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Abstract 

The authors describe a new statistical concept called relevance from a conceptual and 
mathematical perspective, and based on their mathematical framework, they present a unified 
theory of relevance, regressions, and event studies.  They also include numerical examples of 
how relevance is used to forecast. 
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RELEVANCE 

 

Introduction 

We all face the task of forecasting future outcomes of random variables.  To do so, we must 

identify independent variables we believe are relevant to explaining variation in the dependent 

variable we would like to forecast.  Then we need to collect observations of these independent 

variables.  Although we think long and hard about which independent variables are relevant to 

our forecasts, we are typically less concerned about which observations of those variables are 

relevant.  

 Classical statistics tells us to collect as many observations as possible, because it is 

thought that a larger sample yields a more reliable forecast than a smaller sample.  Yet we 

sometimes use rolling windows of observations rather than an expanding history, or we 

exponentially weight observations over time.  These practices imply that we believe some 

observations are more relevant to our forecast than others, which is true.  But it turns out that 

relevance is more complex than recentness, and that by accounting for the complexity of 

relevance, we may be able to produce better forecasts than by ignoring it or equating it to 

recentness.  

 In this article we proceed as follows.  First, we describe the notion of relevance 

conceptually, including how it is used to improve forecasting.  We then explain relevance 

mathematically, and we use this framework to present a unified theory of relevance, 
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regressions, and event studies.  Next, we give numerical examples to illustrate the application 

of relevance to different methods of forecasting.  We conclude with a summary.   

 

Relevance Conceptually 

Relevance is a measure of the importance of an observation to a prediction.  In regression 

analysis, relevance is determined by the independent variables, and the prediction pertains to a 

dependent variable.  Relevance has two components, similarity and informativeness.  This 

definition is hardly arbitrary.  It follows from a mathematical equivalence we discuss later.   

 First, let us consider similarity.  As noted, it is common to discriminate between more 

recent and less recent observations when compiling data samples for use in forecasting models.  

This practice of censoring or de-emphasizing older observations is often quite helpful, especially 

if the system that produces the observations undergoes structural change.  The implicit 

assumption is that if recent data is more like current conditions it is more relevant and more 

reliable.  But there are better ways to determine the relevance of the observations in a sample.  

In fact, human judgment and intuition provide an effective filter for relevance.  People often 

look to history for experiences that are like current circumstances and use those similar 

experiences to provide guidance about how the future will unfold, irrespective of the 

chronological position of those similar experiences.  Intuitively, it makes sense to consider 

similarity of past observations to current conditions as one component of relevance.  This 

perspective, of course, does not necessarily exclude recent experiences as relevant.  
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 Now let us consider the other component of relevance, informativeness.  Classical 

statistics tells that if we do exclude observations, we should exclude those that are most 

extreme because they might reflect errors or arise from unusual circumstances that are unlikely 

to reappear.  While it certainly makes sense to exclude incorrect data, we should not exclude or 

de-emphasize correct, outlying observations.  To the contrary, we should emphasize them 

because unusual observations are more likely to be associated with consequential events, 

whereas common observations may arise purely from noise.  Unusual observations are more 

informative.  This view of informativeness is consistent with information theory, which posits 

that information is inversely related to probability.1 

 We define the informativeness of an observation as its dissimilarity from average.  For 

relevance, it is important that we consider the informativeness of current conditions along with 

the informativeness of a historical observation.  When we include both, along with similarity, 

the resulting measure of relevance has an average value of zero across all observations in any 

sample.  It is natural to use this threshold of zero to distinguish between observations that are 

relevant (positive values) and not relevant (negative values).  If instead we exclude the 

informativeness of the current observation, relevance could sum to an arbitrarily large positive 

or negative value, with the consequence that we would struggle to distinguish clearly between 

the relevant and non-relevant observations.  By including the informativeness of the current 

observation, the meaning of relevance shifts from a relative quantity to an absolute quantity.  

 To summarize, the relevance of an observation is the sum of its similarity to current 

conditions, its dissimilarity from average conditions, and the dissimilarity of current conditions 

from average conditions.   
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Similarity and informativeness are multivariate concepts.  When we speak of 

observations and conditions, we have in mind a multivariate description of circumstances, 

specifically a vector of values for a set of independent variables.  When we measure the 

similarity of a past observation to the current observation, we would like to consider not only 

the similarity of the values of each variable in isolation, but also the similarity of their co-

occurrence.  And when we measure the informativeness of an observation, we would like to 

consider both the dissimilarity of the values of each variable from average as well as the 

dissimilarity of their co-occurrence from their average co-occurrence.  Put plainly, we would 

like to consider how variables behave independently as well as how they interact with each 

other when measuring similarity to current conditions or dissimilarity from average conditions.   

 We use a statistic called the Mahalanobis distance to measure these features of data 

precisely.2  Unlike the standard Euclidean distance, the Mahalanobis distance accounts for the 

variances and correlations of variables.  All else equal, two observations are more distant (less 

similar) if the spread between their values is large compared to the typical variance of those 

values.  And all else equal, two observations are more distant if the pattern of differences 

between their values diverges from the typical pattern of differences in values.  The 

Mahalanobis distance neatly summarizes these effects in a single number.   

 Why should we care about relevance?  We should care because it allows us to use 

observations more effectively in forecasts.  To understand how relevance improves forecasting, 

we first need to understand how it is related to regression analysis.3  The prediction from a 

linear regression equation is mathematically equivalent to a weighted average of the historical 
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values of the dependent variable in which the weights are the relevance of the independent 

variables.   

 This equivalence reveals an intriguing feature of regression analysis.  Owing to the 

symmetry of the observations around a fitted regression line, regression analysis places as 

much importance on non-relevant observations as it does on relevant observations.  It just flips 

the sign of the effect of the non-relevant observation on the dependent variable.  This feature 

of regression analysis invites a fundamental question about forecasting:  Are non-relevant 

observations as useful in forming a prediction as relevant ones?  In some cases, they may be, 

but not always, and perhaps not usually.  Suppose, for example, we wish to forecast the 

economic outcomes of a recession.  Should we place as much importance on past conditions of 

robust growth as on past recessions?  This is an empirical question, but we suspect that 

intuition is often right to suggest that relevant observations are more useful to a forecast than 

non-relevant observations. 

 This insight about how regression analysis treats relevant and non-relevant observations 

leads to the key innovation we propose for forecasting.  Researchers should consider a two-

step approach to forecasting.  First, create a subsample of relevant observations.  And second, 

form the prediction as a relevance-weighted average of the past values of the dependent 

variable in the subsample.  This two-step approach to forecasting is called partial sample 

regression.4 

 One might ask why we should not simply apply regression analysis to the subsample of 

relevant observations.  Why do we instead take a weighted average of the past values of the 
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dependent variable?  The answer is that the weights preserve valuable information about 

relevance in the context of the full sample.  If we were to apply regression analysis to the 

relevant subsample, it would consider some of the relevant observations as not relevant and 

interpret them opposite to the way they should be used to inform the prediction. 

 Perhaps at this point it would be useful to summarize our concept of relevance.  

1. The relevance of an observation is determined by the independent variables for the 

purpose of forecasting a dependent variable.  It equals the sum of an observation’s 

similarity to current conditions, its informativeness, which is measured as its 

dissimilarity from average conditions, and the informativeness of current conditions. 

2. By including similarity in our definition of relevance, we are simply following intuition, 

which often directs us to consider past events that are like current conditions to help us 

think about the path forward. 

3. Observations that are dissimilar from their average values are more informative than 

observations that are like their average values, because unusual observations are more 

likely to have arisen from consequential events, whereas common observations may 

simply reflect noise in the data.  

4. We include the informativeness of current conditions because by including it, the 

relevance of all the observations sums to zero, which establishes zero as a natural 

threshold for relevant and non-relevant observations.  

5. To measure an observation’s similarity to current conditions we should consider the 

isolated similarity of the variables’ values to current values, as well as the similarity of 

their co-occurrence to the co-occurrence of current values.  The same is true for how we 
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measure dissimilarity from the average values to determine informativeness.  We 

should consider the values of the variables in isolation as well as how they interact with 

each other.   

6. We use a statistic called the Mahalanobis distance to measure similarity and 

informativeness.  The Mahalanobis distance considers variables independently as well 

as how they interact with each other.  It also converts all values into common units. 

7. The prediction from a linear regression model is mathematically equivalent to a 

relevance-weighted average of the past values of the dependent variable if it is 

averaged over the full sample.   

8. This equivalence reveals that regression analysis places as much importance on non-

relevant observations as it does on relevant observations, which is often 

counterproductive. 

9. We should therefore consider forming our prediction as a relevance-weighted average 

of the dependent variable from a subsample of observations that have positive 

relevance.   

10.  We should not, however, apply regression analysis to a subset of relevant observations, 

because it will interpret some of the relevant observations in a way that is opposite to 

how they should inform the prediction. 
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Relevance Mathematically 

In our conceptual discussion, we explained relevance within the context of a current 

observation and past observations.  We now define it more generally between any pair of 

observations 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗, each of which is a row vector of values for a set of independent 

variables X.  We define similarity and informativeness in terms of these two vectors and Ω−1, 

the inverse of the full sample covariance matrix of X, as shown in Equations 1 and 2.  

 

   𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑚𝑚(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = −1
2

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)Ω−1(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)′   (1) 

   𝑠𝑠𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖𝑜𝑜(𝑥𝑥𝑖𝑖) = 1
2

(𝑥𝑥𝑖𝑖 − �̅�𝑥)Ω−1(𝑥𝑥𝑖𝑖 − �̅�𝑥)′    (2) 

  

Similarity equals the Mahalanobis distance between 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗, in its squared form, 

multiplied by negative 1/2.  It may be helpful to consider the purpose of each step in this 

calculation.  The spread between the vectors measures the similarity of the values for each 

variable in isolation.  Multiplying by the inverse of the covariance matrix converts the spreads 

for each variable into common units, effectively dividing each spread by the variance of the 

corresponding variable.  It also captures the similarity of the co-occurrence of the variables 

compared to their typical patterns of co-occurrence.  When we post multiply by the spreads 

between the vectors, we collapse the result into a single number.  The negative sign converts 

the notion of distance into one of closeness (similarity).  The factor of 1/2 offsets the double 

counting that occurs from the identical multiplication of 𝑥𝑥𝑖𝑖  with 𝑥𝑥𝑗𝑗 and 𝑥𝑥𝑗𝑗 with 𝑥𝑥𝑖𝑖.   
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We measure Informativeness as the Mahalanobis distance between 𝑥𝑥𝑖𝑖  and �̅�𝑥, the full 

sample mean of X, multiplied by 1/2.  We multiply the square of the Mahalanobis distance by 

positive 1/2 because again we must offset the double counting that occurs from squaring (𝑥𝑥𝑖𝑖 −

�̅�𝑥), but now we are interested in how dissimilar or distant the observations are from the 

average values, so we retain its positive value.   

We define relevance as in Equation 3.  

 

𝑟𝑟𝑖𝑖𝑗𝑗 = 𝑟𝑟(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖𝑗𝑗 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑜𝑜𝑗𝑗   (3) 

  

Recall from our earlier conceptual description that we include the informativeness of 

both 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗 so that the relevance of all observations sums to zero.  This result enables us to 

use a threshold of zero to separate relevant observations from non-relevant observations.   

 Relevance is independent of the object of our prediction, Y.  In the absence of any 

information from the X variables, our best prediction 𝑦𝑦�𝑡𝑡 of an unknown 𝑦𝑦𝑡𝑡 would be the simple 

average, 𝑦𝑦�.  But the utility of relevance is that we may enhance that estimate by adding a 

weighted average of the historical deviations of Y from their average, where the weights are 

the relevance of each 𝑥𝑥𝑖𝑖  to 𝑥𝑥𝑡𝑡.   

 

  𝑦𝑦�𝑡𝑡 = 𝑦𝑦� + 1
𝑛𝑛−1

∑ 𝑟𝑟𝑖𝑖𝑡𝑡(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1     (4) 
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A Unified Theory of Relevance, Regressions, and Event Studies 

We now present a unified theory of relevance, regression analysis, and event studies.  We 

proceed by illustrating the following facts.  First, when we apply Equation 4 across the full 

sample of observations,  𝑖𝑖 = 𝑁𝑁, we obtain the same forecast as a linear regression model.  

Second, when we apply the same procedure to a subsample of the most relevant observations, 

𝑖𝑖 < 𝑁𝑁, we obtain a valid partial sample regression forecast.  Third, when we apply Equation 4 

to a single observation, 𝑖𝑖 = 1, which we choose for any reason, we end up with the outcome of 

a single event.  And fourth, when we apply this procedure to a subsample of observations, 𝑖𝑖 <

𝑁𝑁, which we choose for any reason, we obtain the results of a composite event study that is 

informed by the relevance of the observations.   

Let us begin by demonstrating the equivalence between Equation 4 applied over the full 

sample and linear regression.  First, we rearrange and consolidate the expression for relevance 

from Equation 3.   

 

 

𝑟𝑟𝑖𝑖𝑡𝑡 = −1
2

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑡𝑡)Ω−1(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑡𝑡)′ + 1
2

(𝑥𝑥𝑖𝑖 − �̅�𝑥)Ω−1(𝑥𝑥𝑖𝑖 − �̅�𝑥)′ + 1
2

(𝑥𝑥𝑡𝑡 − �̅�𝑥)Ω−1(𝑥𝑥𝑡𝑡 − �̅�𝑥)′ (5) 

𝑟𝑟𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑡𝑡Ω−1𝑥𝑥𝑖𝑖′ − 𝑥𝑥𝑡𝑡Ω−1�̅�𝑥′ − �̅�𝑥Ω−1𝑥𝑥𝑖𝑖′ + �̅�𝑥Ω−1�̅�𝑥′   (6) 

𝑟𝑟𝑖𝑖𝑡𝑡 = (𝑥𝑥𝑡𝑡 − �̅�𝑥)Ω−1(𝑥𝑥𝑖𝑖 − �̅�𝑥)′    (7) 

  

 We substitute Equation 7 into Equation 5.  
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𝑦𝑦�𝑡𝑡 − 𝑦𝑦� = 1
𝑛𝑛−1

∑ (𝑥𝑥𝑡𝑡 − �̅�𝑥)Ω−1(𝑥𝑥𝑖𝑖 − �̅�𝑥)′(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1     (8) 

  

 Equation 8 predicts the value of Y above its average based on observations of X above 

its average and Y above its average.  The covariance matrix, by definition, is also a function of X 

above its average.  Therefore, without loss of generality we may rewrite the prediction formula 

under the assumption that X and Y have means of zero.  We pull 𝑥𝑥𝑡𝑡Ω−1 out of the sum because 

they do not depend on 𝑠𝑠. 

 

𝑦𝑦�𝑡𝑡 = 𝑥𝑥𝑡𝑡Ω−1
1

𝑛𝑛−1
∑ 𝑥𝑥𝑖𝑖′𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1      (9) 

 

 Using matrix notation whereby 𝑋𝑋 contains all 𝑖𝑖 observations in rows and 𝑘𝑘 variables in 

columns, and 𝑌𝑌 contains all 𝑖𝑖 observations in rows with one column and noting that Ω−1 =

(𝑖𝑖 − 1)(𝑋𝑋′𝑋𝑋)−1, we obtain the standard formula for a linear regression prediction.   

 

𝑦𝑦�𝑡𝑡 = 𝑥𝑥𝑡𝑡(𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌     (10) 

𝑦𝑦�𝑡𝑡 = 𝑥𝑥𝑡𝑡𝛽𝛽′      (11) 
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 Linear regression, and its relevance-weighted equivalent, do not discriminate between 

highly relevant and highly non-relevant observations other than flipping the sign of their 

predictive contribution.  In cases where relevant observations are more reliable than non-

relevant ones, it may be better to remove the non-relevant observations and apply Equation 4 

to a relevant subsample of the data, 𝑖𝑖 < 𝑁𝑁.  Because we now estimate 𝑦𝑦� on the subsample, 

and because (𝑦𝑦𝑖𝑖 − 𝑦𝑦�) sums to zero over the subsample, the expected value of our partial 

sample regression forecast remains properly centered on the subsample mean, even though 

the relevance weights are all positive.   

 Now consider an event study intended to give a prediction of the path of a chosen 

variable following an event that just occurred or is anticipated to occur.  As a simple approach, 

we might identify a single past observation, 𝑖𝑖 = 1, based on judgment, intuition, or exogenous 

variables, and record the outcome of Y at a range of time intervals after the event.  The single 

observation we choose could be the most relevant one, but it need not be.  In either case, we 

may consider each time interval observation of Y around the historical event as an application 

of Equation 4 with one data point.  When 𝑖𝑖 = 1, our prediction for Y converges to its actual 

occurrence following the event.   

 An event study with multiple events, 𝑖𝑖 < 𝑁𝑁, is potentially more interesting and more 

statistically robust.  To conduct a traditional composite event study, we identify a sample of 

events and align their chronological position to 𝑡𝑡 = 0.  We then observe the value of a chosen 

variable Y at various times following the event, 𝑡𝑡 + 1, 𝑡𝑡 + 2, 𝑡𝑡 + 3, … , and we compute the 

arithmetic mean of these post-event observations.  We interpret these post-event means as 

predictions for the path Y will take from a recent or anticipated event.   
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 By selecting the events, we effectively censor non-relevant observations just as we do 

when we create a subsample of relevant observations from which to form our prediction in a 

partial sample regression, but we are using criteria other than the relevance of X.  Now suppose 

that rather than predicting the path forward as the arithmetic mean of the observed paths, we 

weight the observed paths by their statistically determined relevance.  This would be the same 

as weighting the observations by their relevance in partial sample regression, after removing 

non-events from consideration.  Therefore, a relevance-weighted event study is equivalent to 

partial sample regression, with the exception that non-relevant observations are censored 

based on identification as non-events as opposed to the statistical relevance of X. 

 To summarize our unified theory: 

1. The prediction from a linear regression equation is mathematically equivalent to a 

weighted average of past values of the dependent variable in which the weights are the 

relevance of the independent variables. 

2. This equivalence allows one to form a relevance-weighted prediction of the dependent 

variable by using only a subsample of relevant observations.  This approach is called 

partial sample regression. 

3. Like partial sample regression, an event study separates relevant observations from 

non-relevant observations, but it does so by identification rather than mathematically. 

4. As an alternative to predicting the path from a recent or current event as an arithmetic 

mean of past paths, one could use a relevance-weighted average of past paths to form a 

prediction.  This approach would be equivalent to partial sample regression in which the 
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relevant subsample is determined by a separate identification process rather than 

statistical relevance. 

5. Hence, the equivalence of relevance, regressions, and event studies.   

  

Empirical Illustrations 

Next, we illustrate the application of relevance to three forecasting methods: time series 

regression, cross-sectional regression, and event studies.  These examples are intended to 

demonstrate how to incorporate relevance into each method and the intuitive appeal in doing 

so.  As such, the models are admittedly simple, and the results are not intended as robust 

backtests of their efficacy.   

 

Times Series Regression 

First, we employ partial sample regression in a time series context to predict the winner of U.S. 

presidential elections. We illustrate our approach with the 2008 and 2016 elections, which 

provide an interesting comparison given their opposing outcomes.  To generate our forecasts, 

we use a historical sample of presidential elections since 1876 and specify our model as 

follows:5 

Dependent variable (Y): 

• Percentage of electoral votes for the Democratic candidate.  
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Independent variables (X): 

• Political variables: 

 Party affiliation of incumbent president (0 or 1) 

 Is the incumbent running for another term? (0 or 1) 

 Senate – Majority party (0 or 1) 

 Senate – Percentage of seats held by Democrats 

 House – Majority party (0 or 1) 

 House – Percentage of seats held by Democrats 

• Geopolitical variable: 

 Was the U.S. at war during the election year? (0 or 1) 

• Economic variables: 

 Was the U.S. in a recession during the election year? (0 or 1) 

 Trailing four-year economic growth, measured as percentage change in 
GDP 

 Trailing four-year change in debt, measured as change in Debt-to-GDP 

 Trailing four-year US stock return 

 

We apply partial sample regression to forecast the 2008 and 2016 U.S. presidential 

election outcomes based on a subset of relevant historical elections.  Relevant elections are 

those with positive relevance with respect to the election of interest, based on the independent 

variables.  The predictions are out-of-sample, based only on data available as of July 31st of the 

election year and accounting for point-in-time economic data. 

 Exhibit 1 reports the model’s predictions and actual outcomes for the percentage of 

electoral votes won by the Democratic candidate in 2008 and 2016.  For comparison, we also 

include linear regression predictions based on the full sample of historical elections.  Partial 

sample regression correctly predicted the presidential victor in both sample elections.  Notably, 
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it correctly predicted the 2016 outcome and linear regression did not.  This illustrates the value 

in censoring non-relevant observations when generating forecasts.   

 

Exhibit 1: Predictions and Realizations for the 2008 and 2016 U.S. Presidential Elections 
(Percentage of electoral votes for Democratic candidate) 

 

 
 
 
 

 Exhibit 2 details the subset of relevant elections underlying the partial sample 

predictions. The height of each circle equals the percentage of electoral votes for the 

Democratic candidate (with color indicating the winner), and the area of each circle is 

proportional to the relevance of that observation.   
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Exhibit 2: Statistically Relevant Prior Elections and their Outcomes 
 

 
 

 
 
 
 

Exhibit 2 provides an interesting contrast between the two election forecasts.  2008 was 

generally reminiscent of older elections while 2016’s forecast relied on more modern elections.  

For example, the two most relevant elections to 2008 were 1884 and 1912, while 2000 and 

2012 were most relevant to 2016.  It is also interesting to note differences in the dispersion of 

election outcomes between the two subsamples.  For example, though the model correctly 

predicted a Democratic victory for 2008, only six of the 18 relevant historical elections had 
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Democratic victors.  This suggests that the relative relevance of those six elections was enough 

to tilt the prediction in their direction.  In contrast, 10 of the 16 relevant elections to 2016 were 

Republican victories, in line with the model’s prediction.  

These observations illustrate the value in viewing predictions through the lens of 

relevant observations.  It offers intuition by comparing the predictors from the relevant 

observations to today.  It instills confidence by showing the dispersion in outcomes across 

relevant observation.  And, it yields unexpected insights by highlighting statistical adjacency 

over chronological adjacency. 

 

Cross-Sectional Regression 

Next, we apply relevance in a cross-sectional context to identify firms that are, collectively, in 

similar circumstances to a company of interest. In turn, an investor could predict various 

outcomes for the firm of interest, such as earnings announcements or stock price moves, based 

on this subset of relevant firms.  

We illustrate our approach using S&P 500 constituents as of December 2019 and focus 

on Alphabet and Delta Airlines as our firms of interest.  These companies provide an interesting 

comparison given their different sector classifications, fundamental attributes, and 

performance in the wake of the COVID pandemic.  To identify a subset of comparable firms for 

Alphabet and Delta Airlines, respectively, we measure the relevance of S&P 500 constituents 

with respect to each company, based on the following firm attributes:  
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Independent variables (X):6 

• Size (Log of market capitalization as percentage of the S&P 500) 

• Value (Book-to-Price) 

• Earnings yield (Earnings-to-Price) 

• Momentum (Log of one plus the trailing 12-month price return) 

 

Exhibit 3 summarizes the relevant firms for Alphabet (top panel) and Delta Airlines 

(bottom panel) as of December 2019.  Relevant firms are those with positive relevance to the 

firm of interest, based on the variables described previously.  The left tables report the fraction 

of firms within each sector that are relevant to the given company.  The right tables show the 

top 10 most relevant firms to each.  
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Exhibit 3: Statistically Relevant Firms as of December 2019 
 

Alphabet (Communication Services) 

 
 

 
Delta Airlines (Industrials) 

 
 
 
 

Exhibit 3 yields interesting insights.  First, consider the fraction of relevant firms within 

each sector.  Alphabet’s sector classification, Communication Services, ranks high on its list 

(second, behind Energy).  More than half, 57%, of the firms in its sector are relevant.  Compare 

that to Delta Airlines, where only 43% of the firms in its sector, Industrials, are relevant.  In fact, 

Sector Relevant firms Name Relevance Sector
Energy 62% Microsoft 12.8 Information Technology
Communication Services 57% Facebook 10.8 Communication Services
Health Care 54% Johnson & Johnson 10.1 Health Care
Consumer Staples 53% JP Morgan Chase & Co. 10.0 Financials
Utilities 48% Exxon Mobile 9.7 Energy
Information Technology 45% Walmart 9.1 Consumer Staples
Financials 40% Visa 9.0 Information Technology
Industrials 38% United Health Group 8.8 Health Care
Materials 33% AT&T 8.7 Communication Services
Real Estate 31% Chevron 8.6 Energy
Consumer Discretionary 30%

Fraction of relevant firms within sectors Top 10 most relevant firms

Sector Relevant firms Name Relevance Sector
Financials 81% NRG Energy 10.1 Utilities
Communication Services 68% Vornado Realty 5.8 Real Estate
Consumer Discretionary 56% Unum Group 3.8 Financials
Utilities 52% Viacom B 3.5 Communication Services
Consumer Staples 47% Johnson Controls Intl. 2.9 Industrials
Industrials 43% Macy's 2.9 Consumer Discretionary
Energy 42% American Airlines 2.9 Industrials
Health Care 42% Viacom CBS 2.8 Communication Services
Information Technology 41% General Motors 2.8 Consumer Discretionary
Materials 33% United Airlines 2.8 Industrials
Real Estate 17%

Top 10 most relevant firmsFraction of relevant firms within sectors
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five sectors rank higher in terms of the fraction of firms that are relevant.  Notably, 81% of 

financial firms are relevant to Delta.  Though in practice, further analysis should be done to 

validate these comparisons, this simple illustration highlights the benefit of determining 

relevance statistically.  Human judgment may fail to identify firms that are statistically adjacent 

to a given company based a collection of attributes, though they may differ in terms of sector 

classification or based on a single attribute in isolation. 

Nonetheless, there are intuitive comparisons as well.  For example, Microsoft and 

Facebook are the top two most relevant firms to Alphabet.  In the case of Delta Airlines, 

American Airlines and United Airlines rank among its top 10 most relevant firms.  

Our purpose here is not to form specific predictions based on these subsets of relevant 

firms, but rather to illustrate the distinction between relevance determined statistically and 

relevance determined judgmentally.  However, one might imagine using this type of analysis to 

project earnings for companies that have not yet reported, or earnings for private companies 

based on public firms in similar circumstances.  

 

Event Study 

Finally, we employ relevance in an event study framework to forecast interest rate paths 

following shifts in monetary policy.  To illustrate our approach, we run two event studies. In the 

first, we predict the path of U.S. interest rates following January 2001, the start of an 

expansionary monetary policy regime. In the second, we predict the path of interest rates 

following June 2004, the start of a contractionary regime.  To generate our forecasts, we collect 
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monthly economic data beginning in September 1982 and structure our event studies as 

follows: 

 

Events:7 

• Event Study A (January 2001): 11 historical months corresponding to the start of 
expansionary monetary policy regimes 

• Event Study B (June 2004): 11 historical months corresponding to the start of 
contractionary monetary policy regimes 

 

Dependent variable (Y):8 

• Subsequent 24-month path of the target federal funds rate  

 

Independent variables (X):9 

• Growth (12-month percentage change in industrial production) 

• Inflation (12-month percentage change in CPI) 

• Level of interest rates (Effective federal funds rate) 

• Change in interest rates (12-month change in effective federal funds rate) 

 

For each event study, we forecast the path of future interest rates by relevance-

weighting observed paths following relevant prior events.  In other words, we censor our 

historical sample to exclude both non-events and non-relevant events (those with negative 

relevance to the event of interest).  Importantly, relevance here is measured in the context of 

the full sample of monthly observations.  It is not measured within a subsample of pre-defined 

events for reasons described earlier. 

Exhibit 4 plots the predicted and realized interest rate paths for the two event studies. 

For comparison, we also include the forecasted paths from a traditional approach that equally 
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weights observed paths across all historical events.  It is interesting to note the difference 

between the traditional and partial sample forecasts.  In both event studies, the traditional 

paths are highly muted compared to the partial sample-based paths.  This illustrates the value 

in considering relevance, even across observations that are innately related, as in the case of 

pre-defined events.  By focusing on a subset of events that are statistically adjacent to the one 

of interest and weighting them according to relevance, we generate more meaningful 

predictions that align more closely with actual outcomes.  
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Exhibit 4: Predicted and Realized Interest Rate Paths following Monetary Policy Events 
 

Event Study A: January 2001 

 
 

 
Event Study B: June 2004 
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Summary 

Although most of us think long and hard about which variables to use in our forecasts, we 

typically tend not to think as much about which observations of those variables to include.  To 

the extent we do consider observations, we are often inclined to place greater emphasis on 

more recent observations than more distant observations.  However, when we think intuitively 

about how to forecast into the future from present conditions, we often look to past episodes 

in history that are like present conditions.  This intuition is sound and helpful.  Observations 

that are like current conditions are more relevant to a forecast than dissimilar observations.  

But not all observations that are equally like current conditions are equally relevant.  

Observations that are unusual are more relevant than common observations, because unusual 

observations are more likely to be associated with consequential events, whereas common 

observations are more likely to reflect noise.  Thus, unusual observations are more informative. 

 The relevance of an observation is determined by its similarity to current conditions, its 

dissimilarity from average conditions (which captures its informativeness), and the 

informativeness of current conditions.  We include the informativeness of current conditions to 

facilitate a natural interpretation of relevance in absolute terms.  By including it, the relevance 

of all observations sums to zero, which enables us to use a threshold of zero to separate 

relevant observations from non-relevant observations. 

 When we measure relevance, not only must we measure the similarity of variable values 

to their current values or their dissimilarity from average values in isolation.  We must also 

consider the similarity or dissimilarity of their co-occurrence.  We therefore use a statistic called 
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the Mahalanobis distance to measure similarity and informativeness.  This statistic has two 

valuable features:  it considers the interaction of the variables, and it converts their values into 

common units.  

 Our conception of relevance is not arbitrary.  The prediction from a linear regression 

equation is mathematically equivalent to a weighted average of the past values of the 

dependent variable in which the weights are the relevance of the independent variables.  This 

equivalence reveals a key insight about regression analysis, which is that owing to the 

symmetry of observations around a fitted regression line, regression analysis places as much 

importance on non-relevant observations as it does on relevant observations; It just flips the 

sign of the effect of the non-relevant observation on the dependent variable.   

 This insight about regression analysis invites a fundamental question.  Is it possible to 

produce a better forecast from a subsample of relevant observations than from the full sample?  

The answer, of course, can only be determined empirically, but it is not hard to imagine settings 

in which our intuition would rightly suggest that we exclude non-relevant observations. 

 We should therefore consider a two-step approach to forecasting.  First create a 

subsample of relevant observations.  Then, form the forecast by taking a relevance-weighted 

average of the observations from the relevant subsample. This two-step approach to 

forecasting unifies relevance, regression analysis, and event studies. 
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Notes 

This material is for informational purposes only. The views expressed in this material are the 
views of the authors, are provided “as-is” at the time of first publication, are not intended for 
distribution to any person or entity in any jurisdiction where such distribution or use would be 
contrary to applicable law and are not an offer or solicitation to buy or sell securities or any 
product.  The views expressed do not necessarily represent the views of Windham Capital 
Management, State Street Global Markets®, or State Street Corporation® and its affiliates.  
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1 See, for example, Shannon (1948). 
2 The Mahalanobis distance was introduced by an Indian statistician in 1927 and modified in 1936 to analyze 
resemblances in human skulls among castes in India.  Mahalanobis compared a set of measurements for a chosen 
skull to the average of those measurements across skulls from two separate castes.  One set of skulls was collected 
from a graveyard, and the other set was collected from a distant battlefield.  He also compared the co-occurrence 
of those measurements for a chosen skull to their covariation within the caste.  He summarized these comparisons 
in a single number which he used to place a given skull in one caste or the other. 
3 When we use the terms regression or regression analysis, we have in mind ordinary least squares linear 
regression analysis. 
4 See Czasonis, Kritzman, and Turkington (2020a) for a thorough discussion of partial sample regression. 
5 See Czasonis, Kritzman, and Turkington (2020b) for a more details and out-of-sample predictions across all six 
U.S. presidential elections since 2000. 
6 We use the following stock-level data from WorldScope: Market capitalization (item 08001), Price/Book Value 
Ratio - Close (item 09304), and Price/Earnings Ratio – Close (item 09104). All attributes are as of Q4 2019. Our 
universe consists of 443 stocks with complete information. 
7 We define the start of an expansionary (contractionary) regime as the first month in a series of rate cuts (hikes) in 
the target federal funds rate. 
8 We use the Target Federal Funds Rate (DFEDTAR) from the Federal Reserve Bank of St. Louis’ FRED database.  
9 We obtain the following data from the Federal Reserve Bank of St. Louis’ FRED database: Industrial Production 
(INDPRO), CPI-U NSA (CPIAUCNS), and the Effective Federal Funds Rate (DFF). We convert the effective federal 
funds rate to a monthly series by averaging its daily values over each calendar month. We lag all data by one 
month (such that it corresponds to the month prior to each event). 
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