old references, or being annotated by MeSH terms of distant 
vintage). All models incorporate a full suite of year effects and subfield age effects, as well as a term common 
to both treated and control subfields that switches from zero to one after the death of the star. Exponentiating 
the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates 
in the first column of Panel A imply that treated subfields see an increase in the number of PMRA-proximate 
contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.091]-
1)=9.53%. Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 
0.05, **p < 0.01.  
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Table 6: Breakdown by Star Scientist Characteristics 

 
Publications  Citations  Funding  Importance 

to the Field 

Below 
Median 

Above 
Median  Below 

Median 
Above 
Median  Below 

Median 
Above 
Median 

 Below 
Median 

Above 
Median 

After Death 0.059 0.116*  0.036 0.125**  0.014 0.162**  0.063* 0.123** 
(0.037) (0.050)  (0.042) (0.040)  (0.040) (0.052)  (0.031) (0.045) 

Nb. of Investigators 2,901 4,836  2,792 4,619  3,048 4,287  5,019 4,493 
Nb. of Fields 17,210 17,008  17,328 16,890  15,731 15,487  16,985 17,233 
Nb. of Field-Year Obs. 632,089 627,087  636,750 622,426  578,277 570,665  625,140 634,036 
Log Likelihood -1,377,727 -1,387,650  -1,367,335 -1,396,652  -1,268,559 -1,252,952  -1,462,538 -1,257,973 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications by non-
collaborators in a subfield in a particular year. Each pair of columns splits the sample across the median of a particular covariate for the sample of fields 
(treated and control) in the baseline year. The table examines differences in the extent to which the eminence of the star at death (respectively 
counterfactual year of death for controls) influences the rate at which non-collaborators enter the field after the star passes away. Eminence is measured 
through the star’s cumulative number of publications, the star’s cumulative number of citations garnered up to the year of death, and the star’s cumulative 
amount of NIH funding. We also have a “local” measure of eminence: the star’s importance to the field, which is defined as the proportion of articles in 
the subfield up to the year of death for which the star is an author. All models incorporate a full suite of year effects and subfield age effects, as well as 
a term common to both treated and control subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and 
differencing from one yield numbers interpretable as elasticities. For example, the estimate in the second column implies that treated subfields see an 
increase in the number of contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.116]-1)=12.30%. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 7: The Nature of Entry Barriers 
 
Panel A 
 

Subfield Coherence 

PMRA-based definition  Citation-based definition  Cliquishness 

 
 Below Median Above 

Median   Below Median Above Median   Below 
Median 

Above 
Median  

After Death 0.202** 0.067  0.161** 0.096*  0.129** 0.064 
(0.038) (0.048)  (0.053) (0.041)  (0.049) (0.052) 

Nb. of Investigators 3,353 3,203  3,422 3,157  2,865 3,561 
Nb. of Fields 9,062 7,828  8,731 8,159  8,044 8,846 
Nb. of Field-Year Obs. 334,142 288,284  321,826 300,600  296,704 325,722 
Log Likelihood -711,335 -664,170  -760,842 -631,287  -692,330 -685,682 
 
Panel B 
 

Indirect Control through Collaborators 

Editorial Channel  NIH Study Section Channel  Fraction of Subfield 
NIH Funding 

 
 Below Median Above 

Median   Below Median Above Median   Below 
Median 

Above 
Median  

After Death 0.147** 0.086†  0.134** -0.078  0.174** 0.084 
(0.056) (0.048)  (0.043) (0.095)  (0.051) (0.051) 

Nb. of Investigators 3,452 2,068  4,385 664  3,559 2,525 
Nb. of Fields 11,110 5,780  15,338 1,552  9,863 7,027 
Nb. of Field-Year Obs. 410,025 212,401  565,219 57,207  363,690 258,736 
Log Likelihood -951,705 -461,769  -1,293,997 -125,950  -840,777 -545,782 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications by non-
collaborators in a subfield in a particular year. The sample is limited to the subfields in which the most eminent among the stars were active 
(specifically, above the median of the “cumulative citations up to the year of death” metric). Each pair of columns splits the sample across the median 
of a particular covariate for the sample of subfields (treated and control) in the baseline year. For example, the first two columns of Panel B compare 
the magnitude of the treatment effect for stars whose collaborators have written an above-median number of editorials in the five years preceding the 
superstar’s death, vs. a below-median number of editorials. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and differencing 
from one yield numbers interpretable as elasticities. For example, the estimates in the first column of Panel B imply that treated subfields see an 
increase in the number of contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.147]-1)=15.84%. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Appendix A:
Criteria for Delineating the Set of 12,935 “Superstars”

Highly Funded Scientists. Our first data source is the Consolidated Grant/Applicant File (CGAF) from
the U.S. National Institutes of Health (NIH). This dataset records information about grants awarded to
extramural researchers funded by the NIH since 1938. Using the CGAF and focusing only on direct costs
associated with research grants, we compute individual cumulative totals for the decades 1977-1986, 1987-
1996, and 1997-2006, deflating the earlier years by the Biomedical Research Producer Price Index. We also
recompute these totals excluding large center grants that usually fund groups of investigators (M01 and P01
grants). Scientists whose totals lie above the 95th percentile of e‘ither distribution constitute our first group
of superstars. In this group, the least well-funded investigator garnered $10.5 million in career NIH funding
and the most well-funded $462.6 million.i

Highly Cited Scientists. Despite the preeminent role of the NIH in the funding of public biomedical
research, the above indicator of “superstardom” biases the sample towards scientists conducting relatively
expensive research. We complement this first group with a second composed of highly cited scientists
identified by the Institute for Scientific Information. A Highly Cited listing means that an individual was
among the 250 most cited researchers for their published articles between 1981 and 1999, within a broad
scientific field.ii

Top Patenters. We add to these groups academic life scientists who belong in the top percentile of the
patent distribution among academics—those who were granted 17 patents or more between 1976 and 2004.

Members of the National Academy of Science and of the Institute of Medicine. We add to
these groups academic life scientists who were elected to the National Academy of Science or the Institute
of Medicine between 1970 and 2013.

MERIT Awardees of the NIH. Initiated in the mid-1980s, the MERIT Award program extends fund-
ing for up to 5 years (but typically 3 years) to a select number of NIH-funded investigators “who have
demonstrated superior competence, outstanding productivity during their previous research endeavors and
are leaders in their field with paradigm-shifting ideas.” The specific details governing selection vary across
the component institutes of the NIH, but the essential feature of the program is that only researchers holding
an R01 grant in its second or later cycle are eligible. Further, the application must be scored in the top
percentile in a given funding cycle. We add to this category the NIH Director’s Pioneer Awardees. Part
of the “High-Risk, High-Reward Research” program, since 2004 the award has supported “scientists with

iWe perform a similar exercise for scientists employed by the intramural campus of the NIH. These scientists are not eligible
to receive extramural funds, but the NIH keeps records of the number of “internal projects” each intramural scientist leads. We
include in the elite sample the top five percentiles of intramural scientists according to this metric.

iiThe relevant scientific fields in the life sciences are microbiology, biochemistry, psychiatry/psychology, neuroscience, molec-
ular biology & genetics, immunology, pharmacology, and clinical medicine.

i



outstanding records of creativity pursuing new research directions to develop pioneering approaches to major
challenges in biomedical and behavioral research.”

Former and current Howard Hughes Medical Investigators (HHMIs). Every three years, the
Howard Hughes Medical Institute selects a small cohort of mid-career biomedical scientists with the potential
to revolutionize their respective subfields. Once selected, HHMIs continue to be based at their institutions,
typically leading a research group of 10 to 25 students, postdoctoral associates and technicians. Their
appointment is reviewed every five years, based solely on their most important contributions during the
cycle.iii

Early career prize winners. We also included winners of the Pew, Searle, Beckman, Rita Allen, and
Packard scholarships for the years 1981 through 2000. Every year, these charitable foundations provide seed
funding to between 20 and 40 young academic life scientists. These scholarships are the most prestigious
accolades that young researchers can receive in the first two years of their careers as independent investigators.

Consolidated categories. Why use 8 different criteria to delineate the set of stars? There are two reasons
to do so. First, there is of course no agreed-upon definition of stardom in academic science, and choosing
an eclectic set of metric makes it less likely that our analysis will be biased by the idiosyncrasies of any
particular metric. For example, the funding metric will tend to bias the set of stars towards scientists doing
relatively expensive research (e.g., clinical research, or research on monkeys/other mammals vs. research
on invertebrates such as the nematode worm c. elegans). Table A1 documents the overlap between each of
the eight metrics. Some metrics are highly negatively correlated (e.g., ECPW and high NIH funding) while
most correlations between individual metrics are modest in magnitude.

Second, if we focused on a single, incontrovertible metric such as election to the National Academy of
Sciences, we would not have enough statistical power to identify the main effect of death on subfield growth.
To examine the effect of star death across stars of different types, we consolidate the eight metrics into three
mutually exclusive categories:

(i) “Cumulative stars,” who enter the sample on the basis of cumulative achievement (high NIH grant re-
ceipt, highly cited scientists, top patenters, and members of the National Academy of Science/Medicine
(N = 6, 858 or 53%);

(ii) “Shooting stars,” who enter the sample on the basis of a specific contribution (appointment as a
Howard Hughes Medical Investigator; NIH MERIT/Director Pioneer awardees; Early career prize
winners), with no presumption that this mark of elevated status will endure over the entire career
(N = 3, 859 or 30%);

(iii) “Cumulative⊕Shooting stars,” who enter the sample based on at least one cumulative metric, and at
least one “burst” metric (N = 2, 218 or 17%).

We also create a subsample limited to the members of the National Academies of Science/Medicine and
Investigators of the Howard Hughes Medical Institute. One can think of this rarefied subset (which de facto
subsumes Nobel prize winners and Lasker awardees) as “the elite within the elite” of academic biomedical
research (N=3,325 or 26% of the total).

In Table A2, we run our benchmark specification (number of papers in the field by non-collaborators, as in the
third column of Table 3) separately on these four subsamples. All the coefficients are positive in magnitude,
but some of them are imprecisely estimated. Table A3 lists all of the 452 extinct stars in the sample, along
with basic demographic information, cause of death, institutional affiliation, and a short description of their
research expertise.

iiiSee Azoulay et al. (2011) for more details and an evaluation of this program.
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Table A1: Star Decomposition 
 

Highly 
Funded 

Highly 
Cited 

Top 
Patenter 

NAS NAM MERIT HHMI ECPW 

Highly Funded 7,822 886 189 942 1,033 1,540 221 128 
Highly Cited 886 1,921 96 385 355 442 141 58 
Top Patenter 189 96 606 88 55 86 29 14 
NAS 942 385 88 1,843 430 561 295 151 
NAM 1,033 355 55 430 1,933 368 176 68 
MERIT 1,540 442 86 561 368 2,898 196 145 
HHMI 221 141 29 295 176 196 866 179 
ECPW 128 58 14 151 68 145 179 1,114 

Note: Metrics of stardom and their distribution in the sample of 12,935 eminent scientists. NAS=National Academy of 
Sciences; NAM=National Academy of Medicine; MERIT=Method to Extend Research In Time, an exceptional 
NIH grant category; HHMI=Howard Hughes Medical Investigator; ECPW=Early Career Prize Winners. 

 

 
  
 
 
 
 

Table A2: Impacts by Type of Star 

 Shooting 
Stars 

Cumulative 
Stars 

Shooting & 
Cumulative 

Stars 

“Elite of the 
Elite” 

After Death 0.047 0.079* 0.154* 0.032 
(0.056) (0.038) (0.069) (0.052) 

Nb. of Investigators 1,551 3,164 1,545 1,708 
Nb. of Fields 6,584 16,095 11,539 11,855 
Nb. of Field-Year Obs. 242,409 592,030 424,737 436,081 
Log Likelihood -535,715 -1,345,402 -938,102 -952,496 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators in a subfield in a particular year, contributed by non-
collaborators. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star, to 
address the concern that age, year and individual fixed effects may not fully account for trends in subfield entry 
around the time of death for the deceased star. Exponentiating the coefficients and differencing from one yield 
numbers interpretable as elasticities. 
 
Robust standard errors in parentheses, clustered at the level of the star scientist. 
†p < 0.10, *p < 0.05, **p < 0.01. 

 
 



Investigator Name Cause of death if known Institution at the time of death Scientific domain
Richard C. Parker [1952-1986] PhD, 1979 lymphoma Columbia University properties of cellular and viral src genes
Richard E. Weitzman [1943-1980] MD, 1968 cancer Harbor-UCLA Medical Center arginine vasopressin metabolism
Eva U.J. Paucha [1949-1988] PhD, 1976 cancer Dana Farber Cancer Institute mechanism of transformation by SV40 large T antigen
Kiertisin Dharmsathaphorn [1950-1990] MD, 1972 AIDS University of California — San Diego intestinal secretory mechanisms and antidiarrheal drugs
Ernest G. Peralta [1959-1999] PhD, 1986 brain cancer Harvard University signal transduction mechanisms of muscarinic receptors
Roderich Walter [1937-1979] PhD, 1964 malignant melanoma University of Illinois solid-phase peptide synthesis
JoAnn E. Franck [1950-1992] PhD, 1981 cancer University of Washington School of Medicine hippocampal damage as a cause of epilepsy
Thomas K. Tatemichi [1952-1995] MD, 1978 non hodgkin’s lymphoma Columbia University College of Physicians & Surgeons mechanisms and syndromes of dementia related to stroke
Bruce S. Schoenberg [1942-1987] MD, 1968 cancer NIH prevention and control of neurological disorders
George Khoury [1943-1987] MD, 1970 lymphoma NIH genetics of simian virus 40, human papovavirus and HIV
Leonard N. Horowitz [1947-1992] MD, 1972 cancer University of Pennsylvania School of Medicine diagnosing and treatment of ventricular arrythmia
W. Alden Spencer [1931-1977] MD, 1956 long illness Columbia University plasticity of the simplest neuronal pathways
Jerome T. Pearlman [1933-1979] MD, 1957 prolonged illness UCLA laboratory studies of retinal degenerations
Joram Heller [1934-1980] MD/PhD, 1965 brain cancer UCLA biochemical and biophysical investigation of rhodopsin
B. Frank Polk [1942-1988] MD, 1967 brain cancer Johns Hopkins University School of Medicine epidemiology of HIV infection
Ronald D. Fairshter [1942-1988] MD, 1968 rapidly metastatic melanoma University of California — Irvine clinical studies in chronic obstructive pulmonary disease
Cornelia P. Channing [1938-1985] PhD, 1966 breast cancer University of Maryland School of Medicine mechanism of luteinization in vitro and in vivo
Joel D. Meyers [1944-1991] MD, 1970 colon cancer University of Washington/FHCRC infections caused by suppression of the immune system in organ transplant and AIDS patients
Richard L. Lyman [1927-1975] PhD, 1957 terminal illness for months University of California — Berkeley protein, trypsin inhibitors and pancreatic secretion
James N. Gilliam [1936-1984] MD, 1964 cancer University of Texas Southwestern Medical Center at Dallas cutaneous lupus erythematosus pathogenesis mechanisms
Gordon M. Tomkins [1926-1975] MD/PhD, 1953 brain surgery to remove a tumor University of California — San Francisco pleiotypic response in regulation of cell growth
Muriel R. Steele [1930-1979] MD, 1957 metastatic disease University of California — San Francisco surgical treatment of liver trauma
Allastair M. Karmody [1937-1986] MD, 1963 gastric cancer Albany Medical College novel procedures for difficult vascular surgical problems
Chaviva Isersky [1937-1986] PhD, 1967 cancer NIH/NIDDK Characterization of the protein responsible for amyloidosis
Melvin L. Marcus [1940-1989] MD, 1966 colon cancer UMASS cardiology, heart disease, coronary vascular adaptations to myocardial hypertrophy
Alan S. Morrison [1943-1992] PhD, 1972 cancer Brown University Medical School hormones in the epidemiology of prostatic hyperplasia
Sidney Futterman [1929-1979] PhD, 1954 prolonged illness University of Washington School of Medicine biochemistry of the retina and pigment epithelium
Loretta L. Leive [1936-1986] PhD, 1963 cancer NIH/NIDDK role of bacterial cell surface in microbial physiology and pathogenesis
Philip G. Weiler [1941-1991] MD, 1965 terminal illness University of California — Davis coronary heart disease & stroke in the elderly
Ira M. Goldstein [1942-1992] MD, 1966 metastatic lung cancer University of California — San Francisco pancreatitis, complement and lung injury
Harold Weintraub [1945-1995] MD/PhD, 1973 brain cancer University of Washington/FHCRC characterization and function of MyoD gene
Richard K. Gershon [1932-1983] MD, 1959 lung cancer Yale University immunologic responses to tumor grafts
Edward J. Sachar [1933-1984] MD, 1956 stroke three years ago Columbia University psychoendocrine studies of schizophrenic reactions
Catherine Cole-Beuglet [1936-1987] MD, 1962 colon cancer University of California — Irvine ultrasonography of the breast
Theodore S. Zimmerman [1937-1988] MD, 1963 lung cancer Scripps Research Institute platelet/plasma protein interaction in blood coagulation
Markku Linnoila [1947-1998] MD/PhD, 1974 cancer NIH studies on the biological bases of impulsivity and aggression
William J. Mellman [1928-1980] MD, 1952 lymphoma University of Pennsylvania School of Medicine human genetics and pediatrics
Dennis Slone [1930-1982] MD, 1956 long illness Boston University School of Medicine intensive inpatient psychiatric monitoring program
Roger O. Eckert [1934-1986] PhD, 1960 melanoma UCLA ionic and metabolic mechanisms in neuronal excitability
Michael Solursh [1942-1994] PhD, 1968 AIDS University of Iowa School of Medicine extracellular matrix and cell migration
Larry C. Clark [1948-2000] PhD, 1981 prostate cancer University of Arizona nutritional prevention of cancer
Robert F. Spencer [1949-2001] PhD, 1974 gastric carcinoma Medical College of Virginia neuroanatomy of the oculomotor system
Carl C. Levy [1928-1981] PhD, 1957 leukemia NIH/NCI regulation of intracellular messenger RNA
Marshall H. Becker [1940-1993] PhD, 1968 intractable illness University of Michigan, Ann Arbor elaboration of the health belief model
Samuel W. Perry, 3rd [1941-1994] MD, 1967 pancreatic cancer Cornell University — Weill Medical College psychological course of prolonged infection among AIDS patients
Michael A. Kirschenbaum [1944-1997] MD, 1969 long illness University of California — Irvine prostaglandins and kidney medicine
Janis V. Giorgi [1947-2000] PhD, 1977 uterine cancer UCLA cellular immunology of resistance to HIV
Herbert F. Hasenclever [1924-1978] PhD, 1953 cancer NIH/NIAID mannan polysaccharides of pathogenic fungi
Edward C. Franklin [1928-1982] MD, 1950 brain cancer New York University School of Medicine structure and properties of rheumatoid antibodies
Robert M. Joy [1941-1995] PhD, 1969 cancer University of California — Davis pesticide induced changes in central nervous function
Lois K. Miller [1945-1999] PhD, 1972 melanoma University of Georgia genetics and molecular biology of baculoviruses
Gerald T. Babcock [1946-2000] PhD, 1973 cancer Michigan State University bioenergetic mechanisms in multicenter enzymes
John G. Gambertoglio [1947-2001] PharmD, 1972 multiple sclerosis University of California — San Francisco pharmacokinetics in healthy volunteers and subjects with renal insufficiency and on hemodialysis
John C. Cassel [1921-1976] MD, 1946 University of North Carolina at Chapel Hill Contribution of the social environment to host resistance
Ernst A. Noltmann [1931-1986] MD, 1956 severe health problems University of California — Riverside biochemical and physical characterization of phosphoglucose isomerase
Edward A. Smuckler [1931-1986] MD/PhD, 1963 barrett’s disease/oesophagal cancer University of California — San Francisco cytochemical studies in liver injury
Joseph W. St. Geme, Jr. [1931-1986] MD, 1956 cardiac myopathy University of Colorado Health Sciences Center studies of cellular resistance to virus infection
Edwin H. Beachey [1934-1989] MD, 1962 cancer University of Tennessee chemistry and immunology of streptococcal m proteins
Ora M. Rosen [1935-1990] MD, 1960 breast cancer Sloan Kettering Institute for Cancer Research Cloning and characterization of gene for human insulin receptor
Tai-Shun Lin [1939-1994] PhD, 1970 non hodgkin’s lymphoma Yale University synthesis and development of nucleoside analogs as antiviral and anticancer compounds
Judith G. Pool [1919-1975] PhD, 1946 brain tumor Stanford University pathophysiology of hemophilia
Ardie Lubin [1920-1976] PhD, 1951 serious illness for months Naval Health Research Center repeated measurement design in psychopharmacology
William H. Hildemann [1927-1983] PhD, 1956 amyotrophic lateral sclerosis UCLA mechanisms of immunoblocking versus tumor immunity
Murray Rabinowitz [1927-1983] MD, 1950 muscular dystrophy University of Chicago mitochondrial assembly and replication
Paul A. Obrist [1931-1987] PhD, 1958 3 year illness University of North Carolina at Chapel Hill blood pressure control: relation to behavioral stress
C. Richard Taylor [1939-1995] PhD, 1963 heart failure Harvard University locomotion–idling metabolism and gait dynamics
Helene S. Smith [1941-1997] PhD, 1967 breast cancer University of California — San Francisco malignant progression of the human breast/predictors of breast cancer prognosis
Bruce W. Erickson [1942-1998] PhD, 1970 cancer University of North Carolina at Chapel Hill engineering of nongenetic beta proteins
Norton B. Gilula [1944-2000] PhD, 1971 lymphoma Scripps Research Institute cell junction biosynthesis and biogenesis/cell-cell communication
John M. Eisenberg [1946-2002] MD, 1972 high-grade malignant glioma Georgetown University Medical Center health services research
Elizabeth A. Bates [1947-2003] PhD, 1974 pancreatic cancer University of California — San Diego cross-linguistic studies of language development, processing and breakdown in aphasia
Ira Herskowitz [1946-2003] PhD, 1971 pancreatic cancer University of California — San Francisco genetics of yeast mating type
Wallace P. Rowe [1926-1983] MD, 1948 colon cancer NIH genetic basis of disease in murine leukemia viruses
J. Weldon Bellville [1926-1983] MD, 1952 cancer UCLA dynamic isolation studies of control of respiration
Peter W. Lampert [1929-1986] MD, 1955 lymphoma University of California — San Diego pathogenesis of virus-induced brain disease
Sheldon D. Murphy [1933-1990] PhD, 1958 cancer University of Washington School of Medicine biochemical and physiologic response to toxic stress
Allan C. Wilson [1934-1991] PhD, 1961 leukemia University of California — Berkeley use of molecular approaches to understand evolutionary change
Bernard N. Fields [1938-1995] MD, 1962 pancreatic cancer Harvard Medical School/Brigham & Women’s Hospital genetic and molecular basis of viral injury to the nervous system
Priscilla A. Campbell [1940-1998] PhD, 1968 cervical cancer University of Colorado Health Sciences Center/Natl. Jewish Center cell biology of the immune response to bacteria
Ethan R. Nadel [1941-1998] PhD, 1969 cancer Yale University thermoregulation during exercise and heat exposure
Peter A. Kollman [1944-2001] PhD, 1970 cancer University of California — San Francisco free energy perturbation calculations and their application to macromolecules
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Investigator Name Cause of death if known Institution at the time of death Scientific domain
David Tapper [1945-2002] MD, 1970 long battle with renal cell carcinoma University of Washington School of Medicine determination of a new growth factor in breast milk
Cyril S. Stulberg [1919-1977] PhD, 1947 multiple sclerosis Wayne State University School of Medicine characterization and preservation of cell strains
Dorothy T. Krieger [1927-1985] MD, 1949 breast cancer Mount Sinai School of Medicine CNS-pituitary-adrenal interactions
Aaron Janoff [1930-1988] PhD, 1959 long illness SUNY HSC at Stony Brook pathology of smoking and emphysema
Wylie J. Dodds [1934-1992] MD, 1960 brain cancer Medical College of Wisconsin esophageal motor function in health and disease
Oscar A. Kletzky [1936-1994] MD, 1961 lung cancer UCLA ameliorating effects of estrogen replacement therapy on cerebral blood flow and sleep
Nelson Butters [1937-1995] PhD, 1964 Lou Gehrig’s disease University of California — San Diego cognitive deficits related to chronic alcoholism
Elizabeth M. Smith [1939-1997] PhD, 1978 cancer Washington University in St. Louis psychiatric problems among disaster survivors
David G. Marsh [1940-1998] PhD, 1964 glioblastoma Johns Hopkins University School of Medicine genetics of allergy and asthma
George C. Cotzias [1918-1977] MD, 1944 lung cancer Cornell University Medical College studies of extrapyramidal & related behavioral disorders
Robert D. Allen [1927-1986] PhD, 1953 pancreatic cancer Dartmouth Medical School cytoplasmic rheology of motile cells
Marilyn Bergner [1933-1992] PhD, 1970 ovarian cancer Johns Hopkins University School of Public Health cost and efficacy of home care for COPD patients
G. Harrison Echols, Jr. [1933-1993] PhD, 1959 lung cancer University of California — Berkeley Genetic and chemical studies of phage lambda development
Milton H. Stetson [1943-2002] PhD, 1970 prolonged and courageous fight with illness University of Delaware environmental regulation of reproduction and the onset of puberty
Nicholas R. DiLuzio [1926-1986] PhD, 1954 extended illness Tulane University School of Medicine role recognition factors and macrophages in neoplasia
Lauran D. Harris [1927-1987] MD, 1947 long illness Boston University School of Medicine sphincter strength–its measurement and control
Charles W. Mays [1930-1990] PhD, 1958 cancer National Cancer Institute reducing cancer risk by radionuclide chelation
Lawrence H. Piette [1932-1992] PhD, 1957 cancer Utah State University electron spin resonance spectroscopy
Mehdi Tavassoli [1933-1993] MD, 1961 heart failure University of Mississippi Medical Center hematopoietic stem cell purification and biology
Howard M. Temin [1934-1994] PhD, 1959 lung cancer University of Wisconsin molecular biology and genetics of tumor viruses
Mette Strand [1937-1997] PhD, 1964 cancer Johns Hopkins University School of Medicine parasite immunochemistry and vaccine development
William L. Chick [1938-1998] MD, 1963 diabetes complications UMASS studies of islet and beta cells in pancreatic transplantation
Robert A. Mendelson, Jr. [1941-2001] PhD, 1968 lung cancer University of California — San Francisco molecular mechanism of muscle contraction
Susan M. Sieber [1942-2002] PhD, 1971 breast cancer National Cancer Institute biochemical epidemiology and cancer
Joachim G. Liehr [1942-2003] PhD, 1968 pancreatic cancer University of Texas Medical Branch at Galveston mechanism of estrogen-induced carcinogenesis
Charles A. Janeway, Jr. [1943-2003] MD, 1969 B-cell lymphoma Yale University innate immunity and T lymphocyte biology
Edward Herbert [1926-1987] PhD, 1953 pancreatic cancer Oregon Health & Science University regulation of expression of opioid peptides and receptors
Thomas W. Smith [1936-1997] MD, 1965 mesothelioma Harvard Medical School/Brigham & Women’s Hospital Mechanism and reversal studies of digitalis
Roy H. Steinberg [1935-1997] MD/PhD, 1965 multiple myeloma University of California — San Francisco pigment epithelium interactions with neural retina
David W. Fulker [1937-1998] PhD, 1967 pancreatic cancer University of Colorado at Boulder adoption studies of development in middle childhood
Donald J. Cohen [1940-2001] MD, 1966 ocular melanoma Yale University Tourette’s syndrome and autism in children
Harvey D. Preisler [1941-2002] MD, 1965 lymphoma Rush Medical College clinical and biological studies of myeloid leukemias
Carl M. Pearson [1919-1981] MD, 1946 cancer UCLA studies in adjuvant-induced arthritis
Morton I. Grossman [1919-1981] MD/PhD, 1944 esophageal cancer UCLA studies on the etiology of peptic ulcer
Mones Berman [1920-1982] PhD, 1957 cancer National Cancer Institute quantitative, model-based problems in metabolism and endocrinology
Henry R. Mahler [1921-1983] PhD, 1948 heart failure Indiana University respiratory enzymes–structure, function, & biosynthesis
Milton Kern [1925-1987] PhD, 1954 lung cancer NIH ribonucleic acids of specifically isolated ribosomes
Thoralf M. Sundt, Jr. [1930-1992] MD, 1959 bone marrow cancer Mayo Clinic surgical techniques for intracranial aneurysms
John C. Liebeskind [1935-1997] PhD, 1962 cancer UCLA behavioral and electrophysiological studies of pain
Marian W. Fischman [1939-2001] PhD, 1972 colon cancer Columbia University behavioral pharmacology of cocaine
David S. Sigman [1939-2001] PhD, 1965 brain cancer UCLA enzymology and gene targeting
Charles D. Heidelberger [1920-1983] PhD, 1946 carcinoma of nasal sinus University of Southern California Keck School of Medicine effects of fluorinated pyrimidines on tumors
Sidney H. Ingbar [1925-1988] MD, 1947 lung cancer Harvard Medical School/Beth Israel Medical Center physiology of the thyroid gland and its clinical diseases
Kiichi Sagawa [1926-1989] MD/PhD, 1958 cancer Johns Hopkins University School of Medicine modelling the mechanics of cardiac chamber contraction
Sydney E. Salmon [1936-1999] MD, 1962 pancreatic cancer University of Arizona quantitative method for evaluating changes in myeloma tumor mass
Eva J. Neer [1937-2000] MD, 1963 breast cancer Harvard Medical School/Brigham & Women’s Hospital regulation and cellular levels of G protein subunits
Lawrence D. Jacobs [1938-2001] MD, 1965 cancer SUNY Buffalo recombinant b interferon as treatment for Multiple Sclerosis
Richard J. Wyatt [1939-2002] MD, 1964 lung cancer NIH biochemistry of schizophrenia
Robert J. Fass [1939-2002] MD, 1964 lung cancer Ohio State University In vitro methods to test antimicrobial susceptibility of infectious agents
Michael Doudoroff [1911-1975] PhD, 1939 cancer University of California — Berkeley taxonomy and phylogeny of pseudomonads
Arnold M. Seligman [1912-1976] MD, 1937 prolonged terminal illness Johns Hopkins University School of Medicine drug development for prostatic carcinoma
Frederick H. Carpenter [1918-1982] PhD, 1944 University of California — Berkeley mechanism of leucine aminopeptidase
Harvey M. Patt [1918-1982] PhD, 1942 University of California — San Francisco ultra-high dose rates in experimental radiotherapy
Teruzo Konishi [1920-1984] MD/PhD, 1955 cancer NIEHS physiological and biophysical functions of the inner ear
Mortimer B. Lipsett [1921-1985] MD, 1951 brain tumor NIH steroid metabolic conversions in human subjects
Andrew C. Peacock [1921-1985] PhD, 1949 cancer NIH/NCI materials and methods for polyacrylamide gel electrophoresis
Harold Edelhoch [1922-1986] PhD, 1947 cancer NIH/NIDDK fluorescence methods for the study of protein structures
Gerald L. Klerman [1928-1992] MD, 1954 diabetes Cornell University — Weill Medical College phsychological studies of depression, schizophrenia and panic and other anxiety disorders
Nina S. Braunwald [1928-1992] MD, 1952 cancer Harvard Medical School/Brigham & Women’s Hospital development of prosthetic heart valves for children
Amico Bignami [1930-1994] MD, 1954 brain cancer Harvard Medical School brain specific protein in astrocytes
Frank A. Oski [1932-1996] MD, 1958 prostate cancer Johns Hopkins University School of Medicine erythrocyte metabolism in the newborn infant
Richard P. Bunge [1932-1996] MD, 1960 esophageal cancer University of Miami schwann cell biology and human spinal cord injury
Harold C. Neu [1934-1998] MD, 1960 glioblastoma Columbia University surface enzymes in bacteria
Jiri Palek [1934-1998] MD, 1958 2 year illness Tufts University membrane properties of abnormal red cells
Irving Kupfermann [1938-2002] PhD, 1964 Creutzfeldt-Jacob’s disease Columbia University Behavioral and neural analysis of learning in aplaysia
Merton Bernfield [1938-2002] MD, 1961 Parkinson’s Disease Harvard Medical School/Children’s Hospital nature and interactions of cell surface proteoglycans during morphogenesis
Eleanor M. Saffran [1938-2002] PhD, 1968 amyotrophic lateral sclerosis Temple University School of Medicine cognitive deficits in brain-damaged patients
Barbara J. Lowery [1938-2002] PhD, 1973 ovarian cancer University of Pennsylvania School of Medicine understanding stress responses of people who were physically ill
Elizabeth Stern [1915-1980] MD, 1940 cancer UCLA effects of steroid contraception on the ovary
Joseph Stokes, 3rd [1924-1989] MD, 1949 cancer Boston University School of Medicine epidemiological studies of coronary heart disease
W. Dean Warren [1924-1989] MD, 1950 cancer Emory University cirrhosis, shunt surgery, and nitrogen metabolism
Edward W. Purnell [1928-1993] MD, 1957 lung cancer Case Western Reserve University School of Medicine study of eye physiology and disease by ultrasound
Leo J. Neuringer [1928-1993] PhD, 1957 cancer MIT NMR studies of normal and transformed cell membranes
Frank Lilly [1930-1995] PhD, 1965 prostate cancer Albert Einstein College of Medicine of Yeshiva University role of hereditary factors in governing susceptibility to cancer-causing agents
Edwin L. Bierman [1930-1995] MD, 1955 bone cancer University of Washington School of Medicine Metabolism of particulate fat in diabetes and atherosclerosis
Kenneth W. Sell [1931-1996] MD/PhD, 1968 complications from diabetes Emory University School of Medicine human tissue banking and transplantation
Edgar Haber [1932-1997] MD, 1956 multiple myeloma Harvard University School of Public Health biological regulation of the renin-angiotensin system
J. Christian Gillin [1938-2003] MD, 1966 esophageal cancer University of California — San Diego serotenergic mechanisms in sleep and depression
Albert Dorfman [1916-1982] MD/PhD, 1944 kidney failure University of Chicago biochemistry of connective tissues
Henry S. Kaplan [1918-1984] MD, 1940 lung cancer Stanford University radiation-induced leukemia in the C57BL mouse
Charlotte Friend [1921-1987] PhD, 1950 lymphoma Mount Sinai School of Medicine tissue studies of murine virus-induced leukemia
William H. Tooley [1925-1992] MD, 1949 long illness University of California — San Francisco prevention and treatment of respiratory distress in neonates
Charles G. Moertel [1927-1994] MD, 1953 Hodgkin’s Disease Mayo Clinic clinical treatments of gastrointestinal cancer
Barbara H. Bowman [1930-1996] PhD, 1959 cancer University of Texas HSC at San Antonio genetic control of the structure of human proteins
J. Calvin Giddings [1930-1996] PhD, 1955 prolonged battle with cancer University of Utah biomedical separations: field-flow fractionation
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Investigator Name Cause of death if known Institution at the time of death Scientific domain
John R. Williamson [1934-2000] PhD, 1959 cancer University of Pennsylvania School of Medicine molecular mechanisms of hormonal signal transduction
John S. O’Brien [1934-2001] MD, 1960 postpolio complications University of California — San Diego discovery of the gene responsible for Tay-Sachs disease
Jon I. Isenberg [1937-2003] MD, 1963 cancer University of California — San Diego duodenal mucosal bicarbonate secretion in human
George G. Glenner [1927-1995] MD, 1953 systemic senile amyloidosis University of California — San Diego molecular structure of the amyloid protein
J. Kiffin Penry [1929-1996] MD, 1955 complications of diabetes Bowman Gray School of Medicine at Wake Forest University controlled clinical trials of anticonvulsant and anti-epileptic drugs
Paul C. MacDonald [1930-1997] MD, 1955 cancer University of Texas Southwestern Medical Center at Dallas origin and interconversion of gonadal and adrenal streoid hormones
John Gibbon [1934-2001] PhD, 1967 cancer Columbia University CNS functions underlying the interval time sense in animals and humans
Donald F. Summers [1934-2001] MD, 1959 cancer NIH composition, assembly and replication of RNA viruses
R. Gordon Gould [1910-1978] PhD, 1933 cancer Stanford University internal medicine and cardiology
Sol Spiegelman [1914-1983] PhD, 1944 pancreatic cancer Columbia University College of Physicians & Surgeons nucleic acid hybridization
Frederick S. Philips [1916-1984] PhD, 1940 cancer Sloan Kettering Institute for Cancer Research pharmacological properties of chemotherapeutic agents and chemical carcinogenesis
Cyrus Levinthal [1922-1990] PhD, 1951 lung cancer Columbia University College of Physicians & Surgeons colinearity of genes and proteins, and the nature of messenger RNA
Sidney Leskowitz [1923-1991] PhD, 1950 brain tumor Tufts University cellular aspects of tolerance & delayed hypersensitivity
Kenneth M. Moser [1929-1997] MD, 1954 cancer University of California — San Diego clinical outcomes after pulmonary thromboendarterectomy
Donald A. Pious [1930-1998] MD, 1956 cancer University of Washington School of Medicine somatic cell genetic analysis of human immune response genes
Louis V. Avioli [1931-1999] MD, 1957 cancer Washington University in St. Louis mineral and skeletal metabolism in diabetes, kidney, and gastrointestinal disorders
Joseph E. Coleman [1930-1999] MD/PhD, 1963 cancer Yale University structure and function of metalloenzyme synthesis
Harvey C. Knowles, Jr. [1915-1984] MD, 1942 cancer University of Cincinnati/Children’s Hospital clinical studies of gestational diabetes
Joseph Cochin [1916-1985] MD/PhD, 1955 leukemia Boston University School of Medicine factors in tolerance to the narcotic analgesics
Albert L. Lehninger [1917-1986] PhD, 1942 complications from asthma Johns Hopkins University School of Medicine structure and function of mitochondria
Charles W. Todd [1918-1987] PhD, 1943 long illness City of Hope Medical Center immunology & immunochemistry of tumor antigens
David H. Blankenhorn [1924-1993] MD, 1947 prostate cancer University of Southern California Keck School of Medicine control of risk factors in atherosclerosis
Paul M. Gallop [1927-1996] PhD, 1953 cancer Harvard Medical School/Children’s Hospital Protein structure and collagen maturation
David J.L. Luck [1929-1998] MD/PhD, 1962 lymphoma Rockefeller University microtubular systems in human cells
Edward W. Moore [1930-1999] MD, 1955 aspergillosis Medical College of Virginia Pathophysiology of the billiary tract and gallbladder
Donald J. Reis [1931-2000] MD, 1956 hepatic cancer Cornell University — Weill Medical College neural control of blood circulation
Julius Marmur [1926-1996] PhD, 1951 lymphoma Albert Einstein College of Medicine of Yeshiva University genetics and biochemistry of cellular regulation
Nemat O. Borhani [1926-1996] MD, 1949 acute leukemia University of Nevada at Reno multicenter clinical studies of hypertension and cardiovascular disease
Russell Ross [1929-1999] DDS/PhD, 1962 cancer University of Washington School of Medicine response-to-injury origins of atherosclerosis
Richard A. Carleton [1931-2001] MD, 1955 cancer Brown University Medical School clinical studies of diet and smoking as cardiovascular disease risk factors
Gilda H. Loew [1931-2001] PhD, 1957 breast cancer Molecular Research Institute computational investigation of the structural and functional aspects of heme proteins and enzymes
N. Raphael Shulman [1925-1996] MD, 1947 cancer NIH/NIDDK mechanisms of autoimmune, alloimmune, and drug-dependent cytopenias
George  Winokur [1925-1996] MD, 1947 pancreatic cancer University of Iowa School of Medicine genetics of bipolar disease, mania, alcoholism and other psychiatric diseases
Giovanni Di Chiro [1926-1997] MD, 1949 lung cancer NIH interventional neuroradiology
Norman P. Salzman [1926-1997] PhD, 1953 pancreatic cancer NIH glycosylation of SIV gp120–role in the immune response
Fritz E. Dreifuss [1926-1997] MD, 1950 lung cancer University of Virginia School of Medicine clinical investigations of childhood epilepsy
Dante G. Scarpelli [1927-1998] MD/PhD, 1960 esophageal adenocarcinoma Northwestern University metabolism of pancreatic carcinogens
Hans J. Müller-Eberhard [1927-1998] MD, 1953 cancer Scripps Research Institute identification of proteins and reaction mechanisms of the complement system
Miriam M. Salpeter [1929-2000] PhD, 1953 thyroid cancer Cornell University neurobiology of myasthenia gravis
Gerald Cohen [1930-2001] PhD, 1955 cancer Mount Sinai School of Medicine H2O2 and oxy-radical stress in catecholamine neurons
James K. McDougall [1931-2003] PhD, 1971 gastric cancer University of Washington/FHCRC role of DNA viruses in cancer
Edward H. Kass [1917-1990] MD/PhD, 1947 lung cancer Harvard Medical School/Brigham & Women’s Hospital mechanism of toxic shock syndrome
Norman Kretchmer [1923-1995] MD/PhD, 1952 kidney cancer University of California — Berkeley regulation of metabolism during developement
Adolph I. Cohen [1924-1996] PhD, 1954 leukemia Washington University in St. Louis biochemistry and pharmacology of the retina
John L. Doppman [1928-2000] MD, 1953 cancer NIH flow dynamics in anterior spinal artery
David E. Green [1910-1983] PhD, 1934 cancer University of Wisconsin molecular biology of membrane systems
Alton Meister [1922-1995] MD, 1945 complications from a stroke Cornell University — Weill Medical College amino acid and glutathione biochemistry
Gisela Mosig [1930-2003] PhD, 1959 undergoing cancer treatment for two years Vanderbilt University dna replication and recombination in bacteriophages
Choh Hao Li [1913-1987] PhD, 1938 cancer of the pharynx University of California — San Francisco isolation and synthesis the human pituitary growth hormone
Robert H. Abeles [1926-2000] PhD, 1955 Parkinson’s disease Brandeis University rational design of small-molecule inhibitors of enzymes
Alfred P. Wolf [1923-1998] PhD, 1953 lengthy illness Brookhaven National Laboratory synthesis of simple molecules in pure form and high specific activity for PET
Marian E. Koshland [1921-1997] PhD, 1949 lung cancer University of California — Berkeley biochemical methods to examine the immune response
Timothy J. Regan [1924-2001] MD, 1952 colon cancer UMDNJ Newark myocardial function and metabolism in chronic disease
Thomas C. Chalmers [1917-1995] MD, 1943 prostate cancer Mount Sinai School of Medicine inter-hospital cooperative studies of cirrhosis
Mortimer M. Elkind [1922-2000] PhD, 1953 long illness Colorado State University cell radiation response of cultured mammalian cells
Hamish N. Munro [1915-1994] MD/PhD, 1956 died in a nursing home. Parkinson Tufts University nutritional regulation of protein metabolism
Ruth Sager [1916-1997] PhD, 1948 bladder cancer Harvard Medical School/DFCI role of tumor suppressor genes in breast cancer
David M. Maurice [1922-2002] PhD, 1951 liver cancer Columbia University College of Physicians & Surgeons interference theory of corneal transparency
Robert A. Good [1922-2003] MD/PhD, 1947 esophageal cancer University of South Florida College of Medicine role of the thymus in immune system development
Harland G. Wood [1907-1991] PhD, 1935 lymphoma Case Western Reserve University School of Medicine heterotrophic carbon dioxide fixation
Hans Popper [1903-1988] MD/PhD, 1944 pancreatic cancer Mount Sinai School of Medicine correlation of structure and function in liver disease
Fritz A. Lipmann [1899-1986] MD/PhD, 1928 natural reasons Rockefeller University glucose transport in normal and malignant cells
Paul J. Scheuer [1915-2003] PhD, 1950 leukemia University of Hawaii structure and properties of spinochromes
Berta V. Scharrer [1906-1995] PhD, 1930 natural causes Albert Einstein College of Medicine of Yeshiva University immunocytochemical study of invertebrate nervous system
Michael W. Pozen [1945-1981] MD/PhD, 1974 heart attack Boston University School of Medicine confirmation parameters to assess EMT’s decisions
Ronald E. Talcott [1947-1984] PhD, 1973 automobile accident University of California — San Francisco carboxylesterases of toxicologic significance
Nathaniel A. Young [1939-1979] MD, 1962 drowned in British Virgin Islands National Cancer Institute oncology and molecular pathology
Ahmad I. Bukhari [1943-1983] PhD, 1971 heart attack Cold Spring Harbor Laboratory life cycle of mutator phage μ
Alan P. Wolffe [1959-2001] PhD, 1984 car accident NIH role of DNA methylation in regulating gene expression in normal and pathological states
Shu-Ren Lin [1936-1979] MD, 1962 plane crash University of Rochester imaging studies of cerebral blood flow after cardiac arrest
William D. Nunn [1943-1986] PhD, 1972 sudden cardiac arrest University of California — Irvine regulation of fatty acid/acetate metabolism in e. coli
John L. Kemink [1949-1992] MD, 1975 murder University of Michigan, Ann Arbor vestibular diagnosis and surgery, acoustic neuromas, and cochlear implants
Stanley R. Kay [1946-1990] PhD, 1980 heart attack Albert Einstein College of Medicine of Yeshiva University symptoms and diagnostic tests of schizophrenia
Roberta D. Shahin [1953-1997] PhD, 1985 sudden accute illness Center for Biologics Evaluation and Research mouse model of respiratory B. pertussis infection in mice
Robert M. Pratt, Jr. [1942-1987] PhD, 1970 died in his sleep NIEHS/University of North Carolina at Chapel Hill craniofacial development of the fetus
Howard J. Eisen [1942-1987] MD, 1969 suicide NIH/NICHD mechanism of action of cortisol and related glucocorticoid hormones
Joaquim Puig-Antich [1944-1989] MD, 1967 asthma attack University of Pittsburgh psychobiology and treatment of child depression
Elizabeth A. Rich [1952-1998] MD, 1977 traffic accident Case Western Reserve University School of Medicine natural history of lymphocytic alveolitis in hiv disease
Jeffrey M. Hoeg [1952-1998] MD, 1977 renal cancer NIH/NHLBI lipoprotein metabolism and its connection to cardiovascular disease
Matthew L. Thomas [1953-1999] PhD, 1981 died while travelling Washington University in St. Louis function and regulation of leukocyte surface glycoproteins
Mu-En Lee [1954-2000] MD/PhD, 1984 complications from routine surgery Harvard Medical School/MGH characterization of vascular smooth muscle LIM protein
Tsunao Saitoh [1949-1996] PhD, 1977 murdered University of California — San Diego altered protein kinases in alzheimer’s disease
James W. Prahl [1931-1979] MD/PhD, 1964 rock climing accident University of Utah structural basis of the functions of human complement
Pokar M. Kabra [1942-1990] PhD, 1972 plane crash University of California — San Francisco application of liquid chromatography to therapeutic drug monitoring
Harold A. Menkes [1938-1987] MD, 1963 car accident Johns Hopkins University School of Medicine occupational and environmental lung disease
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Richard E. Heikkila [1942-1991] PhD, 1969 murder UMDNJ Robert Wood Johnson Medical School oxidation-reduction reactions and the dopamine receptor system
Howard S. Tager [1945-1994] PhD, 1971 heart attack University of Chicago biochemical structure, action, regulation and degradation of the insulin and glucagon molecules
Sukdeb Mukherjee [1946-1995] MD, 1971 short illness Medical College of Georgia neuroleptic effects on regional cerebral blood flow
John J. Wasmuth [1946-1995] PhD, 1973 heart attack University of California — Irvine human-hamster somatic cell hybrids/localization of Hnyington’s disease gene
Richard P. Nordan [1949-1998] PhD, 1983 cerebral aneurysm NIH immunologist and molecular biologist
Roland L. Phillips [1937-1987] MD/PhD, 1971 glider plane accident Loma Linda University School of Medicine role of lifestyle in cancer and cardiovascular disease among Adventists
Samuel A. Latt [1938-1988] MD/PhD, 1971 heart attack Harvard Medical School/Children’s Hospital genetic and cytogenetic studies of mental retardation
Emil T. Kaiser [1938-1988] PhD, 1959 complications from kidney transplant Rockefeller University mechanism of carboxypeptidase action
D. Michael Gill [1940-1990] PhD, 1967 heart attack Tufts University biochemistry of cholera toxin and other pathogenic toxins
John P. Merlie [1945-1995] PhD, 1973 heart failure Washington University in St. Louis molecular genetics of the acetylcholine receptor
Robert S. Krooth [1929-1980] MD/PhD, 1957 suicide/self-inflicted gunshot wound Columbia University College of Physicians & Surgeons biochemical deffects in inherited metabolic disorders
Takeo Kakunaga [1937-1988] PhD, 1966 lung cancer with a brain metastasis NIH/NCI malignant transformation of mammalian cells by chemical carcinogens
Abraham Worcel [1938-1989] MD, 1963 suicide University of Rochester structure of interphase and metaphase chromosomes
Roland D. Ciaranello [1943-1994] MD, 1970 heart attack Stanford University molecular neurobiology and developmental disorders
Gary J. Miller [1950-2001] MD/PhD, 1978 heart attack University of Colorado Health Sciences Center vitamin D receptors in the growth regulation of prostate cancer cells
William B. Reed [1924-1976] MD, 1952 University of Southern California Keck School of Medicine cutaneous genetic disorders
James R. Neely [1936-1988] PhD, 1966 heart attack Penn State University effects of diabetes and oxygen deficiency in regulation of metabolism in the heart
Mary Lou Clements [1946-1998] MD, 1972 airplane crash Johns Hopkins University School of Medicine development of AIDS vaccines
John B. Penney, Jr. [1947-1999] MD, 1973 heart attack Harvard Medical School/MGH receptor mechanisms in movement disorder pathophysiology
Lynn M. Wiley [1947-1999] PhD, 1975 plane crash University of California — Davis morphogenesis in early mammalian embryos
Trudy L. Bush [1949-2001] PhD, 1977 heart attack University of Maryland School of Medicine postmenopausal estrogen/progestins interventions
Arend Bouhuys [1926-1979] MD/PhD, 1956 heart attack Yale University community studies of obstructive lung disease
Erhard Gross [1928-1981] PhD, 1958 automobile collision NIH/NICHD structural analysis of naturally-occuring peptide antibiotics
Richard C. Lillehei [1928-1981] MD/PhD, 1960 died while jogging University of Minnesota mechanisms of RES stimulation in experimental shock
Hymie L. Nossel [1930-1983] MD/PhD, 1962 heart attack Columbia University causes of thrombosis and the nature of hemostasis
James C. Steigerwald [1935-1988] MD, 1961 University of Colorado Health Sciences Center internal medicine / rheumatology
Simon J. Pilkis [1942-1995] MD/PhD, 1971 heart attack University of Minnesota carbohydrate metabolism and diabetes
James Olds [1922-1976] PhD, 1952 swimming accident California Institute of Technology pharmacology of motivational mechanisms
Peter W. Neurath [1923-1977] PhD, 1950 heart attack Tufts University chromosomal variants of cells converted by viruses
Emanuel M. Bogdanove [1925-1979] PhD, 1953 killed in an accident Medical College of Virginia endocrine-influencing centers in the hypothalamus
Harold A. Baltaxe [1931-1985] MD, 1960 heart attack University of California — Davis development of new coronary angiographic techniques
Roy D. Schmickel [1936-1990] MD, 1961 died tragically University of Pennsylvania School of Medicine isolation and characterization of human ribosomal DNA
Fredric S. Fay [1943-1997] PhD, 1969 heart attack UMASS generation and regulation of force in smooth muscle
Roger R. Williams [1944-1998] MD, 1971 airplane crash University of Utah genetics and epidemiology of coronary artery diseases
Jeffrey M. Isner [1947-2001] MD, 1973 heart attack Tufts University therapeutic angiogenesis in vascular medicine, cardiovascular laser phototherapy
Gustavo Cudkowicz [1927-1982] MD, 1952 brief illness SUNY Buffalo controls of proliferation specific for leukemias
John C. Seidel [1933-1988] PhD, 1961 heart attack Boston Biomedical Research Institute actin-myosin interaction in pulmonary smooth muscle
William L. McGuire [1937-1992] MD, 1964 scuba-diving accident University of Texas HSC at San Antonio mechanisms of hormonal control and growth and regression of mammary carcinoma
Eric Holtzman [1939-1994] PhD, 1964 ingestion of potassium cyanide, self-administered Columbia University dynamic of cell membranes
Julio V. Santiago [1942-1997] MD, 1967 heart attack Washington University in St. Louis role of social factors, lifestyle practices, and medication in the onset of type II diabetes
John J. Pisano [1929-1985] PhD, 1955 heart attack NIH/NHLBI isolation of active peptides
Dale E. McFarlin [1936-1992] MD, 1961 heart attack NIH neuroimmunological studies of multiple sclerosis
Walter F. Heiligenberg [1938-1994] PhD, 1964 plane crash University of California — San Diego neuroethological studies of electrolocation
George J. Schroepfer, Jr. [1932-1998] MD/PhD, 1961 heart attack Rice University regulation of the formation and metabolism of cholesterol
Thomas A. McMahon [1943-1999] PhD, 1970 complications from routine surgery Harvard University orthopedic biomechanics
Joseph F. Foster [1918-1975] PhD, 1943 heart attack Purdue University configurational changes in protein molecules
Gerald P. Rodnan [1927-1983] MD, 1949 complications after vascular surgery University of Pittsburgh renal transport if uric acid and protein
George Streisinger [1927-1984] PhD, 1953 scuba-diving accident University of Oregon genetic mutations and the nervous system development in lower vertebrates
Lucien B. Guze [1928-1985] MD, 1951 sudden cardiac arrest UCLA pathogenesis of experimental pyelonephritis
Lubomir S. Hnilica [1929-1986] PhD, 1952 automobile accident Vanderbilt University nuclear antigens in human colorectal cancer
Charles L. Wittenberger [1930-1987] PhD, 1959 motorcycle accident NIH/NINDR regulation of the pathways of intermediary metabolism
D. Martin Carter [1936-1993] MD/PhD, 1971 dissecting aortic aneurysm Rockefeller University susceptibility of pigment and cutaneous cells to DNA injury by UV
Verne M. Chapman [1938-1995] PhD, 1965 died suddenly while attending meeting Roswell Park Cancer Institute/SUNY Buffalo development of cumulative multilocus map of mouse chromosomes
Dolph O. Adams [1939-1996] MD/PhD, 1969 unexpected Duke University development and regulation of macrophage activation
Lee A. Lillard [1943-2000] PhD, 1972 heart attack University of Michigan, Ann Arbor aging and retirement studies
Don C. Wiley [1944-2001] PhD, 1971 accidental fall Harvard University viral membrane and glycoprotein structure
Lonnie D. Russell, Jr. [1944-2001] PhD, 1974 swimming accident Southern Illinois University School of Medicine filament regulation of spermatogenesis
Herbert J. Rapp [1923-1981] PhD, 1955 National Cancer Institute immunologist and cancer research
Eugene C. Jorgensen [1923-1981] PhD, 1953 murdered University of California — San Francisco structure/activity relationships of compounds related to thyroxin
Margaret O. Dayhoff [1925-1983] PhD, 1948 heart attack Georgetown University Medical Center computer study of sequences of amino acids in proteins
Norman Geschwind [1926-1984] MD, 1951 heart attack Harvard Medical School/Beth Israel Medical Center relationship between the anatomy of the brain and behavior
Laurence M. Sandler [1929-1987] PhD, 1956 heart attack University of Washington School of Medicine cytogenetics of meiosis and development in drosophila
L. Rao Chervu [1930-1988] PhD, 1962 brutally murdered Albert Einstein College of Medicine of Yeshiva University improved radiopharmaceuticals for nephrology and urology
Peter M. Steinert [1945-2003] PhD, 1972 heart attack NIH structures and interactions of the proteins characteristic of epithelial cells
Arnold Lazarow [1916-1975] MD/PhD, 1941 brief illness University of Minnesota fetal endocrinology and study of diabetes & pregnancy
Edward V. Evarts [1926-1985] MD, 1948 heart attack NIH electrophysiological activity of in vivo neurons in waking and sleeping states
Anthony Dipple [1940-1999] PhD, 1964 heart attack NIH metabolic activation and DNA interactions of polycyclic aromatic hydrocarbon carcinogens
Gerald L. Stoner [1943-2002] PhD, 1974 complications following a fall NIH/NINDS neuropathology and molecular epidemiology of the human polyomavirus
G. Scott Giebink [1944-2003] MD, 1969 heart attack University of Minnesota pathogenesis of otitis media and immunizations
Daniel A. Brody [1915-1975] MD, 1940 heart attack University of Tennessee generator properties of isolated mammalian hearts
Michelangelo G.F. Fuortes [1917-1977] MD, 1941 NIH/NINDS study of the peripheral visual system in vertebrate animals
Sidney Riegelman [1921-1981] PhD, 1948 drowned while scuba diving University of California — San Francisco intersubject variation in first pass effect of drugs
Lewis W. Wannamaker [1923-1983] MD, 1948 heart attack University of Mississippi Medical Center clinical and epidemiologic aspects of streptococcal infections
Donald J. Magilligan, Jr. [1929-1989] MD, 1965 short illness Henry Ford Health Sciences Center natural history and limitations of porcine heart valves
Ronald G. Thurman [1941-2001] PhD, 1967 massive heart attack University of North Carolina at Chapel Hill hepatic metabolism, alcoholic liver injury and toxicology
F. Brantley Scott, Jr. [1930-1991] MD, 1955 plane crash Baylor University College of Medicine/St. Luke’s Episcopal Hospital development of the penile prosthesis
DeWitt S. Goodman [1930-1991] MD, 1955 pulmonary embolism Columbia University lipid metabolism and its role in the development of heart and artery disease
Donald C. Shreffler [1933-1994] PhD, 1961 heart attack Washington University in St. Louis organization and functions of H-2 gene complex
A. Arthur Gottlieb [1937-1998] MD, 1961 pulmonary embolus following surgery Tulane University School of Medicine role of macrophage nucleic acid in antibody production
John N. Whitaker [1940-2001] MD, 1965 injuries following a bycicle race University of Alabama at Birmingham molecular immunopathogenesis of demyelinating disease
Christopher A. Dawson [1942-2003] PhD, 1969 suddenly Medical College of Wisconsin pulmonary hemodynamics
Maurice S. Raben [1915-1977] MD, 1939 Tufts University humoral and metabolic aspects of cardiac function
Josiah Brown [1923-1985] MD, 1947 tragic accident UCLA biochemical studies of lipid and carbohydrate metabolism
John H. Walsh [1938-2000] MD, 1963 heart attack UCLA gastrointestinal hormones, gastric acid production and peptic ulcer disease
Jerome R. Vinograd [1913-1976] PhD, 1940 California Institute of Technology biochemistry and molecular biology
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Investigator Name Cause of death if known Institution at the time of death Scientific domain
Merton F. Utter [1917-1980] PhD, 1942 Case Western Reserve University School of Medicine structure and function of pep carboxykinase isozymes
E. Jack Wylie [1918-1982] MD, 1943 heart attack University of California — San Francisco development of techniques for the treatment and management of chronic visceral ischemia
Kwan C. Tsou [1922-1985] PhD, 1950 heart attack University of Pennsylvania School of Medicine development of serum nuclease isozyme test for cancer
Norbert Freinkel [1926-1989] MD, 1949 heart attack Northwestern University metabolic regulation in normal and diabetic pregnancies
Edgar C. Henshaw [1929-1992] MD, 1956 complications from early-stage cancer treatment University of Rochester intermediary metabolism in animals and in man
Donald T. Witiak [1935-1998] PhD, 1961 stroke University of Wisconsin stereochemical studies of hypocholesterolemic agents
Thomas P. Dousa [1937-2000] MD/PhD, 1968 heart attack Mayo Clinic cellular action of vasopressin in the kidney
Thomas F. Burks, II [1938-2001] PhD, 1967 heart attack University of Texas HSC at Houston central and peripheral neuropeptide pharmacology
Robert M. Macnab [1940-2003] PhD, 1969 accidental fall Yale University sequence analysis and function of bacterial flagellar motor
David Pressman [1916-1980] PhD, 1940 Roswell Park Cancer Institute/SUNY Buffalo structure and function of antibody molecules and tissue antigens of the HLA system
Abraham M. Lilienfeld [1920-1984] MD, 1944 heart attack Johns Hopkins University School of Public Health epidemiological methods for the study of chronic diseases
Marion I. Barnhart [1921-1985] PhD, 1950 traffic accident Wayne State University School of Medicine cellular sites for synthesis of blood proteins
Thomas R. Johns, 2nd [1924-1988] MD, 1948 refractory arrhythmia University of Virginia School of Medicine physiological studies of myasthenia gravis
Gerald D. Aurbach [1927-1991] MD, 1954 hit in a head by a stone NIH bone metabolism and calcium homeostasis
Demetrios Papahadjopoulos [1934-1998] PhD, 1963 adverse drug reaction/multi-organ failure University of California — San Francisco phospholipid-protein interactions, lipid vesicles, and membrane function
Takis S. Papas [1935-1999] PhD, 1970 unexpected and sudden Medical University of South Carolina characterization of ETS genes and retroviral onc genes
John J. Jeffrey, Jr. [1937-2001] PhD, 1965 stroke Albany Medical College mechanism of action and the physiologic regulation of mammalian collagenases
Victor J. Ferrans [1937-2001] MD/PhD, 1963 complications from diabetes NIH myocardial and vascular pathobiology
James N. Davis [1939-2003] MD, 1965 airplane crash SUNY HSC at Stony Brook mechanisms underlying neuronal injury after brain ischemia
Frederick B. Bang [1916-1981] MD, 1939 heart attack Johns Hopkins University School of Medicine cell virus relationships in respiratory mucosae
James M. Felts [1923-1988] PhD, 1955 heart failure University of California — San Francisco synthesis and processing of plasma lipoproteins
Ernst Freese [1925-1990] PhD, 1954 cerebral hemorrhage NIH/NINDS studies of environmental mutagenesis
Lucien J. Rubinstein [1924-1990] MD, 1948 ruptured intracranial aneurysm University of Virginia School of Medicine differentiation and stroma-induction in neural tumors
George B. Craig, Jr. [1930-1995] PhD, 1956 heart attack University of Notre Dame genetics and reproductive biology of aedes mosquitoes
James R. Klinenberg [1934-1999] MD, 1959 intracerebral hemorrhage UCLA pathophysiology of gout and hyperuricemia
Paul B. Sigler [1934-2000] MD/PhD, 1967 heart attack Yale University structural analysis of biological macromolecules
Sandy C. Marks, Jr. [1937-2002] DDS/PhD, 1968 heart attack UMASS vitamin D and bone modeling
Albert H. Coons [1912-1978] MD, 1937 coronary disease and congestive heart failure Harvard Medical School studies on antibody formation
Henry G. Kunkel [1916-1983] MD, 1942 complications after vascular surgery Rockefeller University identification of MHC Class II molecules
Edgar E. Ribi [1920-1986] PhD, 1948 plane crash NIH/NIAID fine structure of immunologically-active cell constituents for the development of vaccines
Bertram Sacktor [1922-1988] PhD, 1949 heart attack National Institute on Aging in Baltimore mechanisms of hormonal regulation of cellular pH and mineral metabolism in the kidney
Lucille S. Hurley [1922-1988] PhD, 1950 complications from open heart surgery University of California — Davis genetic and nutritional interactions in development
Paul Margolin [1923-1989] PhD, 1956 heart attack City College of New York mutation and suppressor studies of a bacterial gene
Zanvil A. Cohn [1926-1993] MD, 1953 aortic dissection Rockefeller University macrophage in cell biology and resistance to infectious disease
Carl Monder [1928-1995] PhD, 1956 brief illness, acute fulminating leukemia Population Council corticosteroid metabolism in juvenile hypertension
Gordon Guroff [1933-1999] PhD, 1959 car accident NIH/NICHD biochemical and molecular biological studies of nerve growth factor
Gerald P. Murphy [1934-2000] MD, 1959 heart attack Roswell Park Cancer Institute/SUNY Buffalo detection, immunotherapy, and prognostic indicators of prostate cancer
Alvito P. Alvares [1935-2001] PhD, 1966 killed by a car Uniformed Services University of the Health Sciences biochemical manifestations of toxicity in gold therapy
Patricia S. Goldman-Rakic [1937-2003] PhD, 1963 struck by a car Yale University development and plasticity of the primate frontal lobe
Stephen W. Kuffler [1913-1980] MD, 1937 heart attack Harvard University microphysiology of synaptic transmission
John P. Merrill [1917-1984] MD, 1942 drowned Harvard Medical School/Brigham & Women’s Hospital role of the immune system in kidney transplantation
Abraham I. Braude [1917-1984] MD/PhD, 1950 heart attack University of California — San Diego pathogenesis and treatment of life-threatening septic shock
Susumu Hagiwara [1922-1989] PhD, 1951 bacterial infection UCLA evolutionary and developmental properties of calcium channels in cell membranes
Daniel Rudman [1927-1994] MD, 1949 complications from brain surgery Medical College of Wisconsin adipokinetic substances of the pituitary gland
Thomas G. Smith, Jr. [1931-1998] MD, 1960 heart attack NIH/NINDS fractal analysis of central nervous system neuron and glial cell morphology
Richard N. Lolley [1933-2000] PhD, 1961 heart attack University of Southern California Keck School of Medicine maturation of metabolism in normal & dystrophic retina
Joseph H. Ogura [1915-1983] MD, 1941 heart attack Washington University in St. Louis physiology of the larynx analog
Manfred M. Mayer [1916-1984] PhD, 1946 heart attack Johns Hopkins University School of Medicine immunochemistry of the complement system
Albert  Segaloff [1917-1985] MD, 1942 brief illness Tulane University School of Medicine hormonal treatment of advanced breast cancer
F. Blair Simmons [1930-1998] MD, 1956 heart attack Stanford University development of a cochlear prothesis system for hearing loss
Henryk M. Wisniewski [1931-1999] MD/PhD, 1960 heart failure SUNY Downstate Medical Center College of Medicine pathogenesis of inflammatory demyelinating diseases
V. Everett Kinsey [1909-1978] PhD, 1937 stroke Institute of Biological Sciences at Oakland University intraocular fluid dynamics
Frederic C. Bartter [1914-1983] MD, 1940 stroke University of Texas HSC at San Antonio interaction between the kidney and various endocrine systems
Nathan O. Kaplan [1917-1986] PhD, 1943 University of California — San Diego isolation and structure determination of coenzyme A
David T. Imagawa [1922-1991] PhD, 1950 heart attack Harbor-UCLA Medical Center morphological conversion with leukemia viruses
Robert H. Williams [1909-1979] MD, 1934 on an airline en route to Philadelphia University of Washington School of Medicine diabetes etiology, pathogenesis, and management
Toichiro Kuwabara [1920-1991] MD/PhD, 1952 heart failure Harvard Medical School ultrastructure of retina and retinal disease
William F. Harrington [1920-1992] PhD, 1952 heart failure Johns Hopkins University School of Medicine myosin thick filament structure and assembly
G. Jeanette Thorbecke [1929-2001] MD/PhD, 1954 stung by a Portuguese man-of-war jellyfish New York University School of Medicine histologic and functional aspects of lymphoid tissue development
Felix T. Rapaport [1929-2001] MD, 1954 coronary heart disease SUNY HSC at Stony Brook induction of unresponsiveness to allografts
Marian W. Kies [1915-1988] PhD, 1944 pancreatitis NIH/MIMH study of experimental allergic encephalomyelitis
Menek Goldstein [1924-1997] PhD, 1955 stroke New York University School of Medicine purification of enzymes in the catecholamine synthetic pathway
Andrew P. Somlyo [1930-2003] MD, 1956 heart attack University of Virginia School of Medicine vasomotor function of smooth muscle and their relation to heart disease
Koloman Laki [1909-1983] PhD, 1936 heart attack NIH/NIDDK purification of fibrinogen
Paul A. Srere [1925-1999] PhD, 1951 complications from liver surgery University of Texas Southwestern Medical Center at Dallas cell metabolism and the krebs tca cycle
D. Eugene Strandness, Jr. [1928-2002] MD, 1954 pulmonary failure University of Washington School of Medicine ultrasonic duplex scanner for noninvasive vascular disease diagnosis
Vincent Massey [1926-2002] PhD, 1953 heart attack University of Michigan, Ann Arbor biological oxidation mechanisms of proteins that contain riboflavin
Murray B. Bornstein [1918-1995] MD, 1952 cardiac aneurysm Albert Einstein College of Medicine of Yeshiva University copolymer as a protective treatment for the exacerbation of multiple sclerosis
Clarence J. Gibbs, Jr. [1924-2001] PhD, 1962 cardiac disease NIH/NINDS infectuous diseases of the nervous system
Russell L. De Valois [1926-2003] PhD, 1952 automobile accident University of California — Berkeley brain mechanisms underlying color vision
Efraim Racker [1913-1991] MD, 1938 stroke Cornell University identifying and purifying Factor 1, the first part of the ATP synthase enzyme
Walsh McDermott [1901-1981] MD, 1934 heart attack Cornell University Medical College latent and dormant microbial infections
Jonas E. Salk [1914-1995] MD, 1939 heart failure Salk Institute effective vaccine for polio
Lawrence Bogorad [1921-2003] PhD, 1949 stroke while on vacation Harvard University determinants of transcript longevity
Herman M. Kalckar [1908-1991] MD/PhD, 1939 pneumonia Boston University School of Medicine genes, enzymes, nucleotides, and carbohydrate patterns
Eugene M. Farber [1917-2000] MD, 1943 brief illness Stanford University biologic effects of photochemotherapy in psoriasis
Henry Rapoport [1918-2002] PhD, 1943 pneumonia University of California — Berkeley total synthesis of heterocyclic drugs
Norman R. Davidson [1916-2002] PhD, 1939 brief illness California Institute of Technology physical chemistry of nucleic acids
Karl A. Folkers [1906-1997] PhD, 1931 heart failure University of Texas at Austin peptide antagonists of LHRH as gonadotropin inhibitors
Margaret J. Sullivan [1957-2001] PhD, 1986 University of Missouri at Columbia role of peptide neurotransmitters in body fluid homeostasis
Leonard R. Axelrod [1927-1975] PhD, 1952 Environmental Protection Agency studies in steroid intermediate metabolism
Sidney R. Cooperband [1931-1979] MD, 1956 Boston University School of Medicine lymphocyte proliferation inhibitory factor
James L. Lehr [1940-1989] MD, 1968 University of Chicago modular computer-mediated radiology system
Alberto DiMascio [1928-1978] PhD, 1966 Tufts University follow-up of maintenance treatment for depression
William B. Kinter [1926-1978] PhD, 1955 Mount Desert Island Biological Lab membrane toxicity theory and environmental pollutants
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Investigator Name Cause of death if known Institution at the time of death Scientific domain
Alfred A. Smith [1928-1980] MD, 1956 New York Medical College respiratory-depressive effects of ethanol
Leah M. Lowenstein [1931-1984] MD/PhD, 1958 Thomas Jefferson University Medical College regulation of renal compensatory adaptation
S. Morris Kupchan [1922-1976] PhD, 1945 University of Virginia School of Medicine chemistry of tumor-inhibitory natural products
Edward C. Heath [1930-1985] PhD, 1955 University of Iowa School of Medicine molecular biology of tumor cells
Arnold F. Brodie [1923-1981] PhD, 1952 University of Southern California Keck School of Medicine mechanisms of oxidative energy generation in bacteria
Alvin Nason [1919-1978] PhD, 1952 Johns Hopkins University School of Medicine enzymology of nitrate respiration and assimilation
Andrew G. Morrow [1923-1982] MD, 1946 NIH/NHLBI surgical correction of obstructive subaortic hypertrophy
Elijah Adams [1918-1979] MD, 1942 University of Maryland School of Medicine tyrosinases and tyrosine hydroxylases
Myron L. Bender [1924-1988] PhD, 1948 Northwestern University mechanism of action of proteases
Kenneth J.W. Taylor [1939-2003] MD/PhD, 1975 Yale University diagnostic ultrasound imaging
Brigitte A. Prusoff [1926-1991] PhD, 1978 Yale University follow-up of maintenance treatment for depression
Edwin D. Murphy [1917-1984] MD, 1943 NIH/NCI gene mechanisms in autoimmunity and lymphoproliferation
Henry Kamin [1920-1988] PhD, 1948 Duke University biological oxidations in mitochondria and microsomes
Henry A. Schroeder [1906-1975] MD, 1933 Dartmouth Medical School abnormal trace metals in cardiovascular diseases
Carl L. Larson [1909-1978] MD, 1939 University of Montana at Missoula specific and nonspecific resistance caused by t. bacilli
David F. Waugh [1915-1984] PhD, 1940 MIT protein interactions and physico-chemical properties
John W. Porter [1915-1984] PhD, 1942 University of Wisconsin regulation of lipogenesis by insulin and glucagon
Thomas F. Gallagher [1905-1975] PhD, 1931 Albert Einstein College of Medicine of Yeshiva University metabolic transformation of steroid hormones
Benjamin Alexander [1908-1978] MD, 1934 NY Blood Center coagulation, hemorrhage, and thrombosis
Bernard Saltzberg [1919-1989] PhD, 1972 University of Houston electrophysiological analysis of learning disabilities
Georges Ungar [1906-1977] MD, 1939 University of Tennessee chemical transfer of drug tolerance and learned behavior
Harold Koenig [1921-1992] MD/PhD, 1949 Northwestern University molecular mechanisms of blood-brain barrier dysfunction
Albert S. Kaplan [1917-1989] PhD, 1952 Vanderbilt University metabolism of cells infected with nuclear DNA viruses
Tsoo E. King [1917-1990] PhD, 1949 University of Pennsylvania School of Medicine bioenergetic apparatus in heart mitochondria
Arthur Cherkin [1913-1987] PhD, 1953 Sepulveda VA Medical Center role of cholinergic drugs in reducing the memory loss
Peter D. Klein [1927-2001] PhD, 1954 Baylor College of Medicine metabolism of 13C compounds in digestive diseases
Alex B. Novikoff [1913-1987] PhD, 1938 Albert Einstein College of Medicine of Yeshiva University histochemical studies of the Golgi apparatus
Walter E. Brown [1918-1993] PhD, 1949 American Dental Association Health Foundation chemistry of calcium phosphates
C. Clark Cockerham [1921-1996] PhD, 1952 North Carolina State University the statistics of genetic systems
Leo T. Samuels [1899-1978] PhD, 1930 University of Utah steroid hormone metabolism and tumorogenic action
Peter N. Magee [1921-2000] MD, 1945 Thomas Jefferson University Medical College genetic basis of carconogenesis
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Appendix B: Linking Scientists with their Journal Articles

The source of our publication data is PubMed, a bibliographic database maintained by the U.S. National
Library of Medicine that is searchable on the web at no cost.iv PubMed contains over 14 million citations
from 4,800 journals published in the United States and more than 70 other countries from 1950 to the present.
The subject scope of this database is biomedicine and health, broadly defined to encompass those areas of
the life sciences, behavioral sciences, chemical sciences, and bioengineering that inform research in health-
related fields. In order to effectively mine this publicly-available data source, we designed PubHarvester,
an open-source software tool that automates the process of gathering publication information for individual
life scientists (see Azoulay et al. 2006 for a complete description of the software). PubHarvester is fast,
simple to use, and reliable. Its output consists of a series of reports that can be easily imported by statistical
software packages.

This software tool does not obviate the two challenges faced by empirical researchers when attempting
to accurately link individual scientists with their published output. The first relates to what one might
term “Type I Error,” whereby we mistakenly attribute to a scientist a journal article actually authored by
a namesake; The second relates to “Type II error,” whereby we conservatively exclude from a scientist’s
publication roster legitimate articles:

Namesakes and popular names. PubMed does not assign unique identifiers to the authors of the
publications they index. They identify authors simply by their last name, up to two initials, and an optional
suffix. This makes it difficult to unambiguously assign publication output to individual scientists, especially
when their last name is relatively common.

Inconsistent publication names. The opposite danger, that of recording too few publications, also looms
large, since scientists are often inconsistent in the choice of names they choose to publish under. By far the
most common source of error is the haphazard use of a middle initial. Other errors stem from inconsistent
use of suffixes (Jr., Sr., 2nd, etc.), or from multiple patronyms due to changes in spousal status.

To deal with these serious measurement problems, we opted for a labor-intensive approach: the design of
individual search queries that relies on relevant scientific keywords, the names of frequent collaborators,
journal names, as well as institutional affiliations. We are aided in the time-consuming process of query
design by the availability of a reliable archival data source, namely, these scientists’ CVs and biosketches.
PubHarvester provides the option to use such custom queries in lieu of a completely generic query (e.g,
"azoulay p"[au] or "graff zivin js"[au]). As an example, one can examine the publications of Scott A.
Waldman, an eminent pharmacologist located in Philadelphia, PA at Thomas Jefferson University. Waldman
is a relatively frequent name in the United States (with 208 researchers with an identical patronym in the
AAMC faculty roster); the combination "waldman s" is common to 3 researchers in the same database.
A simple search query for "waldman sa"[au] OR "waldman s"[au] returns 377 publications at the time
of this writing. However, a more refined query, based on Professor Waldman’s biosketch returns only 256
publications.v

The above example also makes clear how we deal with the issue of inconsistent publication names. Pub-
Harvester gives the end-user the option to choose up to four PubMed-formatted names under which
publications can be found for a given researcher. For example, Louis J. Tobian, Jr. publishes under "tobian
l", "tobian l jr", and "tobian lj", and all three names need to be provided as inputs to generate a
complete publication listing. Furthermore, even though Tobian is a relatively rare name, the search query
needs to be modified to account for these name variations, as in ("tobian l"[au] OR "tobian lj"[au]).

ivhttp://www.pubmed.gov/
v(((("waldman sa"[au] NOT (ether OR anesthesia)) OR ("waldman s"[au] AND (murad OR philadelphia[ad] OR west

point[ad] OR wong p[au] OR lasseter kc[au] OR colorectal))) AND 1980:2013[dp])
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Appendix C: PubMed Related Citations Algorithm [PMRA]

Algorithm overview. The PubMed Related Citations Algorithm [PMRA] underlies the “related articles”
search feature in PubMed. Lin and Wilbur (2007) develop a topic-based similarity model designed to help
a typical user search through the literature by presenting a set of records topically related to a focal article
returned by a PubMed search query.

Specifically, PMRA relies on Bayes’ Theorem to estimates the probability that an individual is interested in
document a given expressed interest in document b. They focus on the following relationship:

Pr(a|b) ∝
N∑
j=1

Pr(a|sj) Pr(b|sj) Pr(sj),

where {s1, ..., sN} denotes the entire set of mutually exclusive topics that could possibly be contained within
a, b, or any other document of interest. Lin and Wilbur (2007) then make assumptions about the underlying
arrival rates of terms within documents and how likely the occurrence of a term within a document actually
reflects the true nature of that document. From these assumptions, the authors arrive at a topic weighting
function, wj,x, that describes how important a topic sj is to any document x, and a document scoring
function, Sim(a, b), that quantifies the similarity between a and b, given by:

wj,x =λj,x ×

√
1

fj

Sim(a, b) =

N∑
j=1

wj,a × wj,b,

where fj is the frequency of topic sj in the entire corpus and λj,x is based on a series of Poisson arrival
rate parameters and the number of times topic sj occurs within document x. Intuitively, two documents
are more likely to be similar when they both use topics that are rare (fj is low) many times (λj,x is high).
The authors estimate, optimize and experimentally confirm parameters to align with human assessments.
They also report that one fifth of “non-trivial” browser sessions in PubMed invoke PMRA at least once,
providing some “ground truth” for the view that the algorithm captures meaningful intellectual linkages
between documents.

Defining topics. The algorithm relies on three types of text information to derive a list of potential topics:
MeSH terms, abstract words, and title words. MeSH is the National Library of Medicine’s [NLM] controlled
vocabulary thesaurus. It consists of terms arranged in a hierarchical structure that permit searching at
various levels of specificity (there are over 28,000 descriptors in the 2018 edition of MeSH). Almost every
publication in PubMed is tagged with a set of MeSH terms (between 1 and 103 in the current edition of
PubMed, with both the mean and median approximately equal to 11). NLM’s professional indexers are
trained to select indexing terms from MeSH according to a specific protocol, and consider each article in the
context of the entire collection (Bachrach and Charen 1978; Névéol et al. 2010).

The presence of MeSH terms is crucial for the performance of the PMRA algorithm in two separate respects.
Directly, because the MeSH terms are appended to the list of abstract words and title words to form the set
of topics present in a PubMed record. Indirectly, because PMRA uses MeSH terms as informative markers
to separate “elite” from “non-elite” topics in each record, and relies on a mixture of two Poisson distributions
(one for elite terms, one for non-elite terms) to estimate the probability that a document is about a topic,
given that we observe its corresponding term (abstract word, title word, MeSH term) a certain number of
times in the document.

The reliance of PMRA on MeSH terms offers both advantages and disadvantages from the standpoint of our
study. On the positive side of the ledger, professional indexers with domain expertise annotate articles with
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MeSH terms—the authors are not involved. Professional annotators are probably less subject than authors
to demand effects, whereby keywords are chosen endogenously to appeal to an audience of potential readers,
referees, and journal editors. As such, they are relatively more stripped of “social baggage” than author-
chosen keywords would be.vi Research in information science backs up the claim that MeSH terms can be
seen as representing standardized and high-quality summaries of a particular publication (Bhattacharya et
al. 2011).

On the negative side of the ledger, two features of the MeSH annotation process deserve mention. First,
MeSH terms suffer from a keyword vintage problem as well as a left-censoring problem; these two problems
are inextricably linked. Indexers may have available a lexicon of permitted keywords which is itself out
of date. NLM continually revises and updates the MeSH vocabulary in an attempt to neutralize keyword
vintage effects, but articles are not systematically backward-annotated. Take, for example the paper by
Emmanuelle Charpentier and Jennifer Doudna which appeared in Science in June 2012 (Jinek et al., “A
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity”) and established the
viability of the CRISPR-Cas9 system for genome editing. The article is tagged by 11 unique MeSH terms,
but CRISPR is not one them. This is of course because the CRISPR keyword was not part of the controlled
MeSH thesaurus in 2012—it was “born” as a keyword in 2013!

Second, human indexers are not necessarily impervious to scientific fads and fashions. In their efforts to be
helpful to PubMed users, they may use combinations of keywords that reflect the conventional views of the
field. Probabilistic topic models such as PMRA assume that the scientific corpus has been correctly indexed.
But what if the indexers who chose the keywords brought their own “conceptual baggage” to the indexing
task, so that the pictures that emerge from this process are more akin to their conceptualization than to
those of the scientists whose work it was intended to study? In our view, “indexer effects” (in the parlance
of Whittaker 1989) present a more benign challenge. A number of studies have asked authors to validate ex
post the quality of the keywords selected by independent indexers, with generally encouraging results (Law
and Whittaker 1992). Inter-indexer reliability is also very high (Wilbur 1998).

There is an additional reason why these challenges deserve less emphasis than might appear at first blush,
at least from the standpoint of accurately capturing intellectual relatedness. PMRA relies on abstract words
and title words as well as MeSH terms. Going back to the Jinek et al. (2012) article, the word “CRISPR”
appears four separate times in the abstract. PMRA can therefore link this foundational paper to 218
other articles, which will often be annotated with CRISPR-relevant MeSH terms (e.g., “CRISPR-Associated
Proteins” or “CRISPR-Cas Systems.”) In other words, the inclusion of title/abstract words help remedy
unpleasant features of the MeSH annotation process. In so doing, however, they weaken our initial claim
that the linkages revealed by PMRA are purely intellectual, devoid of “social baggage.” For this reason,
below we will explicitly look at the extent to which omitting abstract and title words from the input used by
PMRA to generate the list of intellectual neighbors alters our benchmark set of results. Figure C1 depicts
how the multiplier of the unconditional probability that two articles are related through PMRA is affected
by the number of MeSH terms that overlap between the two records. For example, two articles picked at
random are 255 times more likely to be related if they share 5 MeSH terms instead of only one. Note that
the baseline unconditional probability that two articles are related when they share only one MeSH term is
quite low, on the order of 1÷ 1, 000, 000.

Implementation details. Using the MeSH keywords as input, PMRA essentially defines a distance concept
in idea space such that the proximity between a source article and any other PubMed-indexed publication
can be assessed. The following paragraphs were extracted from a brief description of PMRA:

The neighbors of a document are those documents in the database that are the most similar to it. The simi-
larity between documents is measured by the words they have in common, with some adjustment for document
lengths. To carry out such a program, one must first define what a word is. For us, a word is basically an

viImportantly, the assignment of MeSH keywords does NOT take into account references cited in the publication.
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unbroken string of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens,
spaces, new lines, and punctuation. A list of 310 common, but uninformative, words (also known as stopwords)
are eliminated from processing at this stage. Next, a limited amount of stemming of words is done, but no
thesaurus is used in processing. Words from the abstract of a document are classified as text words. Words
from titles are also classified as text words, but words from titles are added in a second time to give them a
small advantage in the local weighting scheme. MeSH terms are placed in a third category, and a MeSH term
with a subheading qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is
starred (indicating a major concept in a document), the star is ignored. These three categories of words (or
phrases in the case of MeSH) comprise the representation of a document. No other fields, such as Author or
Journal, enter into the calculations.

Having obtained the set of terms that represent each document, the next step is to recognize that not all words
are of equal value. Each time a word is used, it is assigned a numerical weight. This numerical weight is
based on information that the computer can obtain by automatic processing. Automatic processing is important
because the number of different terms that have to be assigned weights is close to two million for this system.
The weight or value of a term is dependent on three types of information: 1) the number of different documents
in the database that contain the term; 2) the number of times the term occurs in a particular document; and
3) the number of term occurrences in the document. The first of these pieces of information is used to produce
a number called the global weight of the term. The global weight is used in weighting the term throughout the
database. The second and third pieces of information pertain only to a particular document and are used to
produce a number called the local weight of the term in that specific document. When a word occurs in two
documents, its weight is computed as the product of the global weight times the two local weights (one pertaining
to each of the documents).

The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a
term that occurred in most of the documents would really tell one very little about a document. On the other
hand, a term that occurred in only 100 documents of one million would be very helpful in limiting the set of
documents of interest. A word that occurred in only 10 documents is likely to be even more informative and
will receive an even higher weight.

The local weight of a term is the measure of its importance in a particular document. Generally, the more
frequent a term is within a document, the more important it is in representing the content of that document.
However, this relationship is saturating, i.e., as the frequency continues to go up, the importance of the word
increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be
considered more important just because it is longer; therefore, a length correction is applied.

The similarity between two documents is computed by adding up the weights of all of the terms the two docu-
ments have in common. Once the similarity score of a document in relation to each of the other documents in
the database has been computed, that document’s neighbors are identified as the most similar (highest scoring)
documents found. These closely related documents are pre-computed for each document in PubMed so that
when one selects Related Articles, the system has only to retrieve this list. This enables a fast response time
for such queries.vii

For a given source article, PMRA yields the following output: (i) an ordered list of intellectually related
articles with a fixed length; (ii) a cardinal measure of distance between the source and each related article,
which we have normalized such that a source is always 100% related to itself, and relatedness decreases as
one goes down the ranking of the ordered list of neighbors.

Cutoff Rules. The algorithm uses a cutoff rule to determine the number of related articles associated with a
given source article. First, the 100 most related records by similarity score are returned. Second, a reciprocity
rule is applied to this list of 100 records: if publication x is related to publication y, publication y must also
be related to publication x. As a result, there is no fixed number of related articles for a source article. On
the contrary, the total number of related articles can be of arbitrary large size, and certainly much higher
than 100. Figure C2, Panel A displays the histogram for the distribution of the number of related articles
for the 35,409 source articles in our main sample. The mean number of articles is 153 and the median 119.
Surprisingly, however, 25% or so of the source articles have less than 100 related articles associated with
them. In part, this is an artefact of some data construction choices, as we eliminate related articles outside
the [1965; 2006] date range, or related articles that are not original articles (reviews, editorials, etc.), or
related articles in journals not indexed by the Web of Science. And yet, even after accounting for these

viiAvailable at http://ii.nlm.nih.gov/MTI/related.shtml
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factors, slightly more than 10% of the source articles have less than 100 intellectual neighbors, which is
surprising given the documented cutoff rule whereby PMRA supposedly always starts from a list of 100
neighbors, and then possibly add to this list via symmetry.

We investigated this peculiar feature of the data; PMRA appears to have a second cutoff rule based on the
cardinal relatedness score. For each source article, we computed the minimum relatedness score, and graphed
the resulting distribution (Figure C2, Panel B). One can observe a mass point around 0.10 (corresponding
to 3% of the source articles), meaning that PMRA will fail to expand the set of neighbors all the way up to
100 articles if it finds out that doing so would mean including related articles with relatedness < 0.10.viii

The presence of this second cutoff is in an important respect a welcome (if idiosyncratic and poorly docu-
mented) feature of the algorithm. If the cutoff was downward-rigid at 100, then after a star scientist had
passed away, PMRA would need to reach into a set of articles that are in fact quite intellectually distant
from the source to fill the void mechanically induced by the fact that the deceased star cannot contribute
to his own subfields. Figure C2, Panel C confirms that it is not the case. It depicts, for both treated and
control source articles, the distribution of relatedness score for the least related article associated with each
source article, only taking into account the articles written after the death (or counterfactual death) of the
star. The two distributions are quite close to one another; if anything, there are slightly more control source
articles that lie at the cardinal cutoff value of 0.10, relative to treated source articles. In other words, we find
no evidence of “overexpansion” in less proximate intellectual domains for treated fields, relative to control
fields, in the period that follows the death of an eminent scientist.

One final check is to look for stability over time, both for the ordinal cutoff and the cardinal cutoff. A
maintained assumption for our research design is that these cutoffs do not vary over time differentially for
treated and control fields. We investigate cutoff stability by running a regression of each subfield’s log size
(respectively, each subfield’s log odds of the lowest relatedness score) onto journal effects, number of authors
effects, 36 source publication year effects (from 1967 to 2002, 1966 is the omitted variable), and 36 source
publication year by treatment status interaction terms. We graph the coefficient estimates corresponding to
these interaction effects on Figure C3, which are for the most part imprecisely estimated zeros, and do not
exhibit any specific upward or downward trend. From all these analysis, we conclude that there is no reason
to suspect that PMRA’s cutoff rules impact treated and control source articles in a differential way.

From source article to subfield: An Example. Given our set of source articles, we delineate the
scientific fields to which they belong by focusing on the set of articles returned by PMRA that satisfy three
additional constraints: (i) they are original articles (as opposed to editorials, comments, reviews, etc.); (ii)
they were published in or before 2006 (the end of our observation period); and (iii) they appear in journals
indexed by the Web of Science (so that follow-on citation information can be collected). In Figure C4, we
illustrate the use of PMRA with an example taken from our sample. Consider “The transcriptional program
of sporulation in budding yeast” (PubMed ID #9784122), an article published in the journal Science in
1998 originating from the laboratory of Ira Herskowitz, an eminent UCSF biologist who died in 2003 from
pancreatic cancer. PMRA returns 72 original related journal articles for this source publication.ix Some
of these intellectual neighbors appeared before the source to which they are related, whereas others were
published after the source. Some represent the work of collaborators, past or present, of Herskowitz’s,
whereas others represent the work of scientists in his field he may never have come in contact with during
his life, much less collaborated with. The salient point is that nothing in the process through which these
related articles are identified biases us towards (or away from) articles by collaborators, frequent citers of

viiiThere is a smattering of source articles for which the minimum relatedness is below 0.10. Upon closer examination, these
source articles have no abstracts in PubMed, or do not have MeSH terms available. We investigated the sensitivity of our main
results to dropping these subfields from the analysis (Appendix F, Table F5).

ixWhy exactly 72? In fact, PMRA lists 152 “intellectual neighbors” for PubMed ID 9784122. But once we exclude articles
published after 2006 (the end of our observation period), purge from the list reviews, editorials and other miscellaneous “non-
original” content, and drop a handful of articles that appeared in minor journals not indexed in Thomson-Reuter’s Web of
Science, the number of publications associated with this source article indeed drops to 72.
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Herskowitz’s work, or co-located researchers. Rather, the only determinants of relatedness are to be found
in the overlap in MeSH keywords between the source and its potential neighbors.

PubMed ID #9784122 appeared in the October 23rd 1998 issue of the journal Science and lists 15 MeSH terms
and 5 substances. Consider now its second most-related (listed in Figure C1), PubMed ID #12242283 “Phos-
phorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is
dependent on Ime2” by Sopko et al. It appeared in Molecular and Cell Biology in October of 2002 and
has 24 MeSH terms (resp. 11 substances). Figure C5 displays the MeSH terms that tag this article along
with its source PubMed ID #9784122. The keywords that overlap exactly have been highlighted in dark
blue; those whose close ancestors in the MeSH keyword hierarchical tree overlap have been highlighted in
light blue. These terms include common terms such as Saccharomyces cerevisiae and Transcription

Factors as well as more specific keywords including NDT80 protein, S cerevisiae and Gene Expression

Regulation, Fungal.

PMRA also provides a cardinal dyadic measure of intellectual proximity between each related article and its
associated source article. In this particular instance, the relatedness score of “Phosphorylation...” is 94%,
whereas the relatedness score for the most distant related article in Figure C4, “Catalytic roles of yeast...”
is only 62%.

Delineating subfields. In the five years prior to his death (1998-2002), Herskowitz was the last author on
12 publications, the publications most closely associate with his position as head of a laboratory. For each
of these source publications, we treat the set of publications returned by PMRA as constituting a distinct
subfield, and we create a subfield panel dataset by counting the number of related articles in each of these
subfields in each year between 1975 and 2006.

An important characteristic of the subfields subfields generated by this procedure is that they correspond to
quite compact intellectual neighborhoods. One window into the extent of intellectual breadth for PMRA-
generated subfields is to gauge the overlap between the articles that constitute any pair of subfields associated
with the same star. In the sample, the 452 deceased stars account for 3,076 subfields, and 21,661 pairwise
combination of subfields (we are only considering pairs of subfields associated with the same individual
star). Figure C6 displays the histogram for the distribution of overlap, which is extremely skewed. A full
half of these pairs exhibit exactly zero overlap, whereas the mean of the distribution is 0.06. To find pairs
of subfields that display substantial amounts of overlap (for example, half of the articles in subfield 1 also
belong in subfield 2), one must reach far into the right tail of the distribution, specifically, above the 98th

percentile.

Given a source article published in year t, PMRA will tend to find the largest number of neighbors contem-
poraneously, slightly fewer neighbors–but still a large proportion of them all–during years t− 1 and t+ 1, a
slightly lower number still in years t − 2 and t + 2, etc. In other words, PMRA creates lists of intellectual
neighbors such that, when rolled up at the year level, will generate subfields whose life cycle has an inverted
U-shape, with the peak of the U corresponding to the year of publication for the source. This does not strike
us as an implausible feature of the scientific process: papers related to a focal one will be more likely to
appear in close temporal proximity with it. Importantly, this feature of PMRA affects treated and control
subfields in a precisely symmetric fashion.

To illustrate this empirically, we took a random sample of 5,000 articles in PubMed (original articles, in
journals indexed by web of science, that appeared between 1965 and 2003–the same range of years as for
our source articles) and computed the average number of articles entering those subfields in a range of
[−10; +10] years after the publication of the source. This yields a pronounced inverted-U shape, as seen on
Figure C7. Interestingly, the decay in the outer years is not symmetric: PMRA finds more neighbors in the
future than in the past. This may reflect the steadily expanding universe of publications, such that there
will mechanically be more candidates to be included as related neighbors going forward in time, relative to
going backward in time. The same tendency would of course apply equally to control and treated subfields.
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Robustness checks. The production version of PMRA is used by thousands of scientists every day to assist
their search of the biomedical literature. The foregoing discussion has shown that some idiosyncrasies baked
into the algorithm are not necessarily desirable from a research standpoint. How would our benchmark set
of results change, for instance, if the subfields were expanded in size? Or if a cardinal cutoff rule determined
the boundary of a subfield? Or if only MeSH terms, rather than the combination of MeSH terms and
abstract/title words, were used to assess the similarity between the documents in a subfield? Below, we avail
ourselves to an off-line version of PMRA that was explicitly built to allow some limited experimentation with
featured of the PMRA algorithm.x Using this software tool, we can generate the relatedness score between
a source article in PubMed and a string of text. We manipulate that string of text to generate relatedness
scores between our source articles and an expanded set of candidate related articles under different scenarios.

Before doing so, however, we need to create an expanded list of “candidate” related articles, because we lack
the computing power to check each source article against the entire PubMed corpus.xi Our approach is to
combine the related articles (denoted PMRA1 articles below) with the related articles of the related articles
(denoted PMRA2 articles below) as the candidate set. Using the cardinal relatedness score generated by the
off-line, tunable version of the software, we then use a simple cutoff rule to delineate the expanded subfields:
we retain only those articles with cardinal relatedness score greater than 0.20 (the median). In addition,
as is the case for the benchmark set of subfields, we also eliminate non-original articles, articles that fall
outside of our date range, articles not written in English, and articles that appear in journals not indexed
by the Web of Science. We repeat this exercise, except that we set loose the tunable version of PMRA on
candidate related articles that are summarized solely by their MeSH terms (i.e., abstract/title words are not
taken into account).

Figure C8 displays the histogram of the distribution for subfields constructed using this novel set of rules.
The mean stands at 891 articles, the median at 625 articles, with a maximum value of 7,112. These subfields
are therefore much larger than those generated by the production version of PMRA. Table C1 replicates
our benchmark set of specifications (columns 1, 2, and 3 of Table 3) on these new data. The leftmost
three columns correspond to the version where abstract/title words and MeSH terms are used to calculate
relatedness score; the rightmost three columns correspond to the version where the input into the calculation
of relatedness is limited to the MeSH terms. The magnitudes of the effects are a bit larger than those observed
in Table 3; the coefficients are also more precisely estimated. Figure C9 replicates Panel C of Figure 2 on
the new data. Panel A of Figure C9 corresponds to a dynamic version of the specification in column (3) of
Table C1, whereas Panel B of Figure C9 corresponds to a dynamic version of the specification in column (6) of
Table C1. In both of these pictures, there appear to be a slight pre-trend in that activity in the field picks up
slightly before the death of the star scientist. The magnitudes, however, are very small, marginally significant,
and substantially smaller than those found in the post-death period, providing reassurance regarding the
robustness of our core results.

xWe thank Kyle Myers from the NBER for graciously allowing us access to this software, which forms the basis of his
manuscript entitled “The Elasticity of Science” (Myers 2018). Note that it relies on a version of PubMed that is not complete—
about 10% of the online version of the database have no counterparts in the off-line version, but these articles appear to be
missing at random.

xiThere would be close to half a trillion article pairs to check, even after eliminating articles outside of our date range,
non-original content, articles in other languages, etc.
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Table C1: Alternate Subfield Definitions 
 Expanded Neighborhoods  Expanded Neighborhoods, 

MeSH Terms Only 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.098** -0.321** 0.120**  0.071** -0.327** 0.089** 
(0.026) (0.047) (0.026)  (0.022) (0.045) (0.022) 

Nb. of Investigators 6,237 6,194 6,237  6,226 6,189 6,226 
Nb. of Fields 33,987 33,732 33,981  33,928 33,761 33,928 
Nb. of Field-Year Obs. 1,390,415 1,380,078 1,390,169  1,398,549 1,391,664 1,398,549 
Log Likelihood -5,918,924 -1,508,675 -5,704,068  -8,106,163 -1,818,687 -7,895,247 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total 
number of publications in a subfield in a particular year (similar to Table 3, columns 1 through 3). All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated and 
control subfields that switches from zero to one after the death of the star, to address the concern that age, year 
and individual fixed effects may not fully account for trends in subfield entry around the time of death for the 
deceased star. The first three columns use subfields that comprise both PMRA1 and PMRA2 articles, but where 
the input data includes abstract/title words plus MeSH terms, just as in the production version of the algorithm. 
In contrast, in the second set of three columns, subfields have been constructed while ignoring abstract/title 
words for the candidate related articles. Robust standard errors in parentheses, clustered at the level of the star 
scientist. †p < 0.10, *p < 0.05, **p < 0.01. 

 

 

Figure C1: MeSH Term Overlap & Relatedness 

 
Note: This figure depicts the relationship between MESH term overlap 

and being classified as related by PMRA based on a random 
sample of approximately 130 million article pairs in PubMed 
(formed from a random sample of 15,400 individual articles). 
With exactly one MeSH term in common, the base probability of 
being related is on the order of 1/1,000,000. That probability 
increases extremely steeply as the number of MeSH terms shared 
between any two random articles moves beyond 4 terms in 
common. 
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Figure C2 
Subfield Size and PMRA Cutoff Rules 

 

A. Ordinal Cutoff B. Cardinal Cutoff 
C. Cardinal Cutoff, by Treatment 

Status, Post-Death Period Only 

 

Note: We document the rules that govern the cutoff in the number of related articles associated with each source. Panel A depicts the histogram for the distribution of related 
articles after filtering out “undesirable” publications (such as reviews and other non-original material, non-English publications, etc.). Panel B depicts the distribution of 
the relatedness score for the least related article associated with each source article in our data. There is a mass point at 0.10 that corresponds to an additional cutoff 
rule in PMRA. A smattering of source publications have some related articles with relatedness score below 0.10, but the overwhelming majority of those are incomplete 
records: missing abstract, missing MeSH terms, or both. These account for less than 0.5% of the source articles. Finally, Panel C compares the relatedness of the least 
related article for each source, by treatment status, and solely for the related articles that appeared after the death (respectively counterfactual death) of a star. 
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Figure C3 
Temporal Stability of Cutoff Rules 

 

A. Ordinal Cutoff
(Subfield Size) 

B. Cardinal Cutoff
(Lowest Relatedness Score) 

Note: We regress the log of pre-death subfield size (Panel A) and the log odds of the relatedness score for the least related article (Panel B) onto (i) journal fixed 
effects; (ii) a suite of indicator variables for the source article’s number of authors; (iii) source article year of publication effects; and (iv) interaction terms 
between each year of publication and a treatment status indicator. The graphs report the coefficient estimates, along with their associated 95% confidence 
interval (corresponding to robust standard errors, clustered at the level of the star) for these 36 interaction terms.
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Figure C4: From Source to Related Articles 

 
Note: We illustrate the process of identifying the related articles through the use of an example. Ira Herskowitz, a superstar scientist in our sample, died in 2003. In 

the five years prior to his death (1998-2002), Herskowitz was the last author on 12 publications. One of these publications is “The transcriptional program of 
sporulation in budding yeast,” an article published in the journal Science in 1998. On the right-hand side panel, one sees that PMRA identifies 72 related 
articles related to this source publication. Each of these related articles can then be parsed in a variety of ways. In particular, their authorship list can be 
matched to the AAMC Faculty Roster, which allows us to distinguish between collaborators of Herskowitz’s and non-collaborators, as well as between the 
subfield’s insiders vs. outsiders. Eight out of the 72 articles have a former or current collaborator on the authorship roster. Twenty two of the 72 articles in 
the subfield cite the source article, while the source articles references eight of the articles in the subfield.
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Figure C5: PMRA and MeSH Term Overlap—An Example 
 

Source Article  PMRA-Linked Article 

Chu et al., “The transcriptional program of 
sporulation in budding yeast.” Science, 

1998. 

 
Sopko et al., “Phosphorylation and maximal 
activity of Saccharomyces cerevisiae meiosis-

specific transcription factor Ndt80 is 
dependent on Ime2.” MCB, 2002. 

PMID #9784122  PMID #12242283 
MeSH Terms MeSH Terms 
Animals Active Transport, Cell Nucleus 
Chromosomes, Fungal Binding Sites 
DNA-Binding Proteins* Cell Cycle Proteins* 
Fungal Proteins Cell Nucleus 
Gene Expression Regulation, Fungal* DNA-Binding Proteins* 
Genes, Fungal Fungal Proteins* 
Genome, Fungal Gene Expression Regulation, Fungal* 
Humans Genes, Fungal 
Meiosis Intracellular Signaling Peptides and Proteins 
Morphogenesis Meiosis* 
Organelles Phosphorylation 
Saccharomyces cerevisiae* Promoter Regions, Genetic 
Spores, Fungal Protein Kinases* 
Transcription Factors Protein-Serine-Threonine Kinases 
Transcription, Genetic* Recombinant Fusion Proteins 

 Saccharomyces cerevisiae 

 Saccharomyces cerevisiae Proteins* 

 Spores, Fungal 

 Substrate Specificity 

 Transcription Factors* 

 Transcriptional Activation 
 
Substances Substances 
DNA-Binding Proteins Cell Cycle Proteins 
Fungal Proteins DNA-Binding Proteins 
NDT80 protein, S cerevisiae Fungal Proteins 
Saccharomyces cerevisiae Proteins Intracellular Signaling Peptides and Proteins 
Transcription Factors NDT80 protein, S cerevisiae 

 Recombinant Fusion Proteins 

 Saccharomyces cerevisiae Proteins 

 Transcription Factors 

 Protein Kinases 

 IME2 protein, S cerevisiae 
    Protein-Serine-Threonine Kinases 
Note: We compare the MeSH terms for  the number of MeSH terms for the source article in Figure C4, 

along with those of its most proximate intellectual neighbor according to PMRA. 
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Figure C6 
Article Overlap Between Subfield Pairs  

 
Note: We compute the share of related articles that are shared between pairs of PMRA-delineated subfields. 

To be conservative, we focus the analysis on 21,661 subfield pairs where a deceased superstar was the 
last author on both of the associated source articles. 

 
 

Figure C7 
Distribution of Activity in Subfields Over Time 

 
Note: This figure illustrates the timing of articles entering the subfields for a random sample of 5,000 articles 

in PubMed (original articles, in journals indexed by Web of Science, that appeared between 1965 and 
2003—the same range of years as for the source articles in our analytic sample), and we run them 
through PMRA, rolling up the count of articles up to the subfield-year level (as in our regressions). 
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Figure C8 
Distribution of Expanded Neighborhood Subfield Size 

 
Note: The articles that are candidate for membership in each subfield 

satisfy the following conditions: PMRA1 or PMRA2. We then 
compute relatedness in this expanded neighborhood using the 
tunable version of PMRA. We discard every article with new 
relatedness score less than 0.20 (the median in the sample). As 
a result, there is a cardinal cutoff, but no ordinal cutoff that 
delineates subfield boundaries. 35 (0.1%) of the fields are outliers 
with more than 5,000 articles. In the histogram above, we make 
use of abstract & title words, in addition to MeSH terms, to 
assess relatedness through PMRA.
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Figure C9 

Dynamics of Subfield Entry—Non Collaborators 
Alternate Subfield Definitions 

 
A. Expanded Neighborhoods B. Expanded Neighborhoods, MeSH Terms Only 

  
Note: The dark blue dots in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which 

publication flows in subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of 
years before/after the death event (the indicator variable for treatment status interacted with the year of death is omitted). The specifications also include 
a full set of lead and lag terms common to both the treated and control subfields to fully account for transitory trends in subfield activity around the time 
of the death. The 95% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with 
vertical light blue lines; Panel A corresponds to a dynamic version of the specification in the third column of Table C1; Panel B corresponds to a dynamic 
version of the specification in the sixth column of Table C1.

 

 



Appendix D: Construction of the Control Group

We detail the procedure implemented to identify the control subfields that help pin down the life-cycle and
secular time effects in our difference-in-differences (DD) specification. Happenstance might yield a sample of
stars clustered in decaying scientific fields. More plausibly, activity in the typical subfield might be subject
to idiosyncratic life-cycle patterns, with their productive potential first increasing over time, eventually
peaking, and thereafter slowly declining. Relying solely on subfields treated earlier or later as an implicit
control group raises the worry that these time-varying omitted variables will not be fully captured by subfield
age controls, particularly since dating the birth of a subfield is a process fraught with hazards.

To address this concern, we create an additional level of difference by selecting control subfields. Recall that
selecting a subfield in our framework is akin to first selecting a source article and then using PMRA to harvest
all the related articles to this source in intellectual space. Since the second step is fully automated, only
the first step is really of concern. Practically, we will recruit control source articles from the set of articles
authored by star scientists who do not die prematurely. But what makes a satisfactory control group? It is
important to distinguish between ex ante vs. ex post criteria. Ex ante, one would like control source articles
to have the following properties:

1. to be published contemporaneously with the source article for the treated subfield;

2. to be unrelated (in both an intellectual and a social sense) to the source article for the treated subfield;

3. to be of similar expected impact and fruitfulness, relative to the source article for the treated subfield;

4. to have a similar number of authors as the source article for the treated subfield;

5. to have a superstar author in the same authorship position and of approximately the same age as
that occupied by the deceased superstar on the authorship roster of the source article for the treated
subfield.

Ex post, it will be important for the control subfields to satisfy an additional condition: the treated and
control subfields should exhibit very similar trends in publication activity and funding flows up to the year
of treatment (i.e., the year of death for the treated superstar).

Coarsened Exact Matching. To meet these goals, we implement a “Coarsened Exact Matching” (CEM)
procedure (Blackwell et al. 2009). The first step is to select a relatively small set of covariates on which
we need to guarantee balance ex ante. This choice entails judgement, but is strongly guided by the set of
criteria listed above. The second step is to create a large number of strata to cover the entire support of the
joint distribution of the covariates selected in the previous step. In a third step, each observation is allocated
to a unique strata, and for each observation in the treated group, control observations are selected from the
same strata.

The procedure is coarse because we do not attempt to precisely match on covariate values; rather, we coarsen
the support of the joint distribution of the covariates into a finite number of strata, and we match a treated
observation if and only if a control observation can be recruited from this strata. An important advantage
of CEM is that the analyst can guarantee the degree of covariate balance ex ante, but this comes at a cost:
the more fine-grained the partition of the support for the joint distribution (i.e., the higher the number of
strata), the larger the number of unmatched treated observations.

Implementation. We identify controls based on the following set of covariates (t denotes the year of
death): star scientist career age; citations received by the article up to year t; number of authors; position
of the star author on the authorship roster (only last authorship position is considered); journal; and year
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of publication. The first three covariates only need to match within relatively coarse bins. For instance, we
create nine career age categories: less than 10 years; between 10 and 20 years; between 20 and 25 years;
between 25 and 30 years; between 30 and 35 years; between 35 and 40 years; between 40 and 45 years;
between 45 and 50 years, over 50 years of career age. Similarly, we coarsen the distribution of citations at
baseline into five mutually exclusive bins: zero citations; between one and 10 citations; between 10 and 50
citations; between 50 and 120 citations; and more than 120 citations. In contrast, we impose an exact match
on journal, publication year, and the star’s authorship position.

We match approximately 75% of the treated source articles in this way. Some further trimming of the control
articles is needed. First, we eliminate any control that shares any author with the treated source. Second,
we eliminate any control article with a dead star scientist on its authorship roster, even if he appears in an
intermediate position in the authorship list. Third, we drop every control that also happens to be related
intellectually to its source as per PMRA. Finally, we drop from the data any source article that finds itself an
orphan (i.e., not paired with any control) at the conclusion of this process. Figure D1 provides an illustrative
example.

The final sample has 3,074 treated source articles and 31,142 control source articles. As can be seen in
Figure D2, the distribution of activity levels, measured by cumulative publications up to the baseline year,
is very similar between treated and control subfields. As well, there is no evidence of preexisting trends
in activity, as demonstrated by the coefficient estimates graphed in Figure 1 and E1. In Table 2, treated
and control subfields are very well-balanced on the covariates that formed the basis of the CEM matching
procedure. This is true almost by construction. What is more surprising (and also welcome) is that the
procedure balances a number of covariates that were not used as inputs for matching, such as various metrics
of star eminence. For other covariates, we can detect statistically significant mean differences, though they
do not appear to be substantively meaningful (e.g., 6.7% of control stars vs. 9.9% of treated stars are female).

Sensitivity Analyses. Human judgement matters for the outcome of the CEM procedure insofar as one
must draw a list of “reasonable” covariates to match on, as well as decide on the degree of coarsening to
impose. We have verified that slight variations in the implementation (e.g., varying slightly the number of
cutoff points for the stock of baseline citations for the source; focusing on birth age as opposed to career age
for the stars) have little impact on the main results.
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Figure D1: Matching Procedure to Identify Controls for the Source Articles 

 

Note: The two articles above illustrate the Coarsened Exact Matching (CEM) procedure. These two articles appeared in the journal Science in 1998. They received a 
similar number of citations up to the end of the baseline year (2002, one year before Herskowitz’s death): 514 citations for Chu et al., 344 citations for Neumann 
et al. Note that Alan Perelson and Ira Herskowitz are both in last authorship position. They also obtained their PhD within a year of each other. 



Appendix E: Extensions

Extended descriptive statistics. For space reasons, Table 2 provided descriptive statistics at baseline
for only a selected set of right-hand side covariates and outcome variables. In Tables E1 and E2, we present
descriptive statistics and correlation matrices for all the covariates and outcome variables that appear either
in the main body of the manuscript, or in Appendixes E and F. Table E1a highlights balance between
control and treated subfields at baseline for a simple transformation of the outcome variables. Recall that
our outcome variables are of the form “number of articles in subfield i and year t that satisfy some condition,”
where examples of such conditions include, inter alia, “by non-collaborators only, where these related authors
had no prior participation in the subfield” or “by non-collaborators only, where the focal star is not cited in
the list of references.” We transform these flow variables into cumulative stock variables, taking into account
the years between the birth of the subfield and the year of death (or counterfactual death). So, for example,
at baseline, the stock or related articles by non-collaborators that list references only outside the subfield
are balanced between control and treated subfields (13.764 vs. 13.789).xii

Table E1b provides descriptive statistics for star-level (e.g., cumulative NIH funding at baseline) and subfield-
level (e.g., commitment of the star to the subfield) covariates. These covariates are used to realize sample
splits around their medians in Tables 6 and 7 of the manuscript, and in Tables E5, E7, and E8 of Appendix E.
In Table E2, we also display correlation matrices for these variables. To make the matrix legible, we
place correlations for subfield-level covariates and star-level covariates in separate tables (E2a and E2b).
The correlations are typically reassuringly high across measures within a construct (e.g., , but low across
constructs.

Event study graphs using the raw data. Figure E1 provides graphical evidence of the effect of star
death on subfield entry using raw data. This involves an important simplification—anchoring the comparison
between control and treated subfields on “experimental time” (the number of years elapsed since treatment),
ignoring the fact that our death events are staggered over a long time period (1975 to 2003). Yet, these
graphs provide visual evidence that the main effects of death on subfield growth or decline we document in
regression specifications saturated with calendar year and age effects (Figure 2) are also apparent in the raw
data. The graphs in Figure E1 also make vivid the life-cycle of subfields. Given a particular source article,
PMRA creates a list of intellectual neighbors that, when added together at the year level, generate subfields
whose evolution over time follows an inverted U-shape, with the peak of the U corresponding to the year of
publication for the source.xiii Of course, these life cycle patterns are a reflection of design choices for PMRA.
That being said, a plausible feature of the scientific process is that papers related to a focal one will be more
likely to appear in close temporal proximity with it.

Sudden vs. Anticipated Death Events. To gain statistical power, our main results pool the subfields
of stars who died suddenly with those of stars whose untimely passing was anticipated. Yet, the case for
the exogeneity of a death event is stronger when it is sudden; when the death can be anticipated, it is
theoretically possible for the star to engage in “intellectual estate planning,” whereby particular scientists
(presumably close collaborators) are anointed as exemplars of the next generation of leaders in the subfield.
Table E3 breaks down our core set of results by cause of death, focusing on entry by non-collaborators only.
Contrasting the coefficient estimates across Panel A and Panel B in the first column of Table E1, relative
subfield growth appears to be driven by stars whose death was anticipated. The effect in the case of sudden
death is small in magnitude and imprecisely estimated.

xiiNote that the variables in Table E1a pertain to subfield entry by non-collaborators only, except the first three, which
correspond to the outcome variables in the right-most three columns of Table 3 (number of NIH grants acknowledged by articles
in the subfield, in total, by collaborators only, and by non-collaborators only).
xiiiOn Figures E1, Panels A, B, and C, the peak appears roughly two to three years before the death, and not in

the year of death. But recall that the source articles that generate the subfields in our data appeared in the window
[tyr death−5; tyr death−1]. As such, the peak observed in these figures is an average of the peaks for subfields associated
with sources published in the years tyr death−5, tyr death−4, . . . , tyr death−1.
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As in Table 4, we parse every related article in the subfield to assign them into one of six mutually exclusive
bins, based on their vintage-specific long-run citation impact: articles that fall in the bottom quartile of the
citation distribution; in the second quartile; in the third quartile; articles that fall above the 75th percentile,
but below the 95th percentile; articles that fall above the 95th percentile, but below the 99th percentile; and
articles that fall above the 99th percentile of the citation distribution. Decomposing this effect across the
quantile bins as above reveals that the differences between the cases of sudden and anticipated death can be
accounted for by shifts in activity for low-impact contributions. In the right tail of the distribution, there is
very little evidence that the manner of superstar death matters at all for the fate of their subfields. In both
cases, non-collaborators increase their relative contribution sharply—on the order of 40%.

Figure E2 and E3 display event study-style graphs in the spirit of Figure 2, Panel C. When using all
publications (regardless of impact) as the metric of activity in a subfield (Figure E2), we can see that
the upward trend is more pronounced (as well as statistically significant) in the case of anticipated events.
When using only “top publications” (specifically, those in the upper 5 percentiles of the citation distribution,
adjusted for each year of publication), the differences are less stark. Consistent with a dearth of statistical
power, our ability to estimate these effects precisely is also limited. This convergence of the effect of death
when focused on the upper tail of the impact distribution legitimates our choice to pool the data for sudden
and anticipated events.

Consolidating vs. disruptive entry. The findings above do not imply that the published results of
entrants necessarily contradict or overturn the prevailing scientific understanding and assumptions within a
subfield. Direct evidence of these contributions’ disruptive impact is elusive. To provide indirect evidence,
we use the “disruptiveness” index (hereafter denoted d) recently proposed by Funk and Owen-Smith (2017),
which seeks to capture whether an idea consolidates or destabilizes the status quo. d measures the extent to
which the future ideas that build on the focal idea also rely on its acknowledged predecessors. In practice,
for article i, it is defined as:

di =
1

ni

n∑
j=1

[1(j ∨Ki)− 1(j ∧Ki)]

where j indexes the forward citing articles (j = 1, . . . , n), Ki is the set of articles {k1, k2, . . . , kp} that are
(backwards) referenced within i, ni is the number of forward citations to article i, 1(j ∨ Ki) is equal to
one if forward citing article j does not reference any of the articles in Ki, and 1(j ∧ Ki) is equal to one
if forward citing article j does reference at least one of the articles in Ki. d = 1 for articles that are
“maximally destabilizing,” in the sense that there is no overlap between the articles referenced by the focal
article and the references listed in the papers that cite it. In contrast, d = −1 for articles that are “maximally
consolidating,” in the sense that every citing article and the source have at least one reference in common.

We compute the d index for all related articles in our data (mean= −.39, median= −.49, s.d.= .47). We count
the number of related articles that belong to a particular quantile bin of d. We create six non-overlapping
bins: below the 10th percentile of d, between the 10th and the 25th percentile, between the 25th and the 50th

percentile, between the 50th and the 75th percentile, between the 75th and the 95th percentile, and above the
95th percentile of d. In a final step, we roll up the outcome at the subfield-year level. We then run a separate
regression with each of these six outcome measures, using the research design outlined in Section III.A. As
can be observed in Table E4, the relationship between star death and subfield entry by non-collaborators
is non-monotonic in the extent to which it entails disrupting the paradigms of the treated subfields. The
relationship is strongest for related articles that fall in the intermediate range of the “disruptiveness” metric.
In contrast, the effect is zero and noisy when focusing on entry by both the most disruptive and the most
consolidating articles.

Taken together, the results in Tables 5 and E4 paint a nuanced picture of directional change in the wake of
superstar death. The new contributions do not represent a departure from the subfield’s concerns. At the
same time, the citation evidence makes it clear that these additional contributions often draw from more
recent and different sources of knowledge for inspiration. Moreover, rather than to view these contributions
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as the expression of a Kuhnian paradigm shift within the subfield, it seems more appropriate to interpret
them as reflecting the impact of a myriad “small r,” permanent revolutions whereby new ideas come to the
fore without necessarily eclipsing prior approaches.

Subfield characteristics. Table E5 examines how three different characteristics of subfields influence the
magnitude of the treatment effect. We first inquire whether post-death entry by non-collaborators is more
pronounced is subfields with forward momentum, relative to those where activity is relatively more subdued
in the years leading up to the star’s death. To create a metric of subfield “hotness,” we compute the fraction
of all papers in the subfield that were published in the window of five years before the star’s death (or
counterfactual death for the control subfields).xiv We then contrast the magnitude of the treatment effect
in the subsamples of “hot” and “cold” subfields, respectively, by splitting the data across the median of the
hotness covariate. Interestingly, the subfields with relatively less intense activity are driving the post-death
entry effect. The treatment effect for hot subfields is half as small in magnitude, relative to that for cold
subfields, and not statistically significant.

Next, we focus on the number of scientists trained by the star that had been active in the subfield before his
death. We conjecture that the subfields of stars who produced many intellectual “offsprings” may be less
welcoming to outsiders than those in which the stars did not train many graduate students or postdoctoral
fellows. Of course, we do not have evidence that these individuals, once trained, remained intellectually
beholden to the star. To identify trainees, we focus on the subset of collaborators who occupy the first
author position in articles where the star occupies the last position; with the added stipulation that the
coauthored publication appears in a window of ± three years around the year in which the collaborator’s
highest degree was received. We then count of the number of investigators trained by the star before his
(possibly counterfactual) death. The results in Table E5 indicate that subfields that are relatively more
endogamous (more than two trainees, the median of this covariate) experience elevated rates of entry after
the star’s death, relative to before. However, the difference between the coefficients corresponding to subfield
with an above median of number of trainees versus below median number of trainees is not itself statistically
significant.

Finally, we examine whether a star’s level of commitment to a subfield moderates the extent of the post-death
entry boost. Recall from Table 6 that the subfields where stars are relatively more important experience more
entry following the star’s death. A star could be important to a subfield, while not being fully committed to
it, in the sense that his presence in the subfield represents only a small part of his overall published output.
Empirically, we compute commitment as the fraction of a star’s publications that fall into the focal subfield,
and we split the data according to the median of this measure (which is equal to 0.14 in the data). The
magnitudes of the treatment effects are very similar. What appears to be associated with the post-death
entry boost is the star’s importance to the subfield while alive, and not the extent of his commitment to it.

Impact of research infrastructure needs. Our analysis is limited to the life sciences and biomedical
research. Though this area accounts for a large fraction of publicly funded, civilian research funding in
the United States, it is not necessarily representative of all fields of science. In particular, some domains
of research, like high-energy particle physics for example, require access to expensive and lumpy capital
equipment, such as the Large Hadron Collider that came on line in 2009 at the cost $8 billion dollars
(Stephan 2012). In contrast to the “big science,” hypercollaborative projects that are emerging as the norm
in these fields (e.g., Aad et al. 2015), academic life scientists require funding in sizable, but more modest
amounts to do frontier research. In scientific domains where capital needs are lumpy, the phenomenon of
entry in the wake of the passing of an eminent scientists may play out very differently, depending on the
institutions that govern access to the scarce capital equipment.

xivOnly the articles in the subfield that were published before the death are taking into account when computing this ratio.
The mean hotness across subfields is 0.61 (very similar to the median), with a standard deviation equal to 0.21.
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Within biomedical research, large-scale clinical trials most closely resemble the characteristics of those other
capital-intensive science fields. These necessitate a large infrastructure of data collection, monitoring, and
management, which is why these activities are often consolidated in large cooperative groups such as the
AIDS Clinical Trials Group, the Children’s Oncology Group, or the Framingham Heart Study. PubMed has
a “publication type” field which allows us to identify the subfields that are clinical-trial intensive (10% of
the subfields) versus those that are not (the remaining 90%).

Table E6 replicates the results of Table 3 separately for these two subsamples. Unsurprisingly, our ability
to estimate statistically significant effects is limited to the much larger set of non clinical trial-intensive
subfields. That said, the magnitudes for the clinical trial-intensive subfields are very similar.

Star characteristics. We saw in Table 6 that the passing of stars that shone brighter while they were
alive (measured by citations, publications or funding at death) appear to be driving much of the effect on
non-collaborator entry. Tables E7 and E8 focus on other star characteristics that might moderate the core
finding. The first two columns of Table E7 show that the subfields of relatively younger stars (those aged 60
and below at the time of their deaths, the median in our sample) account for much of the overall impact of
death—the magnitude of the effect for older stars is very small and imprecisely estimated. However, there is
potentially a distinction between being “young in the field” and simply being young. We measure experience
in a subfield by capturing the year in which the star first published within it. Subfield experience varies
from 1 to 38 years, with a median of seven and a mean of 8.36. The last two columns of Table E7 imply that
the stars who are above median in subfield experience are associated with slightly more post-death entry,
but the difference is very slight.

Table E8 brings more nuance to the analysis by focusing on the extent to which the star was leading vs.
lagging the frontier of his subfields at the time of death. We develop two alternative measures of “distance
to the frontier.” We assume that frontier work will be more likely to reference more recent science, and
alternatively will tend to be tagged by MeSH keyword combinations that are of more recent vintage. In
a window of five years before the death, we then contrast the difference in reference vintage (respectively
MeSH term combination vintage) for articles written by the star vs. articles written by all other authors. We
then split subfields according to the median of this difference. Across all measures, the results in Table E8
tend to show that the effect of post-death entry are larger for those subfields where the star was leading
when he passed, relative to those where his lead may have been slight or his research even staler than that
of other researchers in the subfield.

Outsiders vs. competitors: A reprise. Recall that Figure 3 focused on the extent to which related
authors were outsiders vs. previous incumbents in the subfields that expand in the wake of a star’s death.
For every related article, we matched their authorship roster to the Faculty Roster of the AAMC. Using the
matched authors’ past publication record, we can then ascertain the fraction of each related author’s output
that fall in the focal subfield. We then sorted each related article into 11 mutually exclusive bins: zero overlap
(which corresponds to the bottom two quartiles of the overlap distribution), and a separate bin for every five
percentiles above the median (50th to 55th percentile, 55th to 60th percentile,. . . , 95th to 99th percentile), as
well as a top percentile bin. We then computed the corresponding measures of subfield activity by aggregating
the data up to the subfield/year level. We presented the results graphically in Figure 3, Panel B, where each
dot corresponds to the magnitude of the treatment effect in a separate regression with the outcome variable
being the number of articles in each subfield that belong to the corresponding bins.

In Table E9, we provide, in regression table form this time, a variant of Table 3 where overlap is measured
not just with respect to the focal subfield, but rather with respect to the combined subfields of a given star.
We also simplify the number of bins, with only five: related articles by new scientists, related articles by
scientists with zero overlap who have published in the past in other subfields, related articles by scientists in
the third quartile of overlap, related articles by scientists whose past publication record puts them between
the 75th and 95th percentile of the overlap distribution, and finally related articles by scientists whose past
publication record puts them above the 95th percentile of the overlap distribution. With this “global”
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measure of overlap, one can observe that the post-death entry boost is driven by scientists with no, or only
limited past participation in the subfields where the star was active.

The lifecycle of stardom. The results in our manuscript naturally raise implications for welfare. We
expound the view that once securely ensconced at the helm of their field, stars leverage their power for
longer than a benevolent social planner might prefer. This argument would be less tenable if stars were
able to remain at the peak of their intellectual abilities until the very twilight of their careers. To shed
light on the career life cycle for superstars, we focus on the 5,878 control stars in our analytic sample, and
construct a panel dataset of publications at the star scientist-year level.xv Using Poisson specifications, we
then regress publication output onto year effects, indicator variables for degree (MD, PhD, MD/PhD), an
indicator variable for female scientists, indicator variable for departmental affiliation (medicine vs. surgery
vs. cell biology, etc.), indicator variables for the year in which the highest degree was received as well as
52 indicator variables for age effects (from age 29 to age 80, with ages below 29 absorbed in the omitted
category).

Panel A of Figure E4 displays the estimates corresponding to the age effects when then outcome in the
specification is the overall number of publications in a given year. Panel B restricts the outcome measure to
publications whose number of long-run citations lies above the 95th percentile of the vintage-specific citation
distribution at the article level. Panel C proceeds in the same spirit, but focuses on even more impactful
publications, those whose number of long-run citations lie above the 99th percentile of the vintage-specific
citation distribution at the article level. As can be observed in all three panels, the productive life cycle
of stars follows an inverted U-shaped pattern, with a peak occurring earlier for highly cited publications,
followed by a steeper drop off.

The circle of scientific life. The impacts in the final years of a star’s life are not necessarily indicative
of their contributions writ large. Indeed, the lofty accomplishments which earned them superstar status
suggest that their net contribution to society is likely positive. A longer view would also recognize that the
scientific journeymen of today may well become the stars of tomorrow.

One lens into this phenomenon is to examine the status of scientists that produce new contributions in a
subfield. In the first two columns of Table E10, we parse every article by non-collaborators, distinguishing
between those that have a star author from those for which none of the authors are stars. We find that the
effect is driven by related articles where none of the authors is particularly famous. One limitation of this
dichotomy is that it fails to take into account long-run career trajectories, since it lumps together mediocre
scientists with those that have not yet made their mark, but will do so in the future.

We can explore this dynamic by taking advantage of the fact that roughly 20% of the eminent life scientists
in our sample have a clear date attached to their accession to star status: the year of appointment as a
Howard Hughes Medical Investigator, or the year of election to the National Academy of Science or the
National Academy of Medicine. These events mark their recipients as among the most celebrated within the
superstar sample. With this more rarefied definition of stardom, we can now distinguish between related
authors who are “never stars,” “current stars,” and “future stars.” The next three columns of Table E10
show that future star authors are disproportionately likely to contribute to treated subfields after the star
has passed away, consistent with the idea that the outsiders of today can sometimes turn into the stars of
tomorrow—a phenomenon we refer to as the circle of academic life.

xvWe eliminate the 452 extinct stars from the sample since their life cycle was interrupted prematurely.
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Table E1a: Extended Descriptive Statistics, Subfield-level outcome variables 
 
 Control Subfields  Treated Subfields 

 Mean Median Std. Dev.  Mean Median Std. Dev. 
Baseline stock of related NIH grants, total 23.824 17 25.570  22.449 17 23.566 
Baseline stock of related NIH grants, collaborators 4.876 2 6.952  4.446 2 6.011 
Baseline stock of related NIH grants, non-collaborators 19.301 13 22.170  18.306 13 20.659 
Baseline stock of related articles, bottom quartile of citation impact 6.614 4 8.322  6.741 4 8.611 
Baseline stock of related articles, 2nd quartile of citation impact 13.423 9 13.983  13.356 9 14.057 
Baseline stock of related articles, 3rd quartile of citation impact 20.100 14 19.051  19.996 14 18.937 
Baseline stock of related articles, 75th < citation impact< 95th pctl. 21.762 16 19.810  21.271 16 19.289 
Baseline stock of related articles, 95th < citation impact< 99th pctl. 5.233 3 5.933  5.108 3 5.844 
Baseline stock of related articles, citation impact > 99th pctl. 1.257 1 2.129  1.280 0 2.360 
Baseline stock of related articles, outsiders 25.167 19 21.966  23.046 17 21.194 
Baseline stock of related articles, incumbents 16.000 9 19.960  17.056 11 19.908 
Baseline stock of related articles, proximate to source (cardinal measure) 31.353 24 31.179  32.022 25 31.854 
Baseline stock of related articles, distant from source (cardinal measure)  37.037 19 49.598  35.730 18 48.119 
Baseline stock of related articles, proximate to source (ordinal measure) 32.730 31 17.223  32.786 31 17.000 
Baseline stock of related articles, distant from source (ordinal measure)  35.661 15 51.796  34.966 14 51.735 
Baseline stock of related articles, references within subfield 54.627 42 48.492  53.963 41 47.581 
Baseline stock of related articles, references outside subfield 13.764 7 19.080  13.789 7 19.159 
Baseline stock of related articles, cites the star 32.332 22 34.199  31.076 22 32.141 
Baseline stock of related articles, does not cite the star 36.058 24 37.875  36.677 24 39.633 
Baseline stock of related articles, recent references 25.390 16 29.948  25.300 16 29.643 
Baseline stock of related articles, old references 43.000 32 39.830  42.453 32 39.545 
Baseline stock of related articles, recent MeSH terms (individual) 47.225 34 44.565  46.781 34 43.835 
Baseline stock of related articles, old MeSH terms (individual) 20.465 7 32.090  20.318 7 30.955 
Baseline stock of related articles, recent MeSH terms (combinations) 34.242 23 36.401  33.941 23 35.964 
Baseline stock of related articles, old MeSH terms (combinations) 30.569 20 34.234  30.179 20 33.176 
Baseline stock of related articles, with no star author 50.222 36 45.708  50.241 36 46.113 
Baseline stock of related articles, with at least one star author 18.168 12 19.281  17.512 12 18.411 
Baseline stock of related articles, with current elite author 62.275 46 55.514  61.728 45 55.169 
Baseline stock of related articles, with no current or future elite author 2.699 1 4.855  2.657 1 4.715 
Baseline stock of related articles, with future elite author 3.416 2 5.079  3.367 2 4.916 
Note: All variables are limited to subfield activity by non-collaborators, unless otherwise specified. 
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Table E1b: Extended descriptive statistics, key covariates 
 
 

Control Subfields 
 

Treated Subfields 

 Mean Median Std. 
Dev. 

 Mean Median Std. 
Dev. 

Star-level        
Age at Death 58.100 58 8.795  58.100 58 8.796 
Investigator Cumulative Nb. of Publications 164 131 123  170 143 118 
Investigator Cumulative Nb. of Citations 12,141 8,010 12,938  11,580 8,726 10,212 
Investigator Cumulative NIH Funding at Baseline $18,784,517 $11,904,846 $25,160,518  $17,637,726 $12,049,690 $24,873,018 
Star’s number of past trainees (overall) 8.665 6 8.991  8.379 7 7.661 
Subfield-level        
Importance of the star to the subfield 0.152 0 0.134  0.151 0 0.132 
Commitment of the star to the subfield 0.160 0 0.149  0.157 0 0.149 
Subfield coherence [PMRA-based measure] 0.602 1 0.131  0.603 1 0.128 
Subfield coherence [citation-based measure] -0.003 0 0.019  -0.003 0 0.023 
Subfield cliquishness [Clustering Coefficient] 0.774 1 0.140  0.774 1 0.137 
Cumulative Nb. of editorials by coauthors 122.453 35 217.358  118.844 39 201.803 
Nb. of coauthors in study sections 0.324 0 0.846  0.369 0 0.971 
% of subfield NIH funding controlled by the star’s collaborators 0.285 0 0.315  0.269 0 0.307 
Subfield “hotness” 0.597 1 0.212  0.596 1 0.217 
Star’s number of past trainees in the subfield 1.917 1 2.450  1.803 1 2.171 
Years of experience in the subfield 8.277 7 5.750  8.493 7 6.078 
Relative lead of the star in subfield [Individual MeSH measure] 0.045 -0 1.879  0.036 -0 1.741 
Relative lead of the star in subfield [2-way combo MeSH measure] -0.028 0 4.447  -0.089 0 4.334 
Relative lead of the star in subfield [backward reference measure] 0.053 -0 6.902  0.227 -0 6.833 
Note: This table reports summary statistics for all of the key covariates that we interact with the treatment effect in order to explore the underlying 
mechanisms of star death. 
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Table E2a: Correlation matrix, Subfield-level covariates 
  (1) (2) (3) (4) (5) (6) (7) 

(1) Importance of the star to the subfield 1.00       
(2) Commitment of the star to the subfield 0.34** 1.00      
(3) Star’s number of past trainees in the subfield 0.23** 0.24** 1.00     
(4) Subfield coherence [PMRA-based measure] -0.34** -0.07** 0.04** 1.00    
(5) Subfield coherence [citation-based measure] -0.05** -0.03** -0.01 0.00 1.00   
(6) Subfield cliquishness [clustering coefficient] -0.25** -0.37** -0.40** -0.10** 0.12** 1.00  
(7) Cumulative nb. of editorials by coauthors -0.06** -0.20** 0.01* 0.07** -0.03** -0.00 1.00 
(8) Nb. of coauthors in study sections -0.02** -0.11** 0.13** 0.05** -0.02** -0.04** 0.48** 
(9) % of subfield NIH funding controlled by the star’s collaborators 0.36** 0.15** 0.24** -0.12** -0.09** -0.25** 0.10** 
(10) Subfield “hotness” -0.03** -0.07** -0.10** -0.05** -0.09** 0.24** -0.04** 
(11) Years of experience in the subfield 0.12** 0.30** 0.38** 0.07** 0.02** -0.44** 0.09** 
(12) Relative lead of the star in subfield [individual MeSH measure] 0.01* 0.01 -0.00 -0.04** 0.01 0.02** -0.01** 
(13) Relative lead of the star in subfield [2-way combo MeSH measure] -0.00 0.01 -0.00 0.01** 0.01 -0.00 -0.01* 
(14) Relative lead of the star in subfield [backward reference measure] -0.08** -0.00 -0.04** 0.02** 0.02** 0.04** -0.04** 

  (8) (9) (10) (11) (12) (13) (14) 

(8) Nb. of coauthors in study sections 1.00       
(9) % of subfield NIH funding controlled by the star’s collaborators 0.12** 1.00      
(10) Subfield “hotness” -0.02** -0.05** 1.00     
(11) Years of experience in the subfield 0.09** 0.22** -0.49** 1.00    
(12) Relative lead of the star in subfield [individual MeSH measure] 0.00 0.00 -0.01† -0.01† 1.00   
(13) Relative lead of the star in subfield [2-way combo MeSH measure] -0.01** 0.00 -0.05** 0.03** 0.29** 1.00  
(14) Relative lead of the star in subfield [backward reference measure] -0.03** -0.06** -0.10** 0.02** 0.05** 0.09** 1.00 

 
Table E2b: Correlation matrix, Star-level covariates 
       
  (1) (2) (3) (4) (5) 
(1) Age at Death 1.00     
(2) Investigator Cumulative Nb. of Publications 0.40** 1.00    
(3) Investigator Cumulative Nb. of Citations 0.21** 0.74** 1.00   
(4) Investigator Cumulative NIH Funding at Baseline 0.38** 0.45** 0.34** 1.00  
(5) Star’s number of past trainees (overall) 0.33** 0.54** 0.56** 0.36** 1.00 

† p < 0.10, * p < 0.05, ** p < 0.01 
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Table E3: Scientific Impact of Entry by Non-Collaborators 

 All Pubs 
Bttm. 

Quartile 
2nd 

Quartile 
3rd 

Quartile 

Btw.75th 
& 95th 
pctl. 

Btw. 95th 
& 99th 
pctl. 

Above 
99th 
pctl. 

Panel A: Anticipated Death Events 

After Death 
0.128** 0.043 0.082* 0.093* 0.151** 0.214** 0.333** 
(0.038) (0.045) (0.041) (0.041) (0.048) (0.069) (0.115) 

Nb. of Investigators 4,018 3,982 4,018 4,016 4,013 3,946 3,214 
Nb. of Fields 15,084 14,885 15,082 15,082 15,076 14,623 9,586 
Nb. of Field-Year Obs. 554,869 547,637 554,795 554,795 554,573 537,883 352,571 
Log Likelihood -1,234,030 -315,200 -504,577 -633,777 -643,787 -234,637 -67,585 

Panel B: Sudden Death Events 

After Death 
0.026 -0.102† -0.069 -0.040 0.090 0.243** 0.310** 

(0.048) (0.057) (0.055) (0.054) (0.057) (0.075) (0.116) 
Nb. of Investigators 4,656 4,615 4,656 4,655 4,656 4,592 3,777 
Nb. of Fields 17,549 17,253 17,539 17,545 17,549 17,063 11,331 
Nb. of Field-Year Obs. 645,771 634,958 645,407 645,623 645,771 627,898 417,017 
Log Likelihood -1,396,961 -338,628 -563,370 -726,799 -756,820 -285,678 -83,118 
Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. Like in Table 4 in the manuscript, 

the dependent variable is the total number of publications by non-collaborators in a subfield in a particular 
year, where these publications fall in a particular quantile bin of the long-run, vintage-adjusted citation 
distribution for the universe of journal articles in PubMed. In Panel A, the sample is limited to 1,576 subfields 
associated with 229 stars whose death is anticipated (along with the corresponding control subfields); and in 
Panel B, the sample is limited to 1,342 subfields associated with 185 stars whose death is sudden and unexpected 
(along with the corresponding control subfields). All models incorporate a full suite of year effects and subfield 
age effects, as well as a term common to both treated and control subfields that switches from zero to one after 
the death of the star. Exponentiating the coefficients and differencing from one yield numbers interpretable as 
elasticities. For example, the estimates in the first column of Panel A, imply that treated subfields see an 
increase in the number of contributions by non-collaborators after the superstar passes away—a statistically 
significant 100×(exp[0.128]-1)=13.66%. 

 
Robust standard errors in parentheses, clustered at the level of the star scientist. 
†p < 0.10, *p < 0.05, **p < 0.01. 
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Table E4: Disruptive vs. Consolidating Entry 

 
Below 

10th pctl. 

Btw. 10th 
& 25th 
pctl. 

Btw. 25th 
and 50th 

pctl. 

Btw. 50th 
and 75th 

pctl. 

Btw. 75th 
and 95th 

pctl. 

Above 95th 
pctl. 

Disruption Index d d=-1 -1< d <-.74 -.74< d <-.50 -.50< d <-.14 -.14< d <0.53 d >0.53 

After Death 0.005 0.071 0.139*** 0.154*** 0.121*** 0.002 
(0.041) (0.041) (0.034) (0.031) (0.034) (0.041) 

Nb. of Investigators 6,189 6,184 6,247 6,254 6,253 6,077 
Nb. of Fields 33,610 33,868 34,183 34,205 34,147 30,889 
Nb. of Field-Year Obs. 1,237,024 1,246,410 1,257,883 1,258,695 1,256,557 1,136,914 
Log Likelihood -670,691 -837,488 -1,218,093 -1,268,501 -1,134,304 -448,029 

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total 
number of publications by non-collaborators in a subfield in a particular year, where these publications fall within 
a particular quantile bin of the Funk & Owen-Smith (2017) disruptiveness index, denoted by d. All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated and control 
subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and differencing 
from one yield numbers interpretable as elasticities. Robust standard errors in parentheses, clustered at the level 
of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 

 

 

Table E5: Post-death entry and subfield characteristics 
Metric of field 
Momentum “Hotness”  Number of 

Trainees  Commitment to 
the Field 

 Below 
Median 

Above 
Median 

 Below 
Median 

Above 
Median 

 Below 
Median 

Above 
Median 

After Death 
0.130** 0.066  0.100* 0.059†  0.059† 0.069 
(0.028) (0.044)  (0.041) (0.035)  (0.032) (0.046) 

Nb. of Investigators 4,870 4,694  3,566 4,881  4,477 4,520 
Nb. of Fields 17,427 16,791  8,652 25,566  17,072 17,146 
Nb. of Field-Year Obs. 642,219 616,957  317,813 941,363  627,355 631,821 
Log Likelihood -1,453,789 -1,137,226  -677,372 -2,085,856  -1,345,958 -1,413,964 
Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is 

the total number of publications by non-collaborators within a subfield in a particular year. Each pair of 
columns splits the sample across the median of a particular covariate for the sample of subfields (treated 
and control) in the baseline year. The first set of two columns examines differences in the extent to which 
the “hotness” of the subfield—defined as the fraction of the subfield’s activity that falls within the time 
window of five years before the star’s death—influences the rate at which non-collaborators enter the field 
after the star passes away. The second set of columns examines the impact of having former trainees of the 
star in the subfield. The final set of columns splits the sample according to the degree of commitment of 
the star to the subfield (i.e., the fraction of his/her output that falls within the subfield). All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from zero to one after the death of the star. Exponentiating the 
coefficients and differencing from one yield numbers interpretable as elasticities. Robust standard errors in 
parentheses, clustered at the level of the star scientist. †p<0.10, *p<0.05, **p<0.01. 
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Table E6: Impact of Research Infrastructure Needs 
 Clinical Trial-intensive  Other 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.061 -0.147 0.086†  0.060† -0.262** 0.095** 
(0.051) (0.102) (0.052)  (0.031) (0.065) (0.032) 

Nb. of Investigators 1,739 1,666 1,739  5,753 5,630 5,753 
Nb. of Fields 3,437 3,309 3,437  30,781 29,787 30,781 
Nb. of Field-Year Obs. 125,919 121,230 125,919  1,133,257 1,096,675 1,133,257 
Log Likelihood -315,048 -77,390 -302,267  -2,628,821 -660,968 -2,510,273 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications in a subfield in a particular year. The first set of three columns replicate our 
benchmark specifications (Table 3, columns 1, 2, and 3) on the sample of subfields where research often entails 
performing large scale clinical trials. The second set of three columns replicate the benchmark specifications on 
the sample of subfields where research seldom entails performing large-scale clinical trials. Clinical trial 
publications were identified using the publication type field in PubMed. All models incorporate a full suite of 
year effects and subfield age effects, as well as a term common to both treated and control subfields that switches 
from zero to one after the death of the star, to address the concern that age, year and individual fixed effects 
may not fully account for trends in subfield entry around the time of death for the deceased star. Robust 
standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 

 

 

 

Table E7: Influence of star age and in-field experience 
  Star Birth Age 

at Time of Death 
Star Experience in the Field 

at Time of Death 

 Younger than 61 61 or Older Recent 
(less than 7 years) 

Established 
(more than 7 years) 

After Death 0.108** 0.009 0.061† 0.092* 
(0.041) (0.041) (0.037) (0.036) 

Nb. of Investigators 5,542 1,936 5,166 4,257 
Nb. of Fields 27,022 7,196 17,933 16,285 
Nb. of Field-Year Obs. 995,153 264,023 659,252 599,924 
Log Likelihood -2,178,601 -581,832 -1,376,994 -1,348,968 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators within a subfield in a particular year. All models incorporate 
a full suite of year effects and subfield age effects, as well as a term common to both treated and control 
subfields that switches from zero to one after the death of the star, to address the concern that age, year and 
individual fixed effects may not fully account for trends in subfield entry around the time of death for the 
deceased star. Exponentiating the coefficients and differencing from one yield numbers interpretable as 
elasticities. Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 
0.05, **p < 0.01. 
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Table E8: Star’s leadership relative to the frontier in his/her 
subfield 

Metric of distance to 
the subfield frontier 

Vintage of 
cited references  Vintage of MeSH terms 

   Individual  2-way combinations 

 Lagging Leading  Lagging Leading Lagging Leading 

After Death 0.117** 0.154*  0.063 0.192** 0.094† 0.167** 
 (0.037) (0.072)  (0.047) (0.049) (0.057) (0.041) 
Nb. of Investigators 3,373 3,075  3,328 3,210 3,333 3,216 
Nb. of Fields 9,226 7,664  8,647 8,243 8,762 8,128 
Nb. of Field-Year Obs. 339,900 282,526  318,626 303,800 322,838 299,588 
Log Likelihood -775,180 -618,943  -713,539 -682,532 -729,341 -666,577 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators within a subfield in a particular year. We develop two 
alternative measures of “distance to the frontier.” We assume that frontier work will be more likely to 
reference more recent science, and alternatively will tend to be tagged by MeSH keyword combinations that 
are of more recent vintage. In a window of five years before the death, we then contrast the difference in 
reference vintage (respectively MeSH term combination vintage) for articles written by the star vs. articles 
written by all other authors. We then split subfields according to the median of this difference. All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from zero to one after the death of the star, to address the concern that 
age, year and individual fixed effects may not fully account for trends in subfield entry around the time of 
death for the deceased star. Robust standard errors in parentheses, clustered at the level of the star scientist. 
†p < 0.10, *p < 0.05, **p < 0.01. 

 
 

Table E9: Influence of field overlap between related authors and 
the stars on the rate of entry into subfields 

 New 
Scientists 

Below 
Median 

Btw. 50th and 
75th pctl. 

Btw. 75th and 
95th pctl. 

Above 
95th pctl. 

Intellectual Overlap x Not Defined x=0 0<x<6.35% 6.35%<x<36.70% x>36.70% 

After Death 0.081 0.113** 0.096* -0.000 -0.075 
(0.082) (0.028) (0.038) (0.061) (0.128) 

Nb. of Investigators 4,724 6,260 6,167 5,638 3,622 
Nb. of Fields 16,961 34,216 33,688 29,845 15,241 
Nb. of Field-Year Obs. 625,066 1,259,102 1,239,873 1,098,754 561,888 
Log Likelihood -88,890 -1,508,995 -970,344 -633,095 -149,524 

Note:  This table displays a variation of the results depicted in Figure 3, Panel B in regression form. Estimates stem 
from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of 
publications by non-collaborators within a subfield in a particular year, broken into five bins: publications by 
new scientists; publications that fall below the median of our measure of field overlap between the star and the 
related investigators identified on these articles’ authorship roster; publications that fall in the third quartile of 
the field overlap measure; publications that fall in the fourth quartile but below the top ventile of the field 
overlap measure; and finally publications that fall in the top ventile of the measure. In contrast to Figure 3, in 
this case overlap has been defined with respect to the “global” subfield that encompasses all the subfields of a 
given star in the data, as opposed to the “local” measure where overlap with the focal subfield determines the 
extent of overlap. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star, to 
address the concern that age, year and individual fixed effects may not fully account for trends in subfield entry 
around the time of death for the deceased star. Robust standard errors in parentheses, clustered at the level of 
the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table E10: The Eminence of Entrants—The Circle of Life 

 Star Related Author  Elite Related Author 
 No Yes  Never Current Future 
After Death 0.103** 0.055†  0.066* 0.077 0.205** 

(0.036) (0.030)  (0.029) (0.052) (0.074) 
Nb. of Investigators 6,254 6,260  6,260 5,721 5,886 
Nb. of Fields 34,160 34,218  34,218 28,992 29,650 
Nb. of Field-Year Obs. 1,257,053 1,259,176  1,259,176 1,067,107 1,091,439 
Log Likelihood -1,287,272 -2,324,369  -2,615,424 -373,036 -377,540 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total 
number of publications by non-collaborators in a subfield in a particular year, where these publications have 
scientists on their authorship roster with certain demographic characteristics. The first two columns examine the 
differential effect of the publications in the subfield having a star author vs. no star author. We rely on our home-
grown definition of star—a fixed universe of 12,935 individuals that are in some sense “born” as stars. In the next 
two columns, we focus on two of our metrics of stardom: becoming a Howard Hughes Medical Investigator and or 
becoming a member of the National Academy of Science/Medicine. At a given point of time, every related author 
either (i) is already a member of this rarefied elite; (ii) will be member of it in the future; or (iii) will never become 
a member of it, and this taxonomy provides a basis to split the output of each subfield into three non-overlapping 
categories in each year. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star. 
Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, 
the estimates in the first column imply that treated subfields see an increase in the number of contributions by 
non-stars after the superstar passes away—100×(exp[0.103]-1)=10.85%. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Figure E1 

Subfield Growth and Decline—Raw Data 
 

A. All Authors B. Collaborators C. Non-Collaborators 

   
Note: Panels A, B, and C show the path of mean publication activity for treated and control subfields around the year of star death, broken down by total number of 

publications in the subfield (Panel A), number of publications in the subfield with a coauthor of the star (Panel B), and number of publications in the subfield 
without any coauthor of the star (Panel C). 
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Figure E2: Effect of Star Scientist Death on Subfield Growth and Decline 

Non-collaborator Activity Only—All Publications 
 

  
  

A. Anticipated Death B. Sudden Death 

  
Note: The graphs in this figure are patterned after Panel C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient estimates 

stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows by non-collaborators within a subfield are regressed onto 
year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/after the death event (the indicator 
variable for treatment status interacted with the year of death is omitted). The specifications also include a full set of lead and lag terms common to both the 
treated and control subfields to fully account for transitory trends in subfield activity around the time of the death. These regressions are run separately on 
the subsample of subfields associated with stars whose death was anticipated (and their controls—Panel A), and on the subsample of subfields associated with 
stars whose death was sudden (and their controls—Panel B). The 95% confidence interval (corresponding to robust standard errors, clustered around star 
scientist) around these estimates is plotted with the vertical light blue lines. 
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Figure E3: Effect of Star Scientist Death on Subfield Growth and Decline 

Non-collaborator Activity Only—Top 5% publications by citation 
 

  
  

A. Anticipated Death B. Sudden Death 

  
Note: The graphs in this figure are patterned after Panel C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient estimates 

stemming from conditional (subfield) fixed effects Poisson specifications in which the flows of highly-cited publications (top 5% of the vintage-specific citation 
distribution) by non-collaborators within a subfield are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status 
and the number of years before/after the death event (the indicator variable for treatment status interacted with the year of death is omitted). The specifications 
also include a full set of lead and lag terms common to both the treated and control subfields to fully account for transitory trends in subfield activity around 
the time of the death. These regressions are run separately on the subsample of subfields associated with stars whose death was anticipated (and their controls—
Panel A), and on the subsample of subfields associated with stars whose death was sudden (and their controls—Panel B). The 95% confidence interval 
(corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with the vertical light blue lines. 
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Figure E4 
The Life Cycle of Stardom 

 

A. All Publications B. Highly-cited Publications 
(Top 5%) 

C. Highly-cited Publications 
(Top 1%) 

   
Note: For the sample of 5,878 control superstars, we create a panel dataset at the scientist-year level. We regress (i) publication output in a given year (Panel A) and (ii) 
highly-cited publications in a given year (Panels B and C) onto year effects, indicator variables for degree (MD, PhD, MD/PhD), an indicator variable for female scientists, 
indicator variable for departmental affiliation (medicine vs. surgery vs. cell biology, etc.), indicator variables for the year in which the highest degree was received as well 
as 52 indicator variables for age effects (from age 29 to age 80, with ages below 29 absorbed in the omitted category). In Panel B, a publication is deemed to be highly 
cited if it falls above the 95th percentile of the vintage-specific citation distribution at the article level. In Panel C, a publication is deemed to be highly cited if it falls 
above the 99th percentile of the vintage-specific citation distribution at the article level. The above plots display the estimates for the age indicator variables up to the 
age of 70 (to preserve the same scale across the three figures), together with their associated 95% confidence interval. The list of covariates is strictly identical across the 
three panels. 

 



Appendix F: Robustness Checks

Balanced panel. With treatment events staggered over time, a concern with the dynamic specifications
summarized in Figure 2 is that the magnitude of the treatment effect might not be stable over time. Because
our observation period stops in 2006, the lead terms far away from death are identified by only a subsample
of the data (see Figure F1). Could such heterogeneity confound the true dynamics, for example if deaths
that occurred earlier in the sample have a bigger effect? To address this concern, we extend the observation
period used to generate the event study graphs in Figure 2 from 2006 to 2012, resulting in a sample that is
almost perfectly balanced in a window of ten years before to ten years after the death of a superstar. As
can be seen in Figure F2, which replicates Figure 2 in all respects except the length of the analytic sample,
the results change very little.

This figure begs another question: why not simply use this longer observation period as the default through-
out the paper? There are two reasons. First, we cannot identify collaborator status reliably after 2006
because this is the last year of the data in our version of the AAMC Faculty Roster. Second, whereas we
can account precisely for the employment status of the control superstars up to 2006 (the year during which
we coded their CVs), some may retire, or even die in the years that follow, raising the specter that their
subfields are not adequate controls during the 2007-2012 time period. As a result, we quickly revert back to
the observation window 1965-2006 in all that follows.

Main results, rolled up to the scientist-level of analysis. The treatment variable exhibits variation
at the level of the star scientist, and not at the level of the subfield-star pair. Of course, we cluster the
standard errors at the star level, and we exploit the differential position of a star across his subfields to shed
light on mechanisms. But do our main results survive when the data is “rolled up” to the star-year level of
the analysis? To probe the robustness of our benchmark set of results, we lump all related articles for each
star together as if they belonged to a single subfield. Nevertheless, the results in Table F1 and Figure F3 are
very similar to those in Table 3 and Figure 2, both in terms of magnitude and statistical significance. One
exception is the coefficient on the effect of entry by collaborators in Table F1, which is negative as expected,
but smaller in magnitude, relative to the corresponding coefficient in Table 3.

Alternate functional forms. Despite its robustness and appropriateness for the analysis of skewed positive
outcomes, the conditional fixed effects Poisson model of Hausman et al. (1984) has an important shortcoming:
subfields for which there is no variation in the outcome during the observation period (for example, because
the outcome is uniformly zero) drop out of the sample. This is why the number of observations in many
tables varies slightly from column to column. Fixed-effects OLS models do not suffer from this limitation.
In Table F2 and Figure F4, we examine the sensitivity of our benchmark set of results to the choice of
alternative functional forms. In the three columns to the left, we simply use the “raw” number of articles
in the subfield as the outcome, and perform estimation by OLS. Of course, the estimates are not directly
interpretable in terms of elasticities. At the mean of the data, however, the treatment effect in the third
column implies that subfield entry by non-collaborating authors expands by 0.409/3.335 = 12.26%, which is
not all that different from the 8.2% reported in Table 3.

In the three columns to the right, Table F2 reports results corresponding to OLS estimation, but this time
with the outcome variables transformed using the inverse hyperbolic sine function (Burbidge et al. 1988).xvi

In this case, coefficient estimates can be interpreted as elasticities, as an approximation. They are quite
similar once again to those reported in Table 3, except for the effect on entry by collaborators, which is
smaller in magnitude.

xvisinh−1(x) = ln(x +
√
x2 + 1). Unlike the log of x, the inverse hyperbolic sine is defined at zero, which is attractive here

because a substantial proportion of the subfields in the data display no activity in a particular year. For example, all subfields
obviously see entry over the entire observation period, and yet in 31.33% of the subfield-year observations, the number of articles
entering is zero.
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Figure F4 presents dynamic analogs of the results in the the third column (Panel A) and sixth column
(Panel B) of Table F2. In the case of the raw outcomes (Panel A), one can detect a trend in outcome before
the event, though it is not estimated precisely. The results using the inverse hyperbolic sine transformation
(Panel B) exhibit no evidence of a pre-trend.

Size of the control group. The first three columns in Table F3 drop from the sample all the control
subfields, but are otherwise analogous to the core results presented in Table 3, Panel A. In these specifications,
subfields who were treated in the past or will be treated in the future serve as implicit controls for the
subfields currently experiencing the death of their associated star. The results are qualitatively similar to
those displayed in Table 3. However, the corresponding event study graphs (Figure F5) clearly show that
dropping the control group from the estimation sample produces pre-event trends that cast doubt on a
research design based on a single level of difference. This provides a clear rationale for our preferred research
design, which adds an additional level of difference to the data—that provided by control subfields.

The second set of three columns in Table F3 attempt to replicate the results of Table 3 in a sample such that
for each treated subfield, there is exactly one control subfield (selected at random from the set of control
subfields for each treated source). The magnitudes are qualitatively similar to those observed in Table 3, but
the standard errors are larger. We conclude that the approximate 1 : 10 ratio of treated to control subfields
is important insofar as it provides the statistical power to estimate the post-death term that is common
between treated and control subfields, and to do so net of the subfield age and calendar year dynamics.

Are death events exogenous? Could some of the deaths in our sample be caused by stress as others are
seeking to break a stars’ hold on a field? Chronic stress can lead to a wide range of adverse health conditions.
Most of these conditions diminish quality of life but not mortality per se. The most notable link between
stress and death is through heart disease. Thus one possibility is that stress increases the risk of a heart
attack. 14% of the extinct superstars (who account for 16.75% of the treated subfields) die of a heart attack.

In Table F4 (three leftmost columns), we replicate the results of Table 3 while excluding these subfields. The
point estimates are slightly larger in magnitude, and also slightly more precisely estimated when excluding
the subfields associated with heart attack events. Of course, there may be other more indirect channels
through which stress can precipitate death. From a study design perspective, we would be more concerned
with this threat to identification if subfield growth was trending upward before the death. But from the
event study-type figures we present (Figure 2, as well as numerous variations in Appendices E and F), this
does not appear to be the case.

Multi-disciplinary source articles and the validity of the control group. Multi-disciplinary journals
such as PNAS, Science, or Nature account for 10% of the subfields in our data.xvii This could be problematic
insofar as these prestigious outlets publish articles in all scientific fields, and we recruit control source articles
from the same journal and year as that of the treated source article. Take the source paper by Chu et al.
(1998)—already used as an example in Appendix D—which appeared in the issue of Science dated October
23rd of that year. The same issue includes a paper with the title “Climate and groundwater recharge during
the last glaciation in an ice-covered region” and another called “Self-organized growth of three- dimensional
quantum-Dot crystals with fcc-like stacking and a tunable lattice constant.” It would not seem advisable to
use one of these as the source for a control subfield, since they do not pertain to the life sciences, even under
the most expansive definition of this term.

This is not an issue in practice, since to qualify as a control, it is not sufficient for a candidate source article
to appear in the same journal and year as its treated counterpart. In addition, we impose the requirement
that one of our 12,000+ still alive superstars is in last authorship position. This will filter out of the set
of potential controls any non-biomedical articles that appear in these outlets since all the stars in our data

xviiNote that PLoS One, a very large multidisciplinary journal, does not contribute any source article in our sample. This is
because it was founded in 2006, and the latest year of publication for one of the source articles (treated or control) is 2002 (one
year before the latest year of death, which is 2003).
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(deceased or not) are life scientists. We have also replicated the benchmark results excluding the subfields
that are associated with a source article published in either Science, Nature, or PNAS. The results are
displayed in the three rightmost columns in Table F4. The point estimates are very similar to those we
obtain in our benchmark set of analyses (columns 1, 2, and 3 of Table 3).

Source articles, with and without abstracts. In Table F5, we perform one analysis that (imperfectly)
tries to assess the sensitivity of our results to the use of author-chosen information to delineate the set of
intellectual neighbors in a subfield. Ten percent of the subfields in the data radiate from source articles
for which PubMed does not have an abstract. For these subfields, PMRA must therefore make do without
abstract words (i.e., relying solely on title words and MeSH terms) to return a set of neighbors. We reproduce
our benchmark set of specifications (the first panel of Table 3) on the set of subfields radiating from source
articles with and without abstract information. As can be seen above, the estimates for the sample restricted
to abstractless source articles are less precisely estimated than for the sample restricted to the much larger
number of subfields associated with source articles that have an abstract. The magnitudes in both cases,
however, are quite similar, which we find reassuring.

Table 7 estimated on the subsample of less-well cited stars. Table 7 provides evidence that subfield
entry is more pronounced after the death of an eminent scientist when the subfield can be perceived as less
coherent, or when the colleagues of the star are less able to exert control over critical resources after he has
passed away. However, the sample for these results was limited to the subfields of well-cited stars (those
above the median by cumulative citations in the sample, in the year of death). For completeness, Table F6
provides an exact analog to Table 7, except that in this case the sample is limited to the subfields of less
well-cited stars (those below the median by cumulative citations in the sample, in the year of death).

The results in this subsample are less consistent across measures than was the case for the more eminent
stars. Many pairs of columns do not show notable differences between more coherent and less coherent
subfields, or between more indirectly controlled vs. less indirectly controlled subfields. In two instances,
however, the direction of the results is opposite to that observed in Table 7. First, subfields that were
relatively less consolidated according to the metric of Funk and Owen-Smith (2017) see increased entry after
the passing of a less eminent star (second and third columns of Panel A). Second, subfields in which the
less eminent star had important coauthors sitting on NIH study sections in the last five years of his life also
experience elevated rated of entry post-death (second and third columns of Panel B).
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Table F1: Impacts at the level of the star scientist 
 Publication Flows  NIH Funding Flows 

(Nb. of Awards) 

 All 
Authors 

Collabs. 
Only 

Non-Collabs. 
Only 

 
All 

Authors 
Collabs. 

Only 
Non-Collabs 

Only 

 (1) (2) (3)  (4) (5) (6) 

After Death 0.227** -0.121 0.249**  0.248** -0.092 0.272** 
(0.056) (0.088) (0.055)  (0.059) (0.098) (0.058) 

Nb. of Stars 6,369 6,369 6,369  5,440 5,172 5,427 
Nb. of Star-Year Obs. 801,654 801,654 801,654  15,469 14,589 15,436 
Log Likelihood -2,444,982 -663,888 -2,262,127  479,539 452,259 478,516 

Note:  Estimates stem from conditional (star) fixed effects Poisson specifications. The dependent variable is the total 
number of publications in the collection of subfields in which the star (deceased or not) was active in a particular 
year. All models incorporate a full suite of year effects and star career age effects, as well as term common to 
both treated and control stars that switches from zero to one after the (possibly counterfactual) death of the 
star. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For 
example, the estimates in column (3) imply that treated stars see an increase in the number of contributions by 
non-collaborators in their fields—a statistically significant 100×(exp[0.249]-1)=28.27%. Robust standard errors 
in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 

 
 
 
 
 

Table F2: Alternate Functional Forms 
 OLS 

(in levels)  OLS 
(inverse hyperbolic sine) 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.334** -0.145** 0.409**  0.032 -0.054** 0.065** 
(0.108) (0.032) (0.100)  (0.025) (0.014) (0.024) 

Nb. of Investigators 6,260 6,260 6,260  6,260 6,260 6,260 
Nb. of Fields 34,218 34,218 34,218  34,218 34,218 34,218 
Nb. of Field-Year Obs. 1,259,176 1,259,176 1,259,176  1,259,176 1,259,176 1,259,176 
Mean of the Depndt. Var. 3.757 0.606 3.335  1.407 0.289 1.315 
Adjusted R2 0.428 0.380 0.400  0.555 0.329 0.523 

Note:  Estimates stem from (subfield) fixed effects OLS specifications. In columns 1, 2, and 3, the dependent variable 
is the number of publications in a subfield in a particular year. In columns 4, 5, and 6, the dependent variable 
is the inverse hyperbolic sine of the number of publications in a subfield in a particular year. All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated and 
control subfields that switches from zero to one after the death of the star, to address the concern that age, year 
and individual fixed effects may not fully account for trends in subfield entry around the time of death for the 
deceased star. Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 
0.05, **p < 0.01. 
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Table F3: Alternate Control Groups 
 No Controls  1:1 Ratio 

Treated to Control Subfields 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.052 -0.312** 0.058†  0.023 -0.205** 0.049 
(0.033) (0.045) (0.034)  (0.033) (0.061) (0.034) 

Nb. of Investigators 452 430 452  2,557 2,439 2,557 
Nb. of Fields 3,076 2,885 3,076  6,152 5,800 6,152 
Nb. of Field-Year Obs. 111,708 104,705 111,708  223,416 210,502 223,416 
Log Likelihood -255,523 -57,768 -245,596  -520,195 -118,841 -498,256 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications in a subfield in a particular year. All models incorporate a full suite of year effects 
and subfield age effects. Columns 4, 5, and 6 also include a term common to both treated and control subfields 
that switches from zero to one after the death of the star, to address the concern that age, year and individual 
fixed effects may not fully account for trends in subfield entry around the time of death for the deceased star. 
Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 
0.01. 

 
 
 
 
 
 
 
 

Table F4: Additional Robustness Checks 

 Excluding Heart Attacks  Excluding 
Multi-disciplinary Journals 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.060* -0.235** 0.093**  0.074* -0.212** 0.105** 
(0.030) (0.063) (0.030)  (0.029) (0.058) (0.030) 

Nb. of Investigators 5,817 5,685 5,817  5,811 5,670 5,811 
Nb. of Fields 26,728 25,793 26,728  28,707 27,741 28,707 
Nb. of Field-Year Obs. 983,372 948,973 983,372  1,056,127 1,020,609 1,056,127 
Log Likelihood -2,243,461 -562,978 -2,147,307  -2,455,832 -616,652 -2,355,142 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators in a subfield in a particular year. All models incorporate a full 
suite of year effects and subfield age effects, as well as a term common to both treated and control subfields that 
switches from zero to one after the death of the star, to address the concern that age, year and individual fixed 
effects may not fully account for trends in subfield entry around the time of death for the deceased star. Robust 
standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table F5: Additional Robustness Checks (cont’d) 
 Only source with abstracts  Only source without abstracts 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.055* -0.234** 0.089**  0.129 -0.224† 0.148† 
(0.028) (0.061) (0.028)  (0.081) (0.118) (0.083) 

Nb. of Investigators 6,009 5,905 6,009  1,549 1,399 1,549 
Nb. of Fields 30,787 30,052 30,787  3,431 3,044 3,431 
Nb. of Field-Year Obs. 1,132,555 1,105,538 1,132,555  126,621 112,367 126,621 
Log Likelihood -2,621,169 -689,447 -2,502,613  -276,654 -46,146 -266,293 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators in a subfield in a particular year. All models incorporate a full 
suite of year effects and subfield age effects, as well as a term common to both treated and control subfields that 
switches from zero to one after the death of the star, to address the concern that age, year and individual fixed 
effects may not fully account for trends in subfield entry around the time of death for the deceased star. Robust 
standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table F6: The Nature of Entry Barriers for Less Cited Stars 
 
Panel A 
 

Subfield Coherence 

PMRA-based definition  Citation-based definition  Cliquishness 

 
 Below Median Above 

Median   Below Median Above Median   Below 
Median 

Above 
Median  

After Death 0.044 0.024  -0.021 0.128**  -0.018 0.052 
(0.052) (0.047)  (0.047) (0.045)  (0.053) (0.040) 

Nb. of Investigators 2,131 2,257  2,118 2,232  2,087 2,263 
Nb. of Fields 8,068 9,260  8,191 9,137  9,181 8,147 
Nb. of Field-Year Obs. 296,675 340,075  301,130 335,620  337,770 298,980 
Log Likelihood -604,994 -746,571  -690,078 -673,587  -749,640 -595,838 
 
Panel B 
 

Indirect Control through Collaborators 

Editorial Channel  NIH Study Section Channel  Fraction of Subfield 
NIH Funding 

 
 Below Median Above 

Median   Below Median Above Median   Below 
Median 

Above 
Median  

After Death -0.041 0.072  -0.003 0.149†  0.029 0.055 
(0.063) (0.052)  (0.050) (0.083)  (0.049) (0.059) 

Nb. of Investigators 1,024 2,455  2,279 1,367  1,997 2,135 
Nb. of Fields 5,719 11,609  12,153 5,175  7,806 9,522 
Nb. of Field-Year Obs. 210,920 425,830  446,939 189,811  287,089 349,661 
Log Likelihood -495,980 -892,355  -1,000,972 -393,326  -646,673 -713,420 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications by non-
collaborators in a subfield in a particular year. The sample is limited to the subfields in which the least eminent among the stars were active 
(specifically, below the median of the “cumulative citations up to the year of death” metric). Each pair of columns splits the sample across the median 
of a particular covariate for the sample of fields (treated and control) in the baseline year. For example, the first two columns of Panel B compare the 
magnitude of the treatment effect for stars whose collaborators have written an above-median number of editorials in the five years preceding the 
superstar’s death, vs. a below-median number of editorials. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and differencing 
from one yield numbers interpretable as elasticities. Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 
0.05, **p < 0.01. 
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Figure F1 
Timing of Death Events 
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Figure F2 
Effect of Star Scientist Death on Subfield Growth and Decline 

Balanced Panel 
 

A. All Authors B. Collaborators C. Non-Collaborators 

   
Note: The graphs in this figure are patterned after Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient estimates stemming from 

conditional (subfield) fixed effects Poisson specifications in which publication flows in subfields are regressed onto year effects, subfield age effects, as well as 20 
interaction terms between treatment status and the number of years before/after the death event (the indicator variable for treatment status interacted with the year 
of death is omitted). The specifications also include a full set of lead and lag terms common to both the treated and control subfields to fully account for transitory 
trends in subfield activity around the time of the death. The sample used to estimate these specifications differs in one respect from our main sample: it has been 
extended from 2006 to 2012, which entails that at least nine years of data are available to identify the treatment effects far away from death (the latest date of death 
in our sample is 2003). The 95% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with 
the vertical light blue lines. 
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Figure F3: Effect of Star Scientist Death on Subfield Growth and Decline 

Aggregated up to the level of the star scientist 
  
  

A. Non-collaborators B. Collaborators 

Note: The graphs in this figure are patterned after Panel B and C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient 
estimates stemming conditional (star scientist) fixed effects Poisson specifications in which publication flows within the composite-subfield (comprising all 
the distinct related articles associated with a star’s source articles) are regressed onto year effects, subfield age effects, as well as 15 interaction terms 
between treatment status and the number of years before/after the death event (the indicator variable for treatment status interacted with the year of 
death is omitted). The specifications also include a full set of lead and lag terms common to both the treated and control subfields to fully account for 
transitory trends in subfield activity around the time of the death. The 95% confidence interval (corresponding to robust standard errors, clustered around 
star scientist) around these estimates is plotted with the vertical light blue lines. 
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Figure F4: Effect of Star Scientist Death on Subfield Growth and Decline 
Non-Collaborators—Alternate Functional Forms 
  

A. OLS (in levels) B. OLS (inverse hyperbolic sine) 

 
Note: The graphs in this figure are patterned after Panel C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient estimates 

stemming from subfield fixed effects OLS specifications in which publication flows by non-collaborators within a subfield are regressed onto year effects, 
subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/after the death event (the indicator variable 
for treatment status interacted with the year of death is omitted). The specifications also include a full set of lead and lag terms common to both the treated 
and control subfields to fully account for transitory trends in subfield activity around the time of the death. In Panel A, the dependent variable is the “raw” 
count of articles in a subfield-year; In Panel B, these counts have been transformed using the inverse hyperbolic sine. The 95% confidence interval 
(corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with the vertical light blue lines. 
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Figure F5: Effect of Star Scientist Death on Subfield Growth and Decline 
No Control Subfields 

  
  

A. Non-collaborators B. Collaborators 

Note: The graphs in this figure are patterned after Panel B and C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient 
estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows within a subfield are regressed onto year effects, 
subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/after the death event (the indicator variable 
for treatment status interacted with the year of death is omitted). These regressions are run with subfield activity limited to non-collaborators of the star 
(Panel A), and with subfield activity limited to collaborators of the star (Panel B). The 95% confidence interval (corresponding to robust standard errors, 
clustered around star scientist) around these estimates is plotted with the vertical light blue lines 

 
 

 



Appendix G: Displacement Effects

Conceptual challenges. We find that activity by non-collaborators of the star increases in the fields in
which the superstar was active prior to his death. In principle, it is possible that commensurate declines
can be observed in the fields where these related authors were active but the star was not. However, these
displacement effects might be very diffuse—spread out over many subfields, and thus difficult to detect in
our subfield-level of analysis. To examine this possibility more directly, we shift the level of analysis away
from the subfield to that of the related author.

It is important to note however, that the panel dataset at the related author level is not simply the mirror
image of the subfield panel dataset using an alternative way to aggregate the data. In particular, an author
can only be represented in the sample if he was active in one of the star’s subfields prior to his untimely
death. But we have seen in Figure 3 and Table E9 that the bulk of the effect of death can be traced to
new entrants in the subfield. We do not include these authors in the author-level analysis, because doing
so would imply that the individuals are part of the sample because of an event that is itself a result of the
treatment.

As a consequence, there should be no presumption that the magnitudes of the effect of star death at the
author level and at the subfield level match. Since the author-level analysis necessarily excludes entrants, a
reasonable conjecture is that the author-level effects will be smaller.

Author-level sample. In building up a sample of related authors, we face an important practical hurdle.
A related author is frequently related to more than a single eminent scientist. Around which star should we
anchor the analysis? In order to pin down a single year of treatment for each related author, we use two
different metrics. The first is simply the number of related articles before the star’s death—we associate to
a related author the star with the highest count. The second metric is based on the cardinal relatedness
score—we select the star that has the most highly related article among all the stars to whom the author is
intellectually related. We proceed in a rigorously symmetric fashion for the related authors of control stars.

Since we are now choosing a focal star on which to anchor our analysis, but we know that authors are
related to several distinct stars, we no longer maintain the distinction between those publications that are
related and unrelated to a particular star. Rather, we turn our attention to the effect of superstar death
on the total output of related authors (in terms of publications and NIH grants awarded). Recall that
non-collaborators are contributing more within the subfields of the dead superstars with whom they are
intellectually related (Table 3). Therefore, the absence of changes in total output would imply that this
additional work is displacing work they were doing in other subfields, at least in part.

Results. We are now ready to proceed with a related author-level analysis whose structure parallels that
of our main specifications at the subfield level. We investigate the effect of star death on related authors’
(i) NIH grants awarded; (ii) publication output; and (iii) publication output split between “PI articles” and
“non-PI articles.”xviii

The results are displayed in Table G1. When looking at either publication or grant output, we do not find
evidence of sustained increases after the death of a superstar. When focusing on authors associated with
stars because of the number of related articles between the two, the effect of death tends to be small in
magnitude and statistically indistinguishable from zero (the four leftmost columns of Table G1). These
results change slightly when we focus on authors whose research was, at least in part, very closely related to

xviiiPI articles—those where the focal author appears in first or last position on the authorship roster—are most intimately
identified with his laboratory (Zuckerman 1968; Nagaoka and Owan 2014). In contrast, the articles where the related author
appears in the middle of the authorship list correspond to research projects for which the author’s substantive contribution
might have been marginal.
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that of the star. Here the magnitude of the effects are positive and relatively large in magnitude, but also
imprecisely estimated.

We estimate a dynamic version of these specifications and display the corresponding event study-style graphs
in Figure G1 (publication output) and Figure G2 (grant output). In general, it appears from these figures
that the total output of related authors neither expands nor contracts in the wake of a star’s passing.
Therefore, the related articles contributed to the star’s subfields after they pass away most likely replace,
at least in part, articles that these authors would have written in other intellectual domains had the star
remained alive. Our results are therefore consistent with star extinction driving changes in the direction of
scientific research, rather than shifting the overall level of scientific activity.
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Table G1: Related Authors’ Publication and Grant Output 
 Nb. of Related Articles  Highest Relatedness Score 

 Nb. of 
NIH Grants 

All 
Pubs. 

PI 
Pubs. 

Middle-
Author Pubs.  Nb. of 

NIH Grants 
All 

Pubs. 
PI 

Pubs. 
Middle-

Author Pubs. 

After Death -0.020 0.003 0.014 -0.019  -0.019 0.092 0.087 0.072 
(0.022) (0.060) (0.083) (0.055)  (0.053) (0.228) (0.319) (0.172) 

Nb. of Star Investigators 5,459 5,802 5,766 5,784  1,784 2,017 2,008 2,015 
Nb. of Related Authors 26,728 44,649 42,654 43,483  2,944 3,850 3,811 3,840 
Nb. of Star/Related Author Pairs 39,770 67,740 64,823 66,036  3,542 4,642 4,599 4,632 
Nb. of Author-Year Obs. 888,746 1,402,293 1,357,179 1,382,976  94,132 120,918 120,249 120,822 
Log Likelihood -362,087 -772,285 -468,162 -595,167  -54,512 -86,098 -53,633 -71,209 

Note:  Estimates stem from conditional (related author) fixed effects Poisson specifications. The dependent variable is either the publication output for a related, non-
collaborating author in a particular year, or the number of distinct NIH grants awarded to that author awarded in a particular year. In the four leftmost columns, 
each author is paired with the star with whom s/he had the highest number of related articles. In the four rightmost columns, each author is paired with the 
star with whom s/he had the related article with the highest relatedness score. All models incorporate a full suite of year effects and investigator age effects, as 
well as a term common to both treated and control authors that switches from zero to one after the death of the star. Exponentiating the coefficients and 
differencing from one yield numbers interpretable as elasticities. Robust standard errors in parentheses double-clustered at the level of the star & related authors. 
†p < 0.10, *p < 0.05, **p < 0.01. 
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Figure G1: Effect of Star Scientist Death on Related Authors’ Publication Output 
 

  
  

A. Nb. of Related Articles B. Highest Relatedness Score 

  
Note: The dark blue dots in the above plots correspond to coefficient estimates stemming from conditional fixed effects specifications in which publication output for 

a related, non-collaborating author in a given year is regressed onto year effects, author age effects, as well as 20 interaction terms between treatment status 
and the number of years before/after the death event (the indicator variable for treatment status interacted with the year of death is omitted). The specifications 
also include a full set of lead and lag terms common to both treated and control authors. The 95% confidence intervals (corresponding to robust standard 
errors, clustered at the level of the associated star) around these estimates is plotted with the light-blue vertical lines; Panel A corresponds to a dynamic version 
of the specification in the second column of Table G1; Panel B corresponds to a dynamic version of the specification in the sixth column of Table G1. 
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Figure G2: Effect of Star Scientist Death on Related Authors’ NIH Grants  
 

  
  

A. Nb. of Related Articles B. Highest Relatedness Score 

  
Note: The dark blue dots in the above plots correspond to coefficient estimates stemming from conditional fixed effects specifications in which the number of NIH 

grants awarded to a related, non-collaborating author in a given year is regressed onto year effects, author age effects, as well as 20 interaction terms between 
treatment status and the number of years before/after the death event (the indicator variable for treatment status interacted with the year of death is omitted). 
The specifications also include a full set of lead and lag terms common to both treated and control authors. The 95% confidence intervals (corresponding to 
robust standard errors, clustered at the level of the associated star) around these estimates is plotted with the light-blue vertical lines; Panel A corresponds to 
a dynamic version of the specification in the first column of Table G1; Panel B corresponds to a dynamic version of the specification in the fifth column of 
Table G1. 
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