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1 Introduction.

The COVID-19 virus is being fought largely by policies to reduce contagion. These poli-

cies, which have been referred to broadly as “social distancing,” include forced closures of

businesses and restrictions (either mandatory or recommended) on travel and social gather-

ings. Research has accelerated on the development of anti-viral drugs to treat the disease

and a vaccine to reduce susceptibility, but is unlikely to affect the spread of the virus in

the near term. At this point, reducing contagion is the only effective policy tool, but it is

extremely expensive in terms of its impact on the economy. So one would naturally ask

to what extent and for how long should governments impose social distancing in order to

reduce the spread of COVID-19?

Several recent papers have addressed this question using off-the-shelf epidemiological

models to conduct cost-benefit analyses of alternative social distancing policies. The cost of

social distancing is largely unemployment and lost GDP; firms shut down, some go out of

business, and workers lose jobs. The benefit is the value of lives saved and avoided medical

treatments. Scherbina (2020), for example, uses an epidemiological model from Ferguson

et al. (2020) to estimate deaths and hospitalizations under alternative durations of enhanced

social distancing, and uses assumptions regarding weekly employment impacts to estimate

lost GDP for each duration. Using “value of a statistical life” (VSL) estimates to monetize

deaths, she finds the policy duration that maximizes the benefit-cost ratio.1 Greenstone and

Nigam (2020) use the same Ferguson et al. (2020) model but focus only on the benefits —

lived saved and medical expenses avoided — of alternative policies. Using age-adjusted VSL

estimates, they find the benefit to the U.S. of social distancing to be about $8 trillion. (Later

I explain why using VSL estimates might not make sense in this context.)

Others have calibrated the basic Susceptible-Infected-Removed (SIR) epidemic model to

COVID-19 and used it to study potential effects of policy-based variations in contagion.2

1Medical expenses are included (but far outweighed by the value of lost lives), and lost GDP is augmented
by assumptions regarding direct sectoral output losses. The epidemiological model in Ferguson et al. (2020)
is an updated version of one developed in Ferguson et al. (2006). The VSL is the marginal rate of substitution
between wealth (or discounted lifetime consumption) and the probability of survival. For its use to value
the prevention (as opposed to treatment) of pandemics, see Martin and Pindyck (2019).

2The “R” in SIR is often referred to as recovered, but that ignores deaths, i.e., assumes that everyone
removed from the susceptible pool recovers.
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An advantage of this model is that contagion can be embodied in a single parameter (as

discussed below). Stock (2020) focuses on how limited testing (asymptomatics are generally

not tested) affects our ability to calibrate the model and evaluate the economic costs of a

policy. Atkeson (2020b) and Anderson et al. (2020) explore how alternative dynamic social

distancing policies (e.g., a year of fixed social distancing versus an initial period of intense

social distancing followed by a relaxation of the policy) can affect the spread of the disease.

And Thunström et al. (2020) and Alvarez, Argente and Lippi (2020) used the SIR model,

combined with assumptions about mortality rates and policy-induced losses of GDP, for

cost-benefit analyses of social distancing policies.3

So how long should governments limit social interactions? I do not try to answer this

question. Both costs and benefits are very difficult to estimate, as are the parameters

that go into the epidemiological models, and this limits the value of any point estimates.

Instead, I use the simple SIR model, augmented to include deaths (D), to show how pandemic

progression is affected by the intensity and duration of a social distancing policy, and to

elucidate the key factors that underlie the evolution of a pandemic and the key trade-offs

that underlie policy design. This SIRD model has three free parameters, which I calibrate

to roughly fit the COVID-19 pandemic, and I then use the model to address the following:

(1) Holding death and recovery rates fixed, how does the maximum fraction of the popu-

lation that becomes infected, Imax, depend on the degree of contagion? (2) As the epidemic

ends, what fraction of the population will have died, what fraction will have recovered, and

what fraction will have avoided the disease and remain susceptible? (3) How does the du-

ration of the pandemic (the number of days until significant numbers of new infections end)

depend on the degree of contagion? (4) Given the fraction of susceptibles at the end, how

stringent must social distancing be to avert a second cycle of infections? (5) If a vaccine is

developed, what fraction of the population must be vaccinated to prevent more infections,

and how does it depend on the fraction of susceptibles? (6) What are the key trade-offs that

underlie the costs and benefits of a social distancing policy? (7) How should we monetize

the value of lives saved? The use of a VSL estimate is convenient, but is it warranted?

3In related work, Eichenbaum, Rebelo and Trabandt (2020) and Jones, Philippon and Venkateswaran
(2020) embed the SIR model in macroeconomic models of consumption and production, with economic
activity affecting contagion and the spread of the disease. Also, Barro, Ursúa and Weng (2020) use mortality
and GDP data from the 1918-1919 Spanish Flu to estimate bounds on possible COVID-19 outcomes.
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2 Disease Dynamics in the SIRD Model.

I take the basic SIR model and add an equation to account for deaths. Setting the

initial population to N0 = 1 (so that the state variables are measured as fractions of the

population), the model can be written as:4

dS/dt = −βStIt (1)

dI/dt = βStIt − (γr + γd)It (2)

dR/dt = γrIt (3)

dD/dt = γdIt (4)

Here St is the fraction of the population that is susceptible, It the fraction infected, Rt

the fraction that have recovered, and Dt the fraction that have died.5 Note that at t = 0,

Rt = Dt = 0, so S0 + I0 = N0 = 1. However, we need I0 > 0 or else the epidemic

doesn’t begin, so to apply this to COVID-19 we will take I0 to be very small. An important

assumption in this model is that a person who recovers from an infection becomes immune,

i.e., is no longer susceptible. (Whether this is realistic for COVID-19 is an open question.)

The parameters of this model can be interpreted as follows. First, β is usually referred

to as the contact rate, but it can also be thought of as the degree of contagion. It measures

how the interaction between susceptibles and infectives causes more susceptibles to become

infected (reducing St and increasing It). It is this parameter that social distancing and

related policies seek to control.

Next, γ ≡ γr + γd is the removal rate, i.e., the rate at which people leave the pool of

infectives either by recovering (γrIt) or dying (γdIt). As is usually done, I treat γ and its

components as constants, although successful research on COVID-19 treatments would raise

γr and lower γd. The ratio ρ = γ/β is referred to as the relative removal rate, and 1/ρ is

referred to as the reproduction number or reproduction rate, and is (unfortunately) denoted

4The SIR model was proposed by Kermack and McKendrick (1927), and is discussed in detail, along with
numerous deterministic and stochastic variations and extensions, along with applications, in Bailey (1975)
and Anderson and May (1992). Allen (2017) describes a stochastic version of the basic model. Avery et al.
(2020) provide a critical review of this and other models in the context of COVID-19.

5Some studies, e.g., Atkeson (2020b), include an exposed group, Et, only some of which become infected.
This adds a state variable and a parameter, but the disease dynamics remains the same.
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by R0. With γ constant, changing R0 changes β, the degree of contagion, and it is R0 that is

usually treated as the key policy variable. If R0 ≤ 1, removals from the pool of infectives (as

infected people recover or die) exceeds entry into the pool, so the pandemic cannot take off.6

This can be seen from eqn. (2); dI0/dt > 0 requires the initial fraction of susceptibles, S0, to

exceed 1/R0. So if S0 < 1, i.e., not everyone is susceptible, a greater degree of contagion is

needed (R0 > 1/S0) for the epidemic to take off.

This SIRD model is extremely simple and ignores several aspects of COVID-19 and the

design of polices to control it. Perhaps most important, it treats the epidemic as occurring

within one large mass of homogeneous individuals, whereas in fact outbreaks are regional,

with each region consisting of heterogeneous individuals, and with new outbreaks igniting

as regions interact with each other. Nonetheless, the model can help elucidate the dynamics

of COVID-19 and provide rough answers to several interesting questions.

2.1 Some Basic Analytics.

Assuming that we start with a fraction of infectives I0 close (but not equal) to zero, and

thus a fraction of susceptibles close to 1, the speed, duration and intensity of the epidemic

depend on the values of β and γ. We want to address the following questions: (1) What is

the maximum fraction of the population that will become infected, Imax, and taking γr and

γd as fixed, how does it depend on the contact rate β? (2) How does the duration of the

epidemic depend on β? (3) As the epidemic ends, what fraction of the population will have

died, what fraction will have recovered, and what fraction will have avoided the disease and

remain susceptible? (4) If the fraction of susceptibles at the end is large, would a relaxation

of the social distancing policy generate another cycle of infections and deaths? (5) Suppose

a vaccine is developed. What fraction of the population must be vaccinated to prevent more

infections, and how does it depend on the fraction of susceptibles at the time?

The Pool of Infectives.

To find the behavior of It and Imax, divide eqn. (2) by eqn. (1):

dI/dS = −1 + ρ/St , (5)

6This was roughly the case for the Ebola pandemic: Infectives were contagious only when very sick (or
dead), and the fatality rate was very high, so β was low and γ was high, making R0 < 1.
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so

It =

∫ t

0

[−1 + ρ/S]dS = S0 + I0 − St + ρ log(St/S0) = 1− St + ρ log(St/S0) .

It will reach a maximum when dI/dS = 0, i.e., at the point where S∗ = ρ. Then dI/dt >

(<) 0 when St > (<) ρ. Thus the maximum number of infectives is

Imax = 1− ρ+ ρ log(ρ/S0) ≈ 1− ρ+ ρ log ρ (6)

Recall that ρ = γ/β, and note that ∂Imax/∂ρ = log ρ. So as long as ρ < 1, i.e., the

reproduction numberR0 = 1/ρ > 1, a decrease in the contact rate β will reduce the maximum

number of infectives. (If R0 = 1, Imax = 0, and the pandemic cannot take off.)

The Dead and the Susceptibles.

As the epidemic (asymptotically) ends, the total number of deaths (denoted by D∞)

depends on the number of infectives at each moment in time, and the rate at which those

infectives recover or die (i.e., the parameters γr and γd). But the total number of deaths is

also a simple function of the remaining number of susceptibles, S∞, which we can determine

as follows.

Dividing eqn. (1) by eqn. (3), d logSt/dRt = −β/γr, so log(S∞/S0) = (−β/γr)R∞. But

R∞ = N0 −D∞ − S∞ = 1−D∞ − S∞, so

log(S∞/S0) = −(β/γr)S∞ − β/γr − (β/γr)D∞ .

Dividing (1) by (4), d logSt/dDt = −β/γd, so D∞ = −(γd/β) log(S∞/S0). Substituting

above for D∞ gives us the fundamental equation for the final number of susceptibles, S∞:

(γ/β) log(S∞/S0)− S∞ + 1 = 0 . (7)

Then S∞ is the root of this equation (which can be solved numerically). This equation lets

us determine the fraction of the population still susceptible when the epidemic ends. Note

that reducing R0 = β/γ raises S∞, and S∞ → S0 as R0 → 1.

Since S0 is close to 1, and using (7), we can write the total number of deaths as

D∞ = (γd/γ)(1− S∞) . (8)
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How does the final number of susceptibles and total number of deaths depend on the contact

rate β? From (8), dD∞/dβ = (−γd/γ)dS∞/dβ. Taking the total differential of eqn. (7) with

respect to S∞ and β,
dS∞
dβ

=
S∞ logS∞
β(1− S∞)

≤ 0

A higher contact rate means more people are infected during the course of the epidemic,

making the final number of susceptibles, S∞, lower.

Since policies to reduce the contact rate are usually expressed in terms of the reproduction

number R0 = β/γ, and dD∞/dR0 = γdD∞/dβ, we have

dD∞
dR0

= − γdS∞ logS∞
γR0(1− S∞)

≥ 0 . (9)

Once we solve for S∞, we can use eqn. (9) to determine how many deaths are averted if R0

is reduced by an incremental amount.

Given a value for lives saved, eqn. (9) can be used to calculate a “willingness to pay”

(WTP) for reductions in R0. After scaling up by the actual population, it gives the social

demand curve for “quantities” of R0. Of course to determine the optimal value of R0, we

also need a supply curve, i.e., the incremental cost of reducing R0 as a function of R0. That

incremental cost might be a measure of lost GDP, as in some of the cost-benefit studies cited

in the Introduction.

A Possible Second Wave.

The solution to eqn. (7) is S∞ > 0, i.e., at the end not everyone will have been infected

and thus (by assumption) immune. Furthermore, the lower the reproductive number R0 the

larger will be S∞. Suppose we have reached S∞, i.e., the epidemic has ended, but now some

new infectives are introduced into the population. Will a new cycle of infections take off?

The answer depends on what happens to the reproduction number. Suppose that because

of a stringent social distancing policy, R0 has been kept at a low value (say 1.5) throughout

the course of the epidemic. If R0 continues to be kept at this low value, and there is no

significant change in the size of the population, there can be no second wave of infections.

This is because the system of equations (1) to (4) has a unique steady-state equilibrium; the

solution to eqn. (7) depends only on γ/β = 1/R0. Given R0, whatever the value of S∞, it

will be too small to sustain an increase in the number of infectives.
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But suppose instead that the social distancing policy is relaxed, so that R0 increases.

Will a second wave of infections take place? The answer depends on the size of the increase

in R0. If the increase in R0 is small, no new infections will occur.7 But if the increase in R0

is sufficiently large, a second wave will occur.

How large must the increase in R0 be to generate a second wave? From eqns. (5) and

(7), we know that S∞ < γ/β = 1/R0., and from eqn. (2), for dI/dt > 0 we need St > γ/β.

But now we are at a new starting point, S ′0 = S∞, so for a new wave of infections to start,

we need S∞ > γ/β. In other words, the contact rate β (and thus the reproductive number

R0) must increase sufficiently so that γ/β′ < S∞.

The start, end, and possible restart of the epidemic are illustrated in the phase diagram

of Figure 1. The epidemic starts with a very small number of infectives, and thus a number

of susceptibles S0 (as a fraction of the population) just under 1. The reproduction rate

R0 = β/γ is assumed to be only 1.5, so the number of infectives reaches its maximum value

of 0.21 at S = γ/β = 1/R0 = 0.67. (Note that It is increasing as long as St > 1/R0 and is

decreasing when St < 1/R0.) In this example, the epidemic stops when St falls to S∞ = 0.5.

Now suppose the social distancing policy is relaxed somewhat, so that R0 increases to

1.8. Can a second wave begin? The answer is no, because although R0 is now larger, the

number of susceptibles is too small to sustain a growing number of new infections. (Note

that had R0 been 1.8 instead of 1.5 at the beginning, the maximum number of infections

in the first wave would have been higher and S∞ would be lower.) For a second wave to

begin, we would need S∞ > 1/R0 = .55, but as Figure 1 shows, S∞ is only .50. But suppose

instead that the social distancing policy is completely relaxed, so that R0 increases to 3.4,

and 1/R0 = .29 < .50. Now a second wave will occur, starting at S ′0 = 0.50, reaching a peak

fraction of infectives of about .05, and (as shown in the figure) ending as St falls to S ′∞ = 0.2.

In the example illustrated in Figure 1, the second wave is much less intense than the first

wave (the maximum number of infections is lower and the number of deaths will be lower),

because the pool of susceptibles is only half of what it was at the beginning of the first wave.

In general, the intensity of the second wave will depend on how many susceptibles remain

after the first wave, and on how much larger is the reproduction rate R0. From eqn. (7), the

7This might not be the case in a more complex (and realistic) model. The SIRD model assumes a closed
and homogeneous population with random mixing, which is not the case for the U.S. or most other countries.
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Figure 1: Possibility of a Second Wave. First wave starts at S0 close to 1. With R0 = 1.5
infections peak when St reaches 1/R0 = .67, and wave ends when St falls to S∞ = .50. An
increase in R0 to 1.8 is insufficient to start a second wave, because the number of susceptibles
is too small. A second wave requires R0 > 1/S∞ = 2. In the figure, R0 is increased to 3.4,
so a second wave begins and ends when St falls to S ′∞ = .20.

number of susceptibles at the end of the second wave, S ′∞, is the solution of

(γ/β′) log(S ′∞/S∞)− S ′∞ + 1 = 0 . (10)

The total number of deaths from both the first and second waves is D′∞ = (γd/γ)(1− S ′∞),

so the additional number of deaths is

∆D = D′∞ −D∞ = (γd/γ)(S∞ − S ′∞) . (11)

The larger is the new contact rate β′, the smaller will be S ′∞ and the larger will be ∆D. So

given a sufficiently large increase in R0, a second wave can occur, and it can be severe.
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Herd Immunity.

Herd immunity is often described in terms of a critical fraction of susceptibles S∗ that is

low enough to prevent an epidemic from taking off. But in fact herd immunity depends on

the product of two numbers — the fraction of susceptibles S and the reproduction number

R0. Growth in the fraction of infectives requires SR0 < 1. Thus herd immunity is meaningful

only in the context of the reproduction number likely to prevail when there is no policy in

place to reduce contagion.

Let Rm
0 denote the maximum value of R0 we can expect if the social distancing policy is

completely removed. Estimates of Rm
0 vary widely (see Atkeson (2020b)), and depend on local

living conditions and social mores. Given an estimate, the critical fraction of susceptibles is

S∗ = 1/Rm
0 . In Figure 1, the second wave ends with S ′∞ = 0.2, and I assumed that Rm

0 = 3.4.

So in that hypothetical case, S ′∞R
m
0 = 0.68, and there is herd immunity.

A Vaccine Is Developed.

Suppose a vaccine is developed that provides perfect long-term immunity to the virus.

How does the evolution of the epidemic depend on the fraction of the population that is

vaccinated? How does it depend on the number of susceptibles at the time the vaccine

arrives, and on the reproduction number R0?

A vaccine is subject to the same externality that exists for social distancing: I benefit if

you are vaccinated, just as I benefit if you stay home and practice social distancing. This

complicates optimal pricing, whether vaccinations should be required, and the estimation of

vaccine effectiveness, and there is a large literature that deals with these issues. There is

likewise a literature (smaller and more recent) on optimal policies for vaccine development.

I will abstract away from these issues and simply assume that once a vaccine is available, a

random fraction of the susceptible population is vaccinated at no cost. I consider two cases:

(1) The vaccine is available at the beginning of the epidemic; and (2) the vaccine becomes

available after the first wave ends, but before any second wave begins.

Vaccine Available at the Beginning. Suppose that before the epidemic starts to take

off, so that everyone is susceptible, a fraction v0 of the population is vaccinated. How does

v0 affect the number of deaths and maximum number of infections, and how large must v0

be to prevent the epidemic from taking off at all? The answers are best understood in the
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Figure 2: Maximum Infection Rate with Vaccine. Without a vaccine, the starting number
of susceptibles is S0 = 1. If the vaccination rate v0 exceeds ρ = 1/R0, the remaining number
of susceptibles, (1− v0), is too small to sustain an epidemic.

context of the “second wave” analysis presented above. The number of initial susceptibles

is reduced from S0 to (1− v0)S0 ≈ (1− v0). If, for example, v0 = .50, Figure 1 would apply,

but we would be starting at S0 = (1 − v0) = 0.50, and the epidemic could only take off if

the reproductive number R0 is above 2.0. If R0 < 2, the number of susceptibles would be

too small to sustain a growing number of new infections.

If R0 > 1/(1− v0), the epidemic can take off, and the larger is R0, the larger will be the

maximum number of infectives and the number of deaths. From eqn. (5), It again reaches a

maximum when St = ρ = 1/R0, but (6) now becomes:

Imax = (1− v0)− ρ+ ρ log(ρ/(1− v0)) , v0 < 1− ρ (12)

This dependence of Imax on v0 is illustrated in Figure 2.

From (10), the final number of susceptibles, S∞, is the solution to

(γ/β) log(S∞/(1− v0))− S∞ + 1 = 0 ,

so ∂S∞/∂v0 > 0. The total number of deaths is, as before, D∞ = (γd/γ)(1− S∞).
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Vaccine Available After First Wave. Now suppose a first wave of infections has

ended when the vaccine becomes available, and only those who are still susceptible are

vaccinated. Because the number of susceptibles is smaller than at the outset, the vaccine

can more readily substitute for social distancing.

Suppose that social distancing kept R0 at only 1.5 during the first wave, as in Figure 1.

We saw that with no vaccine, we could avoid a second wave by keeping R0 below 1/S∞ (in

Figure 1, 1/S∞ = 2.0). But R0 could rise well above this level if we vaccinate a sufficient

fraction of the remaining susceptibles. Denoting the vaccination rate by v0, a second wave

now requires R0 > 1/(1 − v0)S∞. In Figure 1, a vaccination rate of .33 would allow R0 to

increase to 3.0 without a second wave occurring.

2.2 Rough Calibration to COVID-19.

Calibrating the SIRD model involves only three parameters: β, γr and γd. Unfortunately,

in the case of COVID-19 we lack the necessary data to estimate these parameters in any

precise way. For example, we don’t know the true number of infectives (in the U.S. or

anywhere else), because testing has been very limited, and many people infected show mild

or no symptoms. Likewise, we don’t know the true number of deaths from the virus; with

limited testing and almost no autopsies, the cause of death for many COVID-19 victims is

recorded as something else. Some implications of this lack of data have been explored by

others, e.g., Atkeson (2020a), Manski and Molinari (2020), Stock (2020), and Avery et al.

(2020). Here I simply stress that any calibration of this (or any other epidemiological) model

to COVID-19 must be be viewed as extremely rough, and any projections from a calibrated

model should be taken with a grain of salt.

With that caveat, I will select values for β, γr and γd based on the limited information we

have for the U.S., and on calibration exercises done recently by Atkeson (2020b), Eichenbaum,

Rebelo and Trabandt (2020), and Stock (2020). I will then use the calibrated model to further

illustrate some of the analytical results described above.

Taking the population to be N0 = 1, I assume that the initial number of infectives is

I0 = 6 × 10−6, and given a U.S. population of about 330 million, this would correspond to

about 2,000 people infected at the outset.8 This may seem high, but many thousands of

8This illustrates an important aspect of the simple SIRD model that is unrealistic: Infections in fact took
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people entered the U.S. from China and other infected areas during January and February

of 2020, and some of them were likely to be infected but asymptomatic. The initial number

of susceptibles is S0 = 1− I0.
I take the time interval ∆t to be one day. I set the total removal rate γ at .07, which is an

average of the estimates used by Atkeson (2020b) and Stock (2020).9 Assuming the average

illness duration is about the same whether the patient recovers or dies, γd depends only on

the fraction of patients that die. But determining that fraction is difficult. Apart from age

dependence (γd is much higher for older people), there is a strong dependence on the quality

and availability of critical medical care. Thus we see enormous variation across countries

(and across states in the U.S.) in the ratio of deaths to confirmed cases.10 This variation

does not mean that countries or states with high ratios have poor medical care; instead they

had high congestion, i.e., hospitals were overwhelmed by a sudden surge of cases.

Whatever the ratio of deaths to confirmed cases, it is probably overestimates the true

death rate by a factor of two or more, because the denominator is an underestimate of the

actual number of cases. In the U.S., for example, the death rate is probably well below 4 or

5 percent. But how much below is unclear. So what number should we use for γd?

Eichenbaum, Rebelo and Trabandt (2020) cites a March 16, 2020 WHO estimate of about

1%, based on data from South Korea. The ratio of deaths to confirmed cases was about .02

for South Korea, and compared to other countries, there was little or no congestion in the

health care system, so 1% seems reasonable.11 But as discussed in Jones, Philippon and

Venkateswaran (2020), if there is congestion, that should be taken into account as part of

the death rate. (They estimate the death rate to be 1% with no congestion, but significantly

higher with congestion.) In many areas of the U.S. there is indeed congestion, so I will

assume a death rate of 2%. Thus γd = (.02)(.07) = .0014 (and γr = .0686).

off at specific points in the U.S., not from a pool of people spread out evenly across the country.

9Assuming the half-life of an infection is 6 days, Stock (2020) sets γ to 0.55 on a weekly basis, which
corresponds to 0.08 for ∆t = 1 day. Atkeson (2020b) sets γ (daily) at about .06, based on an average illness
duration of 18 days.

10On April 15, 2020, that ratio was below .03 in Israel, South Korea, Austria and Germany, .045 in the
U.S., and above .13 in Italy, France and the U.K.

11Alvarez, Argente and Lippi (2020) sets γd = .01γ, and argues that this is consistent with the 1% age-
adjusted fatality rate from the Diamond Princess cruise ship. But Hortaçsu, Liu and Schwieg (2020), using
regional epicenter data, obtains much lower estimates of the fatality rate.
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Given γ and its components, we are left with the contact rate, β, or equivalently, the

reproduction number R0 = β/γ, which is a function of the social distancing policy that is in

place. What is a reasonable value for the reproduction number R0 at the outset, i.e., before

any social distancing policy has been applied? Atkeson (2020b) surveys estimates from about

8 studies, based on data from China, Italy, the U.S., and the Princess Cruise ship; those

estimates suggest a range between 2.2 and 3.3. Of course R0 will depend on social mores

and living conditions, and is likely to be higher for Italy, New York City, or a cruise ship

than for rural areas of the U.S. I take the base value of R0, with no social distancing policy,

to be 3.0, and then explore what happens when R0 is reduced.

2.3 Contagion and Disease Dynamics in the Calibrated Model.

Figure 3 shows solutions of eqns. (1) to (4), with γd = .0014 and γr = .0686, and

R0 = 3.0, 2.5, 2.0 and 1.5 (corresponding to β = γR0 = .210, .175, .140 and .105), and with

starting value I0 = 6×10−6. The figure suggests that new infections (and deaths) begin and

end at specific points in time, but in fact new infections begin on day 1 and drop to zero

only asymptotically.12 So to measure the duration of the epidemic, I will (arbitrarily) take

its onset (end) to be the date at which It first reaches (falls back to) 1% of its maximum

value. So for R0 = 3.0, the epidemic runs from day 49 to day 187, for a duration of 138 days.

For R0 = 2.5, 2.0, and 1.5, the durations are 166, 189, and 374 days respectively.

Figure 3 illustrates some fundamental characteristics of the model and their implications

for social distancing policies. First, as R0 and thus β are lowered, the epidemic takes off (i.e.,

the fraction of infectives becomes significant) later and then evolves more slowly and lasts

longer. Using my definitions of the onset and end dates, new infections begin, peak, and end

later. For R0 = 3.0, 2.5, 2.0, and 1.5, the onset is on Day 49, Day 61, Day 118, and Day

136 respectively, and as shown above, the durations run from 138 to 374 days. Furthermore,

the “duration” that matters for policy is the period of time the policy must be in place, i.e.,

from Day 1 until the end date. For R0 = 3.0, 2.5, 2.0, and 1.5, these durations are 187, 227,

307 and 510 days respectively. This creates a policy problem: Even if the per-day economic

cost of a social distancing policy is the same no matter how strict it is, the total cost will be

12Suppose R0 = 3 so β = .21 (the black solid line in each panel). Then for the U.S. (population 330
million), on Day 1 there are 277 new infections, and over the first week there are about 2,400 new infections
and 6 deaths. On day 250 there are about 23,000 people infected, and on day 400 about 3 people infected.
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Figure 3: Solution of SIRD Model. The top panel shows the fraction of the population
infected over time (in days) for R0 = 3.0, 2.5, 2.0 and 1.5, and with starting value I0 =
6 × 10−6. The middle and bottom panels show the fraction that is susceptibles and the
fraction that have died. The parameter values are γd = .0014 (corresponding to a 2%
fatality rate) and γr = .0686, so the total removal rate is γ = .07, and β = .07R0.

greater for a stricter policy because it must be maintained for many more days.

Second, deaths (and recoveries) occur in proportion to the number of infectives on each

day. So the total number of deaths is δd times the area under the infection rate curve in the

top panel of Figure 3 (black curve for R0 = 3.0). As R0 is reduced, the infection rate curves

“spread out,” but the areas under them fall, i.e., there are fewer deaths in total.
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The area under the infection rate curve is also the fraction of the population no longer

susceptible, i.e., the fraction that have been “removed” from the population. Of those

“removed,” a fraction γr/γ will have recovered and a fraction γd/γ will have died, which

is what eqn. (8) is telling us. As the middle panel of Figure 3 shows, as R0 is reduced

and the total number of infectives falls, the total number removed falls, and the number of

susceptibles rises. So if R0 = 3.0, the final fraction of susceptibles is only S∞ = .055, but if

R0 = 1.5, that fraction is 0.42.

This creates another policy problem: If a stringent social distancing policy reduces R0

from, say, 3.0 to 1.5, at the end there will be fewer deaths but a larger pool of people still

susceptible. If there is no vaccine, then once the policy is removed (and R0 returns to 3.0),

there will be a greater chance of a second wave of infections (along the lines of Figure 1).

Thus if the fatality rate is low, a less strict social distancing policy might be preferable

because it reduces the chance of second wave after life returns to normal.

Contagion and the Number of Deaths.

Figure 3 shows the fraction of deaths over time for four values of R0. But social policies

are expensive, so one might ask if there are increasing or decreasing returns to incremental

reductions in R0. Figure 4 shows the total number of deaths at the end (i.e., after 500

days) as a function of R0. Using eqn. (9), it also shows the incremental number of deaths

corresponding to ∆R0 = 0.1. Both numbers have been scaled to the U.S. population.

As we move from right to left and R0 falls, the total number of deaths declines, slowly

at first and then more rapidly, as the incremental number of avoided deaths from small

reductions in R0 rises increasingly fast. This follows from eqns. (7) and (8); as R0 is reduced

towards 1, S∞ approaches 1 and D∞ approaches zero. So if we think of an incremental

reduction in R0 as a unit of policy “output,” we see increasing returns. As R0 is reduced in

increments of 0.1, the incremental reduction in deaths becomes larger and larger. Of course

the incremental cost of reducing R0 will probably also become larger, as discussed below.

Fundmental Policy Trade-offs.

I do not attempt a cost-benefit analysis that would lead to a policy recommendation;

the SIRD model is too simple, even more complex models have parameters that we can’t

identify, and we have little data from which to estimate economic impacts. Nonetheless,
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Figure 4: Total and Incremental Numbers of Deaths in the U.S. Deaths are plotted as
a function of the reproduction rate R0, based on a U.S. population of 330 million. The
incremental number of lives saved rises as R0 is reduced.

the calibrated SIRD model can help elucidate some key policy trade-offs, and clarify the

parameter values and data that are fundamental to policy design.

Suppose that with no policy intervention, R0 = 3.5. What are the costs and benefits of

reducing R0 to some number below 3.5? Start with the cost, which for simplicity I will take

to be lost GDP.13 It can be broken into two parts: (1) the cost per day of social distancing,

which depends on the size of the reduction in R0 but also on the number of days the policy

is in effect; and (2) the number of days itself, which in turn depends on the reduction in R0.

Denoting the per-day cost by C and the number of days by N , and ignoring for now a

13There are other costs that don’t appear directly in GDP, such as unemployment, bankruptcies, losses
of homes and businesses, lost education, and increases in inequality. And I ignore the psychological costs of
social distancing. Mulligan (2020) estimated the total annual economic cost to be about $7 trillion.
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possible second wave, the total cost can be written as:

TC = N(R0)× C(R0, N(R0)) , (13)

Start with the duration, N(R0). Clearly N ′(R0) < 0, but what about N ′′(R0)? Figure 5

shows the number of days from the start (Day 1) to the end of epidemic, relative to the

162-day duration for R0 = 3.5. (The relative duration is more informative because the

absolute duration depends on I0, which as a rough guess we set at 6 × 10−6. Note that

duration becomes infinite as R0 → 1.) Also shown (as a dashed line) is a function fitted to

the relative duration curve: D = (3.5/R0)
1.5 + 10R−100 . The figure shows that N ′′(R0) > 0,

and it lets us determine how N is affected by incremental reductions in R0.

As for the per-day cost, by assumption C(3.5, N) = 0, and we expect ∂C(R0, N)/∂R0 < 0

because larger reductions in R0 require stricter social distancing rules, which presumably

impose a greater cost on the economy. But it is likely that ∂2C(R0, N)/∂R2
0 > 0; even

17



weak social distancing (e.g., reducing R0 to 2.5) requires many businesses to shut down

or reduce operations, whereas the additional economic losses from “strict” to “very strict”

regulations (e.g., reducing R0 from 2.0 to 1.5) are likely to be smaller. Finally, we expect

∂C(R0, N)/∂N > 0; it will be more than twice as costly to keep R0 = 2.0 for 200 days

than it will for 100 days, because the longer duration will cause permanent damage due to

bankruptcies, layoffs, etc.

The benefit of reducing R0 is mostly the value of lives saved, but also reduced medical

costs. How many lives would be saved? In Figure 4, the total number of U.S. deaths with

no social distancing policy (R0 = 3.0 to 3.5) in on the order of 6 million. Moderate social

distancing, e.g., reducing R0 to 2.0 to 2.5, would save about 1 million lives, but strict social

distancing, e.g., reducing R0 to 1.2 to 1.5 would save 3 to 5 million lives. (This is with a

fatality rate of 2%, which may be too high, but even 1% implies around 3 million deaths

with no social distancing.) Denote the number of deaths by D(R0), with (as Figure 4 shows)

D′(R0) > 0 and D′′(R0) < 0, and denote the social value of a life lost by V .

The basic cost-benefit calculation comes down to reducing R0 up to the point that equates

the marginal benefit V D′(R0) to the marginal cost dTC/dR0. Using eqn. (13):

V D′(R0) = N(R0)

[
∂C

∂R0

+
∂C

∂N
N ′(R0)

]
+N ′(R0)C(R0, N) (14)

Both N(R0) and D(R0) would come from an epidemiological model; for the simple SIRD

model, they are shown in Figures 4 and 5. Given the lack of data, specifying C(R0, N)

requires assumptions about employment and output impacts, and will be subject to consid-

erable uncertainty. That leaves the social value of a life, V , which I turn to that next.14

Value of Lives Saved.

All of the studies that I have cited use a VSL estimate for V , typically around $11 million

per life saved, which is roughly the number used by the EPA, DOT, and other regulatory

agencies in the U.S.15 Then 3 million lives saved would be valued at $33 trillion. (The U.S.

14I am ignoring costs of hospitalizations and other medical treatment, which most studies show are small
relative to the value of lives lost. If medical costs are proportional to deaths, we could account for them by
scaling up V D(R0). Also, note that discounting is irrelevant because the time horizon is less than two years.

15See, e.g., Greenstone and Nigam (2020) and Thunström et al. (2020). For an overview of the VSL and
some issues with its use, see Viscusi (1993, 2018), Ashenfelter (2006) and Hammitt and Treich (2007). The
DOT (EPA) used a $9.6 ($9.9) million VSL in 2016 (2011), which is about $10.4 ($11.5) million in 2020.
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GDP in 2019 was about $21 trillion.)

But should we use the VSL? The VSL is the marginal rate of substitution between wealth

(or future lifetime consumption) and the probability of survival, i.e., minus the slope of the

indifference curve between wealth w and survival probability p, measured at a particular point

(w, p). It is a local measure that tells us how much wealth or consumption an individual

would sacrifice in return for a small increase in the probability of survival. It does not tell

us how much an individual would sacrifice to avoid a significant probability of death, which

might be very different from the VSL. Consistent with its definition, estimates of the VSL

often come from data on risk-of-death choices made by individuals, such as the decision

to take a riskier but higher-paying job rather than a safer one. And consistent with its

definition, the VSL can be applied to cost-benefit analyses of government regulations. An

example is the requirement that cars have air bags, which reduces drivers’ fatality risk by a

small amount, at the cost of a small sacrifice of lifetime consumption.

The VSL has a number of well-recognized problems, but the biggest one is that it reflects

individual preferences, not the preferences of society. So it is increasing in a person’s wealth

level (because a wealthier person has more utility to lose should she die), which need not

correspond to social preferences. And because it is a marginal rate of substitution, it does

not aggregate consistently; applying an $11 million VSL to the U.S. population yields $3,600

trillion, about 170 times the U.S. GDP, and about 230 times annual U.S. consumption.

But shouldn’t the preferences of society reflect individual preferences? Not necessarily,

as illustrated by the aggregation problem. The small amount of income I would sacrifice for

a safer job might imply a VSL of $11 million, but it could have little to do with the amount

I would sacrifice to avoid a substantial risk of death, or the amount society is willing to

sacrifice to prevent the deaths of a substantial fraction of the population.

How does this apply to pandemics? Martin and Pindyck (2019) use the VSL to calculate

the social willingness to pay (WTP) to avert a low-probability risk to life — the possibility

of a major pandemic, that if not averted would have an annual probability of around .02 of

occurring, and should it occur might kill 2 to 5 percent of the population. The benefit to

each member of society from averting the threat is a reduction in their fatality risk of about

(.02)(.05) = .001, which is indeed a marginal change. But the COVID-19 pandemic is a sure

thing, not a potential threat, so the fatality risk is much larger. And the cost of reducing
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the risk is much larger, as we see from the economic impact of social distancing policies.

Eliminating or reducing the risk of death from COVID-19 significantly increases the

survival probability p. The convexity of the indifference curves means that as p is increased,

−dw/dp decreases. Thus the $11 million VSL figure will overstate the benefit from lives

saved, even if we base that benefit on individual preferences toward mortality risk. But to

say how much it overstates the benefit we would need to map out the indifference curves,

which we can’t do. We can, however, consider an extreme case. Suppose instead of asking

people how much of their wealth they would give up to avoid a very small probability of

death, we ask them how much they would give up to avoid certain death. Presumably they

would give up their entire wealth. In 2018, the total net wealth of U.S. households was

$98 trillion, i.e., $297,000 per person, quite a bit less than $11 million.16 (This ignores the

extremely unequal distribution of wealth in the US, but the VSL ignores that as well.)

Fortunately, COVID-19 does not imply certain death. There is still a great deal of

uncertainty over the actual fatality rate, and it varies enormously across regions. If the

fatality rate turns out to be very small, the VSL might be appropriate, but if it is on the

order of 2%, the number for V should be much less than $11 million. We could also look at

what societies actually spend to save large numbers of lives. For example, the U.K. National

Health Service (NHS) limits what they will pay for a given treatment by using a “Quality-

Adjusted Value of a Statistical Life Year” of af about $38,000, which translates to a VSL of

around $1 million.

A Second Wave.

If we have a number for V along with estimates of N(R0), D(R0) and C(R0, N), we could

use eqn. (14) to calculate the optimal value for R0, and from the SIRD model, determine the

final fraction of susceptibles, S∞. But then we have to ask what happens if at the end we

remove the social distancing restrictions so that R0 returns to its unregulated value. Will

we have a second wave of infections, and if so, how many additional deaths?

Suppose R0 is maintained at an “optimal” value of 1.5 (as in the green line in Figure 3).

Then after a duration of 510 days the remaining fraction of susceptibles would be 0.42, so we

16Federal Reserve, Financial Assets of the U.S., Table Z.1. Total assets were $113 trillion and liabilities
were $15 trillion.
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could increase R0 to 1/(0.42) = 2.4 without creating a second wave. But what if the social

distancing policy is lifted entirely and R0 rises to 3.0? Using eqns. (10) and (11), we can

calculate that the fraction of susceptibles will fall further to S ′∞ = .022, and the additional

fraction of the population that dies is .008, i.e., about 2.6 million additional deaths.

However, this scenario — R0 kept at 1.5 and then allowed to rise to 3.0 — is probably

not optimal. More generally, picking a single number for R0, or two successive numbers,

will always be dominated by a fully dynamic policy in which R0 is varied over time. That

is the rationale for the dynamic optimization problems studied by Jones, Philippon and

Venkateswaran (2020) and Alvarez, Argente and Lippi (2020). If we take the epidemiological

model at face value, and assume that continuous variation of R0 if feasible, we could do better

than the more limited options examined above. But how much better is an open question.

3 Conclusions.

I have not tried to determine an optimal policy for the control of COVID-19 contagion, or

evaluate alternative policies. Others have tried to do this using off-the-shelf epidemiological

models, but are limited by our current inability to identify the parameters of these models

and estimate the relevant policy costs and benefits. Instead I have used a simple SIRD model

to elucidate how pandemic progression is affected by the control of contagion and the key

trade-offs that underlie policy design.

Isn’t the SIRD model too simple and unrealistic? Yes and no. Yes, because it treats

the epidemic as occurring within one large mass of homogeneous individuals, whereas in

fact a key element of COVID-19 progression is its outbreak in local epicenters followed by

transmission and seeding of new epicenters. And yes, because it assumes that the contact

and removal rates β and γ (and hence R0) are the same for all groups of individuals. Given

these limitations, the model is probably not well suited for forecasting and policy design.

But no, insofar as the objective is to get a basic understanding of how contagion affects

pandemic progression and policy trade-offs. It illustrates, for example, how R0 affects the

infection rate, the total and incremental number of deaths, the duration of the pandemic,

and the possibility and impact of a “second wave.” That is the main reason for my use of

the model, and why it has been used by other studies (e.g., those cited in the Introduction).

With these caveats, I have used the model to show (1) how the marginal cost of re-
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ducing R0 depends on the marginal duration N ′(R0), and on how the marginal daily cost

C(R0, N(R0)) varies with R0 and the duration; and (2) how the marginal benefit depends

on the marginal number of deaths D′(R0) and the social value of a life V . In practice, both

N(R0) and D(R0) would come from an epidemiological model, and C(R0, N) would require

assumptions about employment and output impacts. As for the social value of a life V ,

most studies use an estimate of the VSL. I have argued that this is problematic. The VSL

is a marginal rate of substitution, but reducing the risk of death from COVID-19 implies

a significant increase in the survival probability, so the convexity of the indifference curves

means that the VSL will overstate V .
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