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In this work, we address several fundamental well-studied models in stochastic inven-

tory theory. Most of the models considered here have the following common setting. A

single commodity at a single location is required over a planning horizon of discrete T

time periods. Specifically, there is a sequence of random demands for the commodity

that are going to occur over the planning horizon. The goal is to coordinate a sequence

of orders over the planning horizon to satisfy these demands with minimum overall ex-

pected ordering, holding and backlogging costs.

A stochastic dynamic programming framework has been the most dominant paradigm

in the research on these models. It has been used to analyze and characterize the struc-

ture of optimal policies, as well as to provide an algorithmic framework to compute opti-

mal policies. Unfortunately, the inventory models discussed in this work admit tractable

dynamic programs only under strong assumptions on the structures of the random de-

mands and on the way their distributions are specified for us. Moreover, these assump-

tions are unrealistic in most real-life scenarios. Thus, computing optimal policies (and

often even good policies) for these models is a fundamental problem in inventory theory

and in practice.

In the first part of this thesis, we consider these inventory models under very gen-

eral assumptions on the structures of demands, specifically, allowing non-stationarity

and correlation between demands in different periods. These harder and more realistic

models usually admit huge dynamic programs that are not likely to be tractable. This

phenomenon is known as the curse of dimensionality. We introduce novel and efficient



heuristics to compute provably near-optimal policies for these harder and more realis-

tic models. That is, we analyze the performance of our algorithms and show that the

policies they construct are guaranteed to have expected cost near the optimal expected

cost. Our policies are simple both computationally and conceptually and do not require

solving huge dynamic programs. They are based on a new cost accounting approach

for stochastic inventory models and cost-balancing techniques that we believe will have

more application in approximating optimal solutions for dynamic programs that arise in

the context of supply chain-related models and in other domains.

In the second part of this thesis, we consider models with simple structures of de-

mand but under the assumption that the explicit demand distributions are not known.

Instead, we assume that the only information available is a set of independent samples

of the demands. We then introduce sample-based policies that are computed efficiently

based only on samples without any access to the explicit demand distributions. More-

over, we establish bounds on the number of samples required to guarantee that, with

high probability, the expected cost of our sample-based policies will be arbitrarily close

to the optimal expected cost under the assumption of full access to the explicit demand

distributions. These bounds are general, easy to compute and do not depend on the spe-

cific underlying true demand distributions. We believe that this sets the foundations for

new classes of sample-based policies for stochastic dynamic programs with analyzed

performance.
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Chapter 1

Introduction
In this work, we consider several fundamental models in stochastic inventory theory.

Most of the models considered here have the following common setting. A single com-

modity at a single location is required over a planning horizon of discrete T time periods

numbered by t = 1, . . . , T . Specifically, there is a sequence of random demands for the

commodity, denoted, respectively, by D1, . . . , DT , that are going to occur over the plan-

ning horizon. The goal is to coordinate a sequence of orders over the planning horizon

to satisfy these demands with minimum expected cost. The cost consists of a per-unit

ordering cost for ordering supply units of the commodity at the beginning of each pe-

riod (possibly with capacity constraint on the size of the order), a per-unit holding cost

for carrying excess inventory from the end of a period to the next period and a per-unit

backlogging cost, which is a penalty incurred at the end of each period for each unit of

unsatisfied demand. The goal is to find an ordering policy that minimizes the overall

expected cost over the entire planning horizon.

A stochastic dynamic programming framework has been the most dominant paradigm

in the research on these models. It has been used to analyze and characterize the struc-

ture of optimal policies, as well as to provide an algorithmic framework to compute

optimal policies. The inventory models described above demonstrate the strengths and

the limitations of the stochastic dynamic programming framework. That is, these mod-

els admit dynamic programming formulations that can be either easy or hard to solve,

depending on the specific assumptions on the structure of the demands D1, . . . , DT and

on the way their distributions are specified for us. By easy and hard to solve, we are dis-

tinguishing between formulations and models for which there exist efficient algorithms

1
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for computing the optimal policies (i.e., for solving the corresponding dynamic pro-

grams), and formulations and models for which it is very unlikely to find such efficient

algorithms.

Unfortunately, getting easy models with compact and tractable formulations usually

requires strong assumptions both on the structure of the demands (e.g., that demands in

different periods are independent random variables) and on the way the demand distribu-

tions are specified (e.g., that the distributions are specified explicitly). Moreover, these

strong assumptions are unrealistic in most real-life scenarios. In this work, we address

the harder and more realistic models that typically give rise to huge dynamic programs

that are unlikely to be tractable, both theoretically and in practice. We develop efficient

algorithms that approximately solve these dynamic programs and compute policies that

are not necessarily optimal but deliver solutions that are provably near-optimal. In par-

ticular, we analyze the expected performance of the proposed policies and show that

their expected cost is guaranteed to be near the optimal expected cost regardless of the

specific instance being solved. Our policies are also easy to implement in practice and

we believe they can actually be used in real-life applications. To put this work in con-

text, next we shall discuss how the inventory models described above are formulated as

dynamic programs and demonstrate what distinguishes between easy and hard classes

of models and formulations.

For the clarity of this discussion, we will demonstrate the above issues in the context

of uncapacitated models, where at the beginning of each period t we can order any

number of units. For ease of notation, assume that the per-unit ordering cost is equal to

0 in all periods and that the per-unit holding and backlogging costs are equal h ≥ 0 and

p ≥ 0, respectively. Similarly, we will assume that an order placed in period t arrives

instantaneously. All of the latter assumptions do not change the models conceptually.
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In particular, as discussed in Chapters 2 and 3 below, almost all of the results in this

work are valid for models with time-dependent cost parameters (including positive per-

unit ordering cost parameters) and with existing lead times, i.e., models where an order

placed in period t arrives only after several periods.

First consider the single-period newsvendor problem, where T = 1. A random

demand D1 for the commodity will occur in a single period. At the beginning of the

period, before we observe the actual demand, we order y units in our attempt to satisfy

the demand. Then the actual demand d1 (the realization of the random demand D1) is

observed and is satisfied to the maximum extent possible from the available supply units.

Next, a cost is incurred. Specifically, we incur, a per-unit holding cost h ≥ 0 for each

unused unit of the commodity, for an overall cost of h(y−d1)
+ (where x+ = max(0, x))

and a per-unit backlogging cost p ≥ 0 for each unit of unsatisfied demand, for an overall

cost of p(d1 − y)+. The goal is to find an ordering level y with minimum expected total

cost

C(y) = E[h(y −D1)
+ + p(D1 − y)+],

where the expectation is taken with respect to D1. It is readily verified that C(y) is

convex in y and attains a minimum. Thus, if the demand distribution D1 is known

explicitly (e.g., the CDF function of D1 is given explicitly), it is straightforward to

find a minimizer of C(y). As we will show next, the convexity of the single-period

newsvendor cost function is the basic property that enables us to formulate multiperiod

models as convex dynamic programs.

Now consider a two-period problem (T = 2) and assume that D1 and D2 are two in-

dependent random variables. Let Xt (for t = 1, 2) be the inventory level at the beginning

of period t before ordering. If Xt > 0, this corresponds to excess inventory left from the

previous period and if Xt < 0, this corresponds to unsatisfied units of demand that are
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waiting in the system until we will able to satisfy them. We assume that X1 = x1, where

x1 is the starting inventory level given as part of the input. Without loss of generality,

assume x1 = 0. Let Yt be the inventory level in period t after ordering and before the

demand occurs. Since we can order only non-negative quantities, it is clear that Yt ≥ Xt.

As in the single-period case above, we can express the expected cost incurred at the end

of period t as Ct(YT ) = E[h(Yt −Dt)
+ + p(Dt − Yt)

+]. However, even though the de-

mands D1 and D2 are independent of each other, this problem does not decompose into

two independent single-period newsvendor problems. Specifically, the decision to order

up to y1 (the realization of Y1) in the first period affects the starting inventory at the be-

ginning of period 2, in that X2 = y1−D1. Since Y2 ≥ X2 this constrains the decision in

the second period, and hence, affects the expected cost in that period. Let V2(x2) be the

minimum expected cost in the second period, given that the starting inventory at the be-

ginning of period 2 is x2. That is, V2(x2) = miny2≥x2 C2(y2). The overall cost as a func-

tion of the first period decision y1 can be expressed as U1(y1) = C1(y1)+E[V2(y1−D1)].

Note that U1 consists of two parts, the expected period cost C1 and the expected future

cost E[V2(y1 − D1)] as a function of the decision made in period 1. This captures the

fact that given the decision y1, the inventory level at the beginning of the period 2 is the

random variable X2 = y1 − D1. Focus now on the function V2(x2) above. We have

already observed that C2(y2) is convex and attains a minimum. Let R2 denote its min-

imizer (without loss of generality, assume the minimizer is unique). It is now readily

verified that if x2 ≤ R2, then V2(x2) = C2(R2) (i.e., the minimizer of C2 is reachable)

and if x2 > R2, then V2(x2) = C2(x2). This gives rise to what is called a base-stock

policy in period 2. That is, if the inventory level at the beginning of the period 2 is below

R2, the best policy is to order up-to R2, otherwise the best policy is to do nothing. Ob-

serve that this provides a compact description of the optimal policy in period 2, which
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is independent of any decision made in period 1. Specifically, R2 is the minimizer of

C2 which is independent of y1 and C1. Thus, if the demand distribution D2 is known

explicitly, R2 can be computed as a single-period newsvendor minimizer. Suppose that

R2 has been already computed; we can then express the overall cost as a function of the

first period decision y1 as

U1(y1) = C1(y1) + E[11(y1 −D1 ≤ R2)C2(R2) + 11(y1 −D1 > R2)C2(y1 −D1)].

It is readily verified that U1(y1) is the sum of two convex functions, and hence it is a con-

vex function of y1 that attains a minimum. The function U1(y1) accounts for the expected

cost of a policy that orders up to y1 in the first period and then follows the base-stock

policy R2 in the second period. In period 1, we wish to solve V1(x1) = miny1≥x1 U1(y1).

Since U1 is convex and attains a minimum, its minimizer, denoted by R1, gives rise to a

base-stock policy R1, R2 over the entire horizon. Note that the optimality of R1 in the

first period does depend on the fact that R2 is followed in the second period. Moreover,

if we have already computed R2 and if the demand distributions are specified explicitly,

then the function U1(y1) can be evaluated and it is usually straightforward to compute

R1.

This can easily be generalized to T periods. For some t < T assume that we have

already computed optimal base-stock levels Rt+1, . . . , RT . Let now Ut(yt) be the ex-

pected cost of a policy that orders up to yt in period t and then follows the base-stock

policy Rt+1, . . . , RT over [t + 1, T ]. Let Vt(xt) be the minimum expected cost over

[t, T ] if the starting inventory at the beginning of period t is xt and the base-stock policy

Rt+1, . . . , RT is followed over [t + 1, T ]. Specifically,

Ut(yt) = Ct(yt) + E[Vt+1(yt −Dt)].
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and

Vt(xt) = min
yt≥xt

Ut(yt).

By arguments similar to the ones above, it is readily verified that Ut(yt) is convex and

attains a minimum. Thus, the optimal policy in period t can be described based on

its minimizer Rt. That is, if xt < Rt, then we order up-to Rt, otherwise we do noth-

ing. Assuming that Rt+1, . . . , RT , the respective minimizers of Ut+1, . . . , UT (where

UT = CT ), have been already computed, and that the demand distributions are given

explicitly, it is again straightforward to compute Rt. We conclude that under the as-

sumptions that the demands in different periods are independent of each other and that

the demand distributions are given explicitly, it is relatively straightforward to solve the

corresponding dynamic program and find an optimal policy. In particular, we need to

solve recursively T subproblems, each of which consists of a single-variable convex

minimization problem.

Note that the assumption that the demands in different periods are independent of

each other was crucial to get a compact, tractable formulation. This assumption implies

that the impact of the evolution of demands and the control policy over the periods

1, . . . , t−1 on the control policy over the periods t, . . . , T is limited only to the inventory

level at the beginning of period t, namely Xt. In particular, they make no impact on the

way we see the distributions of demands Dt, . . . , DT from time t. However, the structure

of base-stock policies implies that the base-stock levels in periods over t, . . . , T can be

computed only based on the demand distributions Dt, . . . , DT as seen from period t.

This gives rise to a very compact dynamic program, with a singletone state-space in

each stage. Another essential assumption is that the demand distributions are given

explicitly, and that, in each stage, we can compute the minimizer of the function Ut

exactly. It is not hard to see, that the convexity of the function Ut and the optimality of



7

a base-stock policy in period t depend heavily on the assumption that Rt+1, . . . , RT are

the exact minimizers of the functions Ut+1, . . . , UT , respectively.

Unfortunately, the two assumptions above are not realistic in many if not most real-

life scenarios. In many applications the demand in different periods are heavily corre-

lated, that is, the demands we observe in period 1, . . . , t − 1 do change the conditional

distributions of the demands Dt, . . . , DT . In addition, in most scenarios, the explicit de-

mand distributions are not given. Instead, we usually have access only to samples from

the true demand distributions through historical data or simulation.

Consider the multi period model discussed above, but under the assumption that the

demands in different periods are allowed to have a complex structure, including inter

temporal correlation. The dynamic program described above can be extended to capture

this more realistic model. However, the dependence between demands in different peri-

ods requires a more complex representation of the evolution of the model. Specifically,

we let ft to be the observed information set at the beginning of period t. The object

ft consists of the realized demands d1, . . . , dt−1 (the realizations of D1, . . . , Dt−1, re-

spectively) in past periods, and possibly more information that has become available to

us by time t, denoted by w1, . . . , wt−1. The information set ft is a specific realization

of the random vector Ft = (D1, . . . , Dt−1,W1, . . . , Wt−1). We let Ft denote the set of

all possible realizations of the random vector Ft. Moreover, since demands in different

periods are possibly correlated, each observed information set implies a corresponding

joint conditional distribution It = It(ft) (as seen from period t) of the future demands

Dt, . . . , DT . Thus, the previous function Ut above is now defined with respect to each

pair (t, ft) as Ut,ft(yt), where again ft ∈ Ft is a specific observed information set in

period t. Similarly, instead of Ct(yt) and Vt(xt) we now have Ct,ft and Vt,ft(xt), respec-

tively, for each pair (t, ft). By a proof similar to the one outlined above, it is straightfor-
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ward to show that a state-dependent base-stock policy is optimal [56]. That is, the opti-

mal policy can be described through a set of target inventory levels
⋃T

t=1{R(ft)}ft∈Ft ,

where again, R(ft) is the respective minimizer of the convex function Ut,ft(yt). The

function Ut,ft(yt) now accounts for the expected cost of a policy that in period t with

information set ft orders up-to yt and then follows the optimal base-stock policy. The

recursion of the dynamic program is now

Ut,ft(yt) = Ct,ft(y1) + E[Vt+1,Ft+1(yt −Dt)|ft].

It is readily verified that the size of this dynamic programs grows at least linearly in the

cardinality of the sets Ft (for t = 1, . . . , T ). In order to evaluate E[Vt+1,Ft+1(yt−Dt)|ft]

above, we need to know Vt+1,ft+1 for each ft+1 ∈ Ft+1, i.e., to solve many subproblems.

As a result, the corresponding dynamic program quickly becomes intractable. This

phenomenon is known as the curse of dimensionality.

In Chapter 2 below, we address the more realistic setting of inventory models with

more complex structures of demands that allow general correlation between demands

in different periods. Rather than solve the huge dynamic programs that arise in this

context, we consider the performance of simple heuristics that can be implemented on-

line. Specifically, the control policy of the heuristics in each period does not require any

knowledge of the control policy in future periods. Thus, we do not need to maintain

huge dynamic programs. Our approach is based on two key ideas. First, we introduce

a new cost accounting approach that we call marginal cost accounting. This approach

significantly departs from the standard dynamic programming cost accounting approach

described above. In particular, the standard dynamic programming approach directly

associates with the decision made in period t of how many units to order, only the ex-

pected cost incurred in period t. Note however, that part of the cost incurred in period

t could not be avoided by any decision made in this period, and that the decision made
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in period t might incur additional cost in future periods. In turn, in the marginal cost

accounting approach introduced in Chapter 2, we associate with the decision made in

period t all of the expected cost that, after this decision is made, become independent

of any decision made in future periods. Secondly, we use general balancing techniques

that, in each period, balance the marginal expected holding cost against the marginal

expected backlogging cost associated with the decision made in the current period. The

intuition is that we balance between costs incurred by over-ordering and costs incurred

by under-ordering. This simple idea appears to be powerful in constructing algorithms

that guarantee provably good expected performance guarantees. Specifically, we pro-

vide 2-approximation algorithms for the general uncapacitated and capacitated variants

of the multiperiod model. That is, for each possible input of the problem, our policies

are guaranteed to have expected cost at most twice the optimal expected cost. The new

class of balancing algorithms are relatively straightforward to implement both computa-

tionally and conceptually. We believe, that our new marginal cost accounting approach

and the balancing algorithms will have application in many other supply chain-related

models and possibly in other domains that admit huge stochastic dynamic programs.

In Chapter 3 below, we consider models with simple structure of demands, i.e., mod-

els where the demands in different periods are independent of each other (not necessarily

identically distributed), but under the assumption that the explicit demand distributions

are not given. Instead, we assume that the only information about the true underly-

ing demand distributions is available through a black box that, on request, can generate

independent samples from the true demand distributions. This corresponds to having

available historical data or to a simulation setting. We propose sample-based policies,

that is, policies that are computed efficiently based only on samples without any access

to the explicit true demand distributions. Moreover, we provide a novel analysis of the
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number of samples required to guarantee that our sample-based policies will have, with

high probability, expected cost arbitrarily close to the optimal expected cost in the case

we allow full access to the demand distributions. The bounds that we establish on the

number of required samples are general, easy to compute and surprisingly do not de-

pend on the specific underlying demand distributions. We believe that this approach

sets the foundations for new classes of sample-based algorithms for stochastic dynamic

programs with analyzed worst-case performance.



Chapter 2

Near-Optimal Balancing Policies for Stochastic

Inventory Control Models
2.1 Introduction

In this chapter, we address the fundamental problem of finding computationally efficient

and provably good inventory control policies in supply chains in which the demands are

stochastic, correlated and non-stationary (time-dependent). This problem arises in many

domains and has many practical applications (see, for example, [11, 29]). We consider

several classical models, the periodic-review stochastic inventory control problem with

and without capacity constrains, and the stochastic lot-sizing problem. All the models

are considered with correlated and non-stationary demands. Here the correlation is inter-

temporal, i.e., what we observe in period s changes our forecast for the demand in future

periods. We provide what we believe to be the first computationally efficient policies

with constant worst-case performance guarantees; that is, there exists a constant C such

that, for any instance of the problem, the expected cost of the policy is at most C times

the expected cost of an optimal policy.

A major domain of applications in which demand correlation and non-stationarity

are commonly observed in supply chains is where dynamic demand forecasts are em-

ployed. Demand forecasts often serve as an essential managerial tool, especially when

the demand environment is highly dynamic. How these demand forecasts, that evolve

over time, can be used to devise an efficient and cost-effective inventory control pol-

icy is of great interest to managers, and has attracted the attention of many researchers

over the years (see, for example, [22, 31, 37]). However, it is well known that such

11
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environments often induce high correlation between demands in different periods that

makes it very hard to compute optimal inventory control policies, and in many cases,

even computing a ‘good’ policy is rather a hard task. Another relevant and important

domain of applications is for new products and/or new markets. These scenarios are

often accompanied by an intensive promotion campaign and involve many uncertain-

ties, which create high levels of correlation and non-stationarity in the demands over

time. Correlation and non-stationarity also arise for products with strong cyclic demand

patterns, and as products being phased out of the market.

The stochastic inventory control models considered here, capture many if not most

of the application domains in which correlation and non-stationarity arise. Specifically,

we consider single-item models with one location and a finite planning horizon of T

discrete time periods. The demands over the T periods are random variables that can be

non-stationary and correlated. In the periodic-review stochastic inventory control prob-

lem, the cost consists of per-unit, time-dependent ordering cost, holding cost for car-

rying excess inventory from period to period and backlogging cost, which is a penalty

incurred, in each period, for each unit of unsatisfied demand (where all shortages are

fully backlogged). In the uncapacitated model we can order at the beginning of each

period any number of units of the commodity. In the capacitated model there is a capac-

ity constraint on the number of units ordered in each period. There is also a lead time

between the time an order is placed and the time that it actually arrives. In the stochastic

lot-sizing problem, we consider, in addition, a fixed ordering cost that is incurred in each

period in which an order is placed (regardless of its size), but with no lead time. In all

the models, the goal is to find a policy of orders with minimum expected overall cost

over the given planning horizon. The assumptions that we make on the demand distribu-

tions are very mild and generalize all of the currently known approaches in the literature
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to model correlation and non-stationarity of demands over time. This includes classical

approaches like the martingale model of forecast evolution model (MMFE), exogenous

Markovian demand, time series, order-one auto-regressive demand and random walks.

For an overview of the different approaches and models, and for relevant references, we

refer the reader to [22, 9]. Moreover, we believe that the models we consider are gen-

eral enough to capture almost any other reasonable way of modelling correlation and

non-stationarity of demands over time.

These models have attracted the attention of many researchers over the years and

there exists a huge body of related literature. The dominant paradigm in almost all of

the existing literature has been to formulate these models using a dynamic programming

framework. The optimization problem is defined recursively over time using subprob-

lems for each possible state of the system. The state usually consists of a given time

period, the level of the echelon inventory at the beginning of the period, a resulted con-

ditional distribution on the future demands over the rest of the horizon, and possibly

more information that is available by that period. For each subproblem, we compute an

optimal solution to minimize the expected overall discounted cost from time t until the

end of the horizon.

This framework has turned out to be very effective in characterizing the optimal pol-

icy of the overall system. Surprisingly, the optimal policies for these rather complex

models follow simple forms. In the models with only per-unit ordering cost and no

capacity constraints, the optimal policy is a state-dependent base-stock policy. In each

period, there exists an optimal target base-stock level that is determined only by the

given conditional distribution (at that period) of future demands and possibly by addi-

tional information that is available, but it is independent of the starting inventory level

at the beginning of the period, that is, independent of the control policy in past periods.
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The optimal policy aims to keep the inventory level in each period as close as possible

to the target base-stock level. That is, it orders up to the target level whenever the inven-

tory level at the beginning of the period is below that level, and orders nothing otherwise.

The optimality of base-stock policies has been proven in many settings, including mod-

els with correlated demand and forecast evolution (see, for example, [22, 36]). Similarly,

in the presence of capacity constraints on the size of the order in each period, the opti-

mal policies are state-dependent modified base-stock policies. As before, in each period,

there exists a target inventory level, and the optimal policy aims to keep its inventory

level as close as possible to that target level. However, in the case where the inventory

level at the beginning of the period is below that target level, it might not be possible

to order up to the target level because of the capacity constraint. In this case the order

placed would be up to capacity. There are several proofs of the optimality of modified

base-stock policies in different settings (with independent demands) that are based on

dynamic programming approach (see, for example, [12, 26, 1]).

For the models with fixed ordering cost, the optimal policy follows a slightly more

complicated pattern. Now, in each period, there are lower and upper thresholds that are

again determined only by the given conditional distribution (at that period) on future

demands. Following an optimal policy, an order is placed in a certain period if and only

if the inventory level at the beginning of the period has dropped below the lower thresh-

old. Once an order is placed, the inventory level is increased up to the upper threshold.

This class of policies is usually called state-dependent (s, S) policies. The optimality of

state-dependent (s, S) policies was proven for the case of non-stationary but indepen-

dent demand (see [56]). Gallego and Özer [14] have established their optimality for a

model with correlated demands. We refer the reader to [9, 22, 56, 14] for the details on

some of the results along these lines, as well as a comprehensive discussion of relevant
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literature.

Unfortunately, the rather simple forms of these policies do not always lead to effi-

cient algorithms for computing the optimal policies. The corresponding dynamic pro-

grams are relatively straightforward to solve if the demands in different periods are

independent. Dynamic programming approach can still be tractable for uncapcitated

models with Markov-modulated demand but under rather strong assumptions on the

structure and the size of the state space of the underlying Markov process (see, for ex-

ample, [52, 7]). However, in many scenarios with more complex demand structure the

state space of the corresponding dynamic programs grows exponentially and explodes

very fast (see [22, 9] for relevant discussions on the MMFE model). Capacitated models

are even harder to solve using a dynamic programming approach. The difficulty again

comes from the fact that we need to solve ’too many’ subproblems. This phenomenon is

known as the curse of dimensionality. Moreover, because of this phenomenon, it seems

unlikely that there exists an efficient algorithm to solve these huge dynamic programs.

This gap between the knowledge on the structure of the optimal policies and the inability

to compute them efficiently provides the stimulus for future theoretical interest in these

problems.

For the uncapacitated periodic-review stochastic inventory control problem, Muhar-

remoglu and Tsitsiklis [35] have proposed an alternative approach to the dynamic pro-

gramming framework. They have observed that this problem can be decoupled into a

series of unit supply-demand subproblems, where each subproblem corresponds to a sin-

gle unit of supply and a single unit of demand that are matched together. This novel ap-

proach enabled them to substantially simplify some of the dynamic programming based

proofs on the structure of optimal policies, as well as to prove several important new

structural results. In particular, they have established the optimality of state-dependent
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base-stock policies for the uncapacitated model with general Markov-modulated de-

mand. Using this unit decomposition, they have also suggested new methods to compute

the optimal policies. However, their computational methods are essentially dynamic

programming approaches applied to the unit subproblems, hence they suffer from sim-

ilar problems in the presence of correlated and non-stationary demand. Although our

approach is very different from theirs, we use some of their ideas as technical tools

in some of the proofs in this chapter. Janakriman and Muckstadt [24] have extended

this approach to capacitated models and established the optimality of state-dependent

modified base-stock policies for models with Markov-modulated demand.

As a result of this apparent computational intractability, many researchers have

attempted to construct computationally efficient (but suboptimal) heuristics for these

problems. However, we are aware of very few attempts to analyze the worst-case per-

formance of these heuristics (see for example [31]). Moreover, we are aware of no

computationally efficient policies for which there exist constant performance guaran-

tees. For details on some of the proposed heuristics, and a discussion of others, see

[9, 31, 22, 16, 27].

One specific class of suboptimal policies for the uncapacitated model that has at-

tracted a lot of attention is the class of myopic policies. In a myopic policy, in each

period, we attempt to minimize the expected cost for that period, ignoring the poten-

tial effect on the cost in future periods. The myopic policy is attractive since it yields

a base-stock policy that is easy to compute on-line, that is, it does not require infor-

mation on the control policy in the future periods. In each period, we need to solve a

single-variable convex minimization problem. In many cases, the myopic policy seems

to perform well. However, in many other cases, especially when the demand can drop

significantly from period to period, the myopic policy performs poorly. Veinott [55] and
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Ignall and Veinott [21] have shown that myopic policy can be optimal even in models

with nonstationary demand as long as the demands are stochastically increasing over

time. Iida and Zipkin [22] and Lu, Song and Regan [31] have focused on the martingale

model of forecast evolution (MMFE) and shown necessary conditions and rather strong

sufficient conditions for myopic policies to be optimal. They have also used myopic

policies to compute upper and lower bounds on the optimal base-stock levels, as well

as bounds on the relative difference between the optimal cost and the cost of different

heuristics. However, the bounds they provide on this relative error are not constants. For

the capacitated model, it is known that myopic policies often perform very badly since

they do not consider possible capacity limitations in future periods.

Chan and Muckstadt [5] have considered a different way for approximating huge

dynamic programs that arise in the context of inventory control problems. More specif-

ically, they have considered uncapacitated and capacitated multi-item models. Instead

of solving the one period problem (as in the myopic policy) they have added to the one

period problem a penalty function which they call Q-function. This function accounts

for the holding cost incurred by the inventory left at the end of the period over the entire

horizon. Their look ahead approach with respect to the holding cost is somewhat related

to our approach, though significantly different.

We note that our work is also related to a huge body of approximation results for

stochastic and on-line combinatorial problems. The work on approximation results for

stochastic combinatorial problems goes back to the work of Möhring, Radermacher and

Weiss [32, 33] and the more recent work of Möohring, Schulz and Uetz [34]. They have

considered stochastic scheduling problems. However, their performance guarantees are

dependent on the specific distributions (namely on second moment information). Re-

cently, there is a growing stream of approximation results for several 2-stage stochastic
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combinatorial problems. For a comprehensive literature review we refer the reader to

[53, 10, 49, 6]. We note that the problems we consider in this work are by nature multi-

stage stochastic problems, which are usually much harder (see [8] for a recent result on

the stochastic knapsack problem).

Another approach that was applied to these models is the robust optimization ap-

proach (see [2]). Here the assumption is of a distribution-free model, where instead the

demands are assumed to be drawn from some specified uncertainty set. Each policy is

then evaluated with respect to the worst possible sequence of demands within the given

uncertainty set. The goal is to find the policy with the best worst-case (i.e., a min-max

approach). This objective is very different from the objective of minimizing expected

(average cost) discussed in most of the existing literature, including this work.

Our work is distinct from the existing literature in several significant ways, and is

based on three key ideas:

Marginal cost accounting scheme. We introduce a novel approach for cost accounting

in stochastic inventory control problems. The standard dynamic programming approach

directly assigns to the decision of how many units to order in each period only the

expected holding and backlogging costs incurred in that period although this decision

might effect the costs in future periods. Instead, our new cost accounting scheme as-

signs to the decision in each period all the expected costs that, once this decision is

made, become independent of any decision made in future periods, and are dependent

only on the future demands. The marginal holding cost accounting approach is based

on the key observation that once we place an order for a certain number of units in some

period, then the expected ordering and holding cost that these units are going to incur

over the rest of the planning horizon is a function only of the realized demands over the

rest of the horizon, not of future orders. Hence, with each period, we can associate the
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overall expected ordering and holding cost that is incurred by the units ordered in this

period, over the entire horizon. We note that similar ideas of holding cost accounting

were previously used in the context of models with continuous time, infinite horizon

and stationary (Poisson distributed) demand (see, for example, the work of Axsäter and

Lundell [43] and Axsäter [42]). In an uncapacitated model the decision of how many

units to order in each period effect the expected backlogging cost in only a single future

period, namely, a lead time ahead. However, this is not necessarily true in a capacitated

model, where this decision might effect the expected backlogging cost in several peri-

ods into the future. Thus, for capacitated models we introduce a marginal backlogging

cost accounting approach. Suppose that in the current period the order placed was not

up to capacity, we wish to account for the potential backlogging cost in future periods

incurred directly by the decision not to use the full available capacity. Assume tem-

porarily that we order up to capacity in each one of the periods. Suppose now that in the

current period we do not order up to capacity. Then expected marginal backlogging cost

associated with the current period is the overall increase in the expected backlogging

cost over the entire horizon resulting from this decision. The marginal backlogging cost

accounting scheme for the capacitated model is in fact a generalization of the traditional

period backlogging cost accounting scheme. As we will show it turns out that both

the expected marginal holding and backlogging costs are straightforward to compute in

most common scenarios. We believe that this new approach will have more applications

in the future in analyzing stochastic inventory control problems.

Cost balancing. The idea of cost balancing was used in the past to construct heuris-

tics with constant performance guarantees for deterministic inventory problems. The

most well-known examples are the Silver-Meal Part-Period balancing heuristic for the

lot-sizing problem (see [51]) and the Cost-Covering heuristic of Joneja for the joint-
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replenishment problem [25]. We are not aware of any application of these ideas to

stochastic inventory control problems. The key observation is that any policy in any

period incurs potential expected costs due to overordering (namely, expected holding

costs) and underordering (namely, expected backlogging costs). For the periodic-review

stochastic inventory control problem (both uncapacitated and capacitated variants), we

use the marginal cost accounting approach to construct policies that, in each period, bal-

ance the expected (marginal) ordering and holding cost against the expected (marginal)

backlogging cost. For the stochastic lot-sizing problem, we construct a policy that bal-

ances the expected fixed ordering cost, holding cost and backlogging cost over each

interval between consecutive orders. As we shall show, the simple idea of balancing is

powerful and leads to policies that have constant worst-case performance guarantees.

We again believe that the balancing idea will have more applications in constructing and

analyzing algorithms for other stochastic inventory control models.

Non base-stock policies. Our policies are not state-dependent base-stock policies, in

that the order up-to level order of the policy in each period does depend on the inventory

control in past periods. However, this enable us to use, in each period, the distributional

information about the future demands beyond the current period (unlike the myopic pol-

icy), without the burden of solving huge dynamic programs. Moreover, our policies can

be easily implemented on-line (like the myopic policy) and are simple, both conceptu-

ally and computationally (see [23]).

Using these ideas we provide what is called a 2-approximation algorithm for the un-

capacitated and capacitated variants of the periodic-review stochastic inventory control

problem; that is, the expected cost of our policies is no more than twice the expected

cost of an optimal policy. Note that this is not the same requirement as stipulating that,

for each realization of the demands, the cost of our policy is at most twice the optimal
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cost, which is a much more stringent requirement. We also note that these guarantees

refer only to the worst-case performance and it is likely that the typical performance

would be significantly better (see [23]). We then use a standard cost transformation to

achieve significantly better guarantees if the ordering cost is the dominant part in the

overall cost, as it is the case in many real life situations. Our results are valid for all

known approaches used to model correlated and non-stationary demands. We note that

the analysis of the worst-case performance is tight. In particular, we describe a fam-

ily of examples for which the ratio between the expected cost of the balancing policy

and the expected cost of the optimal policy is asymptotically 2. For the uncapacitated

periodic-review stochastic inventory control problem, we also present an extended class

of myopic policies that provides easily computed upper bounds and lower bounds on the

optimal base-stock levels. As shown in [23], these bounds combined with the balancing

techniques lead to improved balancing policies. These policies have a worst-case per-

formance guarantee of 2 and they seem to perform significantly better in practice. We

establish similar bounds for the capacitated model, and show again how to use them to

get improved policies.

An interesting question that is left open in the current literature is whether the my-

opic policy for the uncapacitated model has a constant worst-case performance guaran-

tee. We provide a negative answer to this question, by showing a family of examples

for which the expected cost of the myopic policy can be arbitrarily more expensive than

the expected cost of an optimal policy. Our example provides additional insight into

situations in which the myopic policy performs poorly.

For the stochastic lot-sizing problem we provide a 3-approximation algorithm. This

is again a worst-case analysis and we would expect the typical performance to be much

better.
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The rest of this chapter is organized as follows. In Section 2.2 we present a mathe-

matical formulation of the periodic-review stochastic inventory control problem. Then

in Section 2.3 we explain the details of the new marginal holding cost accounting ap-

proach followed by section 2.4 in which we describe the balancing policy for the un-

capacitated periodic-review stochastic inventory control problem and present its worst-

case analysis. Then in Section 2.5 we describe the marginal backlogging cost accounting

for the capacitated model followed by Section 2.6 in which we describe the balancing

policy and its worst-case analysis for the capacitated model. Several important exten-

sions are discussed in Section 2.7. In Section 2.8 we present an extended class of myopic

policies for the uncapacitated model, develop upper and lower bounds on the optimal

base-stock levels, and discuss the example in which the performance of the myopic pol-

icy is arbitrarily bad. Similarly, in Section 2.9, we consider the capacitated case, develop

lower and upper bounds on the optimal inventory levels, and show how to use them to

get improved policies. The stochastic lot-sizing problem is discussed in Section 2.10,

where we present a 3-approximation algorithm for the problem. We then conclude the

chapter with some remarks and open research questions.

2.2 Periodic-Review Stochastic Inventory Control Problem

In this section, we provide the mathematical formulation of the periodic-review stochas-

tic inventory problem and introduce some of the notation used in the coming sections

of this chapter. As a general convention throughout this chapter, we distinguish be-

tween a random variable and its realization using capital letters and lower case letters,

respectively. Script font is used to denote sets. We consider a finite planning horizon of

T periods numbered t = 1, . . . , T (note that t and T are both deterministic unlike the

convention above). The demands over these periods are random variables, denoted by



23

D1, . . . , DT .

As part of the model, we assume that at the beginning of each period s, we are given

what we call an information set that is denoted by fs. The information set fs contains

all of the information that is available at the beginning of time period s. More specif-

ically, the information set fs consists of the realized demands (d1, . . . , ds−1) over the

interval [1, s), and possibly some more (external) information denoted by (w1, . . . , ws).

The information set fs in period s is one specific realization in the set of all possible

realizations of the random vector Fs = (D1, . . . , Ds−1,W1, . . . , Ws). This set is de-

noted by Fs. In addition, we assume that in each period s, there is a known conditional

joint distribution of the future demands (Ds, . . . , DT ), denoted by Is := Is(fs), which

is determined by fs (i.e., knowing fs, we also know Is(fs)). For ease of notation, Dt

will always denote the random demand in period t according to the conditional joint

distribution Is for some s ≤ t, where it will be clear from the context to which period

s we refer. We will use t as the general index for time, and s will always refer to the

current period.

The only assumption on the demands is that for each s = 1, . . . , T , and each fs ∈ Fs,

the conditional expectation E[Dt|fs] is well defined and finite for each period t ≥ s. In

particular, we allow non-stationarity and correlation between the demands in different

periods. We note again that by allowing correlation we let Is be dependent on the realiza-

tion of the demands over the periods 1, . . . , s−1 and possibly on some other information

that becomes available by time s (i.e., Is is a function of fs). However, the information

set fs as well as the conditional joint distribution Is are assumed to be independent of

the specific inventory control policy being considered.

In the periodic-review stochastic inventory control problem, our goal is to supply

each unit of demand while attempting to avoid ordering it either too early or too late. In
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period t, (t = 1, . . . , T ) three types of costs are incurred, a per-unit ordering cost ct for

ordering up to ut units, where ut ≥ 0 is the available order capacity in period t (in the

uncapacitated model we assume ut = ∞ for each t = 1, . . . , T ), a per-unit holding cost

ht for holding excess inventory from period t to t + 1, and a unit backlogging penalty

pt that is incurred for each unsatisfied unit of demand at the end of period t. Unsatisfied

units of demand are usually called backorders. The assumption is that backorders fully

accumulate over time until they are satisfied. That is, each unit of unsatisfied demand

will stay in the system and will incur a backlogging penalty in each period until it is

satisfied. In addition, we consider a model with a lead time of L periods between the

time an order is placed and the time at which it actually arrives. We first assume that

the lead time is a known integer L. In Section 2.7, we will show that our policy can be

modified to handle stochastic lead times under the assumption of no order crossing (i.e.,

any order arrives no later than orders placed later in time).

There is also a discount factor α ≤ 1. The cost incurred in period t is discounted by

a factor of αt. Since the horizon is finite and the cost parameters are time-dependent,

we can assume without loss of generality that α = 1. We also assume that there are

no speculative motivations for holding inventory or having back orders in the system.

To enforce this, we assume that, for each t = 2, . . . , T − L, the inequalities ct ≤
ct−1 + ht+L−1 and ct ≤ ct+1 + pt+L are maintained (where CT+1 = 0). (In case there

is a discount factor, we require that αct ≤ ct−1 + αLht+L−1 and ct ≤ αct+1 + αLpt+L.)

We also assume that the parameters ht, pt and ct are all non-negative. Note that the

parameters hT and pT can be defined to take care of excess inventory and back orders at

the end of the planning horizon. In particular, pT can be set to be high enough to ensure

that there are very few back orders at the end of time period T .

The goal is to find a feasible ordering policy (i.e., one that respects the capacity



25

constraints) that minimizes the overall expected discounted ordering cost, holding cost

and backlogging cost. We consider only policies that are non-anticipatory, i.e., at time

s, the information that a feasible policy can use consists only of fs and the current

inventory level. In particular, given any feasible policy P and conditioning on a specific

information set fs, we know the inventory level xP
s deterministically.

We will use D[s,t] to denote the accumulated demand over the interval [s, t], i.e.,

D[s,t] :=
∑t

j=s Dj . We will also use superscripts P and OPT to refer to a given policy

P and the optimal policy respectively.

Given a feasible policy P , we describe the dynamics of the system using the fol-

lowing terminology. We let NIt denote the net inventory at the end of period t, which

can be either positive (in the presence of physical on-hand inventory) or negative (in the

presence of back orders). Since we consider a lead time of L periods, we also consider

the orders that are on the way. The sum of the units included in these orders, added to

the current net inventory is referred to as the inventory position of the system. We let

Xt be the inventory position at the beginning of period t before the order in period t is

placed, i.e., Xt := NIt−1 +
∑t−1

j=t−L Qj (for t = 1, . . . , T ), where Qj denotes the num-

ber of units ordered in period j (we will sometime denote
∑t−1

j=t−L Qj by Q[t−L,t−1]).

Similarly, we let Yt be the inventory position after the order in period t is placed, i.e.,

Yt = Xt +Qt. Note that once we know the policy P and the information set fs ∈ Fs, we

can easily compute nis−1, xs and ys, where again these are the realizations of NIs−1, Xs

and Ys, respectively.

Since time is discrete, we next specify the sequence of events in each period s:

1. The order placed in period s− L of qs−L units arrives and the net inventory level

increases accordingly to nis−1 + qs−L.

2. The decision of how many units to order in period s is made. Following a given
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policy P , qs units are ordered, where 0 ≤ qs ≤ us, i.e., the order in period s

can not exceed the available capacity us. Consequently, the inventory position is

raised by qs units (from xs to ys). This incurs a linear cost csqs.

3. We observe the demand in period s which is realized according to the conditional

joint distribution Is. We also observe the new information set fs+1 ∈ Fs+1, and

hence we also know the updated conditional joint distribution Is+1. The net inven-

tory and the inventory position each decrease by ds units. In particular, we have

xs+1 = xs + qs − ds and nis+1 = nis + qs−L − ds.

4. If nis+1 > 0, then we incur a holding cost hsnis+1 (this means that there is excess

inventory that needs to be carried to time period s + 1). On the other hand, if

nis+1 < 0 we incur a backlogging penalty pt|nis+1| (this means that there are

currently unsatisfied units of demand).

2.3 Marginal Holding Cost Accounting

In this section, we present a new approach to the holding cost accounting of stochastic

inventory control problems. Our approach differs from the traditional dynamic pro-

gramming based approach. In particular, we account for the holding cost incurred by

a feasible policy in a different way, which enables us to design and analyze new ap-

proximation algorithms. We believe that this approach will be useful in other stochastic

inventory models.

2.3.1 Dynamic Programming Framework

Traditionally, stochastic inventory control problems of the kind described in Section 2.2

are formulated using a dynamic programming framework. For simplicity, we discuss
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the case with L = 0, where xs = nis (for a detailed discussion see Zipkin [56]).

In a dynamic programming framework, the problem is defined recursively over time

through subproblems that are defined for each possible state. A state usually consists of

a time period t, an information set ft ∈ Ft and the inventory position at the beginning

of period t, denoted by xt. For each subproblem let Vt(xt, ft) be the optimal expected

over the interval [t, T ] given that the inventory position at the beginning of period t was

xt and the observed information set was ft. We seek to compute an optimal policy in

period t that minimizes the expected cost over [t, T ] (i.e., minimizes Vt(xt, ft)) under the

assumption that we are going to make optimal decisions in future periods. The space

of feasible decisions consists of all orders of size 0 ≤ qt ≤ ut (in the uncapacitated

case ut = ∞), or alternatively the level yt to which the inventory position is raised,

where xt ≤ yt ≤ xt + ut (and qt = yt − xt). Assuming that the optimal policy for

all subproblems of states with periods t + 1, . . . , T has been already computed, the

dynamic programming formulation for computing the optimal policy for the subproblem

of period t is

Vt(xt, ft) = min
xt≤yt≤xt+ut

{ct(yt − xt) + E[ht(yt −Dt)
+ + pt(Dt − yt)

+|ft] +

E[Vt+1(yt −Dt,Ft+1)|ft]}.

As can be seen the cost of any feasible decision xt ≤ yt ≤ xt + ut is divided into

two parts. The first part is the period cost associated with period t, namely the ordering

cost incurred by the order placed in period t and the resulted expected holding cost and

backlogging cost in this period, i.e.,

ct(yt − xt) + E[ht(yt −Dt)
+ + pt(Dt − yt)

+|ft].

In addition, there are the future costs over [t + 1, T ] (again, assuming that optimal deci-
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sions are made in future periods). The impact of the decision in period t on the future

costs is captured through the state in the next period, namely yt − Dt. In particular,

in a dynamic programming framework, the cost accounted directly in each period t, is

only the expected period cost, although the decision made in this period might imply

additional costs in the future periods. We note that if L > 0, then the period cost is

always computed a lead time ahead. That is, the period cost associated with the decision

to order up to yt in period t is

ct(yt − xt) + E[ht+L(yt −D[t,t+L])
+ + pt+L(D[t,t+L] − yt)

+|ft],

where D[t,t+L] is the accumulated demand over the lead time.

Dynamic programming approach has turned out to be very effective in characterizing

the structure of optimal policies. As was noted in Section 2.1, this yields an optimal

base-stock policy, {R(ft) : ft ∈ Ft}. Given that the information set at time s is fs, then

the optimal base-stock level is R(fs). The optimal policy then follows the following

pattern. In case the inventory position level at the beginning of period s is lower than

R(fs) (i.e., xs < R(fs)), then the inventory position is increased to ys = R(fs) by

placing an order of the appropriate number of units. Suppose that the target level R(fs)

is not reachable because of the capacity constraint, i.e., xs + us < R(fs). We then set

ys = xs + us, i.e., order up to capacity. In the case xs ≥ R(fs), the inventory position is

kept the same (i.e., nothing is ordered) and ys = xs.

Unfortunately, in scenarios where the demands in different periods are correlated,

obtaining the optimal policy using this dynamic programming formulation is likely to

be intractable. To compute the optimal policy we need to consider a subproblem for

every possible period and possible state of the system. However, the set Fs can be expo-

nentially large or infinite. This phenomenon is known as the ‘curse of dimensionality’.
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2.3.2 Marginal Holding Cost Accounting

We take a different approach for accounting for the holding cost associated with each

period. Observe that once we decide to order qs units at time s (where qs = ys − xs),

then the holding cost they are going to incur from period s until the end of the planning

horizon is independent of any future decision in subsequent time periods. It is dependent

only on the demand to be realized over the time interval [s, T ].

To make this rigorous, we use a ground distance-numbering scheme for the units of

demand and supply, respectively. More specifically, we think of two infinite lines, each

starting at 0, the demand line and the supply line. The demand line LD represents the

units of demands that can be potentially realized over the planning horizon, and sim-

ilarly, the supply line LS represents the units of supply that can be ordered over the

planning horizon. Each ’unit’ of demand, or supply, now has a distance-number ac-

cording to its respective distance from the origin of the demand line and the supply line,

respectively. If we allow continuous demand (rather then discrete) and continuous order

quantities the unit and its distance-number are defined infinitesimally. We can assume,

without loss of generality, that the units of demands are realized according to increasing

distance-number. For example, if the accumulated realized demand up to time t is d[1,t)

and the realized demand in period t is dt, we then say that the demand units numbered

(d[1,t), d[1,t) + dt] were realized in period t. Similarly, we can describe each policy P in

terms of the periods in which it orders each supply unit, where all unordered units are

”ordered” in period T + 1. It is also clear that we can assume without loss of generality

that the supply units are ordered in increasing distance-number. Specifically, the supply

units that ordered in period t are numbered (ni0 + q[1−L,t), ni0 + q[1−L,t]], where ni0 and

qj, 1 − L ≤ j ≤ 0 are the net inventory and the sequence of the last L orders, respec-

tively, given as an input at the beginning of the planning horizon (in time 0). We further
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assume (again without loss of generality) that as demand is realized, the units of supply

are consumed on a first-ordered-first-consumed basis. Therefore, we can match each

unit of supply that is ordered to a certain unit of demand that has the same number. We

note that Muharremoglu and Tsitsiklis [35] have used the idea of matching units of sup-

ply to units of demand in a novel way to characterize and compute the optimal policy in

different stochastic inventory models. However, their computational methods are based

on applying dynamic programming to the single-unit problems. Therefore, their cost

accounting within each single-unit problem is still additive, and differs fundamentally

from ours.

Suppose now that at the beginning of period s we have observed an information set

fs. Assume that the inventory position is xs and qs additional units are ordered. Then the

expected additional (marginal) holding cost that these qs units are going to incur from

time period s until the end of the planning horizon is equal to

T∑
j=s+L

E[hj(qs − (D[s,j] − xs)
+)+|fs],

(recall that we assume without loss of generality that α = 1), where x+ = max(x, 0).

Recall that at time s we assume to know a given joint distribution Is of the demands

(Ds, . . . , DT ).

Using this approach, consider any feasible policy P and let HP
t := HP

t (QP
t ) (for

t = 1, . . . , T ) be the discounted ordering and expected holding cost incurred by the

additional QP
t units ordered in period t by policy P . Thus,

HP
t = HP

t (QP
t ) := ctQ

P
t +

T∑
j=t+L

hj(Q
P
t − (D[t,j] −Xt)

+)+

(assume again α = 1). Now let ΠP
t be the discounted expected backlogging cost in-

curred in period t + L (t = 1−L, . . . , T −L). That is, ΠP
t := pt+L(D[t,t+L]− (Xt+L +

QP
t ))+ (where Dj := 0 with probability 1 for each j ≤ 0, and QP

t = qt for each t ≤ 0).
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Let C(P ) be the cost of the policy P . Clearly,

C(P ) :=
0∑

t=1−L

ΠP
t + H(−∞,0] +

T−L∑
t=1

(HP
t + ΠP

t ), (1)

where H(−∞,0] denotes the total holding cost incurred by units ordered before period

1. We note that the first two expressions
∑0

t=1−L ΠP
t and H(−∞,0] are not affected by

our decisions (i.e., they are the same for any feasible policy and each realization of the

demand), and therefore we will omit them. Since they are non-negative, this will not

effect our approximation results. Also observe that without loss of generality, we can

assume that QP
t = HP

t = 0 for any policy P and each period t = T−L+1, . . . , T , since

nothing that is ordered in these periods can be used within the given planning horizon.

We now can write

C(P ) =
T−L∑
t=1

(HP
t + ΠP

t ). (2)

In some sense, we change the accounting of the holding cost from periodical to marginal.

In the next section, we shall demonstrate that this new cost accounting approach serves

as a powerful tool for designing simple approximation algorithms that can be analyzed

with respect to their worst-case expected performance.

2.4 Dual-Balancing Policy - Uncapacitated Model

In this section, we consider a new policy for the uncapacitated periodic-review stochas-

tic inventory control problem, which we call a dual-balancing policy. In this policy we

aim to balance the expected marginal holding cost against the expected marginal back-

logging penalty cost. In each period s = 1, . . . , T − L, we focus on the units that we

order in period s only, and balance the expected and holding cost they are going to incur

over [s, T ] against the expected backlogging cost in period s + L. We do that using the

marginal accounting of the holding cost as introduced in Section 2.3 above.
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We next describe the details of the policy, which is very simple to implement, and

then analyze its expected performance. In particular, we will show that for any input

of demand distributions and cost parameters, the expected cost of the dual-balancing

policy is at most twice the expected cost of an optimal policy. At the end of this section

we will show that the worst-case guarantee of 2 is tight. Specifically, we will show

that there exists a set of instances for which the ratio between the expected cost of

the dual-balancing policy and the expected cost of the optimal policy converges to 2

asymptotically. A superscript B will refer to the dual-balancing policy described below.

Recall the assumption discussed in Section 2.2 that the cost parameters imply no

motivation for holding inventory or backorders. This implies that, without loss of gener-

ality, for each t = 1, . . . , T , that ct = 0 and ht, pt ≥ 0 (using a standard cost transforma-

tion from inventory theory). Moreover, we first describe the algorithm and its analysis

under the latter assumption. Then in Section 2.7.3 we discuss in detail the generality of

this assumption. In that section, we will also show how a simple transformation of the

costs can yield a better worst-case performance guarantee and certainly a better typical

(average) performance in many cases in practice.

2.4.1 The Algorithm

We first describe the algorithm and its analysis in the case where fractional orders are

allowed. In Section 2.7, we will show how to extend the algorithm and the analysis to

the case in which the demands and the order sizes are integer-valued. In each period

s = 1, . . . , T −L, we consider a given information set fs (where again fs ∈ Fs) and the

resulting pair (xB
s , Is) the dual-balancing policy’s inventory position at the beginning of

period s and the conditional joint distribution Is of the demands (Ds, . . . , DT ). We then

consider the following two functions:
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(i) The expected holding cost over [s, T ] incurred by the additional qs units ordered

in period s, conditioned on fs. We denote this function by lBs (qs), where lBs (qs) :=

E[HB
s (qs)|fs]. As we have seen in Section 2.3,

HB
t (Qt) :=

T∑
j=t+L

hj(Qt − (D[t,j] −Xt)
+)+

(recall that ct = 0).

(ii) The expected backlogging cost incurred in period s + L as a function of the ad-

ditional qs units ordered in period s, conditioned again on fs. We denote this

function by πB
s (qs), where πB

s (qs) := E[ΠB
s (qs)|fs]. In Section 2.3 we have de-

fined ΠB
t := pt(D[t,t+L] − (XB

t + Qt))
+ = pt(D[t,t+L] − Y B

t )+. We note that

conditioned on a specific fs ∈ Fs and given any policy P , we already know xs,

the starting inventory position in time period s. Hence, the backlogging cost in

period s, ΠB
s |fs, is indeed a function only of qs and future demands.

The dual-balancing policy now orders qB
s = q′s units in period s, where q′s is such that

lBs (q′s) = πB
s (q′s). In other words, we set q′s so that the expected holding cost incurred

over the time interval [s, T ] by the additional q′s units we order at s is equal to the

expected backlogging cost in period s + L, i.e., E[HB
s (q′s)|fs] = E[ΠB

s (q′s)|fs]. Since

we assume that fractional orders are allowed, we know that the functions lPt (qt) and

πP
t (qt) are continuous in qt, for each t = 1, . . . , T − L and each feasible policy P .

Note again that for any given policy P , once we condition on a specific information

set fs ∈ Fs, we already know xP
s deterministically. It is then straightforward to verify

that both lPs (qs) and πP
s (qs) are convex functions of qs. Moreover, the function lPs (qs)

is equal to 0 for qs = 0 and is an increasing function in qs, which goes to infinity as

qs goes to infinity. In addition, the function πP
s (qs) is non-negative for qs = 0 and is a
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decreasing function in qs, which goes to 0 as qs goes to infinity. Thus, q′s is well-defined

and we can indeed balance the two functions.

Observe the difference between the marginal holding cost function ls that accounts

for costs over an entire time interval, and the backlogging cost function πs that accounts

for costs incurred in a single period. The intuitive explanation is that in an uncapacitated

model, underordering (i.e., ordering ‘too little’) can always be fixed in the next period

to avoid further costs. On the other hand, since we can not order a negative number

of units, overordering (i.e., ordering ‘too many’ units) can not be fixed by any decision

made in future periods, and the resulting costs are only a function of future demands,

not of future orders. We also point out that q′s can be computed as the minimizer of the

function

gs(q
B
s ) := max{lBs (qs), π

B
s (qs)}. Since gs(qs) is the maximum of two convex functions

of qs, it is also a convex function of qs. This implies that in each period s we need to

solve a single-variable convex minimization problem and this can be solved efficiently.

In particular, if for each j ≥ s, D[s,j] has any of the distributions that are commonly used

in inventory theory, then it is extremely easy to evaluate the functions lPs (qs) and πP
s (qs)

(observe that xs is known at time s). More generally, the complexity of the algorithm is

of order T (number of time periods) times the complexity of solving the single variable

convex minimization defined above. The complexity of this minimization problem can

vary depending on the level of information we assume on the demand distributions and

their characteristics. In all of the common scenarios there exist straightforward methods

to solve this problem efficiently (see also [23]). In particular, q′s lies at the intersection of

two monotone convex functions, which suggests that bi-section methods can be effective

in computing q′s. Note that in the presence of positive lead times even computing a

simple myopic policy requires to know the distribution of the accumulated demand over
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the lead time.

Finally, observe that the dual-balancing policy is not a state-dependent base-stock

policy. That is, the control of the dual-balancing policy does depend on the inventory

control policy in past periods, namely on xB
s . However, it can be implemented on-line,

i.e., it does not require any knowledge of the control policy in future periods. Thus, we

avoid the burden of solving large dynamic programming problems. Moreover, unlike the

myopic policy, the dual-balancing policy is using in each period, available information

about the future demands.

This concludes the description of the algorithm for continuous-demand case. Next

we describe the analysis of the worst-case expected performance of this policy.

2.4.2 Analysis

Next we shall show that, for each instance of the problem, the expected cost of the

dual-balancing policy described above is at most twice the expected cost of an optimal

policy. We will use the marginal cost accounting approach described in Section 2.3 (see

(2) above), and amortize the period cost of the dual-balancing policy with the cost of the

optimal policy.

Using the marginal holding cost accounting approach discussed in Section 2.3, the

expected cost of the dual-balancing policy can be expressed as

E[C(B)] =
T−L∑
t=1

E[HB
t + ΠB

t ].

For each t = 1, . . . , T − L, let Zt be the random balanced cost by the dual-balancing

policy in period t, i.e., Zt = E[HB
t |Ft] = E[HB

t |Ft]. Note that Zt is realized in period

t as a function of the observed information set ft (we will denote its realization by

zt). By the construction of the dual-balancing policy, we know that, with probability 1,
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E[HB
t |Ft] = E[ΠB

t |Ft], for each period t = 1, . . . , T − L. This implies that, for each

period t, E[HB
t + ΠB

t |Ft] = 2Zt, that proves the following lemma follows.

Lemma 2.4.1 The expected cost of the dual-balancing policy is equal to twice the ex-

pected sum of the Zt variables, i.e., E[C(B)] = 2
∑T−L

t=1 E[Zt].

Proof : Using the marginal cost accounting discussed in Section 2.3 and a standard

argument of conditional expectations we express

E[C(B)] =
T−L∑
t=1

E[HB
t + ΠB

t ] =
T−L∑
t=1

E[E[HB
t + ΠB

t |Ft]] = 2
T−L∑
t=1

E[Zt].

Next we will state and prove two lemmas which imply that the expected cost of an

optimal policy is at least
∑T−L

t=1 E[Zt]. For each realization of the demands D1, . . . , DT ,

let TH be the set of periods in which the optimal policy had more inventory than the

dual-balancing policy, i.e., the set of periods t such that Y B
t < Y OPT

t . Let TΠ be the set

of periods in which the dual-balancing had at least as much inventory as OPT , i.e., the

set of periods t such that Y B
t ≥ Y OPT

t . Observe that TH and TΠ are random sets that

induce a random partition of the planning horizon. The next lemma shows that, with

probability 1, the marginal holding cost incurred by the dual-balancing policy in periods

t ∈ TH is at most the overall holding cost incurred by OPT , denoted by HOPT , i.e.,
∑

t∈TH
HB

t ≤ HOPT with probability 1.

Recall the concepts of LD, the line of potential units of demand to be realized over

the horizon, and LS , the line of supply units to be ordered over the planning horizon,

discussed in Section 2.3 above. Since the demand is independent from the inventory

policy, we can compare between any two feasible policies by looking at the respective

periods in which each supply unit in LS was ordered. The proof technique in the next
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lemma will be based on such comparison between the dual-balancing policy and an

optimal policy

Lemma 2.4.2 For each realization fT ∈ FT , the marginal holding cost incurred by the

dual-balancing policy in all periods t ∈ TH is at most the overall holding cost incurred

by OPT , denoted by HOPT , i.e.,
∑

t∈TH
HB

t ≤ HOPT with probability 1.

Proof : Consider an information set fT ∈ FT which corresponds to a complete evolu-

tion over the planning horizon, and some period s ∈ TH . We slightly abuse the notation

and let TH denote the deterministic set of periods that corresponds to the specific infor-

mation set fT . Let Qs ⊆ LS be the set of supply units ordered by the dual-balancing

policy in period s, where clearly, |Qs| = q′s. By the definition of TH , we know that in

period s we had yB
s < yOPT

s . This implies that the units in Qs were ordered by OPT

either in period s or even prior to s. Since we assume that cs = 0 and that ht ≥ 0 for

each period t, we conclude that the holding cost that these units have incurred in OPT

is at least as much as the holding cost they have incurred in the dual-balancing policy.

We conclude the proof by observing that the sets {Qs : s ∈ TH} are of disjoint

supply units since they consist of units ordered by the dual-balancing policy in different

periods. This implies that indeed
∑

t∈TH
HB

t ≤ HOPT , with probability 1.

The next lemma shows that, with probability 1, the marginal backlogging penalty

cost of the dual-balancing policy associated with periods t ∈ TΠ is at most the overall

backlogging penalty incurred by OPT , denoted by ΠOPT .

Lemma 2.4.3 For each realization fT ∈ FT , the marginal backlogging penalty cost

of the dual-balancing policy associated with all periods t ∈ TΠ is at most the overall

backlogging penalty incurred by OPT , denoted by ΠOPT , i.e.,
∑

t∈TΠ
ΠB

t ≤ ΠOPT with

probability 1.
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Proof : Consider a realization fT ∈ FT and some period s ∈ TΠ (where again we

abuse the notation and use TΠ to denote a deterministic set). Note that period s is asso-

ciated with the backlogging cost incurred in period s + L. By definition of TΠ we know

that yB
s ≥ yOPT

s . However, this implies that, with probability 1, the backlogging cost

incurred by the dual-balancing policy in period s + L are no greater than the respective

backlogging cost incurred by the optimal policy in period s+L. The proof then follows.

As a corollary of Lemmas 2.4.1, 2.4.2 and 2.4.3 we get the following theorem.

Theorem 2.4.4 The dual-balancing policy for the uncapacitated model has a worst-

case performance guarantee of 2, i.e., for each instance of the capacitated periodic-

review stochastic inventory control problem, the expected cost of the dual-balancing

policy is at most twice the expected cost of an optimal solution, i.e.,

E[C(B)] ≤ 2E[C(OPT )].

Proof : From Lemma 2.4.1, we know that the expected cost of the dual-balancing pol-

icy is equal to twice the expected cost of the sum of the Zt variables, i.e.,

E[C(B)] = 2
∑T−L

t=1 E[Zt]. From Lemmas 2.4.2 and 2.4.3 we know that, with probabil-

ity 1, the cost of OPT is at least as much as the holding cost incurred by units ordered

by the dual-balancing policy in periods t ∈ TH plus the backlogging cost of the dual-

balancing policy that is associated with periods t ∈ TΠ. In other words, with probability

1, HOPT +ΠOPT ≥ ∑
t∈TH

HB
t +

∑
t∈TΠ

ΠB
t . Using again conditional expectations and

the definition of Zt, this implies that indeed,
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E[C(OPT )] ≥ E[
∑
t∈TH

HB
t +

∑
t∈TΠ

ΠB
t ] =

∑
t

E[HB
t · 11(t ∈ TH) + ΠB

t · 11(t ∈ TΠ)] =

∑
t

E[E[HB
t · 11(t ∈ TH) + ΠB

t · 11(t ∈ TΠ)|Ft]] =

∑
t

E[(11(t ∈ TH) + 11(t ∈ TΠ))Zt] =
∑

t

E[Zt].

We note that if the optimal policy is deterministic (i.e., it makes deterministic deci-

sions in each period t given the observed information set ft), then if we condition on

Ft, yB
t and yOPT

t are known deterministically, and so are the indicators 11(t ∈ TH) and

11(t ∈ TΠ). Suppose that the optimal policy is a randomized policy, i.e., it selects an or-

der of size QOPT
t as a random function of ft, then the same arguments above still work.

We now need to condition not only on Ft but also on QOPT
t . Since the inventory control

policy does not have any effect on the evolution of the future demands, the arguments

above are still valid. This concludes the proof of the theorem.

Observe that in a capacitated model, the dual-balancing policy described above

might not work out. In particular, the balancing order q′s might not be reachable in

the case where q′s > us. In the next section, we describe a novel marginal backlogging

cost accounting approach that gives rise to a dual-balancing policy for the capacitated

model. Next we will show that the analysis above is in fact tight by demonstrating a set

of instances for which the ratio between the expected cost of the dual-balancing policy

and the expected cost of an optimal policy converges to 2 asymptotically.

Dual-Balancing - Bad Example

The following example was constructed based on a suggestion in [39]. Consider an

instance with h > 0, p = h
√

L where L > 0 is again the a positive integer that denotes
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the lead time between the time an order is placed and the time it arrives. Also assume

that T = 1 + 2L and α = 1. The random demands have the following structure. there is

one unit of demand that is going to occur with equal probability either in period L + 1

or in period 2L + 1. For each t 6= L + 1, 2L + 1, we have Dt = 0 with probability 1.

Fractional orders are allowed.

It is readily verified that the optimal policy orders 1 unit in period 1 and incurs

expected cost of 1
2
hL. On the other hand, the dual-balancing policy will order in each

one of the periods 1, . . . ,
√

L just a small amount of the commodity. In particular, in

period 1, the dual-balancing orders 1√
L+1

of a unit (this can be calculated by equating

1
2
(
√

Lh)(1− q) = 1
2
Lhq, where q is the size of the order). It can be easily verified that

when L goes to ∞, the ratio between the expected cost of the dual-balancing policy and

the expected cost of the optimal policy converges to 2 (the calculations are rather messy

to present but can be easily coded).

2.5 Marginal Backlogging Cost Accounting Approach in Capaci-

tated Model

Recall the observation regarding the fundamental difference in uncapacitated models

between holding cost and backlogging penalty cost. That is, any mistake of ordering

‘too little’ can be fixed in the next period to avoid further backlogging penalty cost,

while the effect of ordering ‘too much’, may last for a number of periods depending

on the realized future demands. In particular, no future decision can fix this mistake,

since we can not order a negative quantity. Consequently, in the uncapacitated case ΠP
t

only accounts for costs incurred in a single period, namely, backlogging cost in period

t + L, whereas HP
t accounts for holding costs incurred over multiple periods. By way
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of contrast, in models with capacity constraints on the size of the order in each period,

the above observation is not valid anymore. More specifically, because of the capacity

constraints, it is not longer true that a mistake of ordering ‘too little’ in the current period

can be always fixed by decisions made in future periods.

We now consider the capacitated model, and present a new backlogging penalty

cost accounting approach that associates with the decision of how many units to order

in period s what we shall call the forced backlogging penalty cost resulting from this

decision in future periods.

Consider some period s. Suppose that xs is the inventory position at the beginning

of period s and that the number of units ordered in the period is qs < us. Let q̄s be

the resulting unused slack capacity in period s, i.e., q̄s = us − qs > 0. Focus now on

some future period t ≥ s + L after this order arrives and becomes available. Suppose

that for some realization of the demands d[s,t] − (xs + qs +
∑

j∈(s,t−L] uj) > 0. This

implies that there exists a shortage in period t, and moreover, that even if in every

period after period s and until period t − L the orders had been up to the maximum

available capacity, this part of the shortage in period t would still exist and incur the

corresponding backlogging penalty cost. The actual shortage may be even bigger and is

equal to d[s,t] − (xs + qs +
∑

j∈(s,t−L] qj) > 0 (recall that qj ≤ uj for each period j). In

other words, given our decision in period s, this part of the shortage could not be avoided

by any decision made over the interval (s, t− L] (clearly, any order placed after period

t− L will not be available by time t). We conclude that, if more units had been ordered

in period s, then at least some of the shortage in period t could have been avoided. More

precisely, the maximum number of units of shortage that could have been avoided by

ordering more units in period s is equal to min{q̄s, (d[s,t]−(xs +qs +
∑

j∈(s,t−L] uj))
+}.

The intuition is that by ordering more units in period s, we could have averted part of
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the shortage in period t, but clearly not more than the unused slack capacity q̄s, since

we could not have ordered in period s more than additional q̄s units. In this case, we

would say that this part of the backlogging penalty cost in period t was forced by the

decision in period s, and hence period s is associated with a backlogging penalty of

pt min{q̄s, (d[s,t] − (xs + qs +
∑

j∈(s,t−L] uj))
+}. This is significantly different from

the traditional backlogging penalty cost accounting, in which this penalty cost would be

associated with period t− L.

We let Wst be the shortage in period t that is forced by the decision in period s

(where again s ≤ t− L), i.e.,

Wst := min{Q̄s, (D[s,t] − (Xs + Qs +
∑

j∈(s,t−L]

uj))
+}.

An alternative way to express Wst is

Wst = (D[s,t] − (Xs + Qs +
∑

j∈(s,t−L]

uj))
+ − (D[s,t] − (Xs +

∑

j∈[s,t−L]

uj))
+. (3)

Now using the equalities, NIt = Xs+Qs+
∑

j∈(s,t−L] Qj−D[s,t) (for each s ≤ t−L)

and uj = Qj + Q̄j (for each j = s, . . . , t − L), we conclude that equation (3) can be

written as

(Dt −NIt −
∑

j∈(s,t−L]

Q̄j)
+ − (Dt −NIt −

∑

j∈[s,t−L]

Q̄j)
+. (4)

To see why (3) (hence (4)) above holds, observe that the inequality

(D[s,t] − (Xs + Qs +
∑

j∈(s,t−L]

uj))
+ > Q̄s

is equivalent to the inequality

(D[s,t] − (Xs +
∑

j∈[s,t−L]

uj))
+ > 0.
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Next we describe several properties of the parameters Wst. Clearly, if Q̄s = 0 (i.e.

Qs = us), then Wst = 0 for each t ≥ s + L. It is also readily verified from (4) above

that if Wst > 0 for some s ≤ t− L, then we have Wjt = Q̄j for each j ∈ (s, t− L].

Let Π̄P
s (for s = 1−L, . . . , T −L) be equal to the overall forced backlogging cost in

periods s + L, . . . , T associated with period s, i.e., let Π̄P
s =

∑T
t=s+L ptW

P
st (we again

assume that Dj = dj with probability 1 for each j ≤ 0). Let u−L = ∞, q−L = 0 and

q̄−L = ∞, and also define, for each t = 1, . . . , T ,

W−L,t := (D[1−L,t] − (x1−L +
∑

j∈[1−L,t−L]

uj))
+ = (Dt −NIt −

∑

j∈[1−L,t−L]

Q̄j)
+,

and Π̄P
−L = Π̄−L :=

∑T
t=1 ptW−L,t. The last definition of Π̄−L is meant to account for

forced backlogging penalty cost which is independent of any decision, and is forced by

the demands on any feasible policy. It is now readily verified that, for each t = 1, . . . , T ,

we have Π̄t−L =
∑t−L

j=−L Wjt = (Dt −NIt)
+ (the sum

∑t−L
j=−L Wjt is telescopic). This

implies the following theorem.

Theorem 2.5.1 Let P be a non-anticipatory policy. Then the cost of the policy P is

C(P ) :=
∑0

t=−L Π̄P
t + H(−∞,T ] +

∑T−L
t=1 (HP

t + Π̄P
t ).

To provide more intuition, we demonstrate the new backlogging cost accounting

approach through a simple example. Suppose that the order capacity is 5 in all periods,

L = 0 and α = 1. Assume that the inventory position at the beginning of period 3 was

x3 = 3, and that we have ordered q3 = 3, q4 = 5, q5 = 4 and q6 = 2 units in periods 3,

4, 5 and 6, respectively. Now say that the demands were d3 = 3, d4 = 3, d5 = 5 and

d6 = 11 in periods 3, 4, 5 and 6, respectively. In particular, the accumulated demand

over periods [3, 6], d[3,6], is equal to 22. This implies that in period 6 we had a shortage

of 5 units, each of which incurred a penalty cost of pt at the end of period 6. Out of

these 5 units of shortage at the end of period 6, we associate a backlogging penalty of 3
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units of shortage with period 6 (the unused slack capacity in this period is 3), a penalty

of 1 unit of shortage with period 5 (the unused slack capacity in this period is 1), no cost

is associated with period 4 since we ordered up to capacity, and finally the penalty of

1 units of shortage is associated with period 3 (d[3,6] − (3 + 3 + 5 + 5 + 5) = 1). In

other words, w36 = 1, w46 = 0, w56 = 1 and w66 = 3. This example illustrates how

we backtrack the ‘source’ of each unit of shortage and its corresponding backlogging

penalty cost incurred in period t, and associate it as forced backlogging penalty cost to

past periods. If L > 0, then we start the backtracking in period t− L, since only orders

in periods earlier than t− L + 1 could have arrived by time t.

The intuition is that once a shortage is incurred in period t, it is allocated to past

periods s ≤ t− L in which the orders were below the available capacity. More specifi-

cally, the shortage and the resulting backlogging cost in period t are charged to periods

s ≤ t−L with positive unused slack capacity going backward in time from period t−L.

Each period s ≤ t − L, can be charged with a backlogging penalty cost in period t for

up to q̄s units, the unused slack capacity in period s.

Note that the first two terms of C(P ) in Theorem 2.5.1,
∑0

t=−L Π̄P
t and H(−∞,T ], are

independent of any decision we make and are common to all feasible policies. Recall

that
∑0

t=−L Π̄P
t represents the forced backlogging penalty that is forced on any feasible

policy. Since these two terms are also non-negative, we omit them from the analysis.

This does not impact our approximation results. From now on we will write the cost of

a feasible policy P as C(P ) =
∑T−L

t=1 (HP
t + Π̄P

t ).

Finally, observe that for uncapacitated models with us = ∞ for each s (and hence

q̄s = ∞), our backlogging cost accounting approach is in fact identical to the traditional

backlogging accounting scheme discussed above. This implies that the cost accounting

scheme proposed in this section is a generalization of the one discussed in Section 2.3
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above. Therefore, the proceeding discussion in Section 2.6 below is also a generalization

of the corresponding algorithm and analysis in Section 2.4 above.

2.6 Dual-Balancing Policy - Capacitated Model

In this section, we describe a new policy for the capacitated periodic-review stochastic

inventory control problem. Similar to Section 2.4 above, we call it a dual-balancing

policy. We shall show that this policy has a worst-case performance guarantee of 2, i.e.,

for each instance of the problem, the expected cost of the policy is at most twice the

expected cost of an optimal policy. As in Section 2.4 we still assume, without loss of

generality, that for each t = 1, . . . , T , ct = 0 and ht, pt ≥ 0, and that fractional orders

are allowed.

The dual-balancing policy presented in this section is based on a balancing idea

similar to the one used in Section 2.4 for the uncapacitated model. In the uncapacitated

case, the dual-balancing policy is balancing, in each period s and conditioned on the

observed information set fs, the expected marginal holding cost of the units ordered in

the period against the expected (traditional) backlogging penalty cost in period s + L, a

lead time ahead of s. As we have already seen that this approach does not work in the

case where there is a capacity constraint on the size of the order in period s. For once,

the order size q′s that balances these two costs may not be reachable when q′s > us.

In turn, we consider the marginal backlogging penalty cost accounting and the corre-

sponding cost it associates with period s as described in Section 2.5 above. Conditioned

on the observed information set fs, we now balance the expected marginal holding cost

of the units ordered in period s against the expected marginal backlogging penalty costs

associated with period s. We will again use superscript B to refer to the dual-balancing

policy. For each period s = 1, . . . , T − L, conditioning on the observed information
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set fs, let again lBs (qB
s ) be the expected holding cost incurred over [s, T ] by the units

ordered by the dual-balancing policy in period s. That is, lBs (qB
s ) := E[HB

s (qB
s )|fs]. In

addition, let π̄B
s (qB

s ) be the expected backlogging penalty cost associated with period

s by the modified marginal backlogging penalty cost accounting, again conditioned on

the observed information set fs. More precisely, π̄B
s := E[Π̄B

s (qB
s )|fs]. Recall that in

Section 2.5 we have defined Π̄B
s =

∑T
t=s+L ptW

B
st where,

WB
st = min{Q̄B

s , (D[s,t] − (XB
s + QB

s +
∑

j∈(s,t]

uj))
+} =

(D[s,t] − (XB
s + QB

s +
∑

j∈(s,t−L]

uj))
+ − (D[s,t] − (XB

s +
∑

j∈[s,t−L]

uj))
+.

Since if we condition on fs, xB
s the inventory position at the beginning of period s,

is known deterministically, it is clear that lBs (qB
s ) and π̄B

s (qB
s ) are both indeed functions

of qB
s , the number of units ordered in period s.

Since fractional orders are allowed, the functions lBs (qB
s ) and π̄B

s (qB
s ) are continuous.

In each period s = 1, . . . , T − L, given the observed information set fs, the dual-

balancing policy will order qB
s = q′s ≤ us units such that the expected marginal ordering

and holding cost incurred by these units over [s, T ] is equal to the expected marginal

backlogging penalty cost associated with period s. In other words, we order q′s units

such that lBs (q′s) = E[HB
s (q′s)|fs] = π̄B

s (q′s) = E[Π̄B
s (q′s)|fs]. Next we show that this

policy is well-defined. It is readily verified that lBs (qB
s ) is a convex increasing function of

qB
s that is equal 0 for qB

s = 0 and that is going to∞ as qB
s goes to∞. Similarly, one can

verify that π̄B
s (qB

s ) is a decreasing convex function of qB
s that has a non-negative value at

qB
s = 0 and that is equal to 0 for qB

s = us (in this case there is no unused slack capacity

at s and q̄B
s = 0). Our assumption that these functions are continuous implies that q′s

as defined above always exists. Moreover, q′s is the again the minimizer of the function

gs(q
B
s ) := max{lBs (qB

s ), π̄B
s (qB

s )}, which is a convex function of qB
s being a maximum
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of two convex functions. Hence, in each period s, we again need to solve a convex

minimization problem of a single variable. In particular, if for each j ≥ s, D[s,j] has

any of the distributions that are commonly used in inventory theory, then it is extremely

easy to evaluate the functions lBs (qB
s ) and π̄B

s (qB
s ). More generally, the complexity of

the algorithm is again of order T (the number of time periods) times the complexity of

solving the single variable convex minimization defined above. The complexity of this

minimization problem can vary depending on the level of information we assume on

the demand distributions and their characteristics. In all of the common scenarios there

exist straightforward methods to solve this problem efficiently. In particular, q′s lies

in the intersection of two monotone convex functions, which suggests that bi-section

methods can be effective in computing q′s.

We note that as in the uncapacitated case, the dual-balancing policy for the capac-

itated model is not a state-dependent base stock policy. However, it can be computed

in an on-line manner, i.e., computing the policy action in period s does not require any

knowledge on the future decisions to be made in the next periods.

2.6.1 Analysis

Next we shall show that, for each instance of the problem, the expected cost of the

dual-balancing policy described above is at most twice the expected cost of an optimal

policy. The analysis will follow along the lines of the analysis in the uncapacitated case

discussed in Section 2.4 above.

Using the marginal cost accounting scheme discussed in Section 2.5, the expected

cost of the dual-balancing policy can be expressed as E[C(B)] =
∑T−L

t=1 E[HB
t + Π̄B

t ].

For each t = 1, . . . , T − L, let Zt be again the random balanced cost by the dual-

balancing policy in period t, i.e., Zt = E[HB
t |Ft] = E[HB

t |Ft]. Note that Zt is a
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function of the observed information set in period t. By the construction of the dual-

balancing policy, we again know that, with probability 1, E[HB
t |Ft] = E[Π̄B

t |Ft], for

each period t = 1, . . . , T − L. The following lemma is analogous to Lemma 2.4.1 and

follows by identical arguments.

Lemma 2.6.1 The expected cost of the dual-balancing policy is equal to twice the ex-

pected sum of the Zt variables, i.e., E[C(B)] = 2
∑T−L

t=1 E[Zt].

As in Section 2.4, let TH be again the set of periods in which the optimal policy

had more inventory than the dual-balancing policy, i.e., the set of periods t such that

Y B
t < Y OPT

t . Similarly, let TΠ be again the set of periods in which the dual-balancing

had at least as much inventory as OPT , i.e., the set of periods t such that Y B
t ≥ Y OPT

t .

It is readily verified that Lemma 2.4.2 is still valid, i.e.,
∑

t∈TH
HB

t ≤ HOPT with

probability 1 (where HOPT is again the holding cost incurred by the optimal policy over

the entire horizon).

It is left to show that, with probability 1, the marginal backlogging penalty cost of the

dual-balancing policy associated with periods t ∈ TΠ is at most the overall backlogging

penalty incurred by OPT , denoted again by ΠOPT . This is done in the next lemma

which is analogous to Lemma 2.4.3.

Lemma 2.6.2 For each realization fT ∈ FT , the marginal backlogging penalty cost

of the dual-balancing policy associated with all periods t ∈ TΠ is at most the overall

backlogging penalty incurred by OPT , denoted by ΠOPT , i.e.,
∑

t∈TΠ
Π̄B

t ≤ ΠOPT with

probability 1.

Proof : The marginal backlogging penalty cost associated with each period s ∈ TΠ is
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equal to
∑
s∈TΠ

∑
t:t≥s+L

ptW
B
st =

∑
t

pt

∑
s∈TΠ:s≤t−L

WB
st .

Therefore, it is sufficient to show that for each t = 1, . . . , T , the traditional backlogging

penalty cost incurred by OPT in that period is at least as much as the forced backlogging

penalty costs incurred by the dual-balancing policy in period t as a result of decisions

made in periods {s ∈ TΠ : s ≤ t − L}. In other words, it is sufficient to show that for

each t = 1, . . . , T , we have

(Dt −NIOPT
t )+ ≥

∑
s∈TΠ:s≤t−L

WB
st ,

with probability 1.

Consider now a specific realization fT ∈ FT and some period t = 1, . . . , T . If

there is no period in {s ∈ TΠ : s ≤ t} with wB
st > 0, then there is nothing to prove.

Assume that such a period s exists, and let sl and se be the latest and the earliest periods

in {s ∈ TΠ : s ≤ t − L} with wB
st > 0, respectively (it is possible that sl = se). We

note again that here we abuse the notation and consider the set TΠ as the realized set of

periods according to the specific realization fT . In particular, se and sl are the respective

realizations of random variables Se and Sl. We have already seen (in the discussion in

Section 2.5) that for each s ∈ (se, sl] we have wB
st = q̄B

s , and

wB
se,t ≤ d[se,t−L] − (xse + qB

se
+

∑

j∈(se,t−L]

uj).

Indeed,

dt − niOPT
t = dt − (yOPT

sl
+

∑

j∈(sl,t−L]

qOPT
j − d[sl,t)) ≥

d[sl,t] − (yB
sl

+
∑

j∈(sl,t−L]

uj) = d[sl,t] − (yB
se

+
∑

j∈(se,sl]

qB
j − d[se,sl) +

∑

j∈(sl,t−L]

uj) =

d[se,t] − (xB
se

+ qB
se

+
∑

(se,t−L]

uj) +
∑

j∈(se,sl]

q̄B
j =

∑

j∈[se,sl]

wB
st ≥

∑

j∈[se,sl]∩TΠ

wB
st.
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The first equality is based again on the identity that for each feasible policy and for

each s ≤ t, we have NIt = Ys +
∑

j∈(s,t−L] Qj − D[s,t), applied to OPT and periods

sl ≤ t. The first inequality follows from the assumption that sl ∈ TΠ and so yOPT
sl

≤ yB
sl

,

and from the capacity constraints that imply qOPT
j ≤ uj . The second equality follows

from the identity (for each s ≤ s′) Ys′ = Ys +
∑

j∈(s,s′] Qj − D[s,s′) applied to the

dual-balancing policy and periods se ≤ sl. The last equality is achieved by adding

and subtracting
∑

j∈(se,sl]
q̄B
j and from the identity that uj = Qj + Q̄j . The proof then

follows.

As a corollary of Lemmas 2.6.1, 2.4.2 and 2.6.2 we get the following theorem. The

proof is identical to the one of Theorem 2.4.4.

Theorem 2.6.3 The dual-balancing policy for the capacitated model has a worst-case

performance guarantee of 2, i.e., for each instance of the capacitated periodic-review

stochastic inventory control problem, the expected cost of the dual-balancing policy is

at most twice the expected cost of an optimal solution, i.e., E[C(B)] ≤ 2E[C(OPT )].

2.7 Dual-Balancing Policies - Extensions

In this Section, we discuss several important extensions of the algorithms discussed

above in Sections 2.4 and 2.6. We first discuss the extension of the algorithms and their

worst-case analysis for the case where the demand distributions are integer-valued and

the orders are allowed to be only integers. Then we discuss the extension to models

with stochastic lead times, again under the assumption of non-crossing orders. Finally,

we discuss the details of the cost transformation that enables us to consider models with

positive per-unit ordering cost. This cost transformation may also improve the worst-

case guarantees and the typical performance of the algorithms in many scenarios.
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2.7.1 Integer-Valued Demands

We now discuss the case in which the demands are integer-valued random variables, and

the order in each period is also restricted to an integer. In this case, in each period s, the

functions lBs (qB
s ) and π̄B

s (qB
s ) are originally defined only for integer values of qB

s . We

define these functions for any value of qB
s by interpolating piecewise linear extensions

of the integer values. It is clear that these extended functions preserve the properties of

convexity and monotonicity discussed in the previous (continuous) case. However, it is

still possible (and even likely) that the value q′s that balances the functions lBs and π̄B
s

is not an integer. Instead we consider the two consecutive integers q1
s and q2

s := q1
s + 1

such that q1
s < q′s < q2

s . In particular, q′s := λq1
s + (1 − λ)q2

s for some 0 < λ < 1. In

periods, we now order q1
s units with probability λ and q2

s units with probability 1 − λ.

This constructs what we call a randomized dual-balancing policy.

Observe that now at the beginning of time period s the order quantity of the dual-

balancing policy is still a random variable QB
s = Q′

s with support consists of two points

{q1
s , q

2
s} = {q1

s(fs), q
2
s(fs)} which is a function of the observed information set fs. We

would like to show that this policy admits the same performance guarantee of 2. For

each t = 1, . . . , T − L, let Zt be again the random balanced cost of the dual-balancing

policy in period t. Focus now on some period s. For a given observed information set

fsFs we have for some 0 ≤ λ = λ(fs) ≤ 1,

zs = E[HB
s (Q′

s)|fs] = λE[HB
s (q1

s)|fs] + (1− λ)E[HB
s (q2

s)|fs] =

E[HB
s (λq1

s + (1− λ)q2
s)|fs],

and
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zs = E[Π̄B
s (Q′

s)|fs] = λE[Π̄B
s (q1

s)|fs] + (1− λ)E[Π̄B
s (q2

s)|fs] =

E[Π̄B
s (λq1

s + (1− λ)q2
s)|fs].

The second equality (in each of the two expressions above) follows from the fact that

we consider piecewise linear functions. By the definition of the algorithm we also have,

λE[HB
s (q1

s)|fs] + (1− λ)E[HB
s (q2

s)|fs] = λE[Π̄B
s (q1

s)|fs] + (1− λ)E[Π̄B
s (q2

s)|fs].

It is now readily seen that, for each period s and each fs ∈ Fs, we again have

E[HB
s (Q′

s) + Π̄B
s (Q′

s)|fs] = 2zs, i.e., E[HB
s (Q′

s) + Π̄B
s (Q′

s)|Fs] = 2Zs. This implies

that Lemmas 2.4.1 and 2.6.1 are still valid.

Now define the sets TH and TΠ̄ in the following way. Let TH = {t : XB
t + Q2

t ≤
Y OPT

t }, and TΠ̄ = {t : XB
t + Q2

t > Y OPT
t }. Observe that for each period s, condi-

tioned on some fs ∈ Fs, we know deterministically xB
s , qB

2 and, if the optimal policy is

deterministic, we also know yOPT
s . Therefore, we know whether s ∈ TH or s ∈ TΠ. If

the optimal policy is also a randomized policy, we condition not only on fs but also on

the decision made by the optimal policy in period s. Moreover, if s ∈ TH , then, with

probability 1, Y B
s ≤ Y OPT

s , and if s ∈ TΠ̄, then, with probability 1, Y B
s ≥ Y OPT

s . This

implies that Lemmas 2.4.2, 2.4.3 and 2.6.2 are also still valid. The following theorem is

now established (the proof is identical to that of Theorem 2.4.4 above).

Theorem 2.7.1 The randomized dual-balancing policy has a worst-case performance

guarantee of 2, i.e., for each instance of the capacitated (uncapacitated) periodic-

review stochastic inventory control problem, the expected cost of the randomized dual-

balancing policy is at most twice the expected cost of an optimal solution, i.e, E[C(B)] ≤
2E[C(OPT )].
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2.7.2 Stochastic Lead Times

In this section, we consider the more general model, where the lead time of an order

placed in period s is some nonnegative integer-valued random variable Ls (we again

deviate from the convention in that ls has been already used to denote the expected

marginal holding cost in period s). We assume that the random variables L1, . . . , LT are

correlated, and in particular, that s + Ls ≤ t + Lt for each s ≤ t. In other words, we

assume that any order placed at time s will arrive no later than any other order placed

after period s. This is a very common assumption in the inventory literature, usually

described as ”no order crossing”.

Next we describe how to extend the dual-balancing policy and the analysis of the

worst-case expected performance to this more general setting. The following discussion

addresses the capacitated model, but as we have already seen, this is a generalization

that captures the uncapacitated model as well. For each t = 1, . . . , T , let St be the

latest period for which an order placed in that period arrives at or before time t. In other

words, St := max{s : s + Ls ≤ t}. Now modify the definition of the random variables

Wst (for each s ≤ t) to be

Wst := min{11(s ≤ St)Q̄s, (D([s,t]−(Xs + Qs +
∑

j∈(s,St]

uj))
+}.

Similarly to the discussion in Section 2.5 above, we can write

Wst = 11(s ≤ St)[(D[s,t] − (Xs + Qs +
∑

j∈(s,St]

uj))
+ − (D[s,t] − (Xs +

∑

j∈[s,St]

uj))
+],

and

Wst = 11(s ≤ St)[(Dt −NIt −
∑

j∈(s,St]

Q̄j)
+ − (Dt −NIt −

∑

j∈[s,St]

Q̄j)
+].

We again define the marginal backlogging cost in period s as Π̄s =
∑

t≥s ptWst. Now
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modify the definition of Hs(Qs) so that now

Hs(Qs) =
T∑

j=s+Ls

hj(Qs − (D[s,j] −Xs)
+)+.

It is straightforward to check that we can still express the cost of each feasible policy

P as C(P ) =
∑

t(Ht + Π̄t). In each period, we again balance the conditional expected

marginal holding cost against the conditional expected marginal backlogging cost. It is

readily verified that the same analysis described in Subsection 2.6.1 above is still valid.

Note that the modified functions ls and π̄s can be significantly harder to evaluate.

Theorem 2.7.2 The dual-balancing policy provides a performance guarantee of 2 for

the uncapacitated and the capacitated variants of the periodic-review stochastic inven-

tory control problem with stochastic lead times and non-crossing orders.

2.7.3 Cost Transformation

In this section, we discuss in detail the cost transformation that enables us to assume,

without loss of generality that, for each period t = 1, . . . , T , we have ct = 0 and

ht, pt ≥ 0. Consider any instance of the problem with cost parameters that imply no

speculative motivation for holding inventory or backorders (as discussed in Section 2.2).

We use a simple standard transformation of the cost parameters (see [56]) to construct

an equivalent instance, with the property that for each period t = 1, . . . , T , we have

ct = 0 and ht, pt ≥ 0. The modified instance has the same set of optimal policies.

Applying the dual-balancing policy to that instance will provide a policy that is feasible

and also has a performance guarantee of at most 2 with respect to the original problem.

We shall also show that this cost transformation can improve the performance guarantee

of the dual-balancing policy in cases where the ordering cost is the dominant part of the

overall cost. In practice this is often the case.
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We now describe the transformation for the case with no lead time (L = 0) and

α = 1; the extension to the case of arbitrary lead time is straightforward. Recall that any

feasible policy P satisfies, for each t = 1, . . . , T , Qt = NIt −NIt−1 + Dt (for ease of

notation we omit the superscript P ). Using these equations we can express the ordering

cost in each period t as ct(NIt −NIt−1 + Dt). Now replace NIt with NI+
t −NI−t , its

respective positive and negative parts.

This leads to the following transformation of cost parameters. We let ĉt := 0, ĥt :=

ht + ct − ct+1 (cT+1 = 0) and p̂t := pt − ct + ct+1. Note that the assumptions on the

cost parameters ct, ht, and pt discussed in Section 2.2, and in particular, the assumption

that there is no speculative motivation for holding inventory or backorders, imply that

ĥt and b̂t above are non-negative (t = 1, . . . , T ). Observe that the parameters ĥt and

b̂t will still be non-negative even if the parameters ct, ht, and pt are negative and as

long and the above assumption holds. Moreover, this enables us to incorporate into

the model a negative salvage cost at the end of the planning horizon (after the cost

transformation we will have non-negative cost parameters). It is readily verified that the

induced problem is equivalent to the original one. More specifically, for each realization

of the demands, the cost of each feasible policy P in the modified input decreases by

exactly
∑T

t=1 ctdt (compared to its cost in the original input). Therefore, any optimal

policy for the modified input is also optimal for the original input.

Now apply the dual-balancing policy to the modified problem. We have seen that

the assumptions on ct, ht and pt ensure that ĥt and p̂t are non-negative and hence the

analysis presented above is valid. Let opt and ¯opt be the optimal expected cost of the

original and modified inputs, respectively. Clearly, opt = ¯opt+E[
∑T

t=1 ctDt]. Now the

expected cost of the dual-balancing policy in the modified input is at most 2 ¯opt. Its cost

in the original input is then at most 2 ¯opt + E[
∑T

t=1 ctDt] = 2opt−E[
∑T

t=1 ctDt]. This
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implies that if E[
∑T

t=1 ctDt] is a large fraction of opt, then the performance guarantee

of the expected cost of the dual-balancing policy might be significantly better than 2.

For example, in case E[
∑T

t=1 ctDt] ≥ 0.5opt we can conclude that the expected cost

of the dual-balancing policy would be at most 1.5opt. It is indeed the case in many

real life problems that a major fraction of the total cost is due the ordering cost. The

intuition of the above transformation is that
∑T

t=1 ctDt is a cost that any feasible policy

must pay. As a result, we treat it as an invariant in the cost of any policy and apply the

approximation algorithm to the rest of the cost.

In the case where we have a lead time L, we use the equations Qt := NIt+L −
NIt+L−1 + Dt+L, for each t = 1, . . . , T − L, to get the same cost transformation. The

transformation for α > 1 is also straight forward.

2.8 A Class of Myopic Policies for the Uncapacitated Model

No computationally tractable procedure is known for finding the optimal base-stock

inventory levels for the periodic-review inventory control problem with correlated de-

mands. As a result, various simpler heuristics have been considered in the literature.

For the uncapacitated model, many researchers have considered a myopic policy. In the

myopic policy, we follow a base-stock policy {Rmy(ft) : ft ∈ Ft}. For each period t

and possible information set in period t, the target inventory level Rmy(ft) is computed

as the minimizer of a one-period problem. Specifically, in period s = 1, . . . , T − L

we focus only on minimizing the expected immediate cost that is going to be incurred

in this period (or in s + L in the presence of a lead time L). In other words, the tar-

get inventory level Rmy(fs) minimizes the expected ordering, holding and backlogging

costs in period s + L, while ignoring the cost over the rest of the horizon (i.e., the cost

over (s + L, T + 1]). This optimization problem has been proven to be convex and
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hence easy to solve (see, for example, [56]). It is then possible to implement the myopic

policy on-line, where in each period s, we compute the base-stock level based on the

current observed information set fs. For each period t and each ft ∈ Ft, the myopic

base-stock level provides an upper bound on the optimal base-stock level (see [56] for a

proof). The intuition is that the myopic policy underestimates the holding cost, since it

considers only the one-period holding cost. Therefore, it always orders more units than

the optimal policy. Clearly, this policy might not be optimal in general, though in many

cases it seems to perform extremely well. Under rather strong conditions it might even

be optimal (see [55, 21, 22, 31]). A natural question to ask is whether the myopic policy

yields a constant performance guarantee for the uncapacitated periodic-review inventory

control problem, i.e., its expected cost is always bounded by some constant times the

optimal expected cost.

Next, we provide a negative answer to this question. We show that the expected

cost of the myopic policy can be arbitrarily more expensive than the expected optimal

cost, even for the case when the demands are independent and the costs are stationary.

The example that we construct provides important intuition concerning the cases for

which the myopic policy performs poorly. In addition, we describe an extended class

of myopic policies that generalizes the myopic policy discussed above. It is interesting

that this class of policies also provides a lower bound on the optimal base-stock levels.

As was shown in [23], these lower and upper bounds combined with the balancing idea

lead to improved balancing policies. The improved balancing policies have a worst-case

performance guarantee of 2, and they seem to perform significantly better in practice.
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2.8.1 Myopic Policy - Bad example

Consider the following set of instances parameterized by T , the number of periods.

We have a per-unit ordering cost of c = 0, a per-unit holding cost h = 1 and a unit

backlogging penalty p = 2. The demands are specified as follows, D1 ∈ {0, 1} with

probability 0.5 for 0 and 1, respectively. For t = 2, . . . , T − 1, Dt := 0 with probability

1, and DT := 1 with probability 1. The lead time is considered to equal 0, and α = 1.

It is easy to verify that the myopic policy will order 1 unit in period 1 and that this

will result an expected cost of 0.5T . On the other hand, if we do not order in period 1,

then the expected cost is 1. This implies that as T becomes larger the expected cost of

the myopic policy is Ω(T ) times as expensive as the expected cost of the optimal policy.

The above example indicates that the myopic policy may perform poorly in cases

where the demand from period to period can vary a lot, and forecasts can go down.

There are indeed many real-life situations, when this is exactly the case, including new

markets, volatile markets or end-of-life products.

2.8.2 A Class of Myopic Policies

As we mentioned before, by considering only the one-period problem, the myopic policy

described above underestimates the actual holding cost that each unit ordered in period

t is going to incur. This results in base-stock levels that are higher than the optimal

base-stock levels.

We now describe an alternative myopic base-stock policy that we call a minimizing

policy. Recall the functions lPs (qs), πP
s (qs) defined in Section 2.4 for each period s =

1, . . . , T − L, where qs ≥ 0. Since at each period s we know xs, we can equivalently

write lPs (ys − xs), πP
s (ys − xs), where ys ≥ xs. We now consider in each period s the

problem: minimize (lPs (ys − xs) + bP
s (ys − xs)) subject to ys ≥ xs , i.e., minimize the
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expected ordering and holding costs incurred by the units ordered in period s over [s, T ]

and the backlogging cost incurred in period s + L, conditioned on some fs ∈ Fs. We

have already seen that this function is convex in ys. Observe that lPs (ys−xs)−lPs (ys) and

πP
s (ys − xs)− πP

s (ys) do not depend on ys for ys ≥ xs. This gives rise to the following

equivalent one-period problem: minys≥xs(l
P
s (ys)+πP

s (ys)). That is, both problems have

the same minimizer. It is also clear that the new minimization problem is also convex

in ys and is easy to solve, in many cases as easy as the one-period problem solved by

the myopic policy described above. We note that the function we minimize was used by

Chan and Muckstadt [5].

For each t = 1, . . . , T and ft ∈ Ft, let RM(ft) be the smallest base-stock level

resulting from the minimizing policy in period t, for a given observed information set

ft. We now show that for each period t and ft ∈ Ft, we have RM(ft) ≤ ROPT (ft),

where ROPT (ft) is the optimal base-stock level.

Theorem 2.8.1 For each period t and ft ∈ Ft, we have RM(ft) ≤ ROPT (ft).

Proof : Recall the dynamic programming based framework described in Section 2.3.

Observe that for each state (xt, ft), we know that ROPT (ft) is the optimal base-stock

level that results from the optimal solution for the corresponding subproblem defined

over the interval [t, T ]. It is enough to show that the optimal solution for each such

problem must be at least RM(ft).

Assume otherwise, i.e., ROPT (fs) < RM(fs) for some period s and for all optimal

policies. Consider now the base-stock policy P with base-stock level RP (fs) = RM(fs)

for period s, and RP (ft) := ROPT (ft) for each t = s + 1, . . . , T and ft ∈ Ft. We will

show that P , starting from period s with observed information set fs, has an expected

cost that is smaller than the expected cost of the optimal solution. From Section 2.3 we
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know that the expected cost of each policy P can be expressed as
∑T−L

t=s E[HP
t + ΠP

t ].

Now by the definition of RM(fs) we know that

E[(HP
s + ΠP

s )|fs] < E[(HOPT
s + ΠOPT

s )|fs].

Moreover, for each t ∈ (s, T ], the inventory position Y P
t will always be at least Y OPT

t ,

and therefore E[ΠP
t |fs] ≤ E[ΠOPT

t |fs]. It is also clear that in each period t ∈ (s, T ], the

QP
t units ordered by policy P in period t will always be a subset of the units ordered by

OPT in this period. Therefore, for each t = s + 1, . . . , T , we have that E[HP
t |fs] ≤

E[HOPT
t |fs]. This concludes the proof.

We now define a generalization that captures the myopic policy and the minimization

policy as two special cases. For each t = 1, . . . , T − L, we define a sequence of one-

period problems for each kt = 0, . . . , T − t, each generates a corresponding base-stock

level. Given k, we define the one-period problem that aims to minimize the expected

ordering and holding cost incurred by the units ordered in period t over the interval

[t, t + L + kt], and the expected backlogging cost in period t + L. In other words,

the parameter kt defines the length of the horizon considered in the one-period problem

being solved in period t. For each sequence of k1, . . . , kT , we get a corresponding k-

minimizing policy. It is clear that if kt = 0 for each t, we get the myopic policy and if

kt = T−t we get the minimizing policy. Note again that the myopic and the minimizing

policies provide an upper bound and lower bound, respectively, on the optimal base-

stock levels.

2.9 Bounds and Improved Policies for the Capacitated Model

In this section, we consider two semi-myopic policies for the capacitated model that are

easy to compute in an on-line manner. These policies provide respective lower bounds
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and upper bounds on the inventory levels of an optimal policy denoted by yOPT
t , for

each period t = 1, . . . , T . We again believe that these bounds can be used effectively to

improve existing inventory control policies for the capacitated model discussed in this

work and other capacitated stochastic inventory models. Moreover, as in [23], we shall

show that these policies provide bounds that are strong in the following sense. Each

policy, that for some period t and some state ft, has inventory level outside the range

defined by the respective lower and upper bounds can be improved. In particular, there

is another (modified) policy that in period t and state ft admits an inventory level within

the specified range, with expected cost no greater than the expected cost of the original

policy. In other words, any policy that violates these respective bounds is dominated by

another policy. We then follow [23] and construct an improved dual-balancing policy

that incorporates these bounds. This policy has also a performance guarantee of 2 and

as the computational study for the uncapacitated model in [23] suggests, we expect that

it will have a better typical performance.

The policies we consider are called lower-myopic and upper-myopic respectively. In

the lower-myopic policy, in each period s, conditioning on the observed information set

fs, we minimize the sum of the expected marginal holding cost of the units ordered in

that period and the traditional expected backlogging costs. That is, in each period s, we

minimize

ls(qs) + E[ps+L(D[s,s+L] − (xs + qs))
+|fs],

under the constraint 0 ≤ qs ≤ us. This is a convex function of qs. This policy is

identical to the minimizing policy described in Section 2.8 above for the uncapacitated

model. Thus, it admits a base-stock policy. However, in the capacitated model it is

possible that the actual minimizer will not be reachable. In this case we order up to

capacity, and this provides a modified base-stock policy. In this section, we extend and
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generalize the proof of Theorem 2.8.1 to the capacitated model. In the upper-myopic

policy, in each period s, again conditioning on fs, we minimize the sum of the expected

period holding cost and the expected marginal backlogging cost. Thus, we minimize

π̄s(qs) + E[hs+L(xs + qs −D[s,s+L])
+|fs],

subject to 0 ≤ qs ≤ us, which is also convex in qs. We shall show that this policy

provides upper bounds on the inventory levels of an optimal policy. However, unlike

the lower-myopic policy above, this policy is not a modified base-stock policy, since

the minimizer depends on xs, the inventory position at the beginning of period s. To

the best of our knowledge this is a new way for deriving upper bounds on the inventory

levels of an optimal policy in the capacitated model. We note that it is not clear whether

the classical myopic policy (discussed above), where we minimize the expected period

cost, provides any bounds for capacitated models. Another similar open question is how

the policy, that in each period, minimizes the sum of the expected marginal holding cost

and expected marginal backlogging cost, is related to an optimal policy.

Let Y LM
t and Y UM

t be the respective inventory position (after orders are placed) of

the lower-myopic and the upper-myopic policies in period t = 1, . . . , T . Further assume

that Y LM
t is always the respective smallest minimizer, and Y UM

t is always the respective

largest minimizer, resulting from the single-period problems defined above. Note that

the inventory position levels depend on the specific state ft, but for ease of notation

we omit the indication of the state. The two semi-myopic policies described above can

be implemented in an on-line manner, i.e., they can be computed independent of the

action control in future periods. We shall show that for each evolution fT these two

policies provide lower and upper bounds on the inventory levels of an optimal policy,

i.e., Y LM
t ≤ Y OPT

t ≤ Y UM
t , with probability 1, for each t = 1, . . . , T . Moreover, we

shall show that, each non-dominated policy P , must have Y LM
t ≤ Y P

t ≤ Y UM
t , for each
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t = 1, . . . , T .

The next two lemmas show that for each policy P that has, for some period s and

state fs, inventory position yP
s /∈ [yLM

s , yUM
s ], can be improved by a modified policy P ′

with yP ′
s ∈ [yLM

s , yUM
s ] and expected cost at most the expected cost of P . The proofs

are similar to the ones in [23]. For the sake of simplicity, we consider a model with no

lead time (the extensions to the case with L > 0 are straightforward).

Lemma 2.9.1 Consider a feasible policy P , and suppose that for some period s and

information set fs, we have yP
s < yLM

s . Further assume that s is the earliest such

period. Then the policy P ′ that follows P until period s − 1, then orders up to yLM
s in

period s and again imitates P over the interval (s, T ], has expected cost smaller than

the expected cost of P .

Proof : Since P ′ follows P over [1, s), we conclude that they incur exactly the same

cost over that interval, and that they have the same inventory position xs ≤ yP
s < yLM

s .

Moreover, s is assumed to be the first period with yP
s < yLM

s . Thus, P ′ can indeed order

up to yLM
s . Now over (s, T ] P ′ imitates P , that is, it orders nothing if XP ′

j ≥ Y P
j and

orders up to Y P
j otherwise (for each j ∈ (s, T ]). Moreover, the policy P ′ has ordered

qP ′
s units in period s. Consider the overall expected marginal holding cost of these units

and the expected (traditional) backlogging cost incurred by policy P ′ in period s. By

the definition of qP ′
s , it is clear that this is smaller than the expected marginal holding

cost and expected (traditional) backlogging cost incurred by the policy P in period s.

For each period j ∈ (s, T ], we know that Y P ′
j ≥ Y P

j and QP ′
j ≤ QP

j , with probability 1.

This implies that the backlogging incurred by policy P ′ over that interval is no greater

than the backlogging cost incurred by policy P , and similarly, the marginal holding cost

policy P ′ incurs over that interval is no greater than the respective marginal holding cost
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of policy P . The proof then follows.

Lemma 2.9.2 Consider a feasible policy P , and suppose that for some period s and

information set fs, we have yP
s > yUM

s . Further assume that s is the earliest such

period. Then the policy P ′ that follows P until period s − 1, then orders up to yUM
s in

period s and again imitates P over the interval (s, T ], has expected cost smaller than

the expected cost of P .

Proof : By identical arguments to the ones in Lemma 2.9.1, we conclude that P ′

and P incur the same cost over [1, s) and that they have the same inventory position

xs ≤ yUM
s < yP

s . The first inequality follows from the fact that s in the first period

in which P has more inventory than the upper-myopic policy. Thus, P ′ can order up

to Y UM
s , and assume that it orders qp′

s units. Consider the overall expected marginal

backlogging cost and expected period holding cost incurred in period s by policy P ′

(i.e., π̄P ′
s (qp′

s ) defined in Section 2.6 above). By the definition of qP ′
s , we conclude that

this is smaller than the respective expected cost incurred by policy P in period s. Now

over (s, T ], P ′ again tries to imitate P , i.e., for each j ∈ (s, T ], it will order up to Y P
j

or up to the capacity uj . Now let S ′ be the earliest (random) period after period s in

which P ′ has reached Y P
S′ . Clearly, over (S ′, T ] the policies P ′ and P are again identical

and hence, incur the same cost. Observe that, for each j ∈ (s, S ′], we have Y P ′
j ≤ Y P

j

and Q̄P ′
j ≤ Q̄P

j , with probability 1. This implies that the expected holding cost and

the expected marginal backlogging penalty incurred by policy P ′ over that interval are

each no greater than the respective expected cost incurred by policy P . The proof then

follows.

Lemmas 2.9.1 and 2.9.2 imply the following corollary.
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Corollary 2.9.3 For each optimal policy and each evolution fT , the lower-myopic and

upper-myopic policies provide respective lower and upper bounds on the inventory lev-

els of the optimal policy, i.e., Y LM
t ≤ Y OPT

t ≤ Y UM
t , with probability 1, for each

t = 1, . . . , T .

Now consider the improved dual-balancing policy. In each period s we still consider

balancing expected marginal holding cost ls against the expected marginal backlogging

cost π̄s, and compute q′s as described in Section 2.6 above. However, in each case, where

the original dual-balancing rule orders up to a level below Y LM
s or above Y UM

s , we fix

this decision by instead increasing the order up to Y LM
s (or up to capacity) or decreasing

it down to Y UM
s , respectively. We next prove the following theorem.

Theorem 2.9.4 The improved dual-balancing policy has a performance guarantee of 2.

Proof : Observe that the in the improved dual-balancing policy it is not true any-

more that, in each period t, the expected marginal holding cost is equal to the expected

marginal backlogging cost. Now let Zt be the maximum among the expected marginal

holding cost and expected marginal backlogging cost, i.e.,

Zt = max{E[HB
t (Q′

t)|Ft], E[Π̄B
t (Q′

t)|Ft]}.

Similar to Lemma 2.6.1, we now conclude that E[C(B)] ≤ 2
∑

t E[Zt].

Next we slightly modify the definition of the sets TH and TΠ defined originally in

Section 2.4 above. Now the set TH will consist of periods t with Y B
t < Y OPT

t and also

periods with Y B
t = Y OPT = Y LM

t < Y UM
t . The set TΠ will consist of all other periods.

Observe that the arguments used to prove Lemmas 2.4.2 and 2.6.2 are still valid. It is

then sufficient to show that, for each t ∈ TH , we have E[HB
t (Q′

t)|Ft] = Zt, and, for

each t ∈ TΠ, we have Zt = E[ΠB
t (Q′

t)|Ft]}. This will imply that the arguments in the
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proof of Theorem 2.6.3 are still valid and the performance guarantee of the policy then

follows.

Assume now that for some t ∈ TH and some ft ∈ Ft, we have E[HB
t (q′t)|ft] < zt.

However, this can happen only if in that period the balancing rule was not followed and

instead we have ordered only up to yUM
t . This leads to contradiction since by Corollary

2.9.3, we know that yOPT
t ≤ yUM

t .

Similarly, assume that for t ∈ TΠ and some ft ∈ Ft, we have E[ΠB
t (Q′

t)|Ft] < zt.

This can happen only if in that period the balancing rule was not followed and the order

was increased up yLM
t or up to capacity. However, this again leads to contradiction since

by Corollary 2.9.3, we know that yB
t ≤ yLM

t ≤ yOPT
t . This concludes the proof.

2.10 The Stochastic Lot-Sizing Problem

In this section, we change the previous model and in addition to the per-unit ordering

cost, consider a fixed ordering cost K that is incurred in each period t with positive

order (i.e., when Qt > 0). For ease of notation, we will assume again, without loss of

generality, that ct = 0. We call this model the stochastic lot-sizing problem. The goal is

again to find a policy that minimizes the expected discounted overall ordering, holding

and backlogging costs. Naturally, this model is more complicated. Here we will assume

that L = 0, α = 1 and that in each period t = 1, . . . , T , the conditional joint distribution

It of (Dt, . . . , DT ) is such that the demand Dt is known deterministically (i.e., with

probability 1). The underlying assumption here is that at the beginning of period t our

forecast for the demand in that period is sufficiently accurate, so that we can assume it

is given deterministically. A primary example is make-to-order systems.

As noted in Section 2.1, for many settings it is known that the optimal solution can
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be described as a set {(st, St) = (st(ft), St(ft))}t. In each period t place an order if and

only if the current inventory level is below st. If we place an order in period t, we will

increase the inventory level up to St. We next describe a policy which we call the triple-

balancing policy and denote by TB, and analyze its worst-case expected performance.

Specifically, we show that its expected cost is at most 3 times the expected cost of the

optimal solution. We note that in this case the policy and its analysis are identical for

discrete and continuous demands.

2.10.1 The Triple-Balancing Policy

The policy follows two rules that specify when to place an order and how many units to

order once an order is placed:

Rule 1: When to order. At the beginning of period s, we let s∗ be the period in which

the triple-balancing policy has last placed an order, i.e., s∗ is the latest order placed so

far. Thus, s∗ < s, where s∗ = 0 if no order has been placed yet. We place an order in

period s if and only if, by not placing it in period s, the accumulated backlogging cost

over the interval (s∗, s] exceeds K. If we place an order, we update s∗ and set it equal to

s. Observe that since, in each period s, the conditional joint distribution Is is such that

Ds is known deterministically, this procedure is well-defined.

Rule 2: How much to order If we place an order in period s < T , then we focus on

the holding cost incurred by the units ordered in s over the interval [s, T ], again using

marginal cost accounting. We then order qB
s units such that

qB
s := max{qs : E[HB

s (qs)|fs] ≤ K}, where again fs ∈ Fs is the current information

set. That is, we order the maximum number of units as long as the conditional expecta-

tion of the holding cost that these units will incur over [s, T ], as seen from time period

s, is at most K. In case s = T , we just order enough to cover all current back orders
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and the demand dT . Observe that qB
s must always be large enough to cover all of the

backlogged units of demand over (s∗, s]. Hence, at the end of a period s in which an

order was placed, there are no unsatisfied units of demand. We note that since for each

fs ∈ Fs, the function E[HB
s (qs)|fs] is convex in qs, it is relatively easy to compute qB

s .

This concludes the description of the algorithm. Next we describe the analysis of

the worst-case expected performance.

2.10.2 Analysis

Let N be the random variable of the number of orders placed by the triple-balancing

policy. We next define a sequence of random variables S0, . . . , ST+1. We let S0 =

0, ST+1 = T + 1, and let Si (for i = 1, . . . , T ) be the time period in which the ith

order of the triple-balancing policy was placed, or T + 1 if N < i (i.e., the triple-

balancing policy has placed fewer than i orders). Observe that S1, . . . , ST are random

variables, which induce a partition of the time horizon. Consequently, we let Zi, for

each i = 0, . . . , T , be the following random variable. If Si < T , then Zi is equal to the

holding cost that the triple balancing policy incurs over [Si, Si+1) (denoted by Hi) plus

the backlogging and ordering costs it incurs over (Si, Si+1]. If Si ≥ T , then Zi = 0.

Similarly, we define the set of variables Z ′
0, . . . , Z

′
T+1 with respect to the cost of OPT

over the corresponding intervals induced by the orders of the triple-balancing policy. It

is clear that C(B) =
∑T

i=0 Zi · 1(Si < T ) and C(OPT ) =
∑T

i=0 Z ′
i · 1(Si < T ). We

first develop a lower bound on the expected cost of OPT using the expectation of the

random variable N .

Lemma 2.10.1 For each instance of the stochastic lot-sizing problem with correlated

demand the expected cost of an optimal policy OPT is at least KE[N ].
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Proof : We have already observed that C(OPT ) =
∑T

i=0 Z ′
i · 1(Si < T ). Using again

the linearity of expectation and conditional expectation, we can write,

E[C(OPT )] =
T∑

i=0

E[1(Si < T )E[Z ′
i|Si,FSi

]] ≥

T∑
i=0

E[1(Si < T )E[Z ′
i · 1(Si+1 ≤ T )|Si,FSi

]]

Next we show that for each i = 0, . . . , T , we have that,

E[Z ′
i · 1(Si+1 ≤ T )|Si,FSi

] ≥ K · Pr(Si+1 ≤ T |Si,FSi
)

Conditioned on some Si = si and fsi
∈ Fsi

, we know dsi
(where si is the realization

of Si). As a result, we also know the inventory levels of OPT and the triple-balancing

policy at the end of period si deterministically. Therefore, exactly one of the following

2 cases must apply:

Case 1: At the end of period si, the inventory level of OPT is at most the inventory

level of the triple-balancing policy, i.e., yOPT
si

≤ yTB
si

. Now either OPT places an order

over (si, Si+1] and hence incurs a cost of at least K over this interval, or it does not;

then, unless si is the last order of the triple-balancing policy, it will incur backlogging

cost of at least K.

Case 2: At the end of period si, the inventory level of OPT is strictly larger than

the inventory level of the triple-balancing policy, i.e., yOPT
si

> yTB
si

. However, by the

construction of the triple-balancing policy, we know that if OPT has more physical

inventory, then the expected holding cost it will incur over [si, Si+1) is at least K.

We conclude that in both cases, Z ′
i · 1(Si+1 ≤ T )|si, fsi

)] ≥ K · 1(Si+1 ≤ T |si, fsi
).

Taking expectation we have E[Z ′
i · 1(Si+1 ≤ T )|Si,FSi

] ≥ K · Pr(Si+1 ≤ T |Si,FSi
).
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This implies that

E[C(OPT )] ≥ K · E[
T∑

i=0

1(Si < T ) · Pr(Si+1 ≤ T |Si, FSi
)] =

K · E[
T∑

i=0

E[1(Si < T ) · 1(Si+1 ≤ T )|Si, FSi
]] = K · E[N ].

To finish the analysis we next show that the expected difference between the cost of

the triple-balancing policy (denoted by TB) and the cost of the optimal policy is at most

2KE[N ].

Lemma 2.10.2 For each instance of the problem, we have E[C(TB) − C(OPT )] ≤
2KE[N ].

Proof : Clearly,

E[C(TB)− C(OPT )] = E[
T∑

i=0

(Zi − Z ′
i) · 1(Si < T )] =

T∑
i=0

E[1(Si < T ) · E[(Zi − Z ′
i)|Si,FSi

]].

We next bound E[(Zi − Z ′
i)|Si,FSi

] for each i = 0, . . . , T . For i = 0, it is clear

that the holding costs that the TB policy and OPT incur over [s0, S1) are identical (this

cost is due initial inventory that exists at the beginning of the horizon). Also observe

that the backlogging and ordering costs of the TB policy over (S0, S1] are at most K

if S1 = T + 1 and at most 2K otherwise. In the latter case, we conclude that OPT

either placed an order on the interval (S0, S1] or incurred backlogging cost of at least K.

Hence, Z0 − Z ′
0 ≤ K.
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For each i = 1, . . . , T , we condition on some si and fsi
∈ Fsi

. We then know what

are yTB
si

and yOPT
si

deterministically. We now claim that:

(Zi − Z ′
i)|si, fsi

≤ 1(yTB
si

≤ yOPT
si

) · (K + 1(Si+1 ≤ T |si, fsi
) ·K) +

1(yTB
si

> yOPT
si

) · (Hi|si, fsi
+ 1(Si+1 ≤ T |si, fsi

) ·K).

In first case where yTB
si

≤ yOPT
si

we know that OPT will incur over [si, Si+1) at

least as much holding cost as the TB policy. By the construction of the algorithm we

know that the TB policy will not incur more than K backlogging cost and will place

at most one order over (si, Si+1]. In the second case where yTB
si

> yOPT
si

we know that

the ordering cost and backlogging costs of OPT over (si, Si+1] are at least K, which is

more than the backlogging cost the TB policy incurs on that interval. In addition, TB

will incur holding cost Hi|si, fsi
over [si, Si+1) and will place at most one order over

(si, Si+1]. Taking expectation of both sides we conclude that:

E[(Zi − Z ′
i)|Si,FSi

] ≤ E[1(yTB
si

≤ yOPT
Si

) · (K + 1(Si+1 ≤ T ) ·K)|Si,Fsi
] +

E[1(yTB
Si

> yOPT
Si

) · (Hi + 1(Si+1 ≤ T ) ·K)|Si,FSi
] ≤ E[K + 1(Si+1 ≤ T )|Si,FSi

].

The last inequality is by the construction of the algorithm (E[Hi|si, fsi
] ≤ K] for

each Si = si and fsi
∈ Fsi

). This implies that for each i = 2, . . . , T , we have

E[(Zi − Z ′
i) · 1(Si < T )] = E[1(Si < T ) · E[Zi − Z ′

i|Si,FSi
]] ≤

E[K + 1(Si+1 ≤ T )].

Finally, we have that:

E[
T∑

i=0

(Zi − Z ′
i) · 1(Si < T )] ≤

K + K · E[
T∑

i=1

1(Si < T )] + K · E[
T+1∑
i=1

1(Si < T ) · 1(Si+1 ≤ T )] =

K + K · E[N ] + K · (E[N ]− 1) = 2KE[N ].
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As a corollary of Lemmas 2.10.1 and 2.10.2, we get the following theorem.

Theorem 2.10.3 For each instance of the stochastic lot-sizing problem, the expected

cost of the triple-balancing policy is at most 3 times the expected cost of an optimal

policy.

2.11 Conclusions

In this chapter we have proposed a new approach for devising provably good policies for

stochastic inventory control models with time dependent and correlated demand. These

models are known to be hard, in the sense that computing optimal policies is usually

intractable and in many cases even computing a good policies is a challenging task. In

turn, our approach leads to policies that are simple computationally and conceptually

and provide constant performance guarantees on the worst-case expected behavior of

these policies.

We note that all of the results described in the chapter can be extended under rather

mild conditions to the counterpart models with infinite horizon, where the goal is to

minimize the expected average or discounted cost.

We think it would be an interesting challenge to extend the ideas introduced in this

work to more complicated inventory models, such as multi-echelon and/or multi-item

models. These issues will be addressed in future work.

It would also be important to establish a more rigorous analysis of the computational

hardness of these models. As far as we know there does not exist any rigorous proof of

that kind.



Chapter 3

Near-Optimal Sample-based Policies for

Single-Period and Multiperiod Newsvendor

Models
3.1 Introduction

In this chapter, we address two fundamental models in stochastic inventory theory, the

single-period newsvendor model and the multiperiod newsvendor model, under the as-

sumption that the explicit demand distributions are not known and that the only informa-

tion available is a set of independent samples drawn from the true distributions. Under

the assumption that the demand distributions are specified explicitly, these models are

well-studied and usually easy to solve. However, in most real-life scenarios, the true

demand distributions are not available or they are too complex to work with. Usually,

the information that is available comes from historical data, simulation setting and from

forecasting and market analysis of future trends in the demands. Thus, we believe that a

sample-driven algorithmic framework is very attractive, both in practice and in theory.

In this chapter, we shall describe how to compute sample-based policies, that is, policies

that are computed based only on observed samples of the demands without any access

to, or assumptions on, the true demand distributions. Moreover, we shall prove that the

quality (expected cost) of these policies is very close to that of the optimal policies,

which have full access to the explicit demand distributions.

In the single-period newsvendor model, a random demand for a single commodity

occurs in a single period. At the beginning of the period, before the the actual demand

73
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is observed, we decide how many units of the commodity to order. Next, the actual

demand is observed and is satisfied to the maximum extent possible from the units that

were ordered. At the end of the period, a per-unit holding cost is incurred for each

unused unit of the commodity and a per-unit lost-sales penalty cost is incurred for each

unmet unit of demand. The goal is to minimize the total expected cost. This model is

usually easy to solve if the demand distribution is specified explicitly. However, we are

not aware of any optimization algorithm with analytical error bounds in the case where

only samples are available.

For the newsvendor model, we take one of the most common approaches to stochas-

tic optimization models that is also used in practice, that is, we solve the sample average

approximation (SAA) counterpart. The original objective function is the expectation of

some random function taken with respect to the true underlying probability distribu-

tions. Instead, in the SAA counterpart the objective function is the average value over

finitely many independent samples that are drawn from the probability distributions ei-

ther by means of Monte Carlo sampling or based on available historical data (see [45]

for details). In the newsvendor model the samples will be drawn from the (true) demand

distribution and the objective value of each order level will be computed as the average

of its cost with respect to each one of the samples of demand. The SAA counterpart of

the newsvendor problem is extremely easy to solve.

We also provide a novel analysis regarding the number of samples required to guar-

antee that, with a specified confidence probability, the expected cost of an optimal so-

lution to the SAA counterpart has a small specified relative error. Here small relative

error means that the ratio between the expected cost of the optimal solution to the SAA,

with respect to the original objective function, and the optimal expected cost (of the

original model) is very close to 1. The upper bounds that we establish on the number
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of samples required are general, easy to compute and apply to any demand distribution

with finite mean. In particular, neither the algorithm nor its analysis require any other

assumption on the demand distribution. The bounds depend on the specified confidence

probability and the relative error mentioned above, as well as on the ratio between the

per-unit holding and lost-sales penalty costs. However, they are completely independent

of the demand distribution. Conversely, our results imply what kind of guarantees one

can hope for, given historical data with fixed size. The analysis has two novel aspects.

First, it is not based on approximating the objective function and its value, but on using

first-order information, that is, on stochastically evaluating one-sided derivatives. This

is motivated by the fact that the newsvendor cost function is convex and hence, optimal

solutions can be characterized in a compact way through first-order information. The

second novel aspect is that we establish a connection between first-order information

and bounds on the the relative error of the objective value. Moreover, the one-sided

derivatives of the newsvendor cost function are nicely bounded. Thus, the well-known

Hoeffding inequality [20] implies that they can be estimated accurately with a bounded

number of samples.

In the multi-period newsvendor model, there is a sequence of independent (not nec-

essarily identical distributed) random demands for a single commodity over a discrete

planning horizon of a finite number of periods that need to be satisfied. At the beginning

of each period we can place an order for any number of units and this order is assumed

to arrive after a (fixed) lead time of several periods. Only then do we observe the actual

demand in the period. Excess inventory at the end of a period is carried to the next pe-

riod incurring a per-unit holding cost. Symmetrically, each unit of unsatisfied demand

is carried to the next period incurring a per-unit backlogging penalty cost. The goal is

to find an ordering policy with minimum total expected cost. The multi-period model
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can be formulated as a tractable dynamic program, where at each stage we minimize a

single-variable convex function. Thus, the optimal policies can be efficiently computed,

again if the demand distributions are specified explicitly (see [56] for details).

As was pointed in [48], the SAA counterparts for multistage stochastic models seem

to be very hard to solve in general. Instead of solving the SAA counter part of the mul-

tiperiod model, we propose a dynamic programming framework that is significantly dif-

ferent algorithmically from previous sample-based algorithms. The approximate policy

is computed in stages backward in time via a dynamic programming approach. The main

challenge here arises from the fact that in a backward dynamic programming framework,

the optimal solution in each stage heavily depends on the solutions already computed in

the previous stages of the algorithm. Therefore, the algorithm maintains a shadow dy-

namic program that ‘imitates’ the exact dynamic program which would have been used

to compute the exact optimal policy, if the explicit demand distributions were known.

That is, in each stage, we consider a subproblem that is similar to the corresponding

subproblem in the exact dynamic program. However, this subproblem is defined with

respect to the approximate solutions already computed by the algorithm in the previ-

ous stages, instead of the optimal solutions that define the corresponding subproblem in

the exact dynamic program. The algorithm is carefully designed to maintain (with high

probability) the convexity of each one of the subproblems that are being solved through-

out the execution of the algorithm. Thus, in each stage there is again a single-variable

convex minimization problem that is solved approximately. As in the newsvendor case,

first-order information is used in the optimization. To do so we use some general struc-

tural properties of these functions to establish a key lemma (Lemma 3.3.6 below) that

again relates first-order information of these functions to relative error with respect to

their optimal objective value. We believe that this lemma will have additional applica-
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tions in approximating other classes of stochastic dynamic programs. Since the one-

sided derivatives of these functions are again nicely bounded, the Hoeffding inequality

again implies that they can be estimated using only bounded number of samples. The

analysis indicates that the relative error of the approximation procedure in each stage

of the algorithm is carefully controlled, which leads to policies that, with high prob-

ability, have overall small relative error. The upper bounds on the number of samples

required are again easy to compute and independent of the specific demand distributions.

In particular, they grow as a polynomial in the number of periods. To the best of our

knowledge, this is the first result of this kind for multistage stochastic models and for

stochastic dynamic programs. In particular, the existing approaches to approximating

stochastic dynamic programs do not admit constant worst-case guarantees of the kind

discussed in this work (see [50]).

We note that the bounds on the number of samples established in this work should be

considered only as upper bounds. It is very likely that in practice a significantly smaller

number will be sufficient. In addition, in cases where there is more information on the

demand distributions (e.g., moments), it might be possible to establish tighter theoretical

bounds.

We believe that this work sets the foundations for additional sample-based algo-

rithms for stochastic inventory models and stochastic dynamic programs with analyzed

performance guarantees. In particular, it seems very likely, that the same algorithms and

analysis as described in this chapter will be applicable to a multi-period model where

there exists Markov modulated demand process.

We next relate our work to the existing literature. In this chapter, we consider the

black box model that was used by Gupta, Pál, Ravi and Sinha [19]. More specifically,

we assume that the information about the demands is available through a black box that
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can generate, on request, independent samples from the demand distributions.

The problem of unavailable or complex probability distributions within the context

of stochastic optimization models has been extensively addressed in the literature. Solv-

ing the sample average approximation (SAA) is an approach that has been explored both

theoretically and in practice; this approach immediately raises several natural questions.

First, is it possible to efficiently solve this model? Secondly, what is the quality of an

optimal solution to the SAA model with respect to the original objective function and

how does it depend on the number of samples that define it? Thirdly, how is the set of

optimal solutions of the SAA model related to the set of optimal solutions of the initial

problem?

The latter two questions have been addressed in several recent papers. Kleywegt,

Shapiro and Homem-De-Mello [28] have considered the SAA in a general setting of

two-stage discrete stochastic optimization models (see [41] for discussion on two-stage

stochastic models). They have shown that, for a sufficiently large number of samples,

the optimal value of the SAA problem converges to the optimal value of the original

problem with probability 1. They have also used large-deviation results to show that

the additive error of an optimal solution to the SAA model (i.e., the difference between

its objective value and the optimal objective value of the original problem) converges

to zero with probability 1 for a sufficiently large number of samples. However, their

bounds on the number of samples required, depend on the variability of the objective

function. Hence, these bounds might be hard to compute and they can be very loose.

Sahpiro, Homem-De-Mello and Kim [47, 46] have again focused on two-stage stochas-

tic models and considered the probability of the event that an optimal solution to the

SAA model is in fact an optimal solution to the original problem. Under the assumption

that the probability distributions have finite support and that the original problem has a
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unique optimal solution, they have again used large-deviation results to show that this

probability converges to 1 exponentially fast as the number of samples grows. Swamy

and Shmoys [54] have considered a class of two-stage stochastic linear programs and

bound the number of samples required to guarantee that, with specified high confidence

probability, the optimal solution to the corresponding SAA model has a small specified

relative error. Like ours, their bounds are easy to compute and do not depend on the

specific underlying probability distributions. Charikar, Chekuri and Pál [6] have pro-

posed a simpler proof and extended the class of problems to which this result applies.

However, both of these results do not seem to capture the models we consider in this

work. In particular, the newsvendor model admits a non-linear objective function and

the multiperiod version is by nature a multistage stochastic problem. For multistage

stochastic linear programs Swamy and Shmoys [54] have shown that the SAA model is

still effective in providing a good solution to the original problem, but the bounds on the

number of samples and the running time of the algorithms grow exponentially with the

number of stages.

Infinitesimal perturbation analysis is a sample-based technique that has been ex-

tensively explored in the context of solving stochastic supply chain models (see [17],

[18] and [27] for several examples). Usually, this method works as follows. First, the

performance measures of interest (e.g., inventory level in each period, the number of

backlogged units in each period, etc) are expressed as a function of the demands and the

decision parameters. Then a sample-path approach is used to stochastically evaluate the

derivatives of the different performance measures as a function of the decision parame-

ters. More specifically, independent samples are drawn from the demand distributions,

where each sample consists of a sequence (a path) of demands over the planning horizon.

The cost of each set of decision parameters is then evaluated by averaging over all the
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sampled paths. The samples are drawn only once and the recursion is used to efficiently

evaluate the partial derivatives of the relevant performance measures as a function of

the decision parameters. In most cases it is possible to show that these gradient estima-

tors are consistent estimators, i.e., they converge to the real value of the derivative with

probability 1 for a sufficiently large number of samples. This gradient estimation tech-

nique is usually incorporated into gradient search methods (see [18] for details). The

IPA-based methods seem very effective in practice for computing policies that can be

characterized in a compact way with a relative small set of decision parameters. How-

ever, to the best of our knowledge, there is no analysis regarding the number of samples

required to guarantee, with high confidence probability, a solution with small relative

(or additive) error.

The robust or the min-max optimization approach is yet another way to address the

uncertainty regarding the exact demand distributions in supply chain models, see for ex-

ample, Bersimas and Thiele [2] and Gallego, Ryan and Simchi-Levi [15] (this approach

was applied to many other stochastic optimization models). In this approach, instead of

fitting to the data a unique distribution we allow a family of distributions. The assump-

tion is that the true distribution of the demand belongs to that family of distributions.

The specification of the relevant family of distributions can be based, for example, on

moments fitting or on an uncertainty set that defines only the support of the distribution.

The cost of each policy is usually evaluated with respect to the worst distribution within

the specified family and the goal is to find the policy with the best worst case. In par-

ticular, we mention the work Scarf in [44], of Gallego and Moon [13] and of Perakis

and Roels [38] on the maximization variant of the newsvendor problem. We note that

under these approaches we no longer consider the original objective, that is, minimizing

the expected cost. Moreover, the resulted solution can be very conservative. Hence, the
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main issue in applying these approaches is how to define the family of allowed distri-

butions or the uncertainty set in a way that captures the uncertainty but does not lead to

conservative solutions.

The rest of the chapter is organized as follows. In Section 3.2 we discuss the single-

period newsvendor model, then in Section 3.3 we proceed to discuss the multiperiod

model. Then in Section 3.4 we consider the case of approximating myopic policies.

Finally, in Section 3.5 we provide a proof for a general multidimensional version of

Lemma 3.3.6.

3.2 Newsvendor Problem

In this section, we consider the minimization variant of the classical single-period newsven-

dor problem. A random demand D for a single commodity occurs in a single period.

At the beginning of the period, before the the demand is observed, we decide how many

units of the commodity to order to satisfy the (random) demand D. The y units or-

dered arrive instantaneously and only then is the actual demand d (the realization of D)

observed. If too many units were ordered, i.e., y > d, a per-unit holding cost h > 0

is incurred for each unit of excess inventory, i.e., the overall cost is h(y − d). On the

other hand, if not enough units were ordered, i.e., d > y, a per-unit lost-sales penalty

b > 0 is incurred for each unit of unsatisfied demand, i.e., the overall cost is b(d − y).

The goal is to minimize the expected cost C(y) = E[h(y −D)+ + b(D − y)+] (where

x+ = max(x, 0) and the expectation is taken with respect to the random demand D).

Note that, without loss of generality, the per-unit ordering cost is assumed to be equal to

0. This assumption will be discussed at the end of this section. The newsvendor problem

is a well-studied model and much is known about the properties of its objective function

C and its optimal solutions. For the sake of completeness, we next discuss some of these
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properties, highlighting the ones used in this section.

3.2.1 Optimality Conditions

Observe that for each realization d of D, the function h(y−d)++b(d−y)+ is a (piecewise

linear) convex function of y. Therefore, the cost function C(y) is also a convex function

of y, since it is the expectation of a convex function. The general characterization of

optimal solutions to convex minimization problems (i.e., of a global minimizer) relies

on the notion of a subgradient (for details, the reader is referred to [40]).

Definition 3.2.1 Given a function f : Rm 7→ R, a vector w ∈ Rm is called a sub-

gradient of f at u ∈ Rm if the inequality f(v) ≥ f(u) + w · (v − u) holds for each

v ∈ Rm.

Note that a function f might not have a subgradient at u or might not have a unique

subgradient. Let ∂f(u) denote the set of subgradients of f at u (where again, ∂f(u) can

be empty). It is readily verified that ∂f(u) is a convex set. For a finite convex function

f , the set ∂f(u) is nonempty for each u ∈ Rm, and it consists of a unique subgradient

if and only if f is differentiable at u.

Throughout this chapter, we are going to use the following characterization of a

global minimum of a convex function.

Theorem 3.2.2 Let f : Rm 7→ R be a convex function. Then u ∈ Rm is a global

minimizer (i.e., f(u) ≤ f(v) for each v ∈ Rm) if and only if 0̄ ∈ ∂f(u) (where 0̄ is the

vector of all zeros).

The objective function, C(y), considered in the newsvendor problem is a single-

variable finite convex function. Therefore, the set ∂C(u) is an interval. It is readily

verified that the endpoints of this interval are the right-hand and left-hand derivatives of
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C at u, denoted by Cr(u) and C l(u), respectively. Observe that since C is convex, it

is always true that C l(u) ≤ Cr(u). Indeed, if C is differentiable at u, then Cr(u) =

C l(u) = C ′(u) and ∂C(u) is a singleton. It is also clear that 0 ∈ ∂C(u) if and only if

Cr(u) ≥ 0 and C l(u) ≤ 0. This provides an optimality criterion equivalent to Theorem

3.2.2 above.

For the newsvendor model, it is easy to derive explicit expressions for the right-

hand and left-hand derivatives of C. Using a standard dominated convergence theorem

(see [3]), the order of integration (expectation) and the limit (derivatives) can be inter-

changed, and the one-sided derivatives of C can be expressed explicitly. We get that

Cr(y) = −b + (b + h)F (y), where F (y) := Pr(D ≤ y) is the CDF of D, and that

C l = −b + (h + b)Pr(D < y). The right-hand and the left-hand derivatives are equal

at all the continuity points of F . In particular, if F is continuous, then C is continu-

ously differentiable with C ′(y) = −b + (b + h)F (y). It is therefore relatively easy to

check whether the latter optimality criterion is satisfied (i.e., whether Cr(u) ≥ 0 and

C l(u) ≤ 0).

Moreover, if the distribution of the demand D is given explicitly, then it is usually

easy to compute an optimal solution. More specifically, this optimal solution, denoted

by y∗, is the b
b+h

quantile of the distribution of D, i.e., y∗ = inf{y : F (y) ≥ b
b+h
}.

Observe that the definition of y∗ is equivalent to the optimality criterion above, i.e., it is

equivalent to the inequalities Cr(y∗) ≥ 0 and C l(y∗) ≤ 0. Finally, we note that all of the

above is valid for any demand distribution D with E[|D|] < ∞, including cases when

negative demand is allowed. It is clear that in the case where E[|D|] = ∞, the problem

is not well-defined, because any ordering policy will incur infinite expected cost.
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3.2.2 Sample Average Approximation

In most real-life scenarios, the demand distribution is not known and the only thing

available is data from past periods. Consider a model where instead of an explicitly

specified demand distribution there is a black box that generates independent samples

of the demand drawn from the true distribution of D. Assuming that the demands in all

periods are independent and identically distributed (i.i.d) random variables, distributed

according to D, this will correspond to available data from past periods or to samples

coming from a simulation procedure or from a marketing experiment that can be repli-

cated. Note that there is no assumption on the actual demand distribution. In particular,

there is no parametric assumption, and there are no assumptions on the existence of

higher moments (beyond the necessary assumption that E[|D|] < ∞). Under these as-

sumptions, a natural question that arises is how many samples from the black box or

equivalently, what is the size of past data that are required to be able to find a provably

good solution to the original newsvendor problem. By a provably good solution, we

mean a solution with expected cost at most (1 + ε′)C(y∗) for a specified 0 < ε′, where

C(y∗) is the optimal expected cost under full knowledge of the demand distribution D.

Our approach is based on the natural and common idea of solving the sample average

approximation (SAA) counterpart of the problem. Suppose that we have N independent

samples of the demand D, denoted by d1, . . . , dN . The SAA counterpart is defined in

the following way. Instead of using the demand distribution of D that is not available,

we assume that each one of the samples of D occurs with the same probability of 1
N

.

Now define the newsvendor problem with respect to the induced empirical distribution.

In other words, the problem is defined as

min
y≥0

Ĉ(y) :=
1

N

N∑
i=1

(h(y − di)+ + b(di − y)+).
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Throughout the chapter we use hat to distinguish between deterministic functions such

as C above, that are defined by taking expectations with respect to the underlying de-

mand distributions, and their SAA counterparts which are (like Ĉ) random variables

because they are functions of the random samples being drawn from the demand distri-

butions. More generally, the symbol hat will be used to denote any quantity that depends

on the random samples from the demand distributions. In addition, unless stated other-

wise, all expectations are taken with respect to the true underlying demand distributions.

Let Ŷ = Ŷ (N) denote the optimal solution to the SAA counterpart. Note again that

Ŷ is a random variable that is dependent on the specific N (independent) samples of D.

Clearly, for each given N samples of the demand D, ŷ (the realization of Ŷ ) is defined

to be the b
b+h

quantile of the sample, i.e., ŷ = inf{y : 1
N

∑N
i=1 11(di ≤ y) ≥ b

b+h
} (where

11(di ≤ y) is the respective indicator function which is equal to 1 exactly when di ≤ y).

It follows immediately that ŷ = min1≤j≤N{dj : 1
N

∑N
i=1 11(di ≤ dj) ≥ b

b+h
}. Hence,

given the demand samples d1, . . . , dN , the optimal solution to the SAA counterpart, ŷ,

can be computed very efficiently by finding the b
b+h

quantile of the samples.

This makes the SAA counterpart very attractive to solve. However, the natural ques-

tion is how the SAA counterpart is related to the original problem as a function of the

number of samples N . Consider any specified accuracy level ε′ > 0 and a confidence

level 1 − δ′ (where 0 < δ′ < 1). We will show that there exists a number of samples

N = N(ε′, δ′, h, b) such that, with probability at least 1− δ′, the optimal solution to the

SAA counterpart defined on N samples, has expected cost C(Ŷ ) at most (1 + ε′)C(y∗).

Note that we compare the expected cost of ŷ (the realization of Ŷ ) to the optimal ex-

pected cost, where there is full access to the true distribution of D. As we will show,

the number N of required samples is polynomial in 1
ε′ , log( 1

δ′ ) and is also dependent on

the minimum among the values b
b+h

and h
b+h

(that define the optimal solution y∗ above).
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However, it is completely independent of the demand distribution D.

The first issue that needs to be addressed is how many samples are required to make

it very likely (i.e., with high probability) that ŷ, the realization of Ŷ , is ‘close’ to the real

b
b+h

quantile (and the optimal solution) y∗. Here ‘close’ does not mean necessarily that

|y∗ − ŷ| is small but that F (ŷ) = Pr(D ≤ ŷ) is ‘close’ to F (y∗). Recall, that F (y) :=

Pr(D ≤ y) (for each y ∈ R), and let F̄ (y) := Pr(D ≥ y) = 1 − F (y) + Pr(D = y)

(where here we depart from the traditional notation). Observe that by the definition of

y∗ as the b
b+h

quantile of D, F (y∗) ≥ b
b+h

and F̄ (y∗) ≥ h
b+h

. The following definition

provides a precise notion of what we mean by ‘close’ above.

Definition 3.2.3 Let ŷ be some realization of Ŷ and let ε > 0. We will say that ŷ is

ε-accurate if F (ŷ) ≥ b
b+h

− ε and F̄ (ŷ) ≥ h
b+h

− ε.

Once again, the above definition can be related to a statement on the right-hand

and left-hand derivatives of C at ŷ. Observe that Pr(D < y) = 1 − F̄ (y). It is

straightforward to verify that if ŷ is ε−accurate, then Cr(ŷ) ≥ −ε(b + h) and C l(ŷ) ≤
ε(b+h). This implies that there exists a subgradient r ∈ ∂C(ŷ) such that |r| ≤ ε(b+h).

Intuitively, this implies that, for ε sufficiently small, 0 is ‘almost’ a subgradient at ŷ,

and hence ŷ is ‘close’ to being optimal. This intuitive observation is made rigorous in

Lemma 3.2.6 and Theorem 3.2.7 below.

Next we wish to establish upper bounds on the number of samples N required in

order to guarantee that ŷ, the realization of Ŷ , is ε−accurate with high probability (for

each specified ε > 0 and confidence probability 1−δ). In doing that we use the following

variant of the well-known Hoeffding inequality.

Theorem 3.2.4 (Hoeffding Inequality [20]). Let X1, . . . , XN be i.i.d. random vari-

ables such that X1 ∈ [α, β] (i.e., Pr(X1 ∈ [α, β]) = 1) for some α < β. Then, for each
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ε > 0, we have, Pr( 1
N

∑N
i=1 X i − E[X1] ≥ ε) ≤ e−2ε2N/(β−α)2 .

Observe again that each sequence of N samples d1, . . . , dN induces an empirical distri-

bution of the demand that can be used to define empirical counterparts to F and F̄ de-

fined above. More specifically, consider the samples d1, . . . , dN as coming from N i.i.d

random variables D1, . . . , DN all distributed according to the random variable D. For

each y ∈ R and for each i = 1, . . . , N , let X i = X i(y) = 11(Di ≤ y). Given a sequence

of N samples, d1, . . . , dN , the empirical distribution function is defined as F̂ (y) :=

P̂ r(D ≤ y) := 1
N

∑N
i=1 xi (where xi is the realization of X i). Since xi ∈ {0, 1}, F̂ (y)

is well-defined. Similarly, for each i = 1, . . . , N , let Zi = Zi(y) = 11(Di ≥ y), and

for each sequence d1, . . . , dN , define ˆ̄F (y) := P̂ r(D ≥ y) = 1
N

∑N
i=1 zi (where again,

zi is the realization of Zi). Note that F̂ and ˆ̄F are random because they depend on the

specific N samples d1, . . . , dN .

Observe that X1, . . . , XN (as well as respectively Z1, . . . , ZN ) are i.i.d random vari-

ables. Moreover, X i ∈ [0, 1] (respectively, Zi ∈ [0, 1]), and E[X i] = Pr(D ≤ y) =

F (y) (E[Zi] = Pr(D ≥ y) = F̄ (y)). The Hoeffding inequality then implies that, for

each fixed y, and for a sufficiently large N , the random empirical distribution function

F̂ (y) will be, with high probability, close in its value to F (y), i.e., it implies a bound on

the probability that F̂ (y) − F (y) ≥ ε. Similarly, it provides a bound, for each fixed y,

on the probability that ˆ̄F (y)− F̄ (y) ≥ ε.

Using the above idea, we get the following lemma.

Lemma 3.2.5 For each ε > 0 and 0 < δ < 1, if the number of samples is N ≥
N(ε, δ) = 1

2
1
ε2

log(2
δ
), then Ŷ , the b

b+h
quantile of the sample is ε−accurate with proba-

bility at least 1− δ.

Proof : First, we bound the probability of the event B := [F (Ŷ ) < b
b+h

− ε] and
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show that it is at most δ
2
. Note that since Ŷ is a random variable, we can not apply the

Hoeffding inequality directly to Ŷ . Let q be the ( b
b+h

− ε) quantile of D, i.e., q = inf{y :

F (y) ≥ b
b+h

− ε}. Note that since F is right-continuous, F (q) ≥ b
b+h

− ε. Clearly, B

is the event [Ŷ ∈ (−∞, q)]. Now let τk ↓ 0 be a nonnegative, monotone decreasing

sequence. Define, for each k = 1, 2, . . . the event Bk = [F̂ (q − τk) ≥ b
b+h

]. Since F̂

is monotone increasing, we conclude that Bk ⊆ Bk+1 and that Bk ↑ B̄ (where B̄ is the

limit set), which implies that Pr(Bk) ↑ Pr(B̄). Since F̂ (Ŷ ) ≥ b
b+h

with probability 1,

and F̂ is monotone increasing, the event B can be written as [Ŷ < q] ∩ [F̂ (y) ≥ b
b+h

:

∀ Ŷ ≤ y < q]. However, each event [F̂ (y) ≥ b
b+h

: ∀ ŷ ≤ y < q] is contained in all

the events Bk for k sufficiently large. This implies that B ⊆ B̄. However, for each k we

have F (q− τk) < b
b+h

− ε. Therefore, by the Hoeffding inequality, the probability of the

event Bk is at most exp−2ε2N . By the choice of N above, we conclude that Pr(Bk) ≤ δ
2
,

which also implies that Pr(B̄) ≤ δ
2
. This concludes the first part of the proof.

Next we bound the probability on the event L := [F̄ (Ŷ ) < h
b+h

− ε]. Similar to the

previous case, now let q := sup{y : F̄ (y) ≥ h
b+h

− ε}. Since F̄ is left-continuous, we

know that F̄ (q) ≥ h
b+h

− ε. Since ˆ̄F (y) is monotone decreasing in y and ˆ̄F (Ŷ ) ≥ h
b+h

with probability 1, we can write L as [Ŷ ∈ (q,∞)] or as [Ŷ > q]∩ [ ˆ̄F (y) ≥ h
b+h

: ∀ q <

y ≤ Ŷ ]. For k = 1, 2, . . . , define a sequence of events Lk := [ ˆ̄F (q + τk) ≥ h
b+h

]. It

is again readily verified, that since ˆ̄F is monotone decreasing we have Lk ↑ L̄ (where

L̄ is the limit set), which implies Pr(Lk) ↑ Pr(L̄). Since, for each k, we have that

F̄ (q + τk) < h
b+h

− ε, we use again Hoeffding inequality and the chosen N to conclude

that Pr(Lk) ≤ δ
2
, which implies that Pr(L̄) ≤ δ

2
. Finally, by an argument similar to the

one above, we observe that L ⊆ L̄, which implies that Pr(L) ≤ δ
2
.

Now consider the event [Ŷ is not ε−accurate]. It is readily verified that this is a sub-

set of the union of B and L above, and hence has probability at most δ. This concludes
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the proof of the lemma.

Lemma 3.2.5 provides bounds on the number of samples that are required for the b
b+h

sample quantile Ŷ to be ε−accurate with high probability. The next natural question is

whether an ε−accurate ŷ is sufficient to guarantee a bounded relative error in the cost

function. In other words, does the fact that ŷ is ε−accurate imply that it has a good

objective value relative to the minimum value of the original cost function C (recall, that

the function C is computed under full knowledge of the distribution of D). In the next

lemma we show that if ŷ is ε−accurate, then the difference between its expected cost

C(ŷ) and the optimal expected cost C(y∗) is at most ε times (b + h)|ŷ − y∗|. Moreover,

in this case we also provide a lower bound on the optimal cost.

Lemma 3.2.6 Let ε > 0 and assume that ŷ is ε−accurate. Then:

(i) C(ŷ)− C(y∗) ≤ ε(b + h)|ŷ − y∗|.

(ii) C(y∗) ≥ ( hb
b+h

− ε max(b, h))|ŷ − y∗|.

Proof : Suppose ŷ is ε−accurate. Clearly, either ŷ ≥ y∗ or ŷ < y∗. Suppose first that

ŷ ≥ y∗. We will obtain an upper bound on the difference C(ŷ)− C(y∗). Clearly, if the

realized demand d is within (−∞, ŷ), then the difference between the costs incurred by

ŷ and y∗, respectively, is at most h(ŷ − y∗). On the other hand, if d falls within [ŷ,∞),

then y∗ has higher cost than ŷ, by exactly b(ŷ − y∗). Now since ŷ is assumed to be

ε−accurate, we know that

Pr([D ∈ [ŷ,∞)]) = Pr(D ≥ ŷ) = F̄ (ŷ) ≥ h

b + h
− ε.

We also know that

Pr([D ∈ [0, ŷ)]) = Pr(D < ŷ) = 1− F̄ (ŷ) ≤ 1− (
h

b + h
− ε) =

b

b + h
+ ε.
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This implies that

C(ŷ)− C(y∗) ≤ h(
b

b + h
+ ε)(ŷ − y∗)− b(

h

b + h
− ε)(ŷ − y∗) = ε(b + h)(ŷ − y∗).

Similarly, if ŷ < y∗, then for each realization d ∈ (ŷ,∞) the difference between the

costs of ŷ and y∗, respectively, is at most b(y∗− ŷ), and if d ∈ (−∞, ŷ], then the cost of

y∗ exceeds the cost of ŷ by exactly h(y∗ − ŷ). Since ŷ is assumed to be ε−accurate, we

know that

Pr(D ≤ ŷ) = F (ŷ) ≥ b

b + h
− ε,

which also implies that

Pr(D > ŷ) = 1− F (ŷ) ≤ h

b + h
+ ε.

We conclude that

C(ŷ)− C(y∗) ≤ b(
h

b + h
+ ε)(y∗ − ŷ)− h(

b

b + h
− ε)(y∗ − ŷ) = ε(b + h)(y∗ − ŷ).

The proof of part (i) then follows.

The above arguments also imply that if ŷ ≥ y∗ then C(y∗) ≥ E[11(D ≥ ŷ)b(ŷ −
y∗)] = F̄ (ŷ)(ŷ − y∗). We conclude that C(y∗) is at least b( h

b+h
− ε)(ŷ − y∗). Similarly,

in the case ŷ < y∗, we conclude that C(y∗) is at least E[11(D ≤ ŷ)h(y∗ − ŷ)] ≥
h( b

b+h
−ε)(y∗− ŷ). In other words, C(y∗) ≥ ( hb

b+h
−ε max(b, h))|ŷ−y∗|. This concludes

the proof of the lemma.

We note that there are examples in which the two inequalities in Lemma 3.2.6 above

are simultaneously tight. Using Lemmas 3.2.5 and 3.2.6, we can prove the following

theorem. As a convention throughout the chapter, we use ε′ and δ′ with reference to the

objective value of the solution (in this case, C(ŷ)). We use ε and δ with respect to F (ŷ)

and F̄ (ŷ) or, equivalently, to Cr(ŷ) and C l(ŷ).
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Theorem 3.2.7 Consider a newsvendor problem specified by a per-unit holding cost

h > 0, a per-unit backlogging penalty b > 0 and demand distribution D with E[D] <

∞. Let 0 < ε′ ≤ 1 be a specified accuracy level and 1−δ′ (for 0 < δ′ < 1) be a specified

confidence level. Suppose that N ≥ 9
2ε′2 (

min(b,h)
h+b

)−2 log( 2
δ′ ) and the SAA counterpart is

solved with respect to N i.i.d samples of D. Let Ŷ be the optimal solution to the SAA

counterpart and ŷ denote its realization. Then, with probability at least 1 − δ′, the

expected cost of Ŷ is at most 1 + ε′ times the expected cost of an optimal solution to the

specified newsvendor problem denoted by y∗. In other words, C(Ŷ ) ≤ (1 + ε′)C(y∗)

with probability at least 1− δ′.

Proof : Let ε = ε′
3

min(b,h)
b+h

and δ = δ′. Suppose that the SAA counterpart is solved for

N ≥ 1
2

1
ε2

log(2
δ
) i.i.d. samples of the demand, and that ŷ is again the realized optimal

solution to the sample-based problem. By lemma 3.2.5, we know that for the specified

N there is a probability of at least 1 − δ that ŷ is ε−accurate. Now by Lemma 3.2.6

we know that in this case C(ŷ) − C(y∗) ≤ ε(b + h)|ŷ − y∗| and that C(y∗) ≥ ( hb
b+h

−
ε max(b, h))|ŷ − y∗|. It is then sufficient to show that ε(b + h) ≤ ε′( hb

b+h
− ε max(b, h)).

Indeed,

ε(b + h) ≤ (2 + ε′)ε max(b, h)− ε′ε max(b, h) =

(2 + ε′)ε′

3

max(b, h) min(b, h)

b + h
− ε′ε max(b, h) ≤ ε′(

hb

b + h
− ε max(b, h)).

In the first equality we just substitute ε = ε′
3

min(b,h)
b+h

. The second inequality follows

from the assumption that ε′ ≤ 1. We now conclude that, with probability at least 1− δ′,

we have C(Ŷ )− C(y∗) ≤ ε′C(y∗) from which the proof of the theorem follows.

We note again that the required number of samples does not depend on the demand

distribution D. On the other hand, N depends on the square of the reciprocal of min(b,h)
b+h

.

This implies that the required number of samples N might be large in cases where b
b+h

is
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very close either to 1 or 0. Since the optimal solution y∗ is the b
b+h

quantile of D, this is

consistent with the well-known fact that in order to approximate an extreme (very high

or very low) quantile one needs many samples. The intuitive explanation is that if, for

example, b
b+h

is close to 1, it will take many samples before we see the event [D > y∗].

We also note that the bound above is insensitive to scaling of the parameters h and b. It

is important to keep in mind that these are only upper bounds on the number of samples

required. It is likely that in many cases a significantly lower number of samples will

suffice. Moreover, under additional assumptions on the demand distribution it might be

possible to get improved bounds.

Finally, the above result holds for newsvendor models with positive per-unit ordering

cost as long as E[D] ≥ 0. Suppose that the per-unit ordering cost is some c > 0 (i.e.,

if y units are ordered a cost of cy is incurred). Clearly, we can assume, without loss of

generality, that c < b since otherwise the optimal solution is to order nothing. Consider

now a modified newsvendor problem with holding cost and penalty cost parameters

h̄ = h + c > 0 and b̄ = b − c > 0, respectively. It is readily verified that the modified

cost function C̄(y) = E[h̄(y −D)+ + b̄(D − y)+] is such that C(y) = C̄(y) + cE[D]

and hence the two problems are equivalent. Moreover, if E[D] ≥ 0 and if the solution

ŷ guarantees a 1 + ε′ accuracy level for the modified problem, then it does so also with

respect to the original problem, since the cost of each feasible solution is increased by

the same positive constant cE[D]. Observe that this still allows negative demand.

3.3 MultiPeriod Model

In this section, we consider the multi-period extension of the newsvendor problem,

called the multi-period newsvendor problem. The goal now is to satisfy a sequence of

random demands for a single commodity over a planning horizon of T discrete periods
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(indexed by t = 1, . . . , T ) with minimum expected cost. The random demand in period

t is denoted by Dt. We assume that D1, . . . , DT are independent but not necessarily

identically distributed.

Each feasible policy P makes decisions in T stages, one decision at the beginning

of each period, specifying the number of units to be ordered in that period. Let Qt ≥ 0

denote the size of the order in period t. This order is assumed to arrive instantaneously

and only then is the demand in period t observed (dt will denote the realization of Dt).

At the end of this section, we discuss the extension to the case where there a positive

lead time of several periods until the order arrives. For each period t = 1, . . . , T , let Xt

be the net inventory at the beginning of the period. If the net inventory Xt is positive,

it corresponds to physical inventory that is left from pervious periods (i.e., from periods

1, . . . , t − 1), and if the net inventory is negative it corresponds to unsatisfied units of

demand from previous periods. The dynamics of the model are captured through the

equation Xt = Xt−1 + Qt−1 −Dt−1 (for each t = 2, . . . , T ). Costs are incurred in the

following way. At the end of period t, consider the net inventory xt+1 (the realization

of Xt+1). If xt+1 > 0, i.e., there are excess units in inventory, then a per-unit holding

cost ht > 0 is incurred for each unit in inventory, leading to a total cost of htxt+1 (the

parameter ht is the per unit cost for carrying one unit of inventory from period t to t+1).

If, on the other hand, xt+1 < 0, i.e., there are units of unsatisfied demand, then a per-unit

backlogging penalty cost bt > 0 is incurred for each unit of unsatisfied demand, and the

total cost is −btxt+1. In particular, all of the unsatisfied units of demand will stay in the

system until they are satisfied. That is, bt plays a role symmetric to that of ht and can be

viewed as the per-unit cost for carrying one unit of shortage from period t to t + 1. We

again assume that the per-unit ordering cost in each period is equal to 0. At the end of

this section, we shall relax this assumption. The goal is to find an ordering policy that
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minimizes the overall expected holding and backlogging cost.

The decision of how many units to order in period t can be equivalently described

as the level Yt ≥ Xt to which the net inventory is raised (where clearly Qt = Yt −
Xt ≥ 0). Thus, the multi-period model can be viewed as consisting of a sequence

of constrained newsvendor problems, one in each period. The newsvendor problem in

period t is defined with respect to Dt, ht and bt, under the constraint that yt ≥ xt (where

again xt and yt are the respective realizations of Xt and Yt). However, these newsvendor

problems are linked together. More specifically, the decision in period t may constrain

the newsvendor problems in future periods since it may impact the net inventory in

these periods. Thus, myopically minimizing the expected newsvendor cost in period t

is, in general, not optimal with respect to the total cost over the entire horizon. This

makes the multi-period model significantly more complicated. Nevertheless, given full

access to the demand distributions D1, . . . , Dt, this model can be solved to optimality

by means of dynamic programming. The multi-period model is again well-studied. We

present a summary of the main known results regarding the structure of optimal policies,

emphasizing those facts that will be essential for our results. This serves as a background

for the proceeding discussion about the sample-based algorithm and its analysis.

3.3.1 Optimal Policies

It is a well-known fact that in the multi-period model described above, the class of base-

stock policies is optimal. A base-stock policy is characterized by a set of target inventory

(base-stock) levels associated with each period t and each possible state of the system

in period t. At the beginning of each period t, a base-stock policy aims to keep the

inventory level as close as possible to the relevant target level. Thus, if the inventory

level at the beginning of the period is below the target level, then the base-stock policy
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will order up to the target level. If, on the other hand, the inventory level at the beginning

of the period is higher than the target, then no order is placed.

Optimal base-stock policy has two important properties. First, the optimal base-

stock level in period t is independent of all the decisions made (i.e., orders placed) prior

to period t. In particular, it is independent of Xt. Second, its optimality is conditioned

on the execution of an optimal base-stock policy in the future periods t + 1, . . . , T .

As a result, optimal base-stock policies can be computed using dynamic programming,

where the optimal base-stock levels are computed by a backward recursion from period

T to period 1. The main problem is that the state space in each period might be very

large, which makes the relevant dynamic program intractable. However, in the model

discussed here, the demands in different periods are assumed to be independent, and the

corresponding dynamic program is therefore usually easy to solve, again if we have full

access to the demand distributions. In particular, an optimal base-stock policy in this

model consists of T base-stock levels, one for each period.

Next, we present a dynamic programming formulation of the model discussed above

and highlight the facts that are most relevant to the proceeding discussion. In the follow-

ing subsection, we shall show how to use a similar dynamic programming framework to

construct a sample-based policy that approximates an optimal base-stock policy.

Let Ct(yt) be the newsvendor cost associated with period t (for t = 1, . . . , T ) as a

function of the inventory level yt after ordering, i.e.,

Ct(yt) = E[ht(yt −Dt)
+ + bt(Dt − yt)

+].

For each t = 1, . . . , T , let Vt(xt) be the optimal (minimum) expected cost over the

interval [t, T ] assuming that the inventory level at the beginning of period t is xt and that

optimal decisions are going to be made over the entire horizon (t, T ]. Also let Ut(yt) be

the expected cost over the horizon [t, T ] given that the inventory level in period t was
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raised to yt (after the order in period t was placed) and that an optimal policy is followed

over the interval (t, T ]. Clearly, UT (yT ) = CT (yT ) and VT (xT ) = minyT≥xT
CT (yT ).

Now for each t = 1, . . . , T − 1,

Ut(yt) = Ct(yt) + E[Vt+1(yt −Dt)]. (1)

We can now write, for each t = 1, . . . , T ,

Vt(xt) = min
yt≥xt

Ut(yt). (2)

Observe that the optimal expected cost Vt has two parts, the newsvendor (or the period)

cost, Ct, and the expected future cost, E[Vt+1(yt −Dt)] (where the expectation is taken

with respect to Dt). The decision in period t effects the future cost since it effects the

inventory level at the beginning of the next period.

The above dynamic program provides a correct formulation of the model discussed

above (see [56] for a detailed discussion). The goal is to compute V1(x1), where x1

is the inventory level at the beginning of the horizon, which is given as an input. The

following fact provides insight with regard to why this formulation is indeed correct and

to why base-stock policies are optimal.

Fact 3.3.1 Let f : R 7→ R, be a real-valued convex function with a minimizer r (i.e.,

f(r) ≤ f(y) for each y ∈ R). Then the following holds:

(i) The function w(x) = miny≥x f(y) is convex in x.

(ii) For each x ≤ r, we have w(x) = f(r), and for each x > r, we have w(x) = f(x).

Using Fact 3.3.1 above, it is straightforward to show that, for each t = 1, . . . , T , the

function Ut(yt) is convex and attains a minimum, and that the function Vt(xt) is convex.
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The proof is done by induction over the periods, as follows. The claim is clearly true

for t = T since UT is just a newsvendor cost function and VT (xT ) = minyT≥xT
UT (yT ).

Suppose now that the claim is true for t + 1, . . . , T (for some t < T ). From (1), it is

readily verified that Ut is convex since it is a sum of two convex functions. It attains a

minimum because limyt→∞ Ut(yt) = ∞ and limyt→−∞ Ut(yt) = ∞. The convexity of

Vt follows again from Fact 3.3.1 above. This also implies that base-stock policies are in-

deed optimal. Moreover, if the demand distributions are explicitly specified, it is usually

straightforward to recursively compute optimal base-stock levels R1, . . . , RT , since they

are simply minimizers of the functions U1, . . . , UT , respectively. More specifically, if the

demand distributions are known explicitly, we can compute RT , which is a minimizer

of a newsvendor cost function, then recursively define UT−1 and solve for its minimizer

RT−1 and so on. In particular, if the minimizers Rt+1, . . . , RT were already computed,

then Ut(yt) is a convex function of a single variable and hence it is relatively easy to

compute its minimizer. Throughout the chapter we assume, without loss of generality,

that for each t = 1, . . . , T , the optimal base-stock level in period t is denoted by Rt and

that this is the smallest minimizer of Ut (in case it has more than one minimizer). The

minimizer Rt of Ut can then be viewed as the best policy in period t conditioning on the

fact that the optimal base-stock policy Rt+1, . . . , RT will be executed over [t + 1, T ].

By applying Fact 3.3.1 above to Vt+1 and Ut+1, it is readily verified that the function

Ut can be expressed as, Ut(yt) =

Ct(yt) + E[11(yt −Dt ≤ Rt+1)Ut+1(Rt+1) + 11(yt −Dt > Rt+1)(Ut+1(yt −Dt)]. (3)

Clearly this is a continuous function of yt. As in the newsvendor model, one can de-

rive explicit expressions for the right-hand and left-hand derivatives of the functions

U1, . . . , UT , as follows. Assume first that all the demand distributions are continuous,

which implies that the functions U1, . . . , UT are all continuously differentiable. The
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derivative of UT (yT ) is clearly U ′
T (yT ) = C ′

T = −bT + (hT + bT )FT (yT ), where FT is

the CDF of DT . Now consider the function Ut(yt) for some t < T . Using again the dom-

inated convergence theorem, one can change the order of expectation and integration to

get

U ′
t(yt) = C ′

t(yt) + E[V ′
t+1(yt −Dt)]. (4)

However, by Fact 3.3.1 and (3) above, the derivative V ′
t+1(xt+1) is equal to 0 for

each xt+1 ≤ Rt+1 and is equal U ′
t+1(xt+1) for each xt+1 > Rt+1 (where again Rt+1 is a

minimizer of Ut+1). This implies that

E[V ′
t+1(yt −Dt)] = E[11(yt −Dt > Rt+1)U

′
t+1(yt −Dt)]. (5)

Applying this argument recursively, we obtain

U ′
t(yt) = C ′

t(yt) + E[
T∑

j=t+1

11(Ajt(yt))C
′
j(yt −D[t,j))], (6)

where D[t,j) is the accumulated demand over the interval [t, j) (i.e., D[t,j) =
∑j−1

k=t Dk),

and Ajt(yt) is the event that for each k ∈ (t, j] the inequality yt − D[t,k) > Rk holds.

Observe that yt−D[t,k) is the inventory level at the beginning of period k, assuming that

we order up to yt in period t and do not order in any of the periods t + 1, . . . , k − 1.

If yt − D[t,k) ≤ Rk, then the optimal base-stock level in period k is reachable, and

the decision made in period t does not have any impact on the future cost over the

interval [k, T ]. However, if yt −D[t,s) > Rs for each s = t + 1, . . . , k, then the optimal

base-stock level in period k is not reachable due to the decision made in period t, and

the derivative C ′
k(yt − D[t,k)) accounts for that impact on the cost in period k. The

derivative of Ut consists of a sum of derivatives of newsvendor cost functions multiplied

by the respective indicator functions.
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For general (independent) demand distributions, the functions U1, . . . , Ut might not

be differentiable, but similar arguments can be used to derive explicit expressions for

the right-hand and left-hand derivatives of Ut, denoted by U r
t and U l

t , respectively. This

is done simply by replacing C ′
j by Cr

j and C l
j (see Section 3.2 above), respectively,

in the above expression of U ′
t (for each j = t, . . . , T ). In addition, in the right-hand

derivative the events Ajt(yt) are defined with respect to weak inequalities. This also

provides an optimality criterion for finding a minimizer Rt of Ut, namely, U r
t (Rt) ≥ 0

and U l
t(Rt) ≤ 0. If the demand distributions are explicitly given, it is usually easy

to evaluate the one-sided derivatives of Ut. This suggests the following approach for

solving the dynamic program presented above. In each stage, compute Rt such that

0 ∈ ∂Ut(Rt), by considering the respective one-sided derivatives of Ut. In the next sub-

section, we shall use a similar algorithmic approach, but with respect to an approximate

base-stock policy and under the assumption that the only information about the demand

distributions is available through a black box.

3.3.2 Approximate Base-Stock Levels

In order to exactly solve the dynamic program described above, it is essential to know

the demand distributions. However, as mentioned before, in most real-life scenarios

these distributions are either not available or are too complicated to work with directly.

Instead we shall consider this model again under the assumption that the only informa-

tion available is through a black box that on request can generate independent samples

from the demand distributions D1, . . . , DT . As in the newsvendor model discussed in

Section 3.2, the goal is to find a policy with expected cost close to the expected cost

of an optimal policy that is assumed to have full access to the demand distributions. In

particular, we shall describe a sample-based algorithm that, for each specified accuracy
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level ε′ and confidence level δ′, computes a base-stock policy such that with probability

at least 1 − δ′, the expected cost of the policy is at most 1 + ε′ times the expected cost

of an optimal policy. Throughout the chapter, we use R1, . . . , RT to denote the min-

imal optimal base-stock-level, i.e., the optimal base-stock policy , in which, for each

t = 1, . . . , T , the base-stock level Rt is the smallest minimizer of Ut defined above.

Next we provide an overview of the algorithm and its analysis.

An overview of the algorithm and its analysis. First we note again that our approach

departs from the SAA method or the IPA methods discussed in Sections 3.1 and 3.2

above. Instead, it is based on a dynamic programming framework. That is, the base-

stock levels of the policy are computed using a backward recursion. In particular, the

base-stock level in period t, denoted by R̃t, is computed based on the previously com-

puted base-stock levels R̃t+1, . . . , R̃T . If T = 1, then this is reduced to solving the SAA

of the single-period newsvendor model already discussed in Section 3.2. However, if

T > 1 and the base-stock levels are approximated recursively, then the issue of convex-

ity needs to be carefully addressed. It is no longer clear, whether each subproblem is

still convex, and whether base-stock policies are still optimal. More specifically, assume

that some (approximate) base-stock policy R̃t+1, . . . , R̃T over the interval [t + 1, T ], not

necessarily an optimal one, was already computed in previous stages of the algorithm.

Now let Ũt(yt) be the expected cost over [t, T ] of a policy that orders up to yt in period

t and then follows the base-stock policy R̃t+1, . . . , R̃T over [t + 1, T ] (as before, ex-

pectations are taken with respect to the underlying demand distributions D1, . . . , DT ).

Let Ṽt(xt) be the minimum expected cost over [t, T ] over all ordering policies in period

t, given that the inventory level at the beginning of the period is xt and that the policy

R̃t+1, . . . , R̃T is followed over [t + 1, T ]. Clearly, Ṽt(xt) = minyt≥xt Ũt(yt). The func-
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tions Ũt and Ṽt play analogous roles to those of Ut and Vt, respectively, but are defined

with respect to R̃t+1, . . . , R̃T instead of Rt+1, . . . , RT . They define a shadow dynamic

program to the one described above, that is based on the functions Ut and Vt. From

now on, we will distinguish functions and objects that are defined with respect to the

approximate policy R̃1, . . . , R̃T by adding the tilde sign above them. The convexity of

Ut and Vt and the optimality of base-stock policies are heavily based on the optimality

of Rt+1, . . . , RT (using Fact 3.3.1 above). Since the approximate policy R̃t+1, . . . , R̃T is

not necessarily optimal, the functions Ũt and Ṽt might not be convex, and hence a base-

stock policy in period t might not be optimal any more. In order to keep the subproblem

(i.e., the function Ũt) in each stage tractable, the algorithm is going to maintain (with

high probability) an invariant under which the convexity of Ũt and Ṽt and the optimal-

ity of base-stock policies are preserved (see Definition 3.3.2 and the key Lemma 3.3.3,

where we establish the resulting convexity of the functions Ũt and Ṽt). Assuming that Ũt

and Ṽt are indeed convex, it would be natural to compute the smallest minimizer of Ũt,

denoted by R̄t. However, this also requires full access to the explicit demand distribu-

tions. Instead, the algorithm takes the following approach. In each stage t = T, . . . , 1,

the algorithm uses a sample-based procedure to compute a base-stock level R̃t that,

with high probability, has the following two properties. First, the base-stock level R̃t is

a good approximation of the minimizer R̄t, in that Ũt(R̃t) is close to the minimum value

Ũt(R̄t), i.e., it has a small relative error. Second, R̃t is, with high probability, greater or

equal than R̄t. It is this latter property that preserves the invariant of the algorithm, and

in particular, preserves the convexity of Ũt−1 and Ṽt−1 in the next stage.

The justification for this approach is given in the second key Lemma 3.3.4, where

it is shown that the properties of R̃t, . . . , R̃T also guarantee that small errors relative

to Ũt(R̄t), . . . , ŨT (R̄T ), respectively, accumulate but have impact only on the expected
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cost over [t, T ] and do not propagate to the interval [1, t). Thus, applying this approach

recursively leads to a base-stock policy for the entire horizon with expected cost close

to the optimal expected cost. Analogous to the newsvendor cost function, the functions

Ũ1, . . . , ŨT also have similar explicit expressions for the one-sided derivatives that are

also bounded, and hence can be estimated accurately with samples. However, in order to

compute such R̃t in each stage, it is essential to establish an explicit connection between

first order information, i.e., information about the value of the one-sided derivatives of

Ũt at a certain point, and the bounded error this guarantees relative to Ũt(R̃t). This is

done in Lemma 3.3.6 below which plays a similarly key role to Lemma 3.2.6 in the

previous section. Finally, in Lemma 3.3.7, Corollaries 3.3.8 and 3.3.9, and Lemma

3.3.10, it is shown how the one-sided derivatives of Ũt can be estimated using samples

in order to compute R̃t that, with high probability, maintains the two required properties.

Next we discuss one of the key ideas underlying the algorithm, that is, the invariant

that preserves the convexity of the functions Ũt and Ṽt above and the optimality of a

base-stock policy in period t. In the case where there exists an optimal ordering policy in

period t which is a base-stock policy (i.e., Ũt is convex), let again R̄t = R̄t|R̃t+1, . . . , R̃T

be the smallest minimizer of Ũt, i.e., the smallest optimal base-stock level in period t,

given that the policy R̃t+1, . . . , R̃T is followed in periods t + 1, . . . , T . If the optimal

ordering policy in period t given R̃t+1, . . . , R̃T is not a base-stock policy, we say that R̄t

does not exist.

Definition 3.3.2 A base-stock policy R̃t+1, . . . , R̃T for the interval [t+1, T ] is called an

upper base-stock policy if, for each j = t + 1, . . . , T , such that R̄j exists, the inequality

R̃j ≥ R̄j holds.

The algorithm is going to preserve this invariant by computing in each stage t =
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T, . . . , 1 an R̃t such that with high probability, R̃t ≥ R̄t. In the next two lemmas we

shall show several important structural properties of upper base-stock policies. In the

first of these lemmas, we shall show that, for each j = 1, . . . , T , assuming that the base-

stock policy R̃j+1, . . . , R̃T is followed over [j + 1, T ], there exists an optimal ordering

policy in period j which is a base-stock policy, and that the convexity of the functions

Ũj and Ṽj is preserved.

Lemma 3.3.3 Let R̃t+1, . . . , R̃T be an upper base-stock policy over [t+1, T ]. For each

j = t, . . . , T , let Ũj(yj) be the expected cost over [j, T ] of a policy that orders up to yj in

period j, and then follows R̃j+1, . . . , R̃T , and let Ṽj(xj) be the minimum expected cost

over [j, T ] given that at the beginning of period j the inventory level is xj and that over

[j+1, T ] the base-stock policy R̃j+1, . . . , R̃T is followed, i.e., Ṽj(xj) = minyj≥xj
Ũj(yj).

Then, for each period j = t, . . . , T ,

(i) The functions Ũj and Ṽj are convex and Ũj attains a minimum.

(ii) Given that over [j + 1, T ] we follow the base-stock policy R̃j+1, . . . , R̃T , there

exists an optimal ordering policy in period j which is a base-stock policy, i.e., R̄j

does exist.

Proof : For each k = t + 1, . . . , T , let B̃k(xk) be the expected cost of the base-stock

policy R̃k, . . . , R̃T over the interval [k, T ] given that there are xk units in inventory at

the beginning of period k. Thus, for each t < T , Ũt(yt) = Ct(yt) + E[B̃t+1(yt −Dt)].

The proof follows by induction on j = T, . . . , t. For j = T , observe that ŨT = UT =

CT and ṼT (xT ) = VT (xT ) = minyT≥xT
ŨT (yT ), which implies that both ŨT and ṼT are

convex, ŨT attains a minimum and R̄T = RT is indeed an optimal base-stock policy

in period T . In particular, R̄T is the smallest minimizer of ŨT . Now assume that the
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claim is true for j > t, i.e., for each of the periods j, . . . , T . In particular, the functions

Ũj, . . . , ŨT are convex, R̄j, . . . , R̄T are their respective smallest minimizers, and the

functions Ṽj, . . . , ṼT are convex. Consider now the function Ũj−1(yj−1) = Cj−1(yj−1)+

E[B̃j(yj−1 − Dj−1)]. Since Cj−1 is convex, it is sufficient to show that B̃j is convex.

By induction, R̄j is a minimizer of Ũj and R̃j ≥ R̄j . Hence, the function Bj(xj) can be

expressed as Bj(xj) = max{Ṽj(xj), Ũj(R̃j)}, which implies that it is indeed convex,

since it is the maximum of two convex functions. It is straightforward to see that Ũj−1 is

convex and has a minimizer, where again its smallest minimizer is denoted by R̄j−1. By

Fact 3.3.1, we conclude that Ṽj−1(xj−1) is also convex and that there exists an optimal

base-stock policy in period j − 1 (again assuming that the policy R̃j, . . . R̃T is followed

over [j, T ]).

The next key lemma considers the case where an upper base-stock policy

R̃t+1, . . . , R̃T over the interval [t + 1, T ] is known to provide a good solution for that

interval. More specifically, for each j = t + 1, . . . , T , the expected cost of the base-

stock policy R̃j, . . . , R̃T is assumed to be close to optimal over the interval [j + 1, T ],

i.e., Ũj(R̃j) ≤ αjUj(Rj) for some αj ≥ 1. We shall show that this gives rise to a good

policy over the entire horizon [1, T ].

Lemma 3.3.4 For some t < T , let R̃t+1, . . . , R̃T be an upper base-stock policy for the

interval [t + 1, T ] and consider again the function Ũt(yt) and its smallest minimizer R̄t.

Furthermore, assume that for each j = t + 1, . . . , T , the cost of the base-stock policy

R̃j, . . . , R̃T is at most αj times the optimal expected cost over that interval (where αj ≥
1), i.e., Ũj(R̃j) ≤ αjUj(Rj). Let α = maxj αj and consider the minimal optimal base-

stock policy over the interval [t, T ], denoted again by Rt, . . . , RT . Then the expected

cost of the base-stock policy R̄t, R̃t+1, . . . , R̃T over the interval [t, T ] is at most α times

the expected cost of an optimal base-stock policy over that interval.
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Proof : Recall that for each j = t+1, . . . , T the function Uj(yj) is defined with respect

to the optimal base-stock levels Rj+1, . . . , RT , and the function Ũj(yj) is defined with

respect to the base-stock levels R̃j+1, . . . , R̃T .

Suppose first that under the assumptions in the lemma, the following structural claim

is true. For each j > t, consider the interval [j, T ]. Then the expected cost of the policy

Rj, R̃j+1, . . . , R̃T over that interval is at most α times the respective (optimal) expected

cost of the policy Rj, Rj+1, . . . , RT .

Now consider the modified base-stock policy Rt, R̃t+1, . . . , R̃T . This policy consists

of the optimal base-stock level Rt in period t, followed by R̃t+1, . . . , R̃T over the rest

of the interval. Since in period t the policy is identical to the optimal base-stock policy

Rt, . . . , RT , it is clear that the two policies incur the same cost in period t (for each

possible realization of Dt). Moreover, at the beginning of period t+1 both policies will

have the same inventory level Xt+1. Let t̃ ≥ t + 1 be the first period after t in which

either the modified or the optimal policy placed an order. Observe that t̃ is a random

variable. Over the (possibly empty) interval [t + 1, t̃) neither the modified policy nor

the optimal policy ordered. This implies that over that interval they had exactly the

same inventory level, and therefore, they have incurred exactly the same cost. Now

in the period t̃ exactly one of two cases applies. If the modified policy has placed an

order, then by our assumption, it is clear that the expected cost that the modified policy

Rt, R̃t+1, . . . , R̃T incurs over the interval [t̃, T ] is at most α times the expected cost of

the optimal base-stock policy Rt, . . . , RT over that interval. Now consider the case in

which the optimal policy has placed an order in t̃ and the modified policy did not. At

the beginning of period t̃, the inventory level of both policies is the same and is equal to

Xt+1 −D[t+1,t̃). By our assumption we have

Rt̃ ≥ Xt+1 −D[t+1,t̃) > R̃t̃ ≥ R̄t̃,
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where again R̄t̃ is the smallest minimizer of Ũt̃, i.e., the best policy in t̃ given that the

policy R̃t̃+1, . . . , R̃T is followed over [t̃ + 1, T ]. Note that R̃t̃ ≥ R̄t̃ by the definition

of an upper base-stock policy. Since R̃T ≥ R̄T = RT we conclude that if the above

case applies, then, with probability 1, t̃ < T . In particular, over the interval [t̃, T ], the

optimal policy executed the policy Rt̃, Rt̃+1, . . . , RT . By the structural claim above,

we also know that the expected cost of Rt̃, R̃t̃+1, . . . , R̃T over [t̃, T ] is at most α times

the expected cost of the optimal policy Rt̃, Rt̃+1, . . . , RT over that interval. However,

observe that Xt+1 −D[t+1,t̃) is closer to R̄t̃ than Rt̃ (see inequality above). This implies

that the modified policy has expected cost over the interval [t̃, T ] no greater than the

expected cost of the policy Rt̃, R̃t̃+1, . . . , R̃T , i.e., at most α times the optimal expected

cost of that interval.

It follows that indeed the policy Rt, R̃t+1, . . . , R̃T has total expected cost over [t, T ]

at most α times the optimal expected cost over that interval. Now consider the policy

R̄t, R̃t+1, . . . , R̃T , where the base-stock level Rt is replaced by R̄t. By Lemma 3.3.3 we

know that given an upper base-stock policy R̃t+1, . . . , R̃T over the interval [t + 1, T ] the

optimal ordering policy in period t is a base-stock policy, and R̄t is the smallest optimal

base-stock level. Therefore, this policy has even a lower expected cost than the modified

policy Rt, R̃t+1, . . . , R̃T discussed above.

It is left to show that the structural claim is indeed valid. It is readily verified that

the claim is true for j = T and j = T − 1. The proof of the induction step is done by

arguments identical to the arguments used above. The proof then follows.

Consider now an upper base-stock policy R̃1, . . . , R̃T such that for each t = 1, . . . , T ,

the base-stock level R̃t is a good approximation of R̄t = R̄t|R̃t+1, . . . , R̃T (by Lemma

3.3.3 above we know that R̄t is well-defined). More specifically, for each t = 1, . . . , T ,

we have R̃t ≥ R̄t and Ũt(R̃t) ≤ (1 + ε′t)Ũt(R̄t) (for some specified 0 ≤ ε′t), where
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Ũt(yt) is again defined with respect to R̃t+1, . . . , R̃T (see above) and R̄t is its smallest

minimizer. Using Lemmas 3.3.3 and 3.3.4, it is straightforward to verify (by backward

induction on the periods) that, for each s = 1, . . . , T , the expected cost of the base-stock

policy R̃s, . . . , R̃T has expected cost at most
∏T

j=s(1 + ε′j) times the optimal expected

cost over the interval [s, T ].

For s = T , the claim is trivially true. Now assume it is true for some s > 1.

Applying Lemma 3.3.4 above with t = s − 1 and α =
∏T

j=s(1 + ε′j) we conclude that

the policy R̄s−1, R̃s, . . . , R̃T has expected cost at most α =
∏T

j=s(1 + ε′j) times the

optimal expected cost over the interval [s − 1, T ]. Now by the definition of R̃s−1, we

conclude that the policy R̃s−1, R̃s, . . . , R̃T has expected cost at most (1 + ε′s−1)α times

the optimal expected cost over [s − 1, T ] from which the claim follows. In particular,

this implies that the expected cost of the base-stock policy R̃1, . . . , R̃T over the entire

horizon [1, T ] is at most
∏T

t=1(1+ε′t) times the optimal expected cost. In other words, the

properties of an upper base-stock policy guarantee that errors over the interval [t + 1, T ]

do not propagate to the interval [1, t].

To compute such a base-stock policy it is sufficient to compute recursively, for each

t = T, . . . , 1, a base-stock level R̃t with the following two properties. To preserve the

invariant of an upper base-stock level policy, it is required that R̃t ≥ R̄t. In addition,

R̃t is required to have a small relative error with respect to Ũt(yt) and its minimizer

R̄t, i.e., Ũt(R̃t) ≤ (1 + ε′t)Ũt(R̄t). Recall that, if the invariant of an upper base-stock

policy is preserved, then the function Ũt is convex with (one-sided) derivatives as given

in (7) above. This suggests the same approach as before, i.e., use first-order information

in order to find a point with objective value close to optimal. However, unlike the

newsvendor cost function, the minimizer of Ũt is not a well-defined quantile of the

distribution of Dt and it is less obvious how to establish a connection between the value
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of the one-sided derivatives of Ũt at some point y and the relative error of that point with

respect to the minimum expected cost Ũt(R̄t). This is established in the next key lemma

which has an analogous role to that of Lemma 3.2.6 above. Observe, that for each

t = 1, . . . , T , the function Ũt is bounded from below by the newsvendor cost Ct, i.e., for

each y, we have Ũt(y) ≥ Ct(y). Now Ct(y) = E[ht(y −Dt)
+ + bt(Dt − y)+] and for

each fixed y the function ht(y−Dt)
+ + bt(Dt− y)+ is convex in Dt. Applying Jensen’s

inequality we conclude that the inequality Ct(y) ≥ ht(y − E[Dt])
+ + bt(E[Dt] − y)+

holds for each y. For each t = 1, . . . , T , the function ht(y−E[Dt])
+ + bt(E[Dt]− y)+

is piecewise linear and convex with a minimum attained at y = E[Dt] and equal to

zero. Moreover, it provides a lower bound on Ũt(y). This structural property of the

functions Ũ1, . . . , ŨT can be used to establish an explicit connection between first order

information and relative errors. The next lemma is specialized to the specific setting

of the functions Ũ1, . . . , ŨT . In [30], we present a general version of this lemma that

is valid in the multi-dimensional case. We believe that this structural lemma will have

additional applications in different settings.

Before we state and prove the lemma, we introduce the following definition.

Definition 3.3.5 Let f : Rm 7→ R be convex and finite. A point y ∈ Rm is called an

ε−point of f if there exists a subgradient r of the function f at y with Euclidean norm

less than ε, i.e., there exists r ∈ ∂f(y) with ||r||2 ≤ ε.

Lemma 3.3.6 Let f : R 7→ R be convex and finite with a minimum at y∗, i.e., f(y∗) ≤
f(y) for each y ∈ R. Suppose that f̄(y) = h(y− d)+ + b(d− y)+ (where h, b > 0) is a

convex piecewise linear function with minimum equal to 0 at d, such that f(y) ≥ f̄(y)

for each y ∈ R. Let 0 < ε′ ≤ 1 be the specified accuracy level, and let ε = ε′
3

min(b, h).

If ŷ is an ε−point of f , then f(ŷ) ≤ (1 + ε′)f(y∗).
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Proof : Let λ = min(b, h). Since ŷ is an ε−point of f , we conclude that there exists

some r ∈ ∂f(ŷ) with |r| ≤ ε, and by Definition 3.2.1, f(ŷ) − f(y∗) ≤ ε|ŷ − y∗|.
Now let d1 ≤ d ≤ d2 be the two points where f̄ takes the minimum value of f , i.e.,

f̄(d1) = f̄(d2) = f(y∗). Let L1 = d−d1 and L2 = d2−d. Clearly, f(y∗) = bL1 = hL2,

which implies that f(y∗) ≥ λ
2
(L1 + L2). Moreover, since f(y) ≥ f̄(y) for each y, we

conclude that y∗ ∈ [d1, d2].

Now consider the point ŷ. Suppose first that ŷ ∈ [d1, d2]. This implies that |ŷ−y∗| ≤
L1 + L2. We now get that

f(ŷ)− f(y∗) ≤ ε|ŷ − y∗| ≤ ε(L1 + L2) =
ε′

3
λ(L1 + L2) ≤ 2

3
ε′f(y∗).

The equality is just a substitution of ε = ε′
3
λ. The claim then follows.

Now assume that ŷ /∈ [d1, d2]. Without loss of generality, assume ŷ > d2 (a sym-

metric proof applies if ŷ < d1). Let x = ŷ − d2. Since f is convex, it is clear that

d2 is also an ε−point of f . By the same arguments as used above we conclude that

f(d2)− f(y∗) ≤ 2
3
ε′f(y∗) and that f(ŷ)− f(d2) ≤ ε|ŷ − d2| = εx. This implies that,

f(ŷ)− f(y∗) = f(ŷ)− f(d2) + f(d2)− f(y∗) ≤ εx +
2

3
ε′f(y∗).

It is then sufficient to show that εx ≤ 1
3
ε′f(y∗). We first bound x from above. Now

f̄(ŷ) = f(y∗)+hx ≥ f(y∗)+λx. In addition, f(ŷ) ≤ f(d2)+εx ≤ (1+ 2
3
ε′)f(y∗)+εx.

However, f̄(ŷ) ≤ f(ŷ). We conclude that,

x ≤ 2

3

ε′f(y∗)
λ− ε

=
2

λ

ε′f(y∗)
(3− ε′)

≤ ε′f(y∗)
λ

.

The equality is again just a substitution of ε = ε′
3
λ. The last inequality is because ε′ ≤ 1.

However, this implies that εx ≤ ε′f(y∗)
3

, from which the claim follows.

Lemma 3.3.6 above establishes an explicit connection between ε−points of the func-

tions Ũt (for t = 1, . . . , T ) and the relative error they guarantee. We note that slightly

tighter bounds can be proven using somewhat more involved algebra.
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Since the demand distributions are not available, it is left to show how the one-sided

derivatives of these functions can be estimated with high accuracy and high confidence

probability using random samples.

We next derive expressions of the one-sided derivatives of Ũj−1, similar to (6) above.

Note that Ũj−1(yj−1) =

Cj−1(yj−1)+E[11(yj−1−Dj−1 ≤ R̃j)Ũj(R̃j)+11(yj−1−Dj−1 > R̃j)Ũj(yj−1−Dj−1)].

It is again readily verified that Ũj−1 is a continuous function of yj−1. If we take the

right-hand derivative, and then apply this process recursively (similar to (4)-(6) above),

we get that the right-hand derivative of Ũj−1 is

Ũ r
j−1(yj−1) = Cr

j−1(yj−1) + E[
T∑

k=j

11(Ãk,j−1(yj−1))C
r
k(yj−1 −D[j−1,k))]. (7)

The events Ãk,j−1(yj−1) are defined with respect to R̃j, . . . , R̃T instead of the respective

Rj, . . . , RT (see (6) above). We get a similar expression for the left-hand derivative of

Ũj−1 by replacing Cr
k by C l

k for each k = j − 1, . . . , T . As in the case of U r
t , the events

Ãjt are defined with respect to weak inequalities. It is easy to verify that the right-hand

and left-hand derivatives of the function Ũt are bounded between the−(T − t+1)bt and

(T − t + 1)ht. The next lemma shows that for each y, there exist explicit computable

bounded random variables with expectations equal to Ũ r
t (y) and Ũ l

t(y), respectively.

This implies that the right-hand and the left-hand derivatives of the function Ũt can

be evaluated stochastically with high accuracy and high probability (using again the

Hoeffding inequality).

Lemma 3.3.7 For each t = 1, . . . , T − 1, j > t and yt consider the random variable

M̃ r
tj(yt) = 11(Ãjt(yt))(−bj + (hj + bj)11(Dj ≤ yt − D[t,j))). Then E[M̃ r

tj(y)] =

E[11(Ãjt(yt))C
r
j (yt −D[t,j))].
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Proof : First note again that the expectations above are taken with respect to the under-

lying demand distributions Dt, . . . , DT . In particular, the base-stock levels R̃t+1, . . . , R̃T

that define the events Ãjt are assumed to be known deterministically. Using conditional

expectations we can write

E[M̃ r
tj(y)] = E[E[M̃ r

tj(y)|D[t,j)]] =

E[E[11(Ãjt(yt))(−bj + (hj + bj)11(Dj ≤ yt −D[t,j)))|D[t,j)]] =

E[11(Ãjt(yt))E[−bj + (hj + bj)11(Dj ≤ yt −D[t,j))|D[t,j)]] =

E[11(Ãjt(yt))C
r
j (yt −D[t,j))].

We condition on D[t,j) and then the indicator 11(Ãjt(yt)) is known deterministically. In

the last equality we use the definition of Cr
j and uncondition. The claim then follows.

Considering (7), we immediately get the following corollary.

Corollary 3.3.8 For each t = 1, . . . , T and yt, the right-hand derivative of Ũt is given

by

Ũ r
t (yt) = E[−bt + (ht + bt)11(Dt ≤ yt) +

∑T
j=t+1 M̃ r

tj(yt)].

Analogously to the random variables M̃ r
tj , we define for each t = 1, . . . , T , j > t

and yt the random variable M̃ l
tj(yt) by replacing the indicator 11(Dj ≤ yt−D[t,j)) in the

definition of M̃ r
tj by the indicator 11(Dj < yt −D[t,j)). We get the following corollary.

Corollary 3.3.9 For each t = 1, . . . , T and yt, the left-hand derivative of Ũt is given by

Ũ l
t(yt) = E[−bt + (ht + bt)11(Dt < yt) +

∑T
j=t+1 M̃ l

tj(yt)].

Lemma 3.3.7 and Corollaries 3.3.8 and 3.3.9 imply that we can estimate the right-

hand and left-hand derivatives of the functions Ũ1, . . . , ŨT with bounded number of sam-

ples. For each t = 1, . . . , T , take Nt samples from the demand distributions Dt, . . . , DT
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that are independent of R̃t+1, . . . , R̃T , i.e., independent of the samples taken in pre-

vious stages. Let ˆ̃U r
t and ˆ̃U l

t be the respective right-hand and left-hand sample-based

estimators of the one-sided derivatives of Ũt. Note that since the base-stock levels

R̃t+1, . . . , R̃T have already been computed based on independent samples from the pre-

vious stages, the function Ũt and its one-sided derivatives are considered to be deter-

ministic. On the other hand, ˆ̃U r
t and ˆ̃U l

t are random and determined by the specific Nt

samples that define them.

To simplify notation, we will assume from now on that bt = b > 0 and ht = h > 0,

for each t = 1, . . . , T . To evaluate the right-hand and left-hand derivatives of Ũt at a

certain point yt, consider each sample path di
t, . . . , d

i
T (for i = 1, . . . , Nt), evaluate the

random variables −b + (h + b)11(Dt ≤ yt) +
∑T

j=t+1 M̃ r
tj(yt) and −b + (h + b)11(Dt <

yt) +
∑T

j=t+1 M̃ l
tj(yt), respectively, and then average over the Nt samples. Note that

each of the variables M̃ r
tj (respectively, M̃ l

tj) can take values only within [−b, h], so

ˆ̃U r
t and ˆ̃U l

t are also bounded. By arguments similar to Lemma 3.2.5 (using again the

Hoeffding inequality), it easy to compute the number of samples Nt to guarantee that

the minimizer is an εt−point of the function Ũt with probability at least 1 − δt (for

specified accuracy and confidence levels). However, as we have already seen that, in the

multiperiod setting, it is also essential to preserve the invariant that R̃t ≥ R̄t to ensure

that the problem in the next stage is still convex. That is, we wish to find an εt−point

R̃t of Ũt but with the additional property that R̃t ≥ R̄t, where again R̄t is the smallest

minimizer of Ũt.

In turn, we compute R̃t in the following way. Given Nt samples, we let R̃t be

the minimal point with sample right-hand derivative at least εt

2
(i.e., ˆ̃U r

t (R̃t) ≥ εt

2
).

That is, R̃t := inf{y : ˆ̃U r
t (y) ≥ εt

2
}. First observe that R̃t is well-defined for each

0 < εt ≤ 2h(T − t+1), since the slope of Ũt varies from−b(T − t+1) to h(T − t+1).
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By the definition of R̃t, it is also clear that ˆ̃U l
t(R̃t) < εt

2
. The next Lemma analyzes the

required number of samples Nt to guarantee that, with probability at least 1 − δt, the

point R̃t is both an εt−point of Ũt and satisfies R̃t ≥ R̄t.

Lemma 3.3.10 For each t = 1, . . . , T , define Ũt(yt) be as above with respect to an

upper base-stock policy R̃t+1, . . . , R̃T . Then Ũt is convex and attains a minimum, where

R̄t is its smallest minimizer. Let 0 < εt and 0 < δt < 1 be the respective accuracy

and confidence levels. Suppose we generate Nt ≥ 2((b + h)(T − t + 1))2 1
ε2t

log( 2
δt

)

independent samples of the demands Dt, . . . , DT that are also independent of the the

base-stock levels R̃t+1, . . . , R̃T , and use them to compute R̃t = inf{y : Û r
t (y) ≥ εt

2
}.

Then, with probability at least 1 − δt, the base-stock level R̃t is an εt−point of Ũt, and

R̃t ≥ R̄t.

Proof : The proof follows along the lines of the proof of Lemma 3.2.5 above. First

note again that R̃t is a random variable that depends on the specific Nt samples and that

R̄t is a deterministic quantity (the smallest minimizer of the function Ũt that is assumed

to be known deterministically). Observe that the event [R̃t ≥ R̄t] ∩ [R̃t is an εt− point]

contains the event [Ũ r
t (R̃t) ≥ 0] ∩ [Ũ l

t(R̃t) ≤ εt]. It is then sufficient to show that each

of the events [U r
t (R̃t) < 0] and [U l

t(R̃t) > εt] has probability at most δt

2
.

By the optimality and minimality of R̄t, we know that R̄t = inf{y : Ũ r
t (y) ≥ 0}

and that Ũ r
t (R̄t) ≥ 0. This implies that the event [Ũ r

t (R̃t) < 0] is equivalent to the

event [R̃t ∈ (−∞, R̄t)]. For a decreasing nonnegative sequence of numbers τk ↓ 0

define the monotone increasing sequence of events Bk = [ ˆ̃U r
t (R̄t − τk) ≥ εt

2
] (note

again that ˆ̃U r
t (y) is a random variable dependent on the specific Nt samples). By the

monotonicity of ˆ̃U r
t , it is readily verified that Bk ↑ B̄ (where B̄ is the limit set), and

[R̃t ∈ (−∞, R̄t)] ⊆ B̄. However, by the Hoeffding inequality (applied to the random
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samples of −b + (h + b)11(Dt ≤ R̄t − τk) +
∑T

j=t+1 M̃ r
tj(R̄t − τk) defined above) and

the specific choice of Nt, we conclude that, for each k, we have Pr(Bk) ≤ δt

2
, which

implies that Pr([R̃t ∈ (−∞, R̄t)]) ≤ Pr(B̄) ≤ δt

2
.

Now consider again the function Ũt, and let q be the maximal point with left-hand

derivative at most εt, i.e., q = sup{y : Ũ l
t(y) ≤ εt}. Since Ũ l

t is left continuous, we

conclude that Ũ l(q) ≤ εt. This implies that the event [Ũ l
t(R̃t) > εt] is equivalent to

the event [R̃t ∈ (q,∞)]. Define the monotone increasing sequence of events Lk =

[ ˆ̃U l
t(q + τk) ≤ εt

2
]. By the monotonicity of ˆ̃U l

t it is clear that Lk ↑ L̄ (where L̄ is the

limit set), and that [Ũ l
t(R̃t) > εt] ⊆ L̄. Using again the Hoeffding inequality (now

applied to the random samples of−b+(h+b)11(Dt ≤ R̄t−τk)+
∑T

j=t+1 M̃ l
tj(R̄t−τk))

and the choice of Nt, we conclude that for each k, Pr(Lk) ≤ δt

2
. This implies that

Pr([Ũ l
t(R̃t) > εt] ≤ Pr(L̄) ≤ δt

2
. It is now clear that R̃t ≥ R̄t and that R̃t is and

εt−point with probability at least 1− δt.

Note that it is relatively easy to compute R̃t above. In particular, it is readily verified

that the functions ˆ̃U r
t and ˆ̃U l

t change values in at most (2(T − t) + 1)Nt distinct points

yt. This and other properties enable us to compute R̃t in relatively efficient ways.

3.3.3 An Algorithm

Next we shall provide a detailed description of the algorithm and a complete analysis

of the number of samples required. For ease of notation we will again assume that

ht = h > 0 and bt = b > 0 for each t = 1, . . . , T .

For a specified accuracy level ε′ (where 0 < ε′ ≤ 1
2
) and confidence level δ′ (where

0 < δ′ < 1), let ε′t = ε′
2T

and δ′t = δ′
T

. For each t = 1, . . . , T , let εt =
ε′t
3

min(b, h)

and δt = δ′t. The algorithm computes a base-stock policy R̃1, . . . , R̃T in the following

way. In stage t = T, . . . , 1, consider the function Ũt as defined above with respect to
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the previously computed base-stock levels R̃t+1, . . . , R̃T (where ŨT = CT ). Use the

black box to generate Nt = 2((b+h)(T − t+1))2 1
ε2t

log( 2
δt

) independent samples of the

demands Dt, . . . , DT and compute R̃t = inf{y : ˆ̃U r
t (y) ≥ εt

2
}. Note that in each stage,

the algorithm is using an additional Nt samples that are independent of the samples

used in previous stages. In the next theorem we show that the algorithm computes a

base-stock policy that satisfies the required accuracy and confidence levels.

Theorem 3.3.11 For each specified accuracy level ε′ (where 0 < ε′ ≤ 1
2
) and confidence

level δ′ (where 0 < δ′ < 1), the algorithm computes a base-stock policy R̃1, . . . , R̃T such

that with probability at least 1− δ′, the expected cost of the policy is at most 1+ ε′ times

the optimal expected cost.

Proof : For each t = 1, . . . , T , let It be the event that R̃t, . . . , R̃T is an upper base-

stock policy and that for each j = t, . . . , T , R̃j is εj−point of Ũj . In particular, by the

choice of εj and Lemma 3.3.6, Ũj(R̃j) ≤ (1+ ε′j)Ũj(R̄j), where again R̄j is the smallest

minimizer of Ũj .

Lemma 3.3.4 implies that if I1 occurs then R̃1, . . . , R̃T is an upper base-stock policy

with expected cost at most
∏T

t=1(1 + ε′t) = (1 + ε′
2T

)T ≤ 1 + ε′ (for ε′ ≤ 1
2
) times the

optimal expected cost. It is then sufficient to show that I1 occurs with probability at

least 1− δ′.

Clearly, IT ⊇ IT−1 ⊇ · · · ⊇ I1. This implies that Pr(I1) = Pr(∩T
t=1It). It is then

sufficient to show that Pr([∩T
t=1It]

C) ≤ δ′.

We first show that for each t = 1, . . . , T the event It occurs with positive probability.

The proof is done by induction on t = T, . . . , 1. For t = T the claim follows trivially.

Now assume that the claim is true for some 1 < t ≤ T and consider the event It−1. We
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then have

Pr(It−1) = Pr(It ∩ It−1) = Pr(It)Pr(It−1|It).

By induction we know that Pr(It) > 0, so conditioning on It is well-defined. Since the

samples in each stage are independent of each other, Lemma 3.3.10 and the choice of

Nt implies that Pr(It−1|It) ≥ 1− δt > 0. The claim then follows.

Now observe that we can write (∩T
t=1It)

C as

[∩T
t=1It]

C = IC
T ∪ [IT ∩ IC

T−1] ∪ [IT−1 ∩ IC
T−2] ∪ · · · ∪ [I2 ∩ IC

1 ].

However, because of the fact that the samples in each stage are independent of each other

and the choice of Nt, for each t = 1, . . . , T , Lemma 3.3.10 implies that Pr(IC
T ) ≤ δT

and Pr(It ∩ IC
t−1) = Pr(It)Pr(IC

t−1|It) ≤ δt−1. We conclude that Pr([∩T
t=1It]

C) ≤
∑T

t=1 δt which implies that Pr(I1) ≥ 1−∑T
t=1 δt = 1− δ′ as required. The proof then

follows.

The next corollary provides upper bounds on the total number of samples needed

from each of the random variables D1, . . . , DT , denoted by Nt.

Corollary 3.3.12 For each t = 1, . . . , T , specified accuracy level 0 < ε′ ≤ 1
2

and

confidence level 0 < δ′ < 1, the algorithm requires at most Nt independent samples of

Dt, where

Nt ≥ 72
T 2

ε′2
(
min(b, h)

h + b
)−2 log(

2T

δ′
)

t∑
j=1

(T − j + 1)2.

Observe that the number of samples required is increasing in the periods. In partic-

ular, it is of order O(T 4) for the first period and increasing to order of O(T 5) in the last

period. The bounds are again independent of the demand distributions but do depend on

the square of the reciprocal of min(b,h)
b+h

.

We note that the algorithm can be applied in the presence of a positive lead time, per-

unit ordering costs and discount factor over time. The exact dynamic program described



117

above can be extended in a straightforward way to capture these features in a way that

preserves the convexity of the problem (see [56] for details). Similarly, the shadow

dynamic program can still be used to construct an approximate base-stock policy with

the same properties as above. Moreover, the bounds on the number of required samples

stay very similar to the bounds established above.

3.4 Approximating Myopic Policies

In many cases, finding optimal policies can be computationally demanding, regardless of

whether we have access to the demand distributions or not. As a result, researchers and

practitioners have paid attention to myopic policies. In a myopic policy, we aim, in each

period t = 1, . . . , T , to minimize the expected cost (the newsvendor cost) in that period,

ignoring the future costs. This provides what is called a myopic base-stock policy. As

we have already mentioned, myopic policies may not be optimal in general. However,

in many cases the myopic policy performs well, and in some cases it is even optimal.

In this section, we shall describe a simple and very efficient sample-based procedure

that computes a policy that, with high specified confidence probability, has expected

cost very close to the expected cost of the myopic policy. In particular, if a myopic

policy is optimal then the expected cost of the approximate policy is close to optimal.

We let Rm
1 , . . . , Rm

T denote the minimal myopic policy, where for each t = 1, . . . , T ,

the base-stock level Rm
t is the smallest minimizer of Ct(y) the newsvendor cost in that

period.

The sample-based procedure is based on solving the newsvendor problems in each

one of the periods independently. Consider each of the functions C1, . . . , CT , and find,

for each one of them, an approximate minimizer by means of solving the SAA counter-

part. Let R̃m
t be the approximate solution in period t. However, in order to guarantee
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that the approximate policy has expected cost close the the expected myopic cost, it

might not be sufficient to simply take R̃m
t to be the minimizer of the corresponding

SAA model as discussed in Section 3.2. The problem is that if we approximate the

exact myopic base-stock level from above, i.e., get R̃m
t ≥ Rm

t , we might impact the

inventory level in the next period in a way that will incur high costs. In turn, we will

approximate Rm
t from below, i.e., for each period t, we will compute R̃m

t that, with high

probability, is an ε−point with respect to Ct and is no greater than Rm
t .

The procedure is symmetric to the computation of R̃t in Section 3.3 above. Given

Nt samples, consider the SAA counterpart and focus on the one-sided derivatives Ĉr
t

and Ĉ l
t . We will compute R̃m

t as the maximum point with sample left-hand derivative

value at most − εt

2
(where 0 < εt ≤ bt, i.e., R̃m

t = sup{y : Ĉ l
t(y) ≤ − εt

2
}. By a proof

symmetric to the one of Lemma 3.3.10 above, we get the following lemma.

Lemma 3.4.1 For each t = 1, . . . , T , consider specified 0 < εt ≤ bt and 0 < δt < 1.

Further consider the SAA counterpart of Ct defined for Nt ≥ 2(bt + ht)
2 1

ε2t
log( 2

δt
)

samples. Compute R̃m
t = sup{y : Ĉ l

t(y) ≤ − εt

2
}. Then, with probability at least 1− δt,

the base-stock level R̃m
t is an εt−point of Ct and R̃m

t ≤ Rm
t .

Moreover, for each specified accuracy level 0 < ε′ ≤ 1 and confidence level 0 <

δ′ < 1, let ε′t = ε′, εt = min(bt,ht)
3

ε′t and δ′t = δt = δ′
T

. Now apply the above procedure for

each of the periods t = 1, . . . , T for number of samples Nt as specified in Lemma 3.4.1

above, and compute an approximate policy R̃m
1 , . . . , R̃m

T . We claim that, with probability

at least 1− δ′, this policy has expected cost at most 1 + ε′ times the expected cost of the

myopic policy.

Theorem 3.4.2 Consider the policy R̃m
1 , . . . , R̃m

T computed above. Then, with proba-

bility at least 1 − δ′, it has expected cost at most 1 + ε′ times the expected cost of the



119

myopic policy.

Proof : Let I be the event that, for each t = 1, . . . , T , the base-stock level R̃m
t is

εt−point with respect to Ct and R̃m
t ≤ Rm

t (the corresponding myopic base-stock level).

By the choice of Nt, it is readily verified that Pr(I) ≥ 1 − δ′. We claim that under the

event I , the expected cost of the policy R̃m
1 , . . . , R̃m

T is at most 1 + ε′ times the expected

cost of the myopic policy.

For each t = 1, . . . , T , let X̃t and Xt be the respective inventory levels of the ap-

proximate policy and of the myopic policy at the beginning of period t (note that these

are two random variables). Then, E[Ct(R̃
m
t ∨ X̃t)] and E[Ct(R

m
t ∨Xt)] are the respec-

tive expected costs of the approximate policy and of the myopic policy in period t. It is

sufficient to show that for each t = 1, . . . , T , we have

E[Ct(R̃
m
t ∨ X̃t)] ≤ (1 + ε′)E[Ct(R

m
t ∨Xt)].

Condition now on any realization of the demands D1, . . . , Dt−1 which results respective

inventory levels x̃t and xt (where these are the respective realizations of X̃t and Xt).

Then one of the following cases applies:

Case 1. The base-stock level R̃t is reachable, i.e., x̃t ≤ R̃m
t . The inequality then

immediately follows by the fact that R̃m
t is an εt−point of Ct.

Case 2. The inventory level of the approximated policy, x̃t, is between R̃m
t and Rm

t ,

i.e., R̃m
t ≤ x̃t ≤ Rm

t . It is readily verified that x̃t is also an εt−point of Ct which implies

that the inequality still holds.

Case 3. Finally, consider the case where the inventory level of the approximate

policy is above the myopic base-stock, i.e., x̃t > Rm
t . Observe that under the event I ,

we know that, with probability 1, that x̃t ≤ xt. In particular, this implies that Ct(x̃t) ≤
Ct(xt). This concludes the proof.
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Observe that in this case the number of samples required from each demand distri-

bution is significantly smaller and it is of order O(log(T )) instead of O(T 5).

3.5 General Structural Lemma

In this section, we provide a proof of a multi-dimensional version of the key structural

Lemma 3.3.6 above. In many stochastic dynamic programs, one of the main challenges

is to evaluate the future expected cost that is resulted by the decision being made in the

current stage. This cost function is often very complex to evaluate. However, there are

cases, where we can derive analytical expressions for gradients or subgradients and esti-

mate them accurately using sample-based methods, similar to the one described above.

In such cases, one of the natural issues to address is how to relate first-order information

to relative errors. We believe that the following lemma provides effective tools to estab-

lish such relations for certain convex objective functions. This can lead to algorithms

with rigorous analysis of their worst-case performance guarantees. More specifically,

there are cases where we can derive piecewise linear functions that provide a lower

bound on the real objective function value (see for example [22]). Piecewise linear ap-

proximations are also used in different heuristics for two-stage stochastic models (see,

for example, [4]).

The following lemma indicates that in convex minimization models that admit a

nonnegative piecewise linear function that lower bounds the original objective function

value, there exists an explicit relation between first-order information and relative errors.

Thus, we believe that this lemma will have applications in analyzing the worst-case per-

formance of approximation algorithms for stochastic dynamic programs and stochastic

two-stage models.
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Lemma 3.5.1 Let f : Rm 7→ R be convex and finite with a global minimizer denoted by

y∗. Further assume that there exists a function f̄ : Rm 7→ R convex, nonnegative and

piecewise linear, such that f̄(u) ≤ f(u) for each u ∈ Rm. Without loss of generality

assume that f̄(u) = λ||u||2 for each u ∈ Rm and some λ > 0. Let 0 < ε′ ≤ 1 and ε =

ε′λ
3

. Then if ŷ ∈ Rm is an ε−point (see definition 3.3.5 above) of f , its objective value

f(ŷ) is at most 1+ ε′ times the optimal objective value f(y∗), i.e., f(ŷ) ≤ (1+ ε′)f(y∗).

Proof : The proof follows along the lines of those of Lemma 3.3.6 above. Let L = f(y∗)
λ

and B(0, L) ⊆ Rm be a ball of radius L around the origin. It is straightforward to verify

that y∗ ∈ B(0, L). Now by definition we have f(y∗) = λL and by the fact that ŷ is an

ε−point of f , we know that f(ŷ)− f(y∗) ≤ ε||ŷ − y∗||2.

First consider the case where ŷ ∈ B(0, L). Then it is readily verified that ||ŷ−y∗||2 ≤
2L. However, this implies that

f(ŷ)− f(y∗) ≤ ε||ŷ − y∗||2 ≤ 2εL =
2

3
ε′λL =

2

3
ε′f(y∗).

Now consider the case where ŷ /∈ B(0, L), in particular, ||ŷ||2 > L. Let d ∈ B(0, L)

be the point on the line between ŷ and the origin with ||d||2 = L. Since f is convex it is

readily verified that the point d is also an ε−point of f . Then clearly, the point d satisfies

f(d)− f(y∗) ≤ 2
3
ε′f(y∗). Let x = ||ŷ− d||2. The rest of the proof proceeds exactly like

the proof of Lemma 3.3.6.
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[37] Ö. Özer and W. Wei. Inventory control with limited capacity and advanced demand
information. Operations Research, 52:988–1001, 2004.

[38] G. Perakis and G. Roels. The distribution-free newsvendor: Inventory management
with limitted demand information. Unpublished manuscript, 2005.

[39] A. Referee. Referee report. Personal communication with the an anonymous ref-
eree, 2005.

[40] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1972.
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