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THEME 1: SUMMARY OF NOTATION AND ACRONYMS
(Some Notation is Used Only in This Web Appendix)

binary indicator of whether level / of feature f is acceptable to respondent h (disjunctive,

conjunctive, or subset conjunctive models, use varies by model)

binary vector of acceptabilities for respondent h

parameters of the HB subset conjunctive model, respectively, the probability that a pro-

file is considered if X;a, = S and the probability it is not considered if X;a, <S

a vector of 1’s of length equal to the number of potential patterns

covariance matrix used in estimation HB compensatory

indexes features, F is the total number of features

indexes respondents (mnemonic to households), H is the total number of respondents
the identity matrix of size equal to the total number of aspects

indexes profiles, J is the total number of profiles

indexes levels within features, L is the total number of levels

binary indicator of whether profile j matches pattern p

binary vector describing profile j by the patterns it matches

size of the consideration set

percent of respondents in the sample (“market”) that consider profile j

indexes patterns; also used for significance level in t-tests when clear in context
maximum number of patterns [LAD-DOC(P, S) estimation]

number of partworths (compensatory model)

size of a pattern (number of aspects in a conjunction)



S maximum subset size [Subset(S) model] or maximum number of aspects in a conjunctive
pattern [DOC(S) model, LAD-DOC(P, S) estimation]

Th threshold for respondent h in compensatory model

Wpp  binary indicator of whether respondent h considers profiles with pattern p

A binary vector indicating the patterns used by respondent h

X,  binary indicator of whether profile j has feature f at level £
X; binary vector describing profile j
Yhi binary indicator of whether respondent h considers profile |

Y, binary vector describing respondent h’s consideration decisions

B, vector of partworths (compensatory model) for respondent h
extreme value error in compensatory model

¥ M parameters penalizing, respectively, complexity and deviation from the “market”

& non-negative integer that indicates a model predicts consideration if &; > 1

i non-negative integer that indicates a model predicts non-consideration if &; > 1

DOC(S) set of disjunctions of conjunctions models. S, when indicated, is the maximum
size of the patterns.

DOCMP combinatorial optimization estimation for DOC models

LAD-DOC  alternative estimation method for DOC models in which we limit both the number
of patterns, P, and the size of the patterns, S

Subset(S) set of subset conjunctive models with maximum subset size of S



THEME 2: PROOFS TO FORMAL RESULTS THAT
DISJUNCTION-OF-CONJUNCTION DECISION RULES NEST
OTHER NON-COMPENSATORY DECISION RULES
Result 1. The following sets of rules are equivalent (a) disjunctive rules, (b) Subset(1)rules, and

(c) DOC(1) rules.

Proof. A disjunctive rule requires X;d, >1; a Subset(S) rule requires X;a, > S ; a DOC(S) rule
requires MW, >1. Clearly the first two rules are equivalent with S = 1. For DOC(1) recognize
that all patterns are single aspects hence m; and W, correspond one-to-one with aspects and m;
can be recoded to match X; and W, can be recoded to match &, .

Result 2. Conjunctive rules are equivalent to Subset(F) rules which, in turn, are a subset of the

DOC(F) rules, where F is the number of features.

Proof. A conjunctive rule requires X;a, = F Setting S = F establishes the first statement. The

second statement follows directly from Result 3 with S=F.

Result 3. A Subset(S) rule can be written as a DOC(S) rule, but not all DOC(S) rules can be
written as a Subset(S) rule.

Proof. Xa, > S holds if any S aspects are acceptable. Therefore X; must match at least one
pattern of length S. Let X¢ be the set of such patterns, then X; matches at least one element of
25 . Consider the DOC(S) rule defined by Wyj = 1 for any pattern in X . The inequality

X;d, = S holds if and only if M W, > 1, establishing that Subset(S) can be written as a DOC(S)

rule. By definition, a DOC(S) rule also includes patterns of size less than S, hence, X(a, < S for

some DOC(S) rules. This establishes the second statement.



Result 4. Any set of considered profiles can be fit perfectly with at least one DOC rule. More-

over, the DOC rule need not be unique.

Proof. For each considered profile, create a pattern of size F that matches that profile. This pat-

tern will not match any other profile because F aspects establishes a profile uniquely. Create W,
such that whj = 1 for all such profiles and Wy = 0 otherwise. Then MW, =1 if profile j is consid-
ered and M W, =0 otherwise. The second half of the proof'is established by the examples in the

text which establishes the existence of non-unique DOC rules.



THEME 3: HB ESTIMATION OF THE SUBSET CONJUNCTIVE,
ADDITIVE, AND q-COMPENSATORY MODELS

Subset Conjunctive Model (includes Disjunctive and Conjunctive)
All posterior distributions are known, hence we use Monte Carlo Markov chains
(MCMC) with Gibbs sampling. Recall that S is fixed.

Pr(ay, |y,'s,otherd,'s,8;'s,b,b,). We follow Gilbride and Allenby (2004, p. 404)
and use a “Griddy Gibbs” algorithm. For each h we update the acceptabilities, a,,, , aspect by
aspect. For each candidate set of acceptabilities we compute the likelihood as if we kept all other
acceptabilities constant replacing only the candidate ay,,. The likelihood is based on Equation 5
and the prior on the &;,’s. The probability of drawing ay, is then proportional to the likelihood

times the prior summed over the set of possible candidates.

Pr(@, | yy's,d,'s,b,,b,). The 6;,’s are drawn successively, hence we require the mar-

ginal of the Dirichlet distribution — the beta distribution. Because the beta distribution is conju-

gate to the binomial likelihood, we draw ,,, from Beta[6 + Zh Ay, 6+ Zh (1-ay,)].

Pr(b,,b, | y,'s,d,'s,0;,'s). Because the beta distribution is conjugate to the binomial
likelihood, we draw b; from Beta[l + Zm_ YO (X}, > S),ZM_ (1-y,)5(Xd, = S)] and we
draw b, from Beta[l + Zh’j Yo (Xia, < S),Zh’j (I-y,)o(X;a, <S)], where 5(e)is the indica-

tor function.
For the disjunctive model we set S = 1; for the fully conjunctive model we set S = 16, and

for the subset conjunctive model we set S = 4.



Additive Model

Respondent h considers profile j if X Bh + &, is above a threshold. Subsuming the

threshold in the partworths, we get a standard logit likelihood function:

eiﬁﬁh

Pr(yhj =1‘Xja,éh):1 eilﬁ
+e™m

Pr(y, =0[X;, ,E’h)z 1 - Pr(y, =1[X, ,,éh). We impose a first-stage prior on ﬁh that is normally

distributed with mean ,5’0 and covariance D. The second stage prior on D is inverse-Wishart with
parameters equal to 1/(Q+3) and Q+3, where Q is the number of parameters to be estimated and |
is an identity matrix. We use diffuse priors on ,30 . Inference is based on a Monte Carlo Markov
chain with 20,000 iterations, the first 10,000 of which are used for burn-in.
g-Compensatory Model

Estimation is the same as in the additive model except we use rejection sampling to en-
force the constraint that the importance on any feature is no more than ( times as large as any

other feature.

References for Theme 3
Gilbride, Timothy J. and Greg M. Allenby (2004), “A Choice Model with Conjunctive, Disjunc-

tive, and Compensatory Screening Rules,” Marketing Science, 23(3), 391-406.



THEME 4: INTEGER PROGRAMMING ESTIMATION OF THE DOC, SUBSET CON-

JUNCTIVE, ADDITIVE, AND Q-COMPENSATORY MODELS

All mathematical programs were formulated to be as similar as feasible to DOCMP.

CompMP and SubsetMP can be simplified with algebraic substitutions. We subsume the thresh-

old in the partworths estimated by CompMP. We set K to a number that is large relative to Th.

For comparability and to be conservative, we set S =4 in SubsetMP. For disjunctive we set S =

1 and for fully conjunctive we set S = 16.

J J
DOCMP: min Y [yy&; + (1= V)& T+ 7 2IM & + (1= M )& 1+ 7 &'W,

{W,, &} 1=

Subject to:

J

SubsetMP:  min Z[
{éh > é:h > S} =

Subject to:

j=1

W, <& forallj=1toJ
W, > 1-&; forallj=1toJ
Ehi» &y = 0, W, a binary vector

Allowable patterns have length at most S.

yhjé:h} +(1_yhj)§r:}]+7M Z[Mjéf;( +(1_Mj)§r:}]+7cs

i1
a, <S&. forallj=1toJ
a, 2S(1-¢y) forallj=1toJ

o, &y = 0, &, abinary vector, S > 0, integer
hj> Shj h ry g



CompMP min Z yh]é:hj +(1 yhj)é:hj]—'_]/M Z[M é:hk +(1 M; )ghj]+}/0 IBh
Bt

Subjectto: X!, <T, + K& forallj=1toJ

X}ﬁhzTh(l—gé) forallj=1toJ

COl’l’lpMP(q) min Z[yhj ‘fhj + (1 yhj )é:hj ] + m Z[M ‘fhk + (1 M, )éhj ] + 7(: Iéh
Bt

Subjectto: X!, <T, + K& forallj=1toJ
KB, 2T, (1- &) forallj=1toJ
max, {fB;,} —min, {f} < qmax,{f,} —min, {5, }] forall f, n

é:hjaéjrazoa léhZO



THEME 5: KULLBACK-LEIBLER DIVERGENCE FOR CONSIDERATION DATA

To describe this statistic, we introduce additional notation. Let gj be the null probability

that profile j is considered and let rj be the probability that profile j is considered based on the

model and the observations. The K-L divergence for respondent h is zj {r;In[r; /q;] +
(I=r)In[(I-r;)/(1-q;)]}. To use the K-L divergence for discrete predictions we let zy and
2hj be the indicator variables for validation consideration, that is, zy; =1 if respondent h considers
profile j and Z,;= 1 if respondent h is predicted to consider profile j. They are zero otherwise.

Let C, = zj Y be the number of profiles considered in the estimation task. Let C, = zj Z,; and
(fv = Zj Z,; be corresponding observed and predicted numbers for the validation task. Let
F, = Z,— 2,;(1—2,;) be the number of false negatives (observed as considered but predicted as

not considered) and F, = Zj (1-12,;)Z,; be the number of false positives (observed as not con-

sidered but predicted as considered). (Fn and Fp are not to be confused with F, the number of
features as used in the text.) Substituting, we obtain the K-L divergence for a model being

evaluated. The second expression expands the summations and simplifies the fractions.

Fo F. J-C,—F,

1 . F ¢, F J-C \] —é - F J-C
K-L divergence = v Plp—& 4 P& 4 I P oY i

IE, -F,) = JJ-C,-F)

=(C

\

JF 5
-F)In——"+F Inm—"—+F In——>—+J -C,-F )
C c,(J-C,) (J-C,)C

vTe v v e

J-C)HJ -C,)
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The perfect-prediction benchmark sets z,; = Z,;, hence Fn=F, =0 and C, =C,. The relative K-

L divergence is the K-L divergence for the model versus the null model, divided by the K-L di-

vergence for perfect prediction versus the null model.
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THEME 6: GENERATION OF SYNTHETIC DATA
FOR SIMULATION EXPERIMENTS

Compensatory Rules (First Simulations, Data Chosen To Favor HB Estimation)

We drew partworths from a normal distribution that was zero-mean except for the inter-
cept. The covariance matrix was 1/2. We adjusted the value of the intercept (to 1.5) such that re-
spondents considered, on average, approximately 8 profiles. Profiles were identified as consid-
ered with Bernoulli sampling from logit probabilities.

Compensatory Rules (Second Simulations, Data Chosen To Favor Machine Learning Es-
timation)

Following Toubia, et. al. (2003) we drew partworths from a normal distribution with
mean 50 and standard deviation 30, truncated to the range of [0, 100]. We adjusted the value of
the intercept such that respondents considered, on average, approximately 8 profiles. Profiles
were identified as considered if they passed the threshold with probability by = 0.99. If they did
not pass the threshold, they were considered with probability b, = 0.01. We enforced the g-
compensatory constraint by rejection sampling.

Subset Conjunctive Rules

We drew each acceptability parameter from a binomial distribution with the same pa-
rameters for all features and levels. We adjusted the binomial probabilities such that respondents
considered, on average, approximately 8 profiles. This gave us S 4. We set by =0.95 and b, =
0.05 in the first set of simulations and b; = 0.99 and b, = 0.01 in the second set of simulations.
Disjunctions of Conjunctions Rules

We drew binary pattern weights from a Dirichlet distribution adjusting the marginal bi-
nomial probabilities such that respondents considered, on average, approximately 8 profiles.

This gave us 0.025, 0.018, and 0.017 for S =2 to 4. We simulate consideration decisions such

12



that the probability of considering a profile with a matching pattern and the probability of con-
sidering a profile without a matching pattern is the same in the DOC rules as in the compensa-
tory and subset conjunctive rules. In the first set of simulations we generated DOC rules for S ~
1,2, 3, and 4 where S = 1 corresponds to disjunctive rules and S = 4 is similar to, but not identi-

cal to conjunctive rules. In the second set of simulations we focused on S = 3 for simplicity.

13



THEME 7: SYNTHETIC DATA EXPERIMENTS

The focus of our paper is on the predictive ability of DOC-based models for the empirical
GPS data. One can also create synthetic respondents such that an estimation method that as-
sumes a particular decision rule does well when data are generated by that decision rule. Be-
cause the synthetic data experiments are computational intensive we focus on key comparisons
to provide initial perspectives. Our simulations are not designed to explore every one of the ten

benchmarks in the paper. We encourage readers to explore synthetic-data experiments further.
Simulations 1. Synthetic Data Chosen to Favor Hierarchical Bayes Specifications

TABLE W1
OUT-OF-SAMPLE HIT RATE IN FIRST SIMULATIONS

(Each Estimation Method and Each Data-Generation Decision Rule)

Hit Rate for Indicated Estimation Method (%)

Data Generation HB HB HB HB HB

Decision Rule Compensatory Subset(l) Subset(2) Subset(3) Subset(4) DOCMP
Compensatory 74.6* 45.2 59.3 66.7 72.4 72.8
Subset(2) 78.5 71.1 88.0* 854 80.3 84.5
Subset(3) 78.6 61.3 81.9 87.2* 80.9 83.8
Conjunctive [Subset(4)] 78.7 60.3 80.7 87.1 89.0* 89.2*
F[;gg(‘f)t’i‘éibset(l)] 84.4 85.6 86.4 86.1 83.7 90.8*
DOC(2) 77.6 70.6 76.1 78.6 78.8 87.0*
DOC(3) 76.3 51.0 65.4 76.4 77.8 83.3*
DOC(4) 74.8 53.7 65.8 75.0 76.9 82.9*

*Best predictive hit rate, or not significantly different than the best at the 0.05 level, for that decision rule (row).

14



Simulations 2. Synthetic Data Chosen to Favor Machine Learning Specifications

OUT-OF-SAMPLE HIT RATE IN SECOND SIMULATIONS

TABLE W2

(Each Estimation Method and Each Data-Generation Decision Rule)

Data Generation HB
T Add-
Decision Rule L
itive
Additive (q = 4) 80.6
Conjunctive 79.9
Disjunctive 79.1
DOC 82.1

OUT-OF-SAMPLE K-L DIVERGENCE PERCENTAGE IN SECOND SIMULATIONS

Hit Rate for Indicated Estimation Method (%)

HB
Conj-
unctive
83.3
87.9
58.8

85.5

HB Comp- DOC- LAD- LAD-
Disj- MP MP DOC DOC
unctive (q=4) (S=4) (00,00) (2, 4)
74.5 81.5 87.8 83.8 79.2
59.6 76.7 88.6 87.1 87.3
86.0 78.7 82.1 83.5 80.3
69.2 82.1 89.8 89.4 89.3
TABLE W3

(Each Estimation Method and Each Data-Generation Decision Rule)

K-L Divergence Percentage for Indicated Estimation Method (%)

Data Generation HB
T Add-
Decision Rule .
itive
Additive (g = 4) 6.9
Conjunctive 8.1
Disjunctive 6.5
DOC 8.3

Discussion of the Second Set of Simulations
DOC-based estimation methods tend to predict best for data generated with DOC rules.

Because DOC rules nest conjunctive and disjunctive rules, DOC-based estimation also predicts

HB
Conj-
unctive
24.2
40.5
14.9

28.9

HB
Disj-
unctive
221
16.1
37.4

21.8

Comp- DOC-  LAD-  LAD-
MP MP DOC DOC
@=4) (5=4) (o») (2,4
20.0 39.9 29.7 25.4
14.2 42.5 39.9 39.9
21.8 29.0 29.5 26.7
215 45.3 46.1 48.3

well for data generated by conjunctive and disjunctive rules. The strong showing of DOCMP for

15



additive rules (g = 4) is a topic worth further exploration. One untested hypothesis is that the
strong showing might be due to the fact that the synthetic data is based on 4 features with S = 4,
in contrast to the empirical GPS data which have 12 features with S = 4.

We also did some preliminary exploration comparing CompMP (g = «) to CompMP (q
=4). As expected, the more-general unconstrained model, which nests some non-compensatory
rules, tends to predict better than CompMP (g = 4) for the non-compensatory rules. The mixed
model, CompMP (g = ) also does well when we simulate a DOC (S = 3) model which has
complex conjunctions. As the generating model becomes more complex, the unconstrained
models do well as paramorphic models. These results are tangential to our focus on DOC-based
estimation, but worth further exploration by readers wishing to explore variations among the
benchmarks.

In the empirical data most respondents were fit with DOC-based models that included
only one conjunction. For example, for DOCMP, 7.1% of the “evaluate-all-profiles” respondents
were fit with two conjunctions. This is moderately close to our synthetic-data condition of con-
junctive respondents. (In contrast, synthetic respondents generated with the DOC rule were al-
lowed up to three conjunctions.) In the conjunctive domain, the DOC-based models predict best.
The conjunctive model predicts better in the conjunctive domain than in our data because no syn-
thetic respondents have more than one conjunction. For this domain, CompMP (q = o) achieves
a predictive hit rate of 84.4% and a K-L percentage of 31.1%, which are good, but less than
DOCMP, LAD, or conjunctive estimation.

Finally, as in most synthetic-data experiments, it would be interesting to explore whether
the results vary based on the various parameters used to generate synthetic respondents. Such

explorations are beyond the scope of this Web Appendix.

16



THEME 8. RESULTS FOR ALTERNATIVE FORMATS

Some of the models which performed poorly on the primary format are not included in
Appendices 8, 9, and 10. Although we have not yet run these benchmark models due to compu-
tational constraints, we expect no surprises from these models relative to those that have already
been run. Data are available should the reader wish to investigate these benchmark models fur-
ther. In all cases at least one DOC-based model is best or not significantly different than best on
both metrics. The additive machine-learning model is significantly worse on K-L percentages,
but, on one format, matches the DOC-based models on hit rate. These results are consistent with
the basic qualitative directions discussed in the text. The sample sizes are evaluate-all-profiles
(93), consider-only (135), reject-only (94), no-browsing (123), and text-only-evaluate-all-profiles

(135).

17



TABLE W4
EMPIRICAL COMPARISON OF ESTIMATION METHODS
NO BROWSING FORMAT
(Representative German Sample, Task Format in Theme 12)

K-L divergence

Estimation method Overall hit rate (%)t percentage (%)

Hierarchical Bayes Benchmarks

Disjunctive 54.5 17.8
Subset Conjunctive 73.0 25.7
Additive 77.3 17.6

Machine-Learning Benchmarks
Additive 78.8 26.1
DOC-Based Estimation Methods

DOCMP 81.5* 34.1*

LAD-DOC 80.7* 32.6*

T Number of profiles predicted correctly, divided by 32. * Best or not significantly different than best at the 0.05 level.
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TABLE W5
EMPIRICAL COMPARISON OF ESTIMATION METHODS
CONSIDER-ONLY FORMAT
(Representative German Sample, Task Format in Theme 12)

. . . K-L divergence
0,
Estimation method Overall hit rate (%)t percentage (%)

Hierarchical Bayes Benchmarks

Disjunctive 50.5 9.3

Subset Conjunctive 78.4 155

Additive 87.1 5.7
Machine-Learning Benchmarks

Additive 88.6* 16.9
DOC-Based Estimation Methods

DOCMP 88.6* 29.4*

LAD-DOC 88.4* 29.4*

T Number of profiles predicted correctly, divided by 32. * Best or not significantly different than best at the 0.05 level.

19



TABLE W6
EMPIRICAL COMPARISON OF ESTIMATION METHODS — REJECT-ONLY FORMAT

(Representative German Sample, Task Format in Theme 12)

K-L divergence

. . i 0,
Estimation method Overall hit rate (%)t percentage (%)

Hierarchical Bayes Benchmarks

Disjunctive 74.1 20.5
Subset Conjunctive 78.4 27.9
Additive 76.8 14.6

Machine-Learning Benchmarks

Additive 81.5 31.7
DOC-Based Estimation Methods

DOCMP 83.7* 42.1*

LAD-DOC 81.9 39.1*

T Number of profiles predicted correctly, divided by 32. * Best or not significantly different than best at the 0.05 level.

20



THEME 9. RESULTS FOR THE US SAMPLE

We present here the results for the evaluate-all-profiles format. Limited testing on the
other formats (HB benchmarks only) are consistent with the results for the German sample and
with the US results for the evaluate-all-profiles format.

The basic results from the US sample evaluate-all-profiles format are consistent with
those from the German sample. The biggest difference is that the US sample is based on a
smaller sample size (38 respondents) and, hence, it is more difficult to establish statistical sig-
nificance. DOC-based methods are significantly different than the additive machine-learning
benchmark on the K-L percentage, but the additive machine-learning benchmark is not signifi-
cantly different than the DOC-based methods on hit rates. The comparisons to the HB bench-

marks remain consistent.

TABLE W7
EMPIRICAL COMPARISON OF ESTIMATION METHODS US
EVALUATE-ALL-PROFILES FORMAT

(Representative German Sample, Task Format in Theme 12)

K-L divergence

. . i 0,
Estimation method Overall hit rate (%)t percentage (%)

Hierarchical Bayes Benchmarks

Disjunctive 61.2 20.6
Subset Conjunctive 72.7 26.6
Additive 78.9 19.4

Machine-Learning Benchmarks

Additive 82.7* 30.0
DOC-Based Estimation Methods

DOCMP 82.3* 36.5*

LAD-DOC 82.7* 36.0*

T Number of profiles predicted correctly, divided by 32. * Best or not significantly different than best at the 0.05 level.
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THEME 10: RESULTS FOR TEXT-ONLY FORMAT

TABLE W8
EMPIRICAL COMPARISON OF ESTIMATION METHODS
TEXT-ONLY FORMAT

(Representative German Sample, Task Format in Theme 12)

. . . K-L divergence
0,
Estimation method Overall hit rate (%)t percentage (%)

Hierarchical Bayes Benchmarks

Disjunctive 43.7 11.2
Subset Conjunctive 72.4 21.3
Additive 78.4 13.9

Machine-Learning Benchmarks

Additive 81.4* 26.9

DOC-Based Estimation Methods

DOCMP 81.5* 30.5%

LAD-DOC 80.7 30.6*

T Number of profiles predicted correctly, divided by 32. * Best or not significantly different than best at the 0.05 level.

22



THEME 11: DECISION TREES AND CONTINUOUSLY-SPECIFIED MODELS

Decision Trees

Decision trees, as proposed by Currim, Meyer and Le (1988) for modeling consumer
choice, are compatible with DOC rules for classification data (consider vs. not consider). In the
growth phase, decision trees select the aspect that best splits profiles into considered vs. not
considered. Subsequent splits are conditioned on prior splits. For example, we might split first
on “B&W” vs. “color,” then split “B&W” based on screen size and split “color” based on
resolution. With enough levels, decision trees fit estimation data perfectly (similar to Result 4 in
Theme 2), hence researchers either prune the tree with a defined criterion (usually a minimum
threshold on increased fit) or grow the tree subject to a stopping criterion on the tree’s growth
(e.g., Breiman, et. al. 1984).

Each node in a decision tree is a conjunction, hence the set of all “positive” nodes is a
DOC rule. However, because the logical structure is limited to a tree-structure, a decision tree
often takes more than S levels to represent a DOC(S) model. For example, suppose we generate
errorless data with the DOC(2) rule: (a A b) v (c A d). To represent these data, a decision tree
would require up to 4 levels and produce either (aAb)v(an—-bAacAad)v(—-ancad)or
equivalent reflections. Depending on the incidence of profiles, the decision tree might also pro-
duce (c Ad) v (c A—dAaAb)v(—cAanb), which is also logically equivalent to (a A b) v (c
A d). Other logically equivalent patterns are also feasible. This DOC(3) rule is logically
equivalent to (a A b) v (c A d), but more complex in both the number of patterns and pattern
lengths. To impose cognitive simplicity we would have to address these representation and
equivalence issues.

As a test, we applied the Currim, Meyer and Le (1988) decision tree to the data in Table

23



2. We achieved a relative hit rate of 38.5% and a K-L divergence of 28.4%, both excellent, but
not as good as those obtained with DOCMP and LAD-DOC estimation. LAD-DOC (p = 0.002)
and DOCMP (p = 0.01) are significantly better on relative hit rate. LAD-DOC (p = 0.002) is
significantly better and DOCMP is better (p = 0.06) on information percentage. While many
unresolved theoretical and practice issues remain in order to best incorporate cognitive simplicity
and market commonalities into decision trees, we have no reason to doubt that once these issues

are resolved, decision trees can be developed to estimate cognitively-simple DOC rules.

Continuously-Specified Models

Conjunctions are analogous to interactions in a multilinear model; DOC decision rules
are analogous to a limited set of interactions (Bordley and Kirkwood 2004; Mela and Lehmann
1995). Thus, in principle, we might use continuous estimation to identify DOC decision rules.
For example, Mela and Lehmann (1995) use finite-mixture methods to estimate interactions in a
two-feature model. In addition, continuous models can be extended to estimate “weight”
parameters for the interactions and thresholds on continuous features.

We do not wish to minimize either the practical or theoretical challenges of scaling
continuous models from a few features to many features. For example, without enforcing
cognitive simplicity there are over 130,000 interactions to be estimated for our GPS application.
Cognitive simplicity constrains the number of parameters and, potentially, improves predictive
ability, but would still require over 30,000 interactions to be estimated. Nonetheless, with
sufficient creativity and experimentation researchers might extend either finite-mixture,
Bayesian, simulated-maximum-likelihood, or kernel estimators to find feasible and practical
methods to estimate continuously-specified DOC rules (Evgeniou, Boussios, and Zacharia 2005;

Mela and Lehmann 1995; Rossi and Allenby 2003; Swait and Erdem 2007).
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THEME 12: CONSIDER-ONLY, REJECT-ONLY, NO-BROWSING, TEXT-ONLY, EX-
AMPLE FEATURE-INTRODUCTION, AND INSTRUCTION SCREENSHOTS

Screenshots are shown in English, except for the text-only format. German versions, and

other screenshots from the surveys, are available from the authors.

=< Put Badk to Selection Panel

'

7 Ounces
-

Readable

in Shadow
2]

L
Resolution|

2 Seconds

12 Hours

Price: $299.00

[ consider

[ put back

Getdl of 2

( view remaining ]
products

you will rank order these products right after finishing this task.

12 Hours

Price: § 299

Price: § 249

(ﬁniﬁh consideration )

<< Put Back to Selection Panel

'

Price: $299.00

Reception

7 ODunces Under
Trees
o =
Readable AFaw
in Shadow Faet
= ]
L
Resoiotion ARate®
2 Saconds Mini-Usg
Port
“a
-
12 Hours Hoats

eliminate

N

[ put back

Set 1 of 2

view eliminated
products

You will rank order these products right after finishing this task.

r MIK- ‘::;A‘D;‘ ‘&-:‘n W-(-n‘i“n-n
Ly == e | Regdaple 30 Feet
] @ o ®
High Doesn't | yigh et
Radoition fririce | matailion e
2 seconds »m-&\x 2 Seconds »m-ﬁ\a
Port Port
V] -
12 Houre gt | 12 o fosts
Price: £ 299

Price: £ 249

( finish elimination )
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Reception
Unggr

High
Resolttion

| GARMIN

2 Seconds

30 Howrs

Price: $399.00

Doesn't
Aoat

[ consider ]

[ not consider ]

Setlof 2

?

2 Seconds

12 Hours

considered products

Price: & 249

o e

2 Seconds

12 Hours

You will rank order these products right after finishing this task.

-
e

Price: & 299

[view unconsidered )

Touwill see 5 unconsidered items.

<< Zurticklegen

Marke: Garmin
AkKu-

Grie: Ksln Laufzeit:

i 205 -
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Preis: £399,00

12 Stunden

Empfang
auch unter
Baumen

auf 3 Meter
prizize

nein

Mini-USB-
Anzchluss

nein

schwimmt

[ kommt in Frage J

[ kommt nicht in Frage J

Setl von 2

engere Auswabhl

Irm Anschluss lassen wir Sie diese Produkte in eine Rangfolge bringen.

Groda;
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Olapley-
faren:
Display-
nemghe:
oo
isplay-
aullasisng:
Axnaiisie.

Mearke: Gaerrin
woh e
126 Gramm Empfang:

mansthiem Genauigheit:
aueh in dee

Sormagu Wegaut.
ety B zeichnung:

Mini-US8-

Ml Sehnatstatie:

. Heybord:
oaring Beieuchiung:
10 Austriets im

Tungareiten: Sekunden  Wak b

Preis: £ 249

Marke: Mageiss
30 Sunden : Grosa: wain MR 12 Susden
E:KE;?" Gewichts 125 Gramm Empting: 1!
:"r’le'm Tarteent®  manochiom Gensuighest :'Iﬂ":‘."ﬂlr
g Dpr,  Smen WIME e
MO o we SR N
T my  KANE e
e ::3!3-7-: Lingen wTeD M it

Preis: € 299

Q nicht gewahlte
Produkte ansehen

Ste werden 5 aussortierte Produkte sehen
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Display Colors

One GPS unit displays graphics in 256 colors, the other offers
a monochrome display. Colors might be useful for reading
maps . They help to distinguish objects on the screen,

Display Brightness

The standard brightness level allows you to read out
~ * okt information from the screen under many circumstances;
‘)¢ ‘/? however, it might be difficult to read in very bright sunlight.

The extra bright display allows you reading under any

circumstances, Special transflective Thin-Film-Transmitters
enable reading even under bright sunlight.

next

Brand lm

-y
Two major brands exist in the market for handheld GPS-units. e
One is called Garmin, the other one is Magelian. Both MAGELLAN
companies are very experienced in developing and :
manufacturing GPS devices. -

Price

GPS units vary in price between $249 and $399, Prices
depend on features, materials, and level of technology. If
you win the lottery, you will receive a GPS unit that closely
matches your preferences (based on your answers), In
addition, you will receive the difference to $500 In cash.

next
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We will show you 32 GPS devices (in a random order),

o We will first ask you which device you would consider purchasing.
o For example, you might include devices yvou would evaluate further

o Or, you might include devices that you would purchase if your most-preferred
device were unavailable.

¢ We then show these devices on a new screen and ask you to choose the device you
most prefar, which device vou would next prefer, atc,

+ After a few fun questions to give you a break, we then show you a second set of 32

GPS devices.
nEext

The next page explains how you will tell us which device you would consider,

Remember, if you win a GPS, these tasks will determine which GPS (plus cash) you
receive!

[ ——————

& e

consider

view unconsidered

not consider

-
uw a6 - g 28 e W

next
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How to tell us which GPSs you will consider
Step 1: .
Step 2:
Examine Consider or not S1oD.3:
View & Rethink

— .
" e e
oy -
v e <
12 Hous Bt

P —_—
consider view unconsidered |

- You will see 1 unconsidered item
not consider ‘

{ switch between
L

considered and
inconsidered products
click in order to

,. ‘ click on GPSs to J

one by one

GPS-units appear ’
for examination

consider or not consider or not

(back to Siep 2)
next

Reminder; We provide you with 16 GPS features,

® Screen Color(color/monochrome)
@ Screen Size (big/small)

@ Brand_
(Garmin/Magellan)
® Weight l“ "ﬁ @ Reception
(4 ounces/7 ounces) 7 Ounces R:::;?; (average/under trees)
® Display Brightness | ﬁt ® Accuracy
(normal/extra bright) l}s:arab.!‘f 50 Foot (50 feet/a few feet)
@ Display Resolution = @ ® Track Log (retraces route)
(high/low) High Retraces | (¥€S/N0)
Resolution § Route
o = E e o
@ Acquisition Time <HAGELLN., ® Mini-USB port
(2 sec/10 sec) 10 Seconds r No USB (ves/no)
Port
® Battery Life -  ® Floats on Water
(30 hours/12 hours) 12 Hours - FAoats (yes/no)
$ 209 299
@ Backlit ® Price @ Size of GPS
Keyboard ($249-$399) (big/smail)
{vés/no)

next
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