Appendices

A. Proofs of Main Theorems

Proof of Theorem [1l

A brief roadmap of the proof is as follows. We first show that there exist polytopes in the
0 — 1 hypercube, parameterized by v € R", that correspond to worst-case topologies (see (I2));
the remaining of the proof deals with identifying the worst-case polytope within this class, i.e., the
worst-case value of the parameter -, utilizing symmetry and optimization theory arguments.

Geometrically, the a-fair allocation of any convex utility set in the 0 — 1 hypercube lies on
its boundary. Consider now the supporting hyperplane at the a-fair allocation, defined by the
gradient of W,. Intuitively, any set that is contained in the polytope defined by that supporting
hyperplane (and the 0 — 1 hypercube) would have the same a-fair allocation. However, that does
not hold true for the utilitarian or max-min allocations. In fact, by considering convex supersets of
the original utility set, contained in the described polytope, one could obtain higher values for the
utilitarian and/or max-min objectives, while the a-fair allocation remains constant. As such, one
need only consider polytopes of the described form for worst-cases. Note that such an approach can
be generalized in a straightforward manner for any similar settings where one considers multiple
competing objective functions.

Without loss of generality, we assume that U is monotone®. This is because both schemes we
consider, namely utilitarian and a-fairness yield Pareto optimal allocations. In particular, suppose
there exist allocations a € U and b ¢ U, with allocation a dominating allocation b, i.e., 0 < b < a.
Note that allocation b can thus not be Pareto optimal. Then, we can equivalently assume that
b € U, since b cannot be selected by any of the schemes.

We also assume that the maximum achievable utilities of the players are equal to 1; the proof
can be trivially modified otherwise.

By combining the above two assumptions, we get
e; €U, Vji=1,...,n, (5)

where e; is the unit vector in R", with the jth component equal to 1.
Fix a > 0 and let z = z(«) € U be the unique allocation under the a-fairness criterion (since

W, is strictly concave for a > 0), and assume, without loss of generality, that

212292 ... 2 Zp. (6)

®A set A C RY is called monotone if {b€ R™|0<b<a} C A, Va € A, where the inequality sign notation for
vectors is used for componentwise inequality.



The necessary first order condition for the optimality of z can be expressed as

VWa(2) ! (u—2)<0 = sz_a(uj —2;) <0, Yuel,

j=1
or equivalently
FTu<1, Vuel, (7)
where
2. ¢
’7] = ‘71_a, Vi 1,. , (8)
i%i
Note that (6] implies
M7 ... <M. (9)
Using (B) and (7)) we also get
v =7"e; <1, j=1,...,n. (10)

We now use (), and the fact that each player has a maximum achievable utility of 1 to bound

the sum of utilities under the utilitarian principle as follows:

SYSTEM (U) = max {17u |u € U}

§maX{1Tu‘0§u§1,7Tu§1}. (11)

Using the above inequality,

_ SYSTEM (U) — FAIR (U; )

POF (U5 ) = SYSTEM (U)
B FAIR (U; )
~ SYSTEM (U)
1 217
SYSTEM (U)
<1 =12 (12)

= max{1Tu]|0<u <1,7Tu <1}

The optimization problem in (IZ)) is the linear relaxation of the well-studied knapsack problem,
a version of which we review next. Let w € R} be such that 0 < w; <... <w, <1 (in particular,
~ satisfies those conditions). Then, one can show (see [Bertsimas and Tsitsiklis (1997)) that the
linear optimization problem
maximize 17y
subject to wly <1 (13)
0<y<1,



has an optimal value equal to ¢(w) + é(w), where

E(w):max{z' ijgl,ign—l}e{l,...,n—l} (14)
j=1
£(w)
1— 2y,
Sw) = L2 ==L g ) (15)
We(w)+1

We can apply the above result to compute the optimal value of the problem in (I2I),
max{lTu’Ogug 1,77u < 1} =L(y) +0(7). (16)
The bound from (I2]) can now be rewritten,

n
POF (Usa) <1 - ==L 17
R O R ) i
Consider the set S in the (n + 3)-dimensional space, defined by the following constraints with
variables d € R, A € N and z1,...,2\,T)41,Z)11,Tr42,..-,2, € R. The variables d and A
correspond to ¢ and A accordingly, whereas = corresponds to z. Note also that we associate two

variables, Tx41 and x) 1, with z)4;.

0<d<1 (18a)
1<A<n-—1 (18h)
0<z, <.. <2<z << <...<r1 <1 (18c)
< el Y+ HdT L+ (D)) e+ e (18d)
T w +dT Y <

T ey AT S (- D)z s (18e)

The introduction of those new variables will allow us to further simplify (I7)). In particular, we
show that
T17% 1+ ..o+ ay+dTa + (1 —d) Ty +2asa+ ...+ 2y

J > i . 19
1(7) +0(7) = (domes A+ d (19)

We pick values for d, A and z that are such that (a) they are feasible for S, and (b) the function
argument of the minimum, if evaluated at (d,\,z), is equal to the left-hand side of (I9). In



particular, let

d=5(y), X= (),

r; =z, JFA+]L, Trap1 = Lyp1 = 2a41-

Then, (I8a), (I8D) and (I8d) are satisfied because of (IH), (I4) and (@) respectively. By the
definition of v and the selected value of z, ([I8d]) can be equivalently expressed as

’Vn S 17
which is implied by (I0). Similarly, (I8e]) is equivalent to

Y F Ve Ve S 1

which again holds true (by (I5])). The function argument of the minimum, evaluated at the selected
point, is clearly equal to the left-hand side of (I9). Finally, the minimum is attained by the
Weierstrass Theorem, since the function argument is continuous, and S is compact. Note that

(I8d) in conjunction with (I8d) bound z, away from 0. In particular, if & > 1, we get

1
x,* < xi_a—l—...—l—x,lfa < n:z:%z_a =T, > —.

el

To evaluate the minimum in (I9]), one can assume without loss of generality that for a point

3

Similarly, for a < 1 we get

Q=

(d',N,x') € S that attains the minimum, we have

Ty = =) =Ty, Ihig =T = =1, (20)
Technical details are included in Section [Cl Using this observation, we can further simplify (I9)).
In particular, consider the set T C R?, defined by the following constraints, with variables z1, =2
and y (since 2y = ... = x)\ = T ;, we associate 2, with them, and similarly we associate x5 with

the remaining variables of a’; variable y is associated with X\ + d ):

0<zy<z1<1 (21a)
1<y<n (21b)

7 <yl 4 (n =y (210
yay® <yriT® + (n—ylay® (21d)



Using similar arguments as in showing (I9), one can then show that

1+ . tayx+dTaxp+ (1 —d)zyy +Tag2+ ..+ 1y yr1 + (n —y)xo

min > min
(d\z)ES A+d (z1,22,9)€T Y
(22)
If we combine (I7), (I9), ([22) we get
POF (U;a) <1— min yr1 +(n - y)xg' (23)

(z1,22,y)€T Y

The final step is the evaluation of the minimum above. Let (x7,23,y*) € T be a point that

attains the minimum. Then, we have

*

Yy <mn, x5<zx]. (24)

To see this, suppose that x5 = x7. Then, the minimum is equal to Zgi{ But, constraint ([21d) yields
that nz} > y*, in which case the minimum is greater than or equal to 1. Then, ([23) yields that
the price of fairness is always 0, a contradiction. If y* = n, (21d)) suggests that 27 = 1. Also, the
minimum is equal to 27 = 1, a contradiction.

We now show that (ZId21d)) are active at (z}, 23, y*). We argue for a > 1 and a < 1 separately.

a > 1: Suppose that ([2Id) is inactive. Then, a small enough reduction in the value of x5 preserves
feasibility (with respect to T'), and also yields a strictly lower value for the minimum (since
y* < n, by (24)), thus contradicting that the point attains the minimum. Similarly, if (2Id])

is inactive, a small enough reduction in the value of z7 leads to a contradiction.

«a < 1: Suppose that (2Id)) is inactive at (z3,23,y*). Then, we increase y* by a small positive
value, such that (2Id) and (2ID) are still satisfied. Constraint (2Icd) is then relaxed, since
()7 > (23)!7%. The minimum then has a strictly lower value, a contradiction. Hence,
(21d) is active at any point that attains the minimum. If we solve for y and substitute back,

the objective of the minimum becomes
ry 4 25 (x7Y — 217, (25)
and the constraints defining the set 17" simplify to

0<zp <z <1 (26a)

7Y — 21T+ ay* < nap%ry. (26b)

In particular, constraint (26b)) correspond to constraint ([2Ic). In case (ZId) is not active at

a minimum, so is (26D). But then, a small enough reduction in the value of 23 leads to a



contradiction.
Since for any point that attains the minimum constraints (ZId21d]) are active, we can use the

corresponding equations to solve for 1 and zs. We get

1

yE

T = ——— 7, (27)
n—ytye
1
To = - 1- (28)
n—y+ye«
If we substitute back to (23]), we get
x“’é +n—x

POF (U;) <1 — min - .
z€lln] g1+5 4 (n — )z

The asymptotic analysis is included in Section [Cl

Proof of Theorem 2l  We follow similar steps to the ones in the proof of Theorem [l Thus,
assume that U is monotone, the maximum achievable utilities of the players are equal to 1 and that
21 > 23 > ... > zp (where z = z(a) € U is the unique a-fair allocation). Then, for the variable

(defined as in (§))), we similarly have

and

We use the above to bound the maximum value of the fairness metric

uGU}ﬁmaX{.min uj

7j=1,...,n

03u§1,7%§1}:—

max {  min - uj ]_T’y’

7j=1,...,n

where the equality follows from z < 1 and 17y > 1.



We bound the price of efficiency using z1 > ... > z,, 7, < 1 and the inequality above as follows:

max _nilin uj — _nilin zj(a)
uelU jg=1,...,n J=1..,n
POE (U;a) = -
max min u;
uelU j=1,...n
=1— Z—"
max min u;
uelU j=1,...n
<1l- anT’Y
Zn (zl_a+z2_a—|—...+z;a)
P o T T
=1- f*7

where f* is the optimal value of the problem

zn(zl_o‘—kzz_a—k...—i—zrjo‘)
P e T
subject to 0< 2, <z,1<...<2 <1

270 <2 T AT gl

minimize

Let z* be an optimal solution of (29]) (guaranteed to exist by the Weierstrass Theorem). Then,
without loss of generality we can assume that (a) 27 = 25 = ... = z%_; and (b) 27 = 1. Technical

details are included in the Section Using those two assumptions, f* is then equal to

(n— 1)z + a1~
n—1+al-«
subject to 0<x <1 (30)

< n—1+4z

minimize

Finally, note that for = € [0, 1] the function =® — 2'~® —n — 1 is strictly decreasing, is positive

for  small and negative for z = 1. Hence, for x € [0,1] the constraint 7% < n — 1 + 217 is

equivalent to x > p. As a result,

= g (Dot
p<z<l n — 1+ xl-@

The asymptotic analysis is similar to the analysis in Theorem [ and is omitted.

B. More on Near Worst-case Examples for the Price of Fairness

We demonstrate how one can construct near worst-case examples, for which the price of fairness

is very close to the bounds implied by Theorem [ for any values of the problem parameters; the



number of players n and the value of the inequality aversion parameter c. We then provide details
about the bandwidth allocation problem in Section [B.1.1
For any n € N\ {0,1}, a > 0, we create a utility set using Procedure [Tl

Procedure 1 Creation of near worst-case utility set

Input: n € N\ {0,1}, « >0
Output: utility set U

1
e +n—=z

1: compute y := argmin T
welln] z1a + (n—2)x

1
2: 11 + —L— (as in (27)

L
a

n—y+y
Ty ¢ —— (as in (28))
n—y+ya
: ¢ < min{round(y),n — 1}

T

ym1*“+(in—y)x1*“ fori=1,2
1 2

: U(—{’LLERZL_|’71U1+...+’71’LL@+’72U4+1—I—...—I—’ygun§1, u§1Vj}

Vi <

@ gk @

The following proposition demonstrates why Procedure[Il creates utility sets that achieve a price

of fairness very close to the bounds implied by Theorem [Il

Proposition 1. For any n € N\ {0,1}, o > 0, the output utility set U of Procedure [1 satisfies the
conditions of Theorem [l If y € N, the output utility set U satisfies the bound of Theorem [dl with
equality.

Proof. The output utility set U is a bounded polyhedron, hence convex and compact. Boundedness
follows from positivity of 1 and ~s.

Note that the selection of z1, 29 and y in Procedure [I] corresponds to a point that attains the
minimum of (23]), hence all properties quoted in the proof of Theorem [l apply. In particular, by
([I8d) we have v, < 1 and (2Id)) is tight, y71 = 1. Moreover, the bound from Theorem [ can be

expressed as
yr1 + (n — y)ze
Yy

The maximum achievable utility of the jth player is equal to 1. To see this, note that the

POF (U;a) <1-—

definition of U includes the constraint u; < 1, so it suffices to show that e; € U. For j < ¢, we have

v1 < vy = 1. For j > ¢, we have 7o < 1. It follows that U satisfies the conditions of Theorem [l
Suppose that y € N. By (24) and the choice of ¢ in Procedure [Il, we get ¢ = y. Consider the

vector z € R™ with 21 = ... = 2y = 21 and 2y41 = ... = 2, = x2. Then, the sufficient first order

optimality condition for z to be the a-fair allocation of U is satisfied, as for any v € U

2 M(uj —z) = 27w+ ) 2y (U ) — yri ™ — (n —y)ry <0,
1

n

J



since v1(ug + ... +ug) + y2(upr1 + ... + uy) < 1. Hence,
FAIR (U;0) = 172 =y + (n — y) 2.
For the efficiency-maximizing solution, since yv; = 1, we get
SYSTEM (U) = y.

Then,
POF (Usa) = 1 — yz1+ (n— y)$2’
Yy

which is exactly the bound from Theorem 11 |

The above result demonstrates why one should expect Procedure [I] to generate examples that
have a price of fairness very close to the established bounds. In particular, Proposition [ shows
that the source of error between the price of fairness for the utility sets generated by Procedure
[ and the bound is the (potential) non-integrality of y. In case that error is “large”, one can
search in the neighborhood of parameters v, and o for an example that achieves a price closer
to the bound, for instance by using finite-differencing derivatives and a gradient descent method
(respecting feasibility).

Near worst-case bandwidth allocation

We utilize Proposition [Il and Procedure [1l to construct near worst-case network topologies. In
particular, one can show that the line-graph discussed in Section B.I.1] actually corresponds to a
worst-case topology in this setup.

Suppose that we fix the number of players n > 2, the desired inequality aversion parameter
a > 0, and follow Procedure [Il Further suppose that y € N, as in Proposition [I Consider then
a network with y links of unit capacity, in a line-graph topology: the routes of the first y flows
are disjoint and they all occupy a single (distinct) link. The remaining n — y flows have routes
that utilize all y links. Each flow derives a utility equal to its assigned nonnegative rate, which we
denote u1,...,u,. We next show that the price of fairness for this network is equal to the bound
of Theorem 11

The output utility set of Procedure [Il achieves the bound, by Proposition [l since y € N.
Moreover, we also get that yy; = 1 and v = 1. Hence, the output utility set that achieves the

bound can be formulated as
U={u>0lu1+...+uy+yuyt1 +... +up) <y, u<1}.

The utility set corresponding to the line-graph example above can be expressed using the non-

negativity constraints of the flow rates, and the capacity constraints on each of the y links as



follows,

U={u>0luj+uyt1+...4+u, <1,j=1,...,y}.

Clearly, the maximum sum of utilities under both sets is equal to y, simply by setting the
first y components of u to 1. It suffices then to show that the two sets also share the same a-fair

allocation. In particular, by symmetry of U and strict concavity of Wy, if uf" is its « fair allocation,

thenuF:...:uff,

all inequalities in the definition of U are also valid for U, it follows that U C U and that u’" is also

and uff L1 =...=ul. Asaresult, it follows that u!" € U. Finally, noting that

the a-fair allocation of U.

C. Auxiliary Results

Proposition 2. For a point (d,\,z) € S that attains the minimum of (19),

(a) if \+ 1 < n, then without loss of generality

Tyl = Ttz = ... = Ty, and,

(b) without loss of generality

Tl = ... =T\ =Trt1-

Proof. (a) We drop the underline notation for z,,, to simplify notation. Suppose that z; > x;41,
for some index j € {\+1,...,n — 1}. We will show that there always exists a new point, (d, \,z’) €
S, for which x} = x;, for all ¢ € {1,...,n}\ {j,7 + 1}, and which either achieves the same objective
with z; = 2, or it achieves a strictly lower objective.

Ifj=X+1and d =1, we set ZE; = 3:;-“ = xj41. The new point is feasible, and the objective
attains the same value.

Otherwise, let ZE; = x; — €, for some € > 0. We have two cases.

/ /
i Z Ti

point (compared to the feasible starting point) the left-hand sides of (I&d]) and (I8¢) are

a > 1: Let a:; 41 = Zj4+1 and pick € small enough, such that x Moreover, for the new

unaltered, whereas the right-hand sides are either unaltered (for « = 1) or greater, since
11—
J

lower objective value.

x < (x; — )17 for @ > 1. Hence, the new point is feasible. It also achieves a strictly

10



a < 1: Let o, = xj41 + pbe, where

1, otherwise,

T ¢
pE <xfa ,1) .
J+1

For € small enough, we have z; > ;. For the new point, the left-hand side of (I8d)) either

b_{ 1—d, ifj=A+1,

decreases (if j + 1 = n), or remains unaltered. The left-hand side of (I8e]) remains also
unaltered. For the right-hand sides, since the only terms that change are those involving z;

and xj41, we use a first order Taylor series expansion to get

11— l1—a —a —a
b(a5) " () = bl = ' (g + pbe)!
= ble-_a —be(l —a)a;* + x]l;'f‘ + pbe(l — )z + O(€?)

= (b:n}_a + x]l;‘f‘) +b(1 — ) (,O:Ej_f‘l - :Ej_a) e+ O(e?).

By the selection of p, the coefficient of the first order term (with respect to €) above is positive,
and hence, for small enough € we get
b(a 1-a / l—a b 1-« -«

That shows that the right hand side increases, and the new point is feasible. Finally, the

difference in the objective value is —be + pbe, and thus negative.

(b) We drop the overline notation for Z;1 to simplify notation. Suppose that x; > x4, for
some index j € {1,...,\}.

We will show that there always exists a new point, (d, A\,z') € S, for which 2 = x;, for all
i € {1,...,n}\ {j,j + 1}, and which either achieves the same objective with z; = 2/, or it
achieves a strictly lower objective.

Ifj+1=X+1and d=0, we set x; = x;-H = z;. The new point is feasible, and the objective
attains the same value.

Otherwise, let

,— [ p—
T;=1x;—¢

/
Ty = Tjp1 + pce,

11



for some € > 0, where

c=——
baj 4
b_{ d, ifj+1=\+1,

1, otherwise.

For € small enough, we have z; > 2/, ;. For the new point, the left-hand side of (I8d) remains
unaltered. For the left-hand side of (I8el) we use a first order Taylor series expansion (similarly as

above) to get

(x;)_a +b ($;+1)_a = (zj —€) " + b (a1 + pce)”*

+ eozmj_o‘_l + bz — bpceaxj_fl_l +0(e?)

J J

z; "
270+ b %) + ears 7t — peax;®zl + O(€2)
J J+1 P J+l
(4

« —a —a—1 Ly 2
+ bz + az’ 1—p—— | e+ O(e).
i) + o ( ij+1> ()
By the selection of p, the coefficient of the first order term (with respect to €) above is negative,

and hence, for small enough € we get that the left-hand side decreases.
For the right-hand side of (I8d]) and (I8e€l), we similarly get that

1-a l1-a
($;) +b (5173'+1) = (z; — e)l_a +b(xj41 + pce)l‘o‘
— :L";_a —€e(l—a)z;* + bx]ljr‘f‘ + bpce(1 — a)le,jrfll +O(e)

= (27 +b2}37) + (1= )25 (p— 1) e + O(€).

If for « > 1 we pick p < 1, and for a < 1 we pick p > 1, the first order term (with respect to €)
above is positive, and hence, for small enough € we get that the right-hand side increases for a # 1.
For a = 1, the right-hand side remains unaltered.

In all cases, the new point is feasible, and the difference in the objective value is

T
—e+ pcbe = (pcb — 1) e = <p — —1) €,
Ti+1

and thus negative (by the selection of p). |

12



Proposition 3. Let n € N\ {0,1} and f : [1,n] — R be defined as

1
e 4n—=zx

2 e+ (n—z)z

flz;a,n) =

For any o > 0,
(a) —f is unimodal over [1,n], and thus has a unique minimizer £* € [1,n].
(b) min f(z;a,n) = f(¢5a,n) =0 (n737).
z€[1,n]

Proof. (a) The derivative of f is

N a.m) = 9(33) 7
faan) ($1+é+(n—x)$)2

where
1 1 1
g(:E) — <1__) x2+% +i$l+é —n<1—|——> :1;‘% —(;E—n)2
« « «

Note that the sign of the derivative is determined by g(x), since the denominator is positive
for 1 < x < n, that is,

sgn f'(z; 0, m) = sgn g(x). (31)

We will show that g is strictly increasing over [1,n]. To this end, we have

J'(x) =27 lq(x) +2(n — 2),

=243 (-3 (- ) -2 0+2)

Since we are interested in the domain [1,n], it suffices to show that ¢(z) > 0 over it. For

where

a > 1, g is a convex quadratic, with its minimizer being equal to

(42) ()

— < 0.

) (-8

Hence, g(z) > q(1) for = € [1,n]. Similarly, for « < 1, ¢ is a concave quadratic, and as such,

for x € [1,n] we have ¢(x) > min{q(1),q(n)}. For a = 1, q(z) = 2(n + 1)z — 2n, which is
positive for x > 1. Then, ¢(z) > 0 in [1,n] for all & > 0, if and only if ¢(1) > 0 and ¢(n) > 0.
Note that for r = 1, we get ¢(1) = 2 and ¢(n) = 2n?, and

dg(n)

da) _ 5 L —am? >,

dr

13



which demonstrates that ¢(1) and ¢(n) are positive. Furthermore,
g(n) = n1+%(n —1)>0.

Using the above, the fact that g is continuous and strictly increasing over [1,n] and (31I), we

deduce that if g(1) < 0, there exists a unique m € (1,n) such that

<0, if1<z<m,

>0, ifm<x<n.

Similarly, if g(1) > 0, f is strictly increasing for 1 < z < n. It follows that —f is unimodal.

Let 0,, = nati, Using the mean value Theorem, for every n > 2, there exists a ¢, € [0, £"]
(or [€*,0,], depending on if #,, < &), such that

f(ena Oé,?'L) = f(g*a a)”) + f/(¢n7 O[,’I’L)(en - g*)v

or, equivalently,

f(€5a,n) —1 f'(hn; ,n) (0 — 5*)

f(On; a,n) f(On; cm)
We will show that, for a sufficiently small € > 0
(L) F(niam) =0 (n- ),
(IL) 0, — & = O (n&7+),
(IT1.) f(fn;,n) =© (n_%ﬂ)

Using the above facts, it is easy to see that

f(&5a,n) 1 f'(ns,n)(0n — ) —_1_ _miggrlia} +3e
FOniaun) f(On;a,m) =1-0 (” > - L

and thus f(£*;a,n) =0 (n_a%l)
(I.) We first show that for any sufficiently large n,

natl ¢ < ¢ < pa e (32)

By part (a), £* is the unique root of ¢ in the interval [1,n]. Moreover, g is strictly increasing.

14



The dominant term of

1 11 2

is —n?, and hence, for sufficiently large n we have g (n#l_e) < 0. Similarly, the dominant
term of g (na%l%) is énﬂ%le, and for sufficiently large n we have g (na%l“) > 0. The
claim then follows. Using the above bound, for sufficiently large n, we also get that i, >
na1 ¢, We now provide a bound for the denominator of f’(¢,;a,n). In particular, for

sufficiently large n, we get that for x < naLHJrE,

d 1
—($1+é+n$—l‘2) = <1—|——)x%—|—n—2x>0,
dx «

which shows that the denominator is strictly increasing. Hence, using the lower bound on ),
1 1

<
2 — e e foY 2
(wi"’é + naby, — w%) (n(a_ﬂ_g)(l'i'é) + nl"'a_Jrl_6 — na2_+1_25)

2
n—2—a—f1+2e

IN

2
= O (n_z_&_&+2e)
a 1 1 2 :
(n_a+1_a6 +1-— n_a+1)

We now provide a bound for the numerator. Since g is strictly increasing and £* is a root, we

get

lg (tn)| < g (0n)]

1\ 2041 _ 1 Iy o o 20 __2_ a1
:’<1__ o oFln a+1+2+n_ 1+ — ) aatin a+1+2_aa+1n a+1+2_|_2aa+1n a1 2
« «

in{1.a}
=0 <n_m s +2> )

_ min{l,a}+2a
If we combine the above results, we get f'(¢p;a,n) = O <n atl +2E).

(II.) Follows from (32I).
(ITI.) We have

[e]
n+mn—natl

f(9n3a7n): 1+

oY 2c

atl — npa+l
R

n (2 -n a+1)

e o4 1
nlt e (n_a_Jrl +1— n_a_H)

n-—+mn
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Proposition 4. There exists a point z € R™ that attains the minimum of (29), for which
Z21=...= 2,1 =1.

Proof. For « = 1, problem (29) is written as

1 /2 Z Z
minimize — (—n+—n+...+ i +1>
711 Z1 zZ2 Zn—1
subject to — <z, <z,1<... <z < 1.
n
If z is an optimal solution of the above, then clearly z; = ... = z,_1 = 1.

We now deal with the case of a@ # 1. We first show that if z is an optimal solution of (29]), then
z1 =...= 2z,—1. We analyze the cases 0 < o < 1 and « > 1 separately.

For 0 < o < 1, the function 21 ~%+. ..+ 21 7¢ is strictly concave, and the function 2, *+.. .42,
is strictly convex. If z is an optimal solution of (29) for which z; = ... = z,_; is violated, we
construct a point z € R", such that its first n — 1 components are all equal to the mean of
Z1y-.-y2n—1 and Z, = z,. We show that z is feasible for (29]) and it achieves a strictly lower

objective value compared to z, a contradiction. Note that by strict concavity/ convexity we get

-1— -1— 1— 1—
22, >+ 2, T
and

2N <Y+,

respectively. For feasibility, 0 < z, < ... < z; <1 is immediate and

D O i SR R N 7 R BN B el
Finally, compared to z, if we evaluate the objective of (29]) at z, the numerator strictly decreases
and the denominator strictly increases, hence the objective value strictly decreases.

For a > 1, let z be an optimal solution of ([29)) for which zj;1 < z; for some j =1,...,n — 2.
We similarly construct a feasible point z for (29) that achieves a strictly lower objective value than

2. Let z; =z forall i # j, 5 + 1, z; = z; — € and Zj11 = 2j41 + d¢, where € > 0 and

2T VS
§=-"21—— ,u’ e <O,zj_a <7Z] Z]H)).
Zj+1 “j
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For small enough ¢, 0 < z, < ... < Zz; < 1isimmediate. Using a first order Taylor series expansion,

Zjl»_a—l—éjl-j_ = 1 O‘—I—ZH +( 5zj+1)( 1)6—1—0(62)
1— _
> zj a—l—sz

for small enough e, since z;” * >0z i+1 € > 0. As a result,

e ST N R R R Sl e N

and z is feasible. Moreover, the denominator of the objective strictly increases. Thus it suffices to

show that the numerator decreases. To this end, we have

TN =+ (7 1—5%1 Dae + 0(2)

<z —I—zj+1

Zj—ZjH)

for small enough ¢, since z; %! < 5zj+1 Sp< zj_a ( =

J
Since for every optimal solution of (29), we have z; = ... = z,_1, problem (29) can be written

equivalently as

(n—l)zl R

(n—1)z %+ 2
subject to 0 <29 <2 <1
2% < (n—1)2 " + 257

minimize  g(z1,22) =

(33)

It suffices to show that there exists an optimal solution z of (B3] for which z; = 1.
Let z be an optimal solution of (33)).
If 0 < a < 1, assume that z; < 1. Then, increase z; by a small enough amount such that it

1=a increases, so the new point we get is feasible. Also, the

remains less than 1. The quantity z;
quantity z; * decreases. Hence, the new point is feasible and achieves a strictly lower objective
value, a contradiction.

If @« > 1, the point z lies on the boundary of the feasible set or is a stationary point of the
objective. Suppose that z is not a stationary point, i.e., Vg(z1,22) # 0. If 21 = 29, the objective
evaluates to 1 for any such z, so we can assume z; = 1. We next rule out the possibility of z lying
on the z;® = (n—1)2;~* + 25~ * boundary with z; < 1. Suppose that it does. We will demonstrate

that we can always find a feasible direction along which the objective decreases. We have

aa_g — (n= Dz "z 5 (—(n — D)z — a2+ (o — 1)22_0‘) ,
5 (om0t )

99 _ a9

8Z2 N Z9 821 '
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Note that we assumed that Vg(z) # 0, hence g—i(z) # 0. Suppose that g—i(z) > 0. Then, (1,9) is

a direction along which the objective decreases, for large enough § > 0, since

99 99 - 99 (_ ﬁ)
821(2)+5822(2)_821(2) 1 522 < 0.

It is also a feasible direction, since for € > 0 small enough, 0 < 25 + de < z1 + € < 1, and is also a

direction along which (n — 1)z]™® + 25~® + 25 increases, since

(n—1)z;%+46 ((1 —a)zy “ + az;o‘_l) =(1-a)(zg® =27 +6 ((1 — )z C + azz_a_l)

— (1 —a)(1 — 29) 46 (Zi ~(a- 1)> >0
2
for large enough §. Similarly, if g—i(z) < 0, one can show that (1,d) is again a feasible direction

along which the objective decreases, for

(a—1)(1 — z9)22 < Q’

a—(a—1)z 21

if one can select such §. Otherwise, one can show that (—1, —¢) is a feasible direction along which

the objective decreases, for
25 (a—l)(l—zg)zg.

21 a—(a—1)z

We have thus established that if z is not a stationary point, then there also exists an optimal
solution for which z; = 1. We next show that the same holds true if z is a stationary point.

Suppose that z is a stationary point, i.e., Vg(z1,22) = 0. Then, we have
(n—1)z*+az *—(a—1)22"=0.

Using the above, the objective evaluates to

[0 )]

21,22) = .
9(z1,22) a—1z
Moreover, if z; = Az9 for some X\ > 1, the stationarity condition yields

(n—1DAN" —(a—1D)A+a=0,

an equation that has a unique solution in [1,00). Let A be the solution. Then, the problem (B3)
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constrained on the stationary points of its objective can be expressed as

minimize -9%-22
subject to 21 = Azo, 21 <1

5% <(n=1u "+ "

or, equivalently,

e . 1
minimize a%i
subject to 21 = Az
1 1
e-Do-) S 2S5
In case the above problem is feasible, we pick zo = %, and z; = 1 and the proof is complete. |

Proposition 5. Consider a resource allocation problem with n players, n > 2. Let the utility set,

denoted by U C R™, be compact and convex. If the players have equal maximum achievable utilities

(greater than zero),

2 —1
POF (U;1) <1-— L (price of proportional fairness)
n
Let {a, € R |k € N} be a sequence such that oy, — oo and o > 1, Vk. Then,

4
limsup POF (U;a) <1 — r

————.  (price of maz-min fairness)
k—o00 (n + 1)2

Proof. Let f be defined as in Proposition [8l Using Theorem [I] for o = 1 we get

POF (U;1) <1— min_f(z;1,n)

z€[1,n]
2+ n—z
=1— min ——
z€[1,n] nx
a1
= " X

Similarly, for any £ € N and a = aj

POF (U; ) <1— mﬁn}f(m;ak,n),
xe|ln
which implies that

lim sup POF (U; o) < limsup (1 — min f(x;ak,n)>

k—o0 k—o0 z€[l,n]

<1-—liminf min f(z; o, n). (34)
k—oo z€[l,n]
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Consider the set of (real-valued) functions {f(.;ax,n)|k € N} defined over the compact set
[1,n]. We show that the set is equicontinuous, and that the closure of the set { f(z;ax,n) |k € N}
is bounded for any x € [1,n]. Boundedness follows since 0 < f(z;a,n) < 1 for any a > 0 and

€ [1,n]. The set of functions {f(.;ag,n) |k € N} shares the same Lipschitz constant, as for any
ke N, o > 1and x € [1,n] we have

(1— i) $2+$ —|—’%§:p1+$ —n(l—l—aik) 3:é — (z —n)?

Qg
s 2
(3:1+“k + (n— :13)3:)

|/ (; o, )| =

1 L 1 o141 1 L
< <1 - —> e 4 ixH“k —-n (1 + —> zok — (z—n)?
Qg Qg Qg
1 L 1 1+L 1 L
< (1 — —) AT ixH% +n (1 + —) rok + (x — n)2
Qg Qg Qg

<n3+ (n+ 1)n? + 20 + n? = 2(n® + 2n?).

As a result, the set of functions {f(.;ax,n) |k € N} is equicontinuous.

Using the above result,

lim min f(z;0,n) = min_ lim f(x;ak,n).
k—o00 z€[1,n] z€[1,n] k—o0

Thus, ([B4) yields

limsup POF (U;ax) <1 —liminf min f(x; ag,n)

k—o0 k—o00 Z‘E[l,n]
=1— min lim f(z;0,n)
x€[1,n] k—o0

1+
r %% +n-—-—x

=1— min lim

w€[l,n] k—oo a:1+$ + (n—2a)x
) n
=1— min ————
z€lln)  + (n — z)x
4
" |
(n+1)?

D. A Model for Air Traffic Flow Management

The following is a model for air traffic low management due to [Bertsimas and Stock-Patterson
(1998). Consider a set of flights, % = {1,..., F'}, that are operated by airlines over a (discretized)
time period in a network of airports, utilizing a capacitated airspace that is divided into sectors.
Let Z, C .Z be the set of flights operated by airline a € &7, where &/ = {1,..., A} is the set of
airlines. Similarly, 7 = {1,...,T} is the set of time steps, & = {1,..., K} the set of airports,
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and # = {1,...,J} the set of sectors. Flights that are continued are included in a set of pairs,
€ = {(f', f) : f'iscontinued by flight f}. The model input data, the main decision variables, and a

description of the feasibility set are described below:

Data. Ny = number of sectors in flight f’s path,
the departure airport, if 1 = 1,
P(f,i) = the (i — 1)th sector in flight f’s path, if 1 <i < Ny,
the arrival airport, if i = Ny,
Py = (P(f,i):1<i< Ny),
Dy(t) = departure capacity of airport k at time ¢,
Ag(t) = arrival capacity of airport k at time ¢,
Sj(t) = capacity of sector j at time ¢,
dy = scheduled departure time of flight f,
ry = scheduled arrival time of flight f,
sy = turnaround time of an airplane after flight f,
lyj = number of time steps that flight f must spend in sector j,
T]Z = set of feasible time steps for flight f to arrive to sector j = {ch, . ,T}},
T ?E = first time step in the set T]jc, and
T?c = last time step in the set TJZ.

Decision Variables.

Jo_

1, if flight f arrives at sector j by time step t,
0, otherwise.

Feasibility Set. The variable w is feasible if it satisfies the constraints:

Zf:P('ﬁl):k(w‘?t — w?t_l) < Di(t) Yk e X, t e T,

Zf:p(ﬁNf):k(wfct - wl;’t_l) < Ag(t) Ve e At € T,
Z‘]/”:P(f,i):j,P'(f,i—l—1):j’,i<Nf (wfvt - wi‘/t) <S;t) Vje 7. teT,

Wiy, — Wi <0 VfEF teT] j=P(fi),j =P(fi+1),i <Ny,
why —wi,_, SOY(f,f) €€, te T} k=P(fi)=P(f Ny),

wgct —wiﬂt_l >0VfeZF,jePrteTy,

wt, €{0,1} Vf € F,j € Pyt €T3,

The constraints correspond to capacity constraints for airports and sectors, connectivity be-

tween sectors and airports, and connectivity in time (for more details, see Bertsimas and Stock-Patterson

(1998)).
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