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Heteroskedasticity- and autocorrelation-robust (HAR) inference in time series re-
gression typically involves kernel estimation of the long-run variance. Conventional wis-
dom holds that, for a given kernel, the choice of truncation parameter trades off a test’s
null rejection rate and power, and that this tradeoff differs across kernels. We formalize
this intuition: using higher-order expansions, we provide a unified size-power frontier
for both kernel and weighted orthonormal series tests using nonstandard “fixed-b” crit-
ical values. We also provide a frontier for the subset of these tests for which the fixed-b
distribution is t or F . These frontiers are respectively achieved by the QS kernel and
equal-weighted periodogram. The frontiers have simple closed-form expressions, which
show that the price paid for restricting attention to tests with t and F critical values is
small. The frontiers are derived for the Gaussian multivariate location model, but sim-
ulations suggest the qualitative findings extend to stochastic regressors.

KEYWORDS: Heteroskedasticity- and autocorrelation-robust estimation, HAR, long-
run variance estimator.

1. INTRODUCTION

HETEROSKEDASTICITY- AND AUTOCORRELATION-ROBUST (HAR) tests and confidence
intervals are used in time series regression when the product of the regressors xt and the
regression errors ut , xtut ≡ zt , is potentially serially correlated and ut is potentially het-
eroskedastic. Computing HAR standard errors entails estimating the long-run variance
(LRV) of zt , Ω= ∑∞

j=−∞ �j , where �j = cov(zt� z′
t−j), j = 0�1� � � � . The challenge of HAR

inference is thatΩ depends on infinitely many autocovariances, but this infinite sum must
be estimated using only T observations.

The foundational papers on HAR inference in the econometrics literature are Newey
and West (1987) and Andrews (1991). The Newey–West/Andrews method, which domi-
nates empirical practice, estimatesΩ using a kernel-weighted average of the first S sample
autocovariances of ẑt = xtût , where ût are the OLS residuals. Andrews (1991) and Newey
and West (1994) recommended choosing the truncation parameter sequence ST to min-
imize the mean squared error (MSE) of the LRV estimator Ω̂. Under that sequence, Ω̂
is consistent and inference proceeds using standard normal or chi-squared critical values.
Drawing on classical results in the spectral estimation literature, Andrews (1991) further
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suggested using the Epanechnikov (1969) kernel, also called the quadratic spectral (QS)
kernel, which minimizes the asymptotic MSE of Ω̂ among kernel estimators that are pos-
itive semidefinite (psd).

Unfortunately, tests using the MSE-optimal truncation parameter can have large size
distortions (e.g., den Haan and Levin (1997)). In fact, Edgeworth expansions of rejection
probabilities in the Gaussian location model formally show that the testing problem en-
tails a bias-variance tradeoff, in contrast to MSE minimization which entails a tradeoff be-
tween squared bias and variance, so the testing-optimal sequence ST increases faster than
the MSE-optimal sequence (Velasco and Robinson (2001), Sun, Phillips, and Jin (2008)).
The testing-optimal sequence introduces sampling variability in Ω̂ which leads to t-like
behavior of the t-statistic. That variability can be handled using Kiefer and Vogelsang’s
(2005) “fixed-b” (or “fixed smoothing”) critical values, which model the truncation pa-
rameter as increasing proportionally to T , that is, ST = bT with b fixed; doing so provides
a higher-order refinement to the null rejection rate of HAR tests (Jansson (2004), Sun,
Phillips, and Jin (2008), and Sun (2014b)). The lesson is thus to combine a testing-optimal
bandwidth rate for ST with fixed-b critical values. This literature, however, has two loose
ends. First, given a kernel, it suggests but does not formalize a tradeoff between size and
power that depends on whether S, while growing at the testing-optimal rate, is large or
small (e.g., Kiefer and Vogelsang (2005, Section 5)). Moreover, there are no theoretical
results on which kernel, if any, is optimal for testing.

This paper fills this gap by using the asymptotic expansions of Velasco and Robinson
(2001), Sun, Phillips, and Jin (2008), and Sun (2011, 2013, 2014b) for the Gaussian lo-
cation model to study the tradeoff between the size distortion and power loss for HAR
tests using fixed-b critical values and the testing-optimal rate for S. By size distortion, we
mean the difference between the null rejection rate and the desired nominal significance
level α. Following Rothenberg (1984) and the literature on higher-order comparisons of
tests, by power we mean size-adjusted power, that is, the rejection rate under the alterna-
tive when the test is evaluated using (generally infeasible) critical values that have been
adjusted so that the rejection rate under the null is α.1

This paper makes four main contributions. First, for a given kernel, we derive theoret-
ical expressions characterizing the tradeoff between the size distortion �S and the size-
adjusted power loss �P , that is, the difference between the local asymptotic power of the
candidate HAR test and the infeasible oracle test with Ω known.

Second, we derive the envelope of these size-power tradeoffs and show that this size-
power frontier is achieved by the QS kernel. Let �max

P be the maximum size-adjusted
power loss of the test over all alternatives. For a 5% test in the one-dimensional Gaussian
location model, the size-power frontier is

�max
P

√
�S

ω(2) ≥ 0�3368
T

+ o(T−1
)
� (1)

1The Neyman–Pearson Lemma ranks tests by their probability of rejecting a point alternative among tests
with the same null rejection rate. This principle extends to the second-order comparison of tests based on
Edgeworth expansions, which entails (i) obtaining expressions for second-order corrections to critical values,
(ii) imposing those corrections so that tests have the same second-order size, then (iii) obtaining and comparing
their size-adjusted power. Sun, Phillips, and Jin (2008, Corollary 5) used these three steps to derive a higher-
order approximation to the power of kernel HAR tests. The practice of using size-adjusted critical values
is commonplace in Monte Carlo studies comparing competing tests; for example, see Kiefer and Vogelsang
(2002), Sun (2013), Long and Ervin (2000), Ng and Perron (2001), and Clark and West (2007).
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FIGURE 1.—Higher-order frontier between the size distortion �S and the maximum power loss �max
P of

HAR tests in the Gaussian location model with dimensionm, for stationary processes with normalized spectral
curvature ω(2). Solid line: all kernel and orthonormal series HAR tests; dashed: tests with standard t and F
critical values.

where ω(2) is the normalized curvature of the spectral density of zt at frequency zero (in
the scalar case, the negative of the ratio of the second derivative of the spectral density to
the spectral density at frequency zero). For the m-dimensional location model, the only
change to (1) is that the constant increases with m.

The frontier is plotted in Figure 1 for 5% tests for m = 1�2�and 3. Choosing the se-
quence for b to equate the asymptotic rates at which �S and �max

P converge to zero in (1)
yields �S , �max

P =O(T−2/3), and this rate is used to derive (1) and to scale the axes in Fig-
ure 1. For the Bartlett kernel used in the Newey–West (1987) test, equating these rates
yields �S , �P =O(T−1/2), so the Bartlett kernel HAR test is asymptotically dominated.

Third, we extend these results for kernel HAR tests to the family of weighted orthonor-
mal series (WOS) tests and in the process provide unified expressions covering the two
families. WOS estimators of Ω are weighted sums of the squared projections of ẑt onto
low-frequency orthonormal functions, typically the first B terms of a basis of L2[0�1] ex-
cluding the constant function. The WOS family includes weighted periodogram tests (for
which the orthogonal series are Fourier series) and, in the location model, Ibragimov
and Müller’s (2010) subsample estimator. If the weights are equal, WOS HAR tests have
standard t and F fixed-b distributions (Brillinger (1975, exercise 5.13.25), Müller (2007),
Phillips (2005), and Sun (2013)). Building on Sun (2013), we characterize the size-power
tradeoff for WOS tests and show that the bound (1) applies to WOS tests as well.

Fourth, we derive the size-power frontier among HAR tests that have standard t and F
fixed-b distributions. For a 5% test with m= 1, this frontier is

�max
P

√
�S

ω(2) ≥ 0�3624
T

+ o(T−1
)
� (2)

The frontier (2) is achieved by the equal-weighted periodogram (EWP) test and by the
closely related equal-weighted cosine (EWC) test, in which Ω is estimated using the Type
II cosine basis functions. As can be seen in Figure 1, the cost of this restriction to t or
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F inference is small. For example, the power loss of the EWP test using the first four
periodogram ordinates, relative to the same-sized QS test, is at most 0�0074.

The frontiers in Figure 1 are obtained under the sequence b= b0T
−2/3, while the trade-

off for the Bartlett kernel is obtained under b = b0T
−1/2. Implementing the HAR tests

studied here requires choosing b0, which is equivalent to choosing a point on the test’s
size-power tradeoff curve. We briefly discuss possible criteria for determining this choice
after providing our main results. A more complete treatment and recommendations for
practical implementation are provided in a companion paper, Lazarus, Lewis, Stock, and
Watson (LLSW, 2018). That paper proposes a loss function trading off size and power,
which, using the formulas for the tradeoffs derived in this paper, is then minimized to ob-
tain rule-of-thumb guidelines for HAR tests. LLSW also provide extensive Monte Carlo
simulations (including for data-based designs), which corroborate the theoretical size-
power tradeoffs and frontiers we establish in this paper.

The remainder of the paper is organized as follows. Section 2 defines the kernel and
WOS estimators. Section 3 provides unified expressions for their higher-order bias and
variance. Section 4 provides the main results, and Section 5 concludes. Proofs are given
in the Appendix and in the Supplemental Material (Lazarus, Lewis, and Stock (2021)).

2. MODEL, TESTS, AND LRV ESTIMATORS

We consider two-sided HAR tests of β= β0 in the Gaussian location model,

yt = β+ ut� t = 1� � � � �T� (3)

where yt is m× 1, β is the vector of means of yt , and ut is an m× 1 vector of disturbances
following a stationary Gaussian process that is potentially heteroskedastic and/or auto-
correlated. We consider rejection rates both under the null, H0T : β= β0, and under the
local alternative,

H1T : β= β0 + T−1/2Ω1/2δ̃� (4)

where δ̃ is uniformly distributed on the real m-dimensional sphere centered at the origin
and with radius δ, as in Sun (2013, 2014b).

The LRV estimator Ω̂ is computed using estimated values ẑt = yt − β̂= yt − ȳ , where ȳ
is the sample mean of yt . Form= 1, the t-statistic testing β= β0 is tT = √

T z̄0/
√
Ω̂, where

z̄0 = T−1
∑T

t=1 zt(β0), zt(β0)= yt −β0, and Ω̂ is an estimator of Ω. For m> 1, as in Stock
and Watson (2008) and Sun (2013), we consider the scaled F -statistic, F∗

T = ((B −m +
1)/B)FT , with FT = T z̄′

0Ω̂
−1z̄0/m and B = b−1 (or its integer part). As discussed below,

with this scaling, F∗
T is asymptotically distributed Fm�B−m+1 under fixed-b asymptotics when

Ω̂ is an equal-weighted WOS estimator.

2.1. Kernel Estimators

The kernel estimator of Ω sums the sample autocovariances, weighted by a kernel k:

Ω̂SC =
T−1∑

j=−(T−1)

k(j/S)�̂j� where �̂j = 1
T

min(T�T+j)∑
t=max(1�j+1)

ẑt ẑ
′
t−j� (5)

where S is the truncation parameter and the superscript “SC” denotes sum-of-covari-
ances.
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The sum-of-covariances estimator can alternatively be computed in the frequency do-
main as a weighted average of the periodogram:

Ω̂WP = 2π
[T/2]∑

j=−[T/2]
w̃jIẑẑ(2πj/T)� (6)

where [T/2] denotes the integer part of T/2, Iẑẑ(ω) is the periodogram of ẑt at frequency
ω, Iẑẑ(ω)= (2π)−1dẑ(ω)dẑ(ω)

′
where dẑ(ω)= T−1/2

∑T

t=1 ẑte
−iωt , and where the weights

{w̃j} in (6) satisfy w̃j = T−1
∑T−1

u=−(T−1) k(u/S)e
i2πju/T .2 Kernel estimators are positive

semidefinite with probability 1 if w̃j ≥ 0, j ∈ R. Toward aligning Ω̂WP with WOS estimators
as defined below, note that (6) may be rewritten as Ω̂WP = 4π

∑[T/2]
j=1 w̃j Re(Iẑẑ(2πj/T)).

Three important kernel estimators are the Bartlett (Newey–West), EWP, and QS es-
timators. The Bartlett kernel is the tent function, k(x) = (1 − |x|)1(|x| ≤ 1). The EWP
estimator Ω̂EWP is computed using w̃j = 2B−11(|j| ≤ B/2) (the Daniell spectral kernel) in
(6). The quadratic spectral estimator is so named because its weights in (6) are quadratic
in j : w̃j ∝ [1 − (|j|/(B/2))2]1(|j| ≤ B/2).

2.2. Weighted Orthonormal Series Estimators

WOS estimators are computed by projecting ẑt onto a set of B mean-zero low-
frequency orthonormal functions, typically the first mean-zero elements of a basis for
L2[0�1], and then evaluating a weighted sum of these projections (Hannan (1970),
Brillinger (1975), Priestley (1981), and Stoica and Moses (2005)). Following Sun (2013),
let {φj(s)}, j = 0� � � � �B, 0 ≤ s ≤ 1, denote the first B+ 1 functions in a real orthonormal
basis for L2[0�1], where φ0(s)= 1 and

∫ 1
0 φj(s)ds = 0 for j ≥ 1. The WOS estimator is

Ω̂WOS =
B∑
j=1

wjΩ̂
OS
j � where

B∑
j=1

wj = 1�

Ω̂OS
j = Λ̂jΛ̂

′
j� and Λ̂j =

√
1
T

T∑
t=1

φj(t/T)ẑt �

(7)

Note that Ω̂WOS omits the j = 0 (constant) function since Λ̂0 = √
T ¯̂z = 0. The condition

for Ω̂WOS to be psd with probability 1 is that {wj} are nonnegative.
The theory in this paper covers basis functions with two continuous and bounded

derivatives. The leading case uses Fourier basis functions, for which psd WOS estima-
tors and psd kernel estimators asymptotically coincide (see Priestley (1981, pp. 578–581)).
The use of Fourier basis functions with equal weights produces the EWP estimator. Other
examples of basis functions include Type II cosine basis functions and Legendre polyno-
mials. The theory developed here extends to the batch means estimator studied by Ibrag-
imov and Müller (2010): we show in the Supplemental Material (Proposition S1) that in
the location model (3), this estimator can be expressed as a WOS estimator, using what
we refer to below as the split-sample (SS) basis functions.

2For large S, w̃j ∼ 2πbK(2πjb), where b = S/T , and K(ω) = (2π)−1
∫ ∞
u=−∞ k(u)e

−iωu du is the spectral
window generator; see Priestley (1981, pp. 447, 580–581) or Andrews (1991).
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3. UNIFIED EXPRESSIONS FOR BIAS, VARIANCE, AND REJECTION RATES

Our unification of expressions for the bias, variance, and higher-order rejection rates of
HAR kernel and WOS tests relies on what we call the implied mean kernel of WOS tests.
The implied mean kernel kWOS

B�T of Ω̂WOS depends on the WOS weights and basis functions
{φj}. Using the definition of Ω̂OS

j in (7) and the device in Grenander and Rosenblatt (1957,
p. 125), write the mean of the jth contribution to a WOS estimator as

EΩ̂OS
j = E

[(√
1
T

T∑
t=1

φj(t/T)ẑt

)(√
1
T

T∑
t=1

φj(t/T)ẑt

)′]

=
T−1∑

u=−(T−1)

k̃OS
j�T (u/T)�u +O(1/T)� (8)

where k̃OS
j�T (u/T)= T−1

∑T

t=1φj(t/T)φj((t − u)/T)1(1 ≤ t − u≤ T). Thus,

EΩ̂WOS =
B∑
j=1

E(wjΩ̂j)=
T−1∑

u=−(T−1)

kWOS
B�T (u/S)�u +O(1/T)� (9)

with kWOS
B�T (u/S) = ∑B

j=1wjk̃
OS
j�T (B

−1 u
S
), where for WOS estimators we define S = T/B so

that kernels and implied mean kernels have the same domain (cf. Priestley (1981, eq.
(6.2.120)) and Brillinger (1975, eq. (5.8.6))); see the Supplemental Material for details.

The jth contribution to the implied mean kernel has the limit limT→∞ k̃OS
j�T = k̃OS

j , and
the implied mean kernel has the limit limT→∞ kWOS

B�T = kWOS
B , where

kWOS
B (x)=

B∑
j=1

wjk̃
OS
j

(
B−1x

)
and k̃OS

j (v)=
∫ min(1�1+v)

max(0�v)
φj(s)φj(s− v)ds� (10)

where the limit is pointwise holding B fixed. Note that kWOS
B (0)= 1.

3.1. Properties of Kernel and WOS Estimators

The asymptotic bias of a kernel LRV estimator depends on the behavior of the kernel at
the origin. Below, we provide an analogous result for WOS estimators. Let k be a kernel
or WOS implied mean kernel. Its q0th generalized derivative at the origin is

k(q0)(0)= lim
x→0

1 − k(x)
|x|q0

� (11)

The Parzen (1957) characteristic exponent of k, denoted by q, is the maximum integer q0

such that 0< k(q0)(0) <∞. The Bartlett kernel has q= 1, while EWP and QS both have
q = 2. For kernel estimators, a necessary condition for Ω̂ to be psd with probability 1 is
that q≤ 2 (e.g., Priestley (1981)).

Bias also depends on the stochastic process for zt through the behavior of its spectral
density at frequency zero. Let sz(λ) be the spectral density of zt at frequency λ, and let
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s(q)z (0) be its Parzen generalized qth derivative at the origin, s(q)z (0)= (2π)−1
∑∞

j=−∞ |j|q�j .
It is convenient to work with the trace of a scaled version of this generalized derivative,

ω(q) = tr

(
m−1

∞∑
j=−∞

|j|q�jΩ−1

)
� (12)

which measures long-run persistence or anti-persistence of zt . For m= 1 and q = 2, ω(2)

is the relative curvature of the spectral density at frequency zero: ω(2) = −s′′z (0)/sz(0).
In addition to the “smoothing” bias indexed by k(q)(0) and ω(q), for kernel estimators

bias arises from the need to estimate the mean of yt (Hannan (1958)). This “demeaning”
bias depends on the kernel’s asymptotic mean. We show below, as in Sun (2011), that no
such demeaning bias arises for WOS estimators, as

∫ 1
0 φj(s)ds = 0. Accordingly, define

μ=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

−∞
k(x)dx for kernel estimators�

B∑
j=1

wj

∫ 1

0
φj(s)ds = 0 for WOS estimators�

(13)

If zt is Gaussian, then both kernel and WOS LRV estimators are distributed as
weighted averages of independent chi-squared random variables.3 For kernel estimators
and scalar processes, Tukey (1950) proposed approximating this mixture distribution by
a chi-squared with “equivalent degrees of freedom” ν chosen to match the estimator’s
asymptotic variance. Tukey’s approximation, extended to include WOS estimators, is

Ω̂∼ (
χ2
ν/ν

)
Ω� where ν = (bψ)−1 and

ψ=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

−∞
k2(x)dx for kernel estimators�

B

B∑
j=1

w2
j for WOS estimators�

(14)

where we set b= B−1 for WOS estimators.
For equal-weighted WOS estimators with m = 1, the approximation (14) is asymptot-

ically exact, with ν = B, for fixed B and T → ∞ (e.g., Brillinger (1975), Phillips (2005)).
This extends straightforwardly to the vector case, m> 1, as Ω̂WOS d−→ Ω1/2(ΞB/B)Ω

1/2′,
where ΞB follows a standard m-dimensional Wishart distribution with B degrees of free-
dom (e.g., Sun (2011)). Given

∫ 1
0 φj(s)ds = 0 for j ≥ 1, the equal-weighted estimator is

asymptotically independent of z̄0, and thus the equal-weighted WOS test F∗
T is asymptot-

ically distributed FB�m−B+1. Among the class of kernel and WOS tests we consider, this
property holds only for equal-weighted WOS tests, and the fixed-b limiting distribution
and critical values for F∗

T are in general nonstandard (see, e.g., Kiefer and Vogelsang
(2005) for tabulated critical values).

3Without Gaussianity, this holds asymptotically under fixed-b asymptotics (Sun (2013, 2014b)).
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3.2. Results on Bias, Variance, and Rejection Rates

We now present unified expressions for the bias, variance, and rejection rates of kernel
and WOS LRV estimators and HAR tests. Henceforth, let k denote either a kernel or an
implied mean kernel. For kernel estimators, b= S/T , and for WOS estimators, b= B−1.

We make the following assumptions:

ASSUMPTION 1—Gaussian Stochastic Processes: zt is a stationary Gaussian process gen-
erated according to the multivariate location model (3), with spectral density matrix sz(λ)
that is positive definite in a neighborhood around λ= 0 and autocovariances �u that satisfy∑∞

u=−∞ |u|r |�u|<∞ for r ∈ [0�2 + ζ], for some ζ > 0.

ASSUMPTION 2—Kernels: For a kernel LRV estimator, the kernel k(x) : R → [−1�1]
is continuous, piecewise continuously differentiable, satisfies k(x) = k(−x), k(0) = 1,∫ ∞

−∞ |x|k(x)dx <∞, has frequency-domain weights {w̃j} in (6) satisfying w̃j ≥ 0, j ∈ R, and
has Parzen characteristic exponent q= 1 or 2.

ASSUMPTION 3—WOS: For a WOS LRV estimator, for j = 1� � � � �B, the orthonormal
series φj ∈ L2[0�1] satisfy

∫ 1
0 φj(s)ds = 0 for j ≥ 1 and have two continuous derivatives,

such that the nth derivative φ(n)j (s) satisfies sups∈[0�1] |φ(n)j (s)| ≤ Cn�φj2n+1/2 for some constant
Cn�φ for all j and n= 0�1�2. The weights wj ≥ 0 are O(B−1) and satisfy

∑B

j=1wj = 1.

ASSUMPTION 4—Rates: The sequence b is assumed to satisfy bqT q−1 + (bT)−1 → 0.

These assumptions are the same as or modifications of those of Velasco and Robin-
son (2001), Sun, Phillips, and Jin (2008), and Sun (2013, 2014b). Assumption 1 states
the model and provides conditions under which the bias expressions and fixed-b distri-
butions hold, and it implies that ω(q) is finite for q ≤ 2. Assumption 2 states standard
conditions on psd kernel estimators. Assumption 3 strengthens slightly the conditions in
Sun’s (2013, Assumption 3.1) so that the orthonormal series have two derivatives, each
of the order j2n+1/2. Bases that satisfy this condition include Fourier, Type II cosine, and
Legendre polynomials, as shown in Supplemental Material Proposition S2. Assumption 4
strengthens the corresponding condition in Sun, Phillips, and Jin (2008), who required
b+ (bT)−1 → 0. The more restrictive rate condition in Assumption 4 is used to express
the limiting results for WOS tests in terms of the implied mean kernel when q= 2.

Theorem 1 collects expansions for kernel and equal-weighted WOS estimators in Ve-
lasco and Robinson (2001), Sun, Phillips, and Jin (2008), and Sun (2013, 2014b) (among
others) and extends them to include general WOS estimators.

THEOREM 1: Under Assumptions 1–4,
(i) The asymptotic bias of kernel and WOS LRV estimators is

EΩ̂−Ω= −2π(bT)−qk(q)(0)s(q)z (0)− bμΩ+ o(b)+ o((bT)−q)� (15)
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(ii) The first two generalized derivatives of the WOS implied mean kernel are

k(1)(0)= lim
B→∞

1
B

B∑
j=1

wj
[
φj(0)2 +φj(1)2

]
/2� and

k(2)(0)= − lim
B→∞

1
B2

B∑
j=1

wj

∫ 1

0
φj(s)φ

′′
j (s)ds/2�

(16)

If k(1)(0) 
= 0, then q= 1; otherwise, q= 2.
(iii) The asymptotic variance of kernel and WOS LRV estimators is

var(vec Ω̂)= ν−1(Im2 +Kmm)Ω⊗Ω+ o(b)� (17)

where Im2 is the m2 ×m2 identity matrix, Kmm is the m2 ×m2 commutation matrix,
and ⊗ is the Kronecker product.

(iv) Let cαm(b) denote the fixed-b asymptotic critical value for the level-α test withm degrees
of freedom. The asymptotic expansion of the null rejection rate is

Pr0

[
F∗
T > c

α
m(b)

] = α+G′
m

(
χαm

)
χαmω

(q)k(q)(0)(bT)−q + o(b)+ o((bT)−q)� (18)

where Gm is the chi-squared cdf with m degrees of freedom, G′
m is the first derivative

of Gm, and χαm is the 1 − α quantile of Gm.
(v) The rejection rate against the local alternative (4) using the fixed-b critical value has

the expansion

Prδ
[
F∗
T > c

α
m(b)

] = [
1 −Gm�δ2

(
χαm

)] +G′
m�δ2

(
χαm

)
χαmω

(q)k(q)(0)(bT)−q

− 1
2
δ2G′

m+2�δ2

(
χαm

)
χαmν

−1 + o(b)+ o((bT)−q)� (19)

whereGm�δ2 is the noncentral chi-squared cdf withm degrees of freedom and noncen-
trality parameter δ2 and G′

m�δ2 is its first derivative.
(vi) The expansions in (18) and (19) also hold for the split-sample (SS) series estimator,

for which q= 1, although it does not satisfy Assumption 3.

The term in (bT)−q in the null rejection rate expansion (18) arises from the bias of the
LRV estimator. Under the local alternative, the rejection rate expansion (19) depends
both on bias (the first term) and on its variance through the term in ν−1. This latter term
is the power loss analogous to that from using a t distribution in the i.i.d. location model
because the variance is estimated, not known.

4. SIZE-POWER TRADEOFFS AND THE SIZE-POWER FRONTIER

This section uses the expansions in Theorem 1 to characterize the size-power tradeoff,
the size-power frontier, and optimality results for kernel and WOS HAR tests evaluated
using fixed-b critical values. Section 4.1 provides our results, which are discussed in detail
in Section 4.2. Proofs are provided in the Appendix.
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4.1. Main Results

Assume throughout that Assumptions 1–4 hold.

THEOREM 2: Let cαm�T (b) be the size-adjusted fixed-b critical value,

cαm�T (b)= [
1 +ω(q)k(q)(0)(bT)−q

]
cαm(b)� (20)

Then Pr0[F∗
T > c

α
m�T (b)] = α+ o(b)+ o((bT)−q) and the higher-order size-adjusted power

of the test is

Prδ
[
F∗
T > c

α
m�T (b)

] = [
1 −Gm�δ2

(
χαm

)] − 1
2
δ2G′

m+2�δ2

(
χαm

)
χαmν

−1 + o(b)+ o((bT)−q)� (21)

THEOREM 3: Consider two HAR test statistics F∗
1�T and F∗

2�T based on different kernels or
implied mean kernels with the same value of q, with equivalent degrees of freedom respectively
given by ν1 and ν2, and with fixed-b critical values respectively given by cα1�m(b1) and cα2�m(b2).
Choose sequences b1 and b2 meeting Assumption 4 such that F∗

1�T and F∗
2�T have the same

higher-order size. Then the difference between their higher-order rejection rates under the local
alternative indexed by δ is

Prδ
[
F∗

1T > c
α
1�m(b1)

] − Prδ
[
F∗

2T > c
α
2�m(b2)

]
= 1

2
δ2G′

m+2�δ2

(
χαm

)
χαm

(
ν−1

2 − ν−1
1

)
+ o(b1)+ o((b1T)

−q) + o(b2)+ o((b2T)
−q)� (22)

Our main results concern the tradeoff between size and size-adjusted power. The size
distortion �S of the candidate test is

�S = Pr0

[
F∗
T > c

α
m(b)

] − α� (23)

The power of the oracle test, in which Ω is known, is 1 −Gm�δ2(χαm). Let �P(δ) denote
the power loss of the candidate test, compared to the oracle test, under the local alter-
native indexed by δ, and let �max

P denote the maximum such power loss, so �max
P is the

maximum gap between the power curves of the oracle test and the candidate test:

�P(δ)= [
1 −Gm�δ2

(
χαm

)] − Prδ
[
F∗
T > c

α
m�T (b)

]
� and (24)

�max
P = sup

δ

�P(δ)� (25)

Because ν = (bψ)−1, equations (18) and (21) constitute a pair of parametric equations
that determine �S and �P for a given b. Both expressions are monotonic in b, so elim-
inating b yields the higher-order tradeoff between the size and power of a given test.
Requiring that �S and �P maintain the same asymptotic order further restricts the rate of
the sequence b; Corollary 1 provides that restriction, which satisfies Assumption 4.4 The-
orem 4 then provides the higher-order tradeoff between size and power. The envelope of
these tradeoffs, provided in Theorem 5, is the size-power frontier.

4Equating the order of �S and �P is desirable as long as one places non-vanishing weight on both size and
power in assessing their tradeoff; see LLSW (2018) for further discussion.
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COROLLARY 1: �P(δ) and �S are of the same asymptotic order if and only if b =
O(T−q/(q+1)) and T−q/(q+1) =O(b).

THEOREM 4: For a given HAR test evaluated using fixed-b critical values, under the se-
quence for b in Corollary 1:

(i) The small-b asymptotic tradeoff between the size distortion and the power loss against
the local alternative indexed by δ is

T�P(δ)|�S|1/q = am�α�q(δ)�(q)(k)
∣∣ω(q)

∣∣1/q + o(1)� (26)

where am�α�q(δ)= 1
2δ

2G′
m+2�δ2(χ

α
m)χ

α
m(G

′
m(χ

α
m)χ

α
m)

1/q and �(q)(k)= (k(q)(0))1/qψ.
(ii) Let ām�α�q = supδ am�α�q(δ). The small-b asymptotic size-power tradeoff is

T�max
P |�S|1/q = ām�α�q�(q)(k)

∣∣ω(q)
∣∣1/q + o(1)� (27)

(iii) The size-power tradeoffs of tests based on LRV estimators with Parzen characteristic
exponent q= 2 asymptotically dominate the tradeoffs for tests with q= 1, both within
and across the two families of tests.

THEOREM 5:
(i) For psd kernel and WOS HAR tests evaluated using fixed-b critical values, under the

sequence for b in Corollary 1,

T�max
P

√
�S

ω(2) ≥ 3π
√

10
25

ām�α�2 + o(1)� (28)

where ām�α�2 is defined in Theorem 4. This frontier is achieved by the QS kernel. For tests
with α= 0�05, ām�α�23π

√
10/25 ≈ 0.3368 for m= 1 (yielding (1)), ām�α�23π

√
10/25 ≈

0�6460 for m= 2, and ām�α�23π
√

10/25 ≈ 0�9491 for m= 3.
(ii) For psd kernel and WOS HAR tests with exact t and F asymptotic fixed-b distributions

and critical values, under the sequence for b in Corollary 1,

T�max
P

√
�S

ω(2) ≥ π√
6
ām�α�2 + o(1) (exact t or F critical values)� (29)

This frontier is achieved by the EWP test. For α= 0�05, ām�α�2π/
√

6 ≈ 0�3624 form= 1
(yielding (2)), ām�α�2π/

√
6 ≈ 0�6950 for m= 2, and ām�α�2π/

√
6 ≈ 1�0211 for m= 3.

4.2. Remarks

1. For a given α and m, the testing frontier depends only on the sample size and the
average normalized curvature of the spectral density at frequency zero. As a result,
the scaled fixed-b frontier plotted in Figure 1 applies universally to all psd kernel
and weighted orthonormal series HAR tests evaluated using fixed-b critical values
at the optimal rates in Corollary 1.

2. The rate for b in Corollary 1, b = O(T−q/(q+1)), is the same rate found by Sun,
Phillips, and Jin (2008) and Sun (2014b) to minimize a weighted average of Type
I and Type II testing errors in the case that �S > 0. Although we derive the frontier
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only for this sequence, we conjecture that it holds more generally. This conjecture is
supported by the generally good ability of the frontier to describe simulation results
(LLSW (2018)). This conjecture could be proven by strengthening remainder terms
in o(b) and o((bT)−q) in the underlying Edgeworth expansions to O of a somewhat
higher order; doing so is left for future work.

3. For kernel tests, the size-power frontier is obtained first by noting that the frontier
for q= 2 tests asymptotically dominates the frontier for q= 1 tests, then by minimiz-
ing, over q= 2 kernels, the expression �(2)(k)= √

k(2)(0)
∫ ∞

−∞ k
2(x)dx. This quantity

is minimized by the Epanechnikov/QS kernel (Epanechnikov (1969)). The quantity
�(2)(k) has a long history in spectral density estimation. Priestley (1981, Section 7.3.2)
dated it to Grenander’s (1951) uncertainty principle for spectral estimation: as sum-
marized by Priestley, “bias and variance are antagonistic.” In our application, bias
produces a size distortion while variance degrades size-adjusted power.

Our results indicate that Grenander’s uncertainty principle extends beyond the
minimal-MSE spectral density estimation problem. In addition to the size-power
tradeoff in Theorem 4, the following objective functions depend on the (implied
mean) kernel only through �(2)(k) when evaluated using the optimal b for q = 2
(where a scalar process, m= 1, is assumed for simplicity):
(a) an objective function for the spectral estimation problem (given known β) that

minimizes MSE(ŝz(0))= bias2(ŝz(0))+ var(ŝz(0));
(b) the previous objective function modified to a|bias(ŝz(0))| + (1 − a) var(ŝz(0))

with 0< a< 1;
(c) an objective function for the HAR testing problem that minimizes size distor-

tions plus power, specifically a|�S| + (1 − a)�max
P or alternatively a|�S| + (1 −

a)
∫
�P(δ)dΠδ(δ), where a is a weight 0 < a < 1 and where Πδ is a density

function over the noncentrality parameter δ;
(d) a quadratic version of the previous objective function, a(�s)2 + (1 − a)(�max

p )2;
(e) the objective function considered by Sun, Phillips, and Jin (2008) that minimizes

the weighted average of the Type I and Type II error.
Minimizing (a) is the classic problem of optimal spectral estimation; its optimum
is achieved at a rate b = O(T−2q/(2q+1)) converging to zero faster than the testing-
optimal rate in Corollary 1 (which is optimal for the remaining objective functions).
Objective function (b) is not of primitive interest, but (c) and (e) reduce to (b). The
objective function (c), which trades off size distortion and power loss linearly, also
depends on the kernel solely through �(2)(k) under the optimal b. Minimizing (d)
does the same with quadratic loss and is the approach used by LLSW (2018). Ob-
jective function (e) differs from (c) because the Type II error is not size-adjusted,
yet its minimal value also depends on the kernel only through �(2)(k) (see Sun and
Yang (2020) and LLSW (2018, Rejoinder)). Each of these objective functions is min-
imized by the QS kernel, or, among equal-weighted WOS estimators, by the EWP
estimator. See Proposition S3 in the Supplemental Material for derivations.5

4. Obtaining the frontier in Theorem 5(i) requires proving the optimality of the QS
kernel relative to all WOS tests, not just among kernel tests. The proof of this new
optimality result extends Grenander and Rosenblatt’s (1957, Section 4.2) result on
the optimality of “spectrograph” (i.e., weighted Fourier series) estimators to show
that, for WOS tests, the Fourier basis functions are optimal. This extension also

5We thank a referee and Yixao Sun for pointing out that our results extend to (c) and (e), respectively.
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TABLE I

MAXIMUM POWER LOSS OF SAME-SIZED EWP
(WITH B SERIES) COMPARED TO QSa

m B= 4 B= 8 B= 16

1 0.0147 0.0074 0.0037
2 0.0247 0.0123 0.0062
3 0.0335 0.0168 0.0084
4 0.0419 0.0209 0.0105

aFor QS, the value b is chosen so that the test’s higher-
order size is the same as that of the corresponding EWP test.

implies that the EWP test achieves the restricted frontier provided in Theorem 5(ii),
as exact t or F inference obtains only among equal-weighted WOS tests.

5. The price paid for the convenience of exact t or F fixed-b critical values can be
computed from Theorem 3. Let νEWP = B. It is shown in the Supplemental Material
that, for EWP and QS tests with the same higher-order size,

Prδ
[
F∗

QS�T > cQS�α(bQS)
] − Prδ

[
F∗

EWP�T > cEWP�α(bEWP)
]

≈ 1
2
δ2G′

m+2�δ2

(
χαm

)
χαm

(
ν−1

EWP − ν−1
QS

)

= 1
2
δ2G′

m+2�δ2

(
χαm

)
χαm

(
1 − 6

√
3

5
√

5

)
B−1� (30)

Table I reports the maximum higher-order power loss from using EWP over all al-
ternatives δ. The cost of using EWP relative to QS is small: for B= 8 andm= 1, the
maximum equivalent-size power gap is 0�0074 over all alternatives. This explains the
numerical finding in Kiefer and Vogelsang (2005) that the local asymptotic power
curves for these two tests are very close. Figure S3 in the Supplemental Material
plots the final expression in (30) as a function of δ for various values of B andm= 1.

6. While Theorem 5 provides results on optimal kernel choice, our framework also al-
lows us to rank any two HAR tests using their asymptotic size-power tradeoffs from
Theorem 4. For example, as shown in Proposition S5 in the Supplemental Material,
the Bartlett kernel dominates the equal-weighted split-sample WOS estimator (both
of which have q= 1), as the Bartlett small-b size-power tradeoff curve is strictly be-
low the SS tradeoff curve. We also find that, among q = 2 equal-weighted WOS
tests, the tradeoff for the EWP test (i.e., using Fourier basis functions) is asymptoti-
cally equivalent to that obtained using Type II cosine basis functions as proposed by
Müller (2007); see LLSW (2018) for further discussion.

7. The tradeoffs in Theorem 4 are expressed in terms of absolute size distortions. For
processes with s′′z (0) < 0 (loosely, positive serial correlation), the HAR tests are
oversized and the tradeoff is between size and power. Positive serial correlation is
common in practice, for example, in multiperiod return regressions and multistep-
ahead forecasts. In the negative serial correlation case (specifically, s′′z (0) > 0), the
HAR test is undersized. If our size-power tradeoffs are used to construct trunca-
tion parameter rules, one might therefore want to treat these two cases separately.
For example, Sun, Phillips, and Jin (2008) considered a pretest approach that dis-
tinguishes between these two cases based on the sign of a preliminary estimate of
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s′′z (0), and their approach could be extended to our framework, where the size-power
tradeoff is used to obtain a truncation parameter rule in the positive serial correla-
tion case. For additional discussion, see LLSW (2018).

8. The multivariate results focus on inference on all m elements of β. The question
arises as to whether they extend to inference on only m′ < m of those parameters
or, more generally, to inference onm′ <m linear combinations of those parameters.
Accordingly, consider the null hypothesis Rβ= β̃0, where R ism′ ×m and β̃0 ism′ ×
1. The F -statistic testing this hypothesis is T(Rz̄0)

′(RΩ̂R′)−1(Rz̄0)/m
′, where Rz̄0 =

T−1
∑T

t=1(Rzt − β̃0). Because all the estimators ofΩ we consider are quadratic forms
in ẑ, this F -statistic testing Rβ = β̃0 is equivalent to the usual F -statistic testing a
full vector hypothesis (i.e., T z̄′

0Ω̂
−1z̄0/m), but computed using the m′ × 1 vector of

transformed data Ryt . Thus, the results for full vector inference apply directly to
subvector inference.

4.3. Tests With Uniform Size Control

The foregoing results, like most of the HAR literature, consider the performance of
tests pointwise in the nuisance parameter ω(q). An alternative approach is to consider
controlling the rejection rate uniformly over a region of ω(q), in particular for all ω(q)

less than some finite upper bound ω̄(q), and choosing the test that maximizes weighted
average power among those that control size uniformly over |ω(q)| ≤ ω̄(q). This uniform-
size-control approach follows a small HAR literature developed by Müller (2007, 2014),
Preinerstorfer and Pötscher (2016), and Pötscher and Preinerstorfer (2017). The calcula-
tions here differ from earlier work by restricting the space of nuisance parameters to be a
closed subset representing moderate (bounded) persistence.

Uniform size control can be achieved for any sequence b∝ T−q/(1+q) by using the size-
adjusted critical value corresponding to the worst-case (least favorable) value of the nui-
sance parameter. It can be seen from (18) and (23) that the higher-order size distortion
is increasing in ω(q), so the least favorable value of the nuisance parameter is the maxi-
mum ω̄(q). The size-adjusted critical value (20), evaluated using this least favorable value,
therefore results in a test that controls size uniformly to higher order under the condition
that the remainder in (18) is of the stated order uniformly over |ω(q)| ≤ ω̄(q).

As an illustration, we derive the maximum weighted average power (WAP) test for the
case where zt follows an AR(1) with coefficient ρ. First, given a kernel or WOS test,
choose b to maximize the WAP among tests using the size-adjusted critical value (20)
with ω(q) = ω̄(q):

bWAP = arg max
b

∫
δ

∫
|ρ|≤ρ̄

�P
(
ω(q)(ρ)�δ

)
dΠρ(ρ)dΠδ(δ)� (31)

where �P(ω
(q)(ρ)�δ) = 1

2δ
2G′

m+2�δ2(χ
α
m)χ

α
mν

−1 + G′
m�δ2(χ

α
m)χ

α
m[ω̄(q) − ω(q)(ρ)] ×

k(q)(0)(bT)−q, ω(1)(ρ)= 2ρ/(1 −ρ2), ω(2)(ρ)= 2ρ/(1 −ρ)2, ρ̄= maxρ s.t. ω(q)(ρ)≤ ω̄(q),
and the weight functions Πρ and Πδ are independent and each integrates to 1. The solu-
tion to (31), as shown in Proposition S6 in the Supplemental Material, is

bWAP = q 1
1+q d̃m�α�q

(
k(q)(0)
ψ

) 1
1+q (

ω̃(q)
) 1

1+q T
−q
1+q � (32)
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where expressions for the constants ω̃(q) and d̃m�α�q are provided in the Supplemental Ma-
terial with the derivation of the result. We can see immediately that bWAP declines with
T at the same rate as given in Corollary 1. Further (again see the Supplemental Mate-
rial), the power loss of the test using the WAP-maximizing sequence (32) depends on k
only through �(q)(k). Once again, the term in Grenander’s (1951) uncertainty principle
appears, and the test asymptotically delivering the highest WAP uses the QS kernel, with
a numerically small cost to using EWP. Further, q = 1 kernels are again asymptotically
dominated by q= 2 kernels. Thus, the main qualitative findings from the pointwise anal-
ysis carry through to uniform-size-control, maximum-WAP tests.

4.4. Monte Carlo Simulations

We conducted extensive Monte Carlo simulations to assess the accuracy of the asymp-
totic tradeoffs and frontiers. Results are reported in Section S1 of the Supplemental Ma-
terial and in LLSW (2018). We draw three overall conclusions. First, the theoretical trade-
off (27) provides a good description of finite-sample test performance in the Gaussian
location model. The fit is better for q = 2 kernels than q = 1. Second, consistent with
the theory, the performance of q = 2 kernels is superior to that of q = 1 kernels for suf-
ficiently large sample sizes; however, for persistent processes with small T , some q = 1
kernels (such as the Bartlett kernel) have size-power tradeoffs that cross the q = 2 fron-
tier, both in theory and in simulations. Third, we also examined the regression case with
stochastic regressors. In this case, zt is non-Gaussian even if the error term is Gaussian,
so Assumption 1(i) does not hold. Still, the Monte Carlo tradeoffs and rankings across
tests accord qualitatively (although not quantitatively) with the theoretical results for the
Gaussian location model. Further results using designs constructed to match relevant em-
pirical settings, reported in LLSW (2018), accord with these findings as well.

5. DISCUSSION AND CONCLUSIONS

The size-power tradeoff and frontier are obtained under the sequence b= b0T
−q/(q+1),

which equates the order of the size distortion and power loss. In practice, one needs
to know the coefficient b0. While one might be tempted to select b0 to maximize size-
adjusted power, doing so would lead to a corner solution with the smallest possible b0

while respecting the optimal sequence. That choice would have large size distortions,
necessitating feasible size-adjusted critical values. In simulations, however, we find that
feasible size adjustment (implemented according to (20), with an estimator of ω(q)) works
poorly in sample sizes typically encountered; this is perhaps unsurprising because feasi-
ble size adjustment replaces the difficult problem of estimating the spectral density at
frequency zero with the more difficult problem of estimating its curvature. Choosing a
point on the frontier thus requires a judgment by the user. The approach of Section 4.3 is
to specify a region over which one requires uniform size control; this region, along with
the kernel, determines the constants in (32) and thus b0. A second approach, explored
in depth in LLSW (2018), is to specify a loss function trading off size and size-adjusted
power. A third, related approach (discussed in Remark 3) is to specify that loss function
in terms of the Type I and Type II error as in Sun, Phillips, and Jin (2008). Our results on
optimal kernel choice apply to all three approaches.

Our results suggest directions for additional research. First, the WOS and kernel esti-
mators are both contained in the larger family of quadratic estimators (e.g., Müller (2007),
Sun (2014a)), and we conjecture that our frontier applies to that larger class. Second, we
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do not consider bootstrap tests. Results in Gonçalves and Vogelsang (2011) suggest that
tests with critical values from the moving block bootstrap might also satisfy our size-power
tradeoff expressions and the frontiers (1) and (2); an open question is whether bootstrap
tests using QS or EWP kernels achieve those frontiers. Third, for certain processes and
sample sizes, the tradeoffs for q = 1 and q = 2 kernels cross (LLSW (2018)), raising the
question of whether one can improve upon the Bartlett kernel among q = 1 kernels, a
topic taken up in Kolokotrones and Stock (2019). Fourth, additional theoretical work on
the regression model with stochastic regressors is in order.

APPENDIX: PROOFS OF MAIN RESULTS

PROOF OF THEOREM 1: Theorem 1(i)–(ii) generalize Theorem 1(i) of Phillips (2005),
Theorem 2(a) of Sun (2011), and Theorem 4.1 of Sun (2013), all of which apply only to
equal-weighted WOS estimators with q= 2. Theorem 1(iii) for WOS estimators general-
izes Theorem 2(b) of Sun (2011). See the Supplemental Material for the proof. Q.E.D.

PROOF OF THEOREM 2: Write cαm�T (b) = cαm(b) + dαm�T (b) for some dαm�T (b) = o(1),
where cαm(b) is as in (18), and denote f (z)= Pr0[F∗

T > z]. Taylor expanding f (z) around
cαm(b),

f
(
cαm�T (b)

) = α+G′
m

(
χαm

)
χαmω

(q)k(q)(0)(bT)−q

− dαm�T (b)G′
m

(
χαm

)[
1 +O(b)+O(

(bT)−q
)]

+ o(b)+ o((bT)−q) + o(dαm�T (b))� (33)

where f ′(cαm(b)) = −G′
m(χ

α
m)[1 + O(b) + O((bT)−q)] follows from (S.29) in the proof

of Theorem 1(iv) in the Supplemental Material. Then using f (cαm�T (b)) = α + o(b) +
o((bT)−q) in (33), we have dαm�T (b)= k(q)(0)(bT)−qχαmω(q), from which (20) follows.

Taking a similar Taylor expansion and using (S.30) in the Supplemental Material,

Prδ
[
F∗
T > c

α
m�T

] = [
1 −Gm�δ2

(
χαm

)] +G′
m�δ2

(
χαm

)
χαmω

(q)k(q)(0)(bT)−q

− 1
2
δ2G′

(m+2)�δ2

(
χαm

)
χαmν

−1

− dαm�T (b)G′
m�δ2

(
χαm

)[
1 +O(b)+O(

(bT)−q
)]

+ o(b)+ o((bT)−q) + o(dαm�T (b))� (34)

From (20), dαm�T (b)G
′
m�δ2(χ

α
m)= k(q)(0)(bT)−qG′

m�δ2(χ
α
m)χ

α
mω

(q). So the terms inG′
m�δ2(χ

α
m)

in (34) cancel to higher order, which with dαm�T (b)=O((bT)−q) gives (21). Q.E.D.

PROOF OF THEOREM 3: Fix a sequence b1 for test F∗
1�T . Given equivalent q for the two

tests and using (18), equivalent higher-order size requires that b2 = (k(q)2 (0)/k
(q)
1 (0))

1/qb1.
Thus

G′
m�δ2

(
χαm

)
χαmω

(q)k
(q)
2 (0)(b2T)

−q =G′
m�δ2

(
χαm

)
χαmω

(q)k
(q)
1 (0)(b1T)

−q� (35)

which along with (19) yields the stated relation. Q.E.D.
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PROOF OF COROLLARY 1: Using (18) and (21), and the fact that ν = (bψ)−1,

�S =G′
m

(
χαm

)
χαmω

(q)k(q)(0)(bT)−q + o(b)+ o((bT)−q)� (36)

�P(δ)= 1
2
δ2G′

(m+2)�δ2

(
χαm

)
χαmbψ+ o(b)+ o((bT)−q)� (37)

The leading terms in (36) and (37) are of equivalent asymptotic order if and only if b
and (bT)−q are of equivalent asymptotic order, which leads to the stated sequence. Q.E.D.

PROOF OF THEOREM 4: (i) Under the assumed sequence, rewrite (36) as

|�S|1/q = (
G′
m

(
χαm

)
χαm

)1/q∣∣ω(q)
∣∣1/q(

k(q)(0)
)1/q
(bT)−1

[
1 + o(1)]1/q

� (38)

which gives that T |�S|1/q = (G′
m(χ

α
m)χ

α
m)

1/q|ω(q)|1/q(k(q)(0))1/qb−1 + o(1/b). Multiplying
this with (37) (for which o(b)= o((bT)−q)) and defining am�α�q(δ) and �(q)(k) as stated,

T�P(δ)|�S|1/q = am�α�q(δ)
[(
k(q)(0)

)1/q
ψ

]∣∣ω(q)
∣∣1/q + o(1)� (39)

(ii) Write �max
P = supδ{ 1

2δ
2G′

(m+2)�δ2(χ
α
m)χ

α
m}bψ+o(b), since δ does not enter bψ. Using

this with the same steps as in part (i) yields (27).
(iii) From (38),

√|�S| = √
G′
m(χ

α
m)χ

α
m|ω(q)|k(q)(0)(bT)−q/2(1 + o(1)). Multiplying by

�max
P ,

�max
P

√
|�S| = 1

2
δ2G′

(m+2)�δ2

(
χαm

)
χαm

√
G′
m

(
χαm

)
χαm

∣∣ω(q)
∣∣k(q)(0)

×ψT−1(bT)1−q/2(1 + o(1))� (40)

Since bT → ∞, comparing any kernel or WOS tests with q = 1 and 2, ∃T s.t. ∀T > T ,

�
max�q=2
P

√
|�q=2

S |<�max�q=1
P

√
|�q=1

S |, so �max�q=2
P < �

max�q=1
P for |�q=2

S | = |�q=1
S |. Q.E.D.

PROOF OF THEOREM 5: (i) From Theorem 4(iii), we can confine attention to the q= 2
case. First, for kernel tests, from Theorem 4(ii), the optimal tradeoff is achieved by min-
imizing

√
k(2)(0)

∫ ∞
−∞ k

2(x)dx. This minimum is achieved by the QS estimator (Priestley
(1981, pp. 569–571)).

For WOS tests, from (6), the QS estimator can be represented as a WOS estimator
(7) with the Fourier basis and weights wj ∝ [1 − (j/B)2] (Priestley (1981, pp. 444, 581)),
where we have transformed B/2 �→ B for notational simplicity (without loss, as B can be
understood to be any B∗/2 set as the upper limit in (7)). We show in two parts that QS
again dominates among WOS estimators: first, for any set of weights {wj}, the Fourier
basis is optimal; second, the QS weights dominate given the choice of Fourier basis. We
sketch the proof here, with technical details in the Supplemental Material.

For the first step, fixing B and the set of weights {wj}, from Theorem 4(ii) the size-
power tradeoff depends on the choice of basis only through

√
k(2)(0), since ψ is fixed from

(14). Lemma S1 in the Supplemental Material shows that the Fourier basis minimizes
|∑B

j=1wj
∫ 1

0 φj(s)φ
′′
j (s)ds| (and thus

√
k(2)(0), from Theorem 1) for any set of weights,

up to o(1/T). The proof proceeds by considering the complex Fourier expansion of any
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φj from a given basis, φj(s)= ∑∞
l=−∞ ajle

−i2πls. For any orthonormal series,

1 =
∫ 1

0

∣∣φj(s)∣∣2
ds =

∞∑
l�l′=−∞

ajlājl′

∫ 1

0
e−i2πlsei2πl

′s ds=
∑
l

|ajl|2� and (41)

0 =
∫ 1

0
φj(s)φj′ 
=j(s)ds=

∑
l

ajlāj′ 
=j�l� (42)

where ājl is the complex conjugate of ajl. The minimization problem for real φj is then

min
{ajl}

∣∣∣∣∣
B∑
j=1

wj

∫ 1

0
φj(s)φ

′′
j (s)ds

∣∣∣∣∣ ⇔ min
{ajl}

B∑
j=1

wj
∑
l

|ajl|2l2� s.t. (41)–(42)� (43)

The proof provided in the Supplemental Material then considers a finite truncation
of the infinite Fourier series for φj , so that the problem may be re-expressed as a con-
strained trace minimization problem for a doubly stochastic matrix containing the values
{|ajl|2}. Birkhoff’s theorem gives that the extreme points of the set of doubly stochastic
matrices are the permutation matrices. Since the objective (43) is linear in the values
{|ajl|2}, and since the set of doubly stochastic matrices is compact and convex, a per-
mutation matrix achieves the minimum; we show that the minimizing permutation ma-
trix features a2j′−1�j′ = a2j′�−j′ = 1, j′ = 1� � � � �B/2, ajl = 0 otherwise. Thus, the solution is
{φ2j′−1(s)�φ2j′(s)} = {e−i2πj′s� ei2πj

′s} = {√2 cos(2πj′s)�
√

2 sin(2πj′s)}, j′ = 1� � � � �B/2, so
we have in fact selected the Fourier basis as the minimizing basis for

√
k(2)(0) for any set

of weights. See the Supplemental Material for details.
For the second step, given the use of Fourier basis functions, we wish to minimize

�(2)(k)= (
k(2)(0)

)1/2
ψ∝

(
1
B2

B∑
j=1

wjj
2

)1/2(
B

B∑
j=1

w2
j

)
=

(
B∑
j=1

wjj
2

)1/2(
B∑
j=1

w2
j

)
(44)

over the weights {wj} (subject to Assumption 3) at all points on the sequence for B, where
the fact that k(2)(0)∝ B−2

∑B

j=1wjj
2 arises from Theorem 1(ii) and the use of Fourier basis

functions (as can be seen from the proof of Lemma S1 in the Supplemental Material).
We then follow Priestley’s (1981, pp. 569–571) proof that the QS kernel minimizes �(2)(k)
among kernel functions, modified so that the proof is with respect to WOS estimators
using the Fourier basis. This result is provided in Lemma S2 in the Supplemental Material.
Combined with the fact that the Fourier basis achieves the size-power frontier for any set
of weights, QS thus dominates the size-power tradeoff for WOS estimators, and therefore
globally among the families considered here.

From Priestley (1981, Tables 6.1 and 7.1), k(2)(0)= π2/10,
∫ ∞

−∞ k
2(x)dx= 6/5 for QS.

Combining these with (27) yields (28). Numerically computing ām�α�q = supδ am�α�q(δ) for
q = 2 and α= 0�05 yields ām�α�q3π

√
10/25 ≈ 0�3368 for m= 1, ām�α�q3π

√
10/25 ≈ 0�6460

for m= 2, and ām�α�q3π
√

10/25 ≈ 0�9491 for m= 3.
(ii) As after (14), only equal-weighted orthonormal series estimators yield fixed-b

asymptotic distributions that are exact t or F . The proof of part (i) of the theorem im-
plies immediately that with equal weights, the Fourier basis achieves the frontier. Thus,
the EWP test is optimal among tests with exact t and F asymptotic fixed-b distribu-
tions. From Priestley (1981, Table 7.1), k(2)(0) = π2/6 for the Daniell kernel (i.e., the



SIZE-POWER TRADEOFF IN HAR INFERENCE 2515

EWP estimator). Further, ψ= 1 for this estimator. Combining these with (27) yields (29).
Again computing ām�α�q for q = 2 and α= 0�05, we have ām�α�2π/

√
6 ≈ 0�3624 for m= 1,

ām�α�2π/
√

6 ≈ 0�6950 for m= 2, and ām�α�2π/
√

6 ≈ 1�0211 for m= 3. Q.E.D.
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