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Data set

We used the following variables to analyze customers’ ex-
ploratory behavior: anonymized customer ID, anonymized
restaurant ID, anonymized order ID, the name of the city
in which an order was placed, the cuisine type of the order
(180 types in total), the standardized price of the restaurant
indicating how much more expensive it was than an average
restaurant within the same city (from 0.25 to 2), the standard-
ized estimated delivery time of the order (z-scores from -2 to
3), how many orders a customer had placed previously (over
her entire order history), whether or not it was the first time a
customer had ordered from the chosen restaurant (again over
the entire history), the mean rating of the restaurant at the
time of the order from 4 to 5∗, the number of previous ratings
for the restaurant at the time of the order, and the eventual
rating the customer provided (from 1 to 5). We also calculated
every order’s RPE by subtracting the mean restaurant rating
from the eventual order rating. Customers ordered 9.4 times
on average during the two months in our subset of delivery
data, with a mean time between orders of 5.2 days. On the
Deliveroo website, customers saw restaurants ordered based
on the companies recommendation system, which marked “old
favourites” but also recommended other restaurants similar
to the ones a user had previously ordered from and enjoyed.
No customer ever ran out of new restaurants to explore in
our data set. Figure S1 shows how the distribution of past
ratings is presented to customers on the Deliveroo website.
The distributions of all variables are shown in Figure S2.

Fig. S1. Screenshot of how the distribution of past ratings is presented to
customers on the Deliveroo website. Customers could access the distribution
of ratings by clicking on “Show rating details”.

Model comparison

New customers data set. For the model comparison, we cre-
ated a data set containing only customers who had just started
ordering food on the Deliveroo website (i.e., new customers).
Moreover, we filtered out all customers who did not rate all of
their orders. This resulted in a data set of 3,772 customers in
total. We used this data set to compare different models of
learning combined with different decision strategies, treating
customers’ chosen restaurants as the arm of a bandit and their
ratings as the resulting reward.

Gaussian Process. We use Gaussian Process (GP) regression
as a Bayesian model of generalization. A GP is defined as

∗ In total, 94% of the restaurants had higher ratings than 4 and behavior for restaurants with an
average rating lower than 4 was unstable. None of the main results change when analyzing the full
data set, but estimates for this part of the space were unreliable.

a collection of points, any subset of which is multivariate
Gaussian. Let f : X → Rn denote a function over input space
X that maps to real-valued scalar outputs. This function can
be modeled as a random draw from a GP:

f ∼ GP(m, k), [1]

where m is a mean function specifying the expected output of
the function given input x, and k is a kernel function specifying
the covariance between outputs:

m(x) = E[f(x)] [2]

k(x,x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))

]
[3]

We fix the prior mean to the mean value of ratings within a
given city and use the kernel function to model generalization
over the restaurant-specific features.

Conditional on observed data Dt = {xj , yj}tj=1, where
yj ∼ N (f(xj), σ2

j ) is drawn from the underlying function with
added noise σ2

j = 1, we can calculate the posterior predictive
distribution for a new input x∗ as a Gaussian:

E[f(x∗)|Dt] = mt(x∗) = k>∗ (K + σ2I)−1yt [4]

V[f(x∗)|Dt] = vt(x∗) = k(x∗,x∗)− k>? (K + σ2I)−1k∗, [5]

where y = [y1, . . . , yt]>, K is the t × t covariance ma-
trix evaluated at each pair of observed inputs, and k∗ =
[k(x1,x∗), . . . , k(xt,x∗)] is the covariance between each ob-
served input and the new input x∗.

To model customers’ generalization over restaurants’ fea-
tures, we assume that customers can use the presented features
at the time of an order to predict a restaurant’s quality, i.e.,
how much they will like it. These features are the price, the
mean rating, the number of past ratings, and the delivery
time.

Radial Basis Function kernel. We use a Radial Basis Function
(RBF) kernel as a component of the GP algorithm of gener-
alization. The RBF kernel specifies the correlation between
inputs x and x′ as

k(x,x′) = exp
(
−||x− x′||2

λ

)
, [6]

where λ is a length-scale parameter controlling function
smoothness. This kernel defines a universal function learning
engine based on the principles of Bayesian regression and can
model any stationary function.

Bayesian Mean Tracker. The Bayesian Mean Tracker model is
implemented as a Bayesian updating model, which assumes no
temporal dynamics. In contrast to the GP regression model
(which also assumes constant means over time), the Mean
Tracker learns the rewards of each restaurant independently,
by computing an independent posterior distribution for the
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Fig. S2. Distributions of customer-specific (blue) and restaurant-specific (orange) variables.
a: Customers’ order ratings from 1 (low quality) to 5 (high quality). b: Number of past orders per customer. c: Proportion of choosing an old vs. a new restaurant. d: Prediction
error, defined as the difference between the actual order rating and the mean restaurant rating. e: Mean restaurant ratings at the time of an order. Ratings have been truncated
at a value of 4 to avoid instability induced by infrequent low average ratings. f: Number of past ratings per restaurant at the time of an order. g: Relative price per restaurant at
the time of an order. h: Standardized delivery time at the time of an order.

mean µj for each restaurant j. We implemented a version
that assumes rewards are normally distributed (as in the GP
model), with a known variance but unknown mean, where the
prior distribution of the mean is a normal distribution. This
implies that the posterior distribution for each mean is also a
normal distribution:

p(µj,t|Dt−1) = N (mj,t, vj,t) [7]

For a given option j, the posterior mean mj,t and variance
vj,t are only updated when it has been selected at trial t:

mj,t = mj,t−1 + δj,tGj,t [yt −mj,t−1] [8]
vj,t = [1− δj,tGj,t] vj,t−1 [9]

where δj,t = 1 if option j is chosen on trial t, and 0 otherwise.
Additionally, yt is the observed reward at trial t, and Gj,t is
defined as:

Gj,t = vj,t−1

vj,t−1 + θ2
ε

[10]

where θ2
ε is the error variance, which we fixed to 0.2. Intuitively,

the estimated mean of the chosen option mj,t is updated based
on the difference between the observed value yt and the prior
expected mean mj,t−1, multiplied by Gj,t. At the same time,
the estimated variance vj,t is reduced by a factor of 1−Gj,t,
which is in the range [0, 1]. The error variance (θ2

ε ) acts as
an inverse sensitivity, where smaller values result in more
substantial updates to the mean mj,t, and larger reductions of
uncertainty vj,t. We set the prior mean to the mean value of
all restaurants within a city and the prior variance to vj,0 = 5.

This model does not generalize at all and can therefore
only learn about a restaurant’s quality by sampling it. Thus,
it predicts that every novel restaurant will just be as good as
the average of all restaurants in a city.

Sampling strategies.
Given the normally distributed posteriors of the expected re-
wards, which have mean µ(x) and uncertainty (formalized here
as standard deviation) σ(x), for each restaurant x (for the
Mean Tracker, we let µ(x) = mj,t and σ(x) = √vj,t, where j
is the index of the restaurant characterized by x), we assess
different sampling strategies that make probabilistic predic-
tions about how much customers will like a given restaurant.
In particular, we combine the Bayesian Mean Tracker with
a mean-greedy sampling strategy and the Gaussian Process
regression with both a mean-greedy and an upper confidence
bound sampling strategy (details below).

Upper Confidence Bound sampling. Given the posterior predic-
tive mean µ(x) and its attached standard deviation σ(x) =√
σ2(x), we calculate the upper confidence bound using a

weighted sum

UCB(x) = µ(x) + βσ(x), [11]

where the exploration factor β determines how much reduction
of uncertainty is valued (relative to exploiting known high-
value options). We fix β = 1 for our model comparison,
indicating a tendency towards directed exploration.

Mean Greedy Exploitation. A special case of the Upper Confidence
Bound sampling strategy (with β = 0) is a greedy exploitation
component that only evaluates points based on their expected
rewards

M(x) = µ(x), [12]

This sampling strategy only samples options with high ex-
pected rewards, i.e., greedily exploits the environment.

Model comparison

We fit all models to a customers’ data until time point t
and then make predictions about choices on time point t+ 1.

2 of 7 Schulz et al. 10./pnas.XXXXXXXXXX



We apply a softmax choice rule to transform each model’s
prediction into a probability distribution over options:

p(x) = exp(q(x))∑N

j=1 exp(q(xj))
, [13]

where q(x) is the predicted value of each option x for a given
model (e.g., q(x) = UCB(x) for the UCB model).

One-step ahead prediction errors. We fit all models—per
customer—to the data a customer has seen until time point
t and then make forecasts about choices at time point t+ 1.
For example, the Gaussian Process model is fitted to all past
restaurants a customer has sampled, using the restaurant’s
features (i.e., prize, mean rating, number of ratings and de-
livery time) as the independent variables and the customer’s
ratings as the dependent variable. Afterwards, it can be used
to make predictions about other restaurants’ expected ratings
(and uncertainties), that can be mapped onto probabilities.
The difference between the Gaussian Process model and the
Bayesian Mean Tracker is that the Bayesian Mean Tracker
does not use any generalization over features, but only updates
its predictions (which are equated to the overall mean at the
beginning) by sampling a restaurant. The difference between
the mean-greedy GP-M model and the GP-UCB model con-
taining a directed exploration component is that the GP-M
model equates a restaurant’s utility with the predicted mean
rating, whereas the GP-UCB model equates a restaurant’s
utility with its upper confidence bound.

Crucially, it is never possible to assess all restaurants a
customer looked at and could have ordered from at a particular
time point. We therefore compare the utility of the chosen
restaurant to an average restaurant in the same city. For exam-
ple, for the Gaussian Process model, we compared how much
more likely a customer’s choice was compared to a restaurant
with average feature values. For the BMT model, we compare
the assessed utility to the overall average of restaurants in a
city.

Predictive accuracy. The error of predictions (computed as pre-
dictive log loss) is summed up over all one-step ahead predic-
tions, and is reported as predictive accuracy, using a pseudo-R2

measure that compares the total log loss for each model to
that of a random model:

R2 = 1− logL(Mk)
logL(Mrand) , [14]

where logL(Mrand) is the log loss of a random model (i.e.,
picking options with equal probability) and logL(Mk) is
the log loss of model k’s one-step-ahead prediction error. A
R2 = 0 corresponds to a prediction accuracy equivalent to
chance, while R2 = 1 corresponds to a theoretically perfect
predictive accuracy, since logL(Mk)/ logL(Mrand)→ 0 when
logL(Mk)� logL(Mrand).

Statistical tests

As our data set was large, almost any comparison would be
significant at the α = 0.05-level. We therefore report the means
and 99.9% confidence intervals for each group when reporting
differences. We believe that this descriptive comparison makes
the size of the differences more interpretable.

Mixed-effects regression

We report the step-wise results for both mixed-effects regres-
sion analyses. We compare models based on their Akaike
Information Criterion (AIC) and Bayesian Information Crite-
rion (BIC).

Factors influencing exploration. For the first mixed-effects re-
gression, we regressed a restaurant’s price (Price), mean rating
(Rating), number of past ratings (#Ratings), and estimated
delivery time (Time) onto whether or not a customer explored
that restaurant. Additionally, we entered a random intercept
for each customer.
Table S1. Results of mixed-effects logistic regression analyzing de-
terminants of exploration.

Model AIC BIC χ2 Pr(>χ2)
Intercept only 258107 258127 – –
Price 258064 258095 45 <.001
Price+Rating 257294 257334 772 <.001
Price+Rating+#Ratings 251784 251835 5511 <.001
Price+Rating+#Ratings+Time2 251772 251843 16 <.001

The variables price, rating and the number of ratings all
had a linear effect onto a restaurant’s probability of being
explored, whereas the average delivery time had a nonlinear
effect (the expression Time2 in Tab. S1 indicates that we
entered both a linear and a quadratic effect of time into the
final model). The final model contained all variables and had
a fit of BIC=251772.

Signatures of directed exploration. For the second mixed-
effects logistic regression, we regressed a restaurant’s value
difference (Value), relative uncertainty (Uncertainty) and price
(Price) onto the exploration variable. The value difference is
defined as the difference in ratings for a given restaurant com-
pared to the average of all restaurants within the same cuisine
type. The relative variance is defined as the difference between
a restaurant’s variance in ratings and the average variance
per restaurant within the same cuisine type. The price is the
relative price indicating how much more expensive a restaurant
was compared to the city’s average restaurant price.

Table S2. Results of mixed-effects logistic regression analyzing sig-
natures of directed exploration.

Model AIC BIC χ2 Pr(>χ2)
Intercept only 258107 258127 – –
Value 257184 257214 924 <.001
Value+Price 257152 257193 34 <.001
Value+Price+Uncertainty 257066 257117 88 <.001

The final model contained all three variables and produced a
fit of BIC=257117. Thus, relative uncertainty was a significant
contributor to customers’ exploration behavior beyond value
difference and relative price, a strong signature of directed
exploration.

Using other measures of uncertainty. We consider another
measure of relative uncertainty that takes into account both
the distribution and the number of ratings per restaurant.
This aggregated measure of uncertainty is the standard error
of a restaurant’s rating, i.e., σ/

√
n. The results (see Tab. S3)

showed the same pattern as before with higher values, lower
prices and –importantly– higher standard errors leading to
increased exploration.
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Table S3. Results of mixed-effects logistic regression.
Estimate Std. Error z value Pr(>|z|)

Intercept -0.328 0.007 -43.86 <.001
Value difference 0.147 0.0133 11.09 <.001

Relative price -0.102 0.008 -13.57 <.001
Standard error difference 0.504 0.015 33.86 <.001

Controlling for non-linear effects of value. Another concern
when analyzing signatures of directed exploration is that value,
i.e., the average rating of a restaurant, might have a non-linear
effect onto customers’ probability of exploring a restaurant.
For example, if customers give extra weight to high ratings,
then this could also link higher variances to exploration behav-
ior. To rule out this possibility, we asses a model that relates
restaurant ratings to choices non-linearly by using polynomial
(i.e., quadratic and cubic) regression and additionally entering
a restaurant’s price and uncertainty to this model. Doing
so, we find that the positive effect of uncertainty remains
unchanged for both cases, when including a quadratic relation
between ratings and exploration (estimates for uncertainty:
β = 0.083, z = 24.54, p < .001) and when including a cu-
bic relation between ratings and exploration (estimates for
uncertainty: β = 0.082, z = 24.07, p < .001). These results
provide further evidence that uncertainty per se led customers
to explore a restaurant.

Learning and dropout

One concern when analyzing customers’ order ratings over time
is that an increase in order ratings, i.e., a learning effect, could
be due to dropout: if customers who did not like their order
dropped out of the service, whereas customers who remained
tended to produce higher ratings, then this could also lead to
higher ratings over time. However, several observations speak
against the learning effect being driven by dropout alone. First,
the difference in ratings between people who dropped out of the
service at any point in time and people who remained was only
small, with an effect size of d = 0.02. Secondly, even customers
with more than 100 past orders continued to improve their
ratings over time, with a mean correlation between the number
of past orders and ratings of r = 0.044 (99.9% CI: 0.038, 0.050).
Finally, we estimated learning curves for all participants using
mixed-effects regression, with a random effect of the number of
past orders per customer. This regression analysis revealed a
significantly positive within-customers effect of number of past
orders onto ratings with β = 0.08 (99.9% CI: 0.006, 0.010).

Learning across and within restaurants

Another question is whether customers get better at exploring
new restaurants or at ordering from a particular restaurant over
time. We therefore assessed how customers’ ratings changed
over different explored restaurants over time and how their
ratings changed over time when ordering from and returning to
their favorite restaurant (most ordered from for each customer
individually). Fig. S3 shows that both processes seem to
happen at the same time.

Customers explored new restaurants they liked more over
time (r = 0.054, 99.9% CI: 0.047, 0.061; Fig. S3a). Customers
also produced higher ratings for their favorite restaurants over
time (r = 0.055, 99.9% CI: 0.049, 0.061; Fig. S3b). Thus,
learning seems to happen both across new and within known
restaurants.
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Fig. S3. Learning over newly explored and known restaurants. a: Average order
rating for newly explored restaurants by number of past orders. b: Average order
rating for customers’ favorite restaurant by number of past orders.

Learning after initial exploration

We also assessed how participants’ ratings improved when or-
dering from the same restaurant after the initial dip in ratings
when exploring a restaurant for the first time. We therefore cal-
culated the mean ratings over time over all customer-restaurant
pairs after the first time a customer had explored a restaurant.
As shown in Figure S4, exploring a restaurant for the first time
led to lower ratings than the average over all orders (4.257,
99.9% CI: 4.250, 4.265; overall mean: 4.324). However, cus-
tomers improved quickly in their ratings when reordering from
the same restaurant (r = 0.091, 99.9% CI: 0.085, 0.097) lead-
ing to higher than average ratings for all order times greater
than 2 (4.521, 99.9% CI: 4.551, 4.532).
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Fig. S4. Learning after initial exploration. The rating for re-visited restaurants
increases after the first of exploration. Dashed line indicates the overall mean of
restaurant ratings. Standard errors represent the 95% confidence interval of the
mean.

RPE, ratings, and reordering from a restaurant

Since RPE is essentially a function of the displayed rating and
the provided rating per order, one might also ask which of those
is most predictive of customers reordering from a particular
restaurant. To assess this, we regressed each of those variables
individually onto customers’ reordering variable in a mixed-
effects logistic regression. This showed the RPE (BIC=483531)
was a better predictor for reordering from a restaurant than
either the restaurant’s mean rating (BIC=485333) or the order
rating (BIC=483705).
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Chosen feature values over time

We analyze what feature values customers chose on average
when exploring new restaurants over time.
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Fig. S5. Average feature values of explored restaurants over time. a: Average
displayed rating of explored restaurant. b: Average number of past orders of explored
restaurant. c: Average relative price of explored restaurant. d: Average standardized
delivery time of explored restaurant.

With experience, customers explored restaurants with
higher average ratings (r = 0.093, 99.9% CI: 0.086, 0.100;
Fig. S5a), fewer past ratings (r = −0.034, 99.9% CI: −0.041,
−0.027; Fig. S5b), and higher relative price (r = 0.033, 99.9%
CI: 0.026, 0.033; Fig. S5c). Although the correlation between
number of past orders and average delivery time of explored
restaurants was practically 0 (r = 0.007, 99.9% CI: 0.000,
0.014; Fig. S5d), customers did prefer somewhat faster deliv-
ery times for their first 5 orders (mean time= −0.04, 99.9% CI:
−0.06, −0.01) than for later orders (mean time= 0.00, 99.9%
CI: −0.005, 0.006).

Exploratory change points

To check whether customers’ exploration behavior was indeed
influenced by their experience or rather mostly by stable indi-
vidual differences, we tested how they were affected by extreme
outcomes. We looked at customers who had experienced an
RPE that was either positive and more than two standard
deviations better or negative and more than two standard
deviations worse than their regular RPEs. We then assessed
how likely customers were to explore the cuisine type that
had generated the extreme outcome (i.e. the target cuisine
type) before and after the outcome had occurred. This anal-
ysis showed clear evidence of exploratory change points (see
Fig. S6). Although both groups were equally likely to explore
the target cuisine type (both p = 0.187) before the extreme
outcome had occurred, the group experiencing a good outcome
was far more likely to explore the target cuisine type after the
extreme outcome (p = 0.232, 99.9% CI: 0.225, 0.238) than
the group experiencing a bad outcome (p = 0.181, 99.9% CI:
0.173, 0.181).

Furthermore, the difference in exploration behavior re-
mained significant for more than five of the next exploratory
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Fig. S6. Change of exploration behavior after very good and very bad out-
comes. Probability of exploring the same cuisine type as was explored when an
extreme outcome occurred. Extreme outcome occurred a time point t = 0, indicated
by a dashed line. Standard errors represent the 95% confidence interval of the mean.

purchases (and for more than the next 15 purchases in total),
indicating a strong change in cuisine type exploration after
extreme outcomes. We therefore conclude that customers
can be strongly affected by extreme outcomes leading to ex-
ploratory change points that cannot be easily explained by
stable individual differences.

Sampling entropy and directed exploration

We calculated customers’ mean entropies over the next 4
samples after either a positive or a negative reward prediction
error. Shannon’s entropy is defined as

H = −
∑
i

pi log pi, [15]

where i indicates a restaurant within customer’s 4 next choices.
One of our predictions was that entropy would be higher after
negative RPEs than after positive RPEs. We derived this
prediction from the fact that a UCB sampling strategy updates
both its mean and uncertainty after observing an outcome.
After a bad experience, the mean and standard deviation both
go down, whereas after a good experience the mean goes up
but the standard deviation goes down. We confirmed this
prediction in our data. Here, we check if this prediction holds
in simulated data that was produced by either the GP-UCB
or the GP-M model.

Synthetic data. For a first check of our prediction, we generated
synthetic data using samples from a univariate Gaussian Pro-
cess. Specifically, we created a one-dimensional meshed grid of
options with x ∈ [0, 0.2, 0.4, · · · , 10]. We then sampled a target
function from a Gaussian Process with λ = 1 and optimized
this function by using either a softmaximized mean-greedy
(GP-M) or a upper confidence bound exploration strategy
(GP-UCB) over 20 trials. Moreover, we tracked the models
reward prediction error, defined as the difference between its
predicted mean for a sampled option and the actual outcome
of that option. We repeated this simulation 100 times for
both models and afterwards calculated the sampling entropy
for the models’ next 4 choices after having observed an out-
come. Feeding the reward prediction error into a mixed effects
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regression with the sampling entropy as the dependent vari-
able and a random intercept for simulation number, we found
a significant effect of RPEs onto entropy for the GP-UCB
model (β = −0.43, SE = 0.01, t(1454.5) = −32.70, p < .001),
but not for the GP-M model (β = −0.001, SE = 0.006,
t(1454.5) = −0.122, p = .9). Thus, UCB sampling leads to
higher entropy after negative outcomes than after positive
outcomes, whereas this difference is not pronounced in data
generated by a soft-maximizing sampling strategy.

Customer data. In a second analysis, we looked at the sampling
entropy difference between the GP-M and GP-UCB models
in simulated customer choice data. We focused on the data
for the new customers generated for our model comparison.
For each customer, we generated a choice set by extracting all
sampled restaurants and their features (price, rating, number
of ratings, and delivery time). Furthermore, we estimated a
utility distribution (the distribution of ratings for each restau-
rant by customer), by using a hierarchical model with a normal
distribution, N (4.5, 1), as the prior of the mean and a Cauchy
distribution, Cauchy(0, 1), as the prior over the variance of
the restaurant’s utility. The resulting data set can be seen as
3,772 consecutive bandit tasks, where each task contains as
many options as unique restaurants a customer had sampled
and—for each restaurant—a reward distribution estimated by
a hierarchical model based on that customer’s ratings. We
then let both a GP-UCB and a GP-M model perform within
this task, letting them sample as many restaurants as each
of the customers had sampled. Afterwards, we calculated the
entropy of the next 4 sampling steps as a function of the RPE
(Fig. S7).

To assess the effect of RPE on sampling entropy, we
regressed—for both sampling strategies individually—the RPE
onto the entropy of the next 4 sampling steps in a mixed effects
regression while also adding a random intercept for simulated
customers. This showed that RPE had a significant effect onto
sampling entropy for the UCB sampling strategy (β = 0.031,
p = .007) but not for the softmax mean-greedy sampling strat-
egy (β = 0.015, p = .07). We therefore conclude that our
theoretical prediction holds in both synthetic and data-driven
simulations of exploratory behavior over time.

Clustering analysis

As described in the Materials and Methods, we clustered the
20 most frequent cuisine types appearing within our data set.
One appropriate clustering solution of this analysis contained
7 main clusters. The scree plot of the clustering analysis
(Fig. S8) confirmed our 7 clusters solution.

Effect of environment analysis

To estimate whether or not customers explored more frequently
in cities with higher mean ratings, we calculated the average
rating over all restaurants as well as the average exploration
rate for every city. The correlation between these two vari-
ables was r = 0.32, t(98) = 3.19, p = .002. Even when
simultaneously correcting for a city’s average restaurant price,
order volume, average number of ratings per restaurant, and
average number of ratings per customer, the resulting par-
tial correlation was still significant (r = 0.25, t(98) = 2.54,
p = .02).
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Fig. S7. Entropy and prediction error for UCB and (softmaximized) mean-
greedy sampling in a generated restaurant data set.
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Fig. S8. Scree plot of clustering analysis showing the amount of within vari-
ance by number of clusters. Dashed line indicate 7 clusters solution.

Predictability analysis

For the predictability analysis, we assessed—for every city—
how predictable customers’ ratings were based on the 4 features
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used throughout all of our analyses. Doing so, we only used
the data set consisting of orders that customers had rated
afterwards. We then sampled a learning and a test set for each
city consisting of 100 orders each, fitted a linear regression
model to the learning set, and used this model to predict
customers’ order ratings in the test set. Repeating this analysis
100 times for every city revealed how predictable the quality
of restaurants within one city was, measured by how well the
regression model performed in the test set. We then correlated
this predictability measure with the quality of exploratory
choices (the mean rating of explored restaurants within a
city). This correlation was significantly positive (r = 0.73,
t(114) = 10.8, p < .001). Again simultaneously correcting for a
city’s average restaurant price, order volume, average number
of ratings per restaurant, and average number of ratings per
customer, the partial correlation remained significant (r = 0.48,
t(114) = 5.7, p < .001).

Fig. S9. Screen shot of similarity rating study.

Estimating causal directions

Three of our main theoretical predictions were: (1) customers
explore more in cities with higher average ratings; (2) cus-
tomers explore more successfully in cities where ratings were
more predictable; and (3) relative uncertainty has a positive
effect on customers’ tendency to explore a restaurant. Even
though these predictions were derived from past empirical
studies, it is nonetheless hard to make strong claims about

causal directions in a natural and complex data set. Here, we
additionally use another statistical method to estimate causal
directions based on observational data proposed by Peters et
al. (28). Specifically, this method uses additive noise modeling
to assess the residuals when performing a nonlinear regression
from one variable to another and vice versa, and then applies
kernel independence tests to decide about the causal direction,
judging the direction as more likely in which the resulting
residuals are more independent. We refer the interested reader
to the original paper, but note here that this method gets up
to 85% of classifications correct in a very challenging “causal
directions benchmark” correct.

We applied this model to the city-specific variables of
the mean exploration rate and the average restaurant rating.
When regressing the exploration rate onto a city’s average
restaurant rating using general additive models, this method
assessed the probability of independence of the residuals as
p = 0.46, whereas that probability was p = 0.58 the other way
around. This method therefore weakly classified the average
rating to be more likely the cause of the mean exploration
rate than vice versa. We then used this approach to assess
the directions of the connection between a city’s predictability
and customer’s exploratory success. Whereas the probability
of independence of the residuals was p = 0.08 when regressing
exploratory success onto predictability, that probability was
p = 0.85 the other way around. There was thus strong evi-
dence that predictability caused exploratory success according
to the causal direction estimation method.

Finally, we analyzed the effect between a restaurant’s rel-
ative uncertainty and the tendency to be explored. To do
this, we estimated every customer’s mean relative restaurant
uncertainty and mean proportion of exploratory choices. This
analysis assessed if customers who explored more did so be-
cause of high relative uncertainty in their environment or if
customers exploring more often caused higher uncertainties.
The resulting p-values for independence were both relatively
small as this was a very large data set for both regressions
(10−10 and 10−7). However, the p-value for independence
when regressing exploration onto relative uncertainty was 103-
times lower than vice versa, showing strong evidence that
relative uncertainty led to increased exploration, according to
the causal estimation model. Taken together, these results
yielded additional evidence that the postulated directions of
our predicted and confirmed effects are correct.
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