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Abstract. We consider a canonical revenue management (RM) problem wherein a monopo-
list seller posts prices for multiple products that are for sale over a fixed horizon so as to
maximize expected revenues. Products are differentiated and subject to joint capacity con-
straints. Arriving customers are forward looking and strategize on the timing of their pur-
chase, an empirically confirmed aspect of modern customer behavior. In the event that
customersweremyopic, foundationalwork has established that staticprices are asymptotically
optimal for this problem in the regime where inventory and demand grow large. In stark
contrast, for the case where customers are forward looking, available results in mechanism
design and dynamic pricing suggest substantially more complicated prescriptions. Notably,
these results apply to settings with merely a single product type, and they are also often con-
strained by restrictive assumptions on customer type. We demonstrate that static prices
surprisingly remain asymptotically optimal in the face of strategic customers for a multi-
product setting and for a broad class of customer utilitymodels. For the single-product case,we
further show that an optimally set static price guarantees the seller revenues that are within at
least 63.2% of that under an optimal dynamic pricing policy, irrespective of regime. For utility
models outside the class we consider, we show that static prices need not be asymptotically
optimal. Nevertheless, the class of customer utility models we consider is parsimonious,
enjoys empirical support, and subsumes many of the models considered for this problem in
existing mechanism design research.We allow for multidimensional customer types and for
a customer’s disutility fromwaiting to be positively correlatedwith his valuation. Therefore,
our findings are likely to be robust and provide for a canonical RM problem a simple
prescription that is near-optimal across a broad set of modeling assumptions.
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1. Introduction
Consider the following canonical revenue management
(RM) problem:Amonopolist seller faces somefixed time
horizon over which she can sell multiple differentiated
products, subject to joint capacity constraints, via an
anonymous, posted price mechanism. Customers con-
sidering to purchase one of the products arrive over
time. Should a customer choose to make a purchase, he
must pay a price equal to the associated price posted at
the time of his purchase. The seller’s goal is to maximize
expected sales revenue.

Theproblemabove is incrediblywell understood in the
setting where customers are myopic. Myopic customers
either choose to make a purchase immediately upon ar-
rivalorelse foregotheopportunity topurchaseand“leave
the system.” Indeed, given the appropriate assumptions
onthecustomerarrivalprocess,thisproblemcanbesolved
byusingdynamicprogramming. In fact, the seller canget
away with doing something even simpler: charge fixed

prices. In an early foundational paper, Gallego and Van
Ryzin (1994) studied a single-product version of the
problemandestablished that if the seller chose tomaintain
a single price fixed at an appropriate level over the selling
horizon, she was guaranteed to earn revenues that were
close to those under an optimal dynamic pricing policy.
Specifically, they showed that such a policy was asymp-
totically optimal in a regime where the seller had a large
inventory and faced commensurately large demand. As-
ymptotic optimality of static policies was subsequently
established for themultiproduct version and other closely
related variants of the problem (Talluri and Van Ryzin
2006). The insights from this body of work are not merely
theoretical; they have been borne out in a host of practical
RM applications ranging from the problem discussed
above to substantially more complicated problems.
Technological changes have brought into question the

basic premise of myopic customers. Specifically, thanks
to the internet the search costs associated with “finding
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a deal” have reduced dramatically. Consumers have the
ability to monitor prices, obtain historical prices, and, in
certain cases, have access to tools that recommend the
optimal timing of a purchase. A burgeoning body of em-
pirical work has established that forward-looking cus-
tomers are fast becoming the norm. In summary, it is not
uncommon for customers in the digital realm to strat-
egize on the timing of their purchase. Forward-looking
customers must trade off the cost of delaying a purchase
against the potential value of securing a discount. Any
heterogeneity across customers in the nature of this trade-
off introduces the potential for intertemporal price dis-
crimination on the part of the seller, a feature essentially
absent from the model with myopic customers.

Substantially less is known about the setting where
customers are forward looking. If one were to take the
path of assuming that customers were strategic—as op-
posed to some boundedly rational model of behavior—
existing research on this problem divides broadly into
two threads:

• The first thread adopts the lens of dynamic mech-
anism design. In a nutshell, the research here has led to
optimal (but complicated) mechanisms in models that
require that all customers are homogenous in how they
value their time. Loosening this assumption appears to
lead to intractable mechanism design problems with
multidimensional types. Approximation algorithms for
the problem have also recently been proposed, but the
mechanisms remain sophisticated with restrictive as-
sumptions on customer utility models.

• The second thread forgoes optimal mechanisms,
focusing instead on dynamic pricing policies with pre-
announced price schedules. In the absence of inventory
constraints, there has been progress in computing and
characterizing the structure of optimal price schedules
for several classes of customer utility models.

Notably, all papers in both threads also consider
merely the single-product case à la Gallego and Van
Ryzin (1994). Against this backdrop, the present paper
makes the following contribution:

We demonstrate that for a broad class of customer
utility models, static pricing is asymptotically optimal
in the regime where inventory and demand grow large.
We establish our result for the multiproduct case,
where differentiated products are sold subject to joint
capacity constraints. For the single-product case, we
further show that irrespective of regime, an optimally
set fixed price guarantees the seller revenues that are
within at least 63.2% of that under an optimal dynamic
mechanism.

Our work thus bears a strikingly simple economic
message: The asymptotic optimality of static prices
established in the aforementioned foundational work
in RM extends to a general setting where customers are
forward looking. For a broad class of customer utility
models, the seller can only expect to gain a vanishingly

small amount from dynamic policies and/or mecha-
nisms that attempt to exploit the fact that customers
may strategize on the timing of their purchase. As we
will see, the class of customer utility models we con-
sider is parsimonious and subsumes a plurality ofmodels
considered in earlier research, some of which enjoy em-
pirical support. At the outset, we note two important
features for the class ofmodelswe study: First, we permit
the disutility incurred by a customer from delaying a
purchase to be positively correlated with his valuation.
Second, we allow for multidimensional customer types,
which permits for heterogeneity in both valuation aswell
as the cost of a delay. As we shall see, these features lend
robustness to our conclusions.
Notably, optimality of static prices does not emerge

from the choice of regime, but rather from the customer
utility class we consider. In particular, we show via an
example in Section 5.1 that if customer utilities lie
outside this broad class, static prices could be subop-
timal, even when inventory and demand grow arbi-
trarily large, as in the scaling regime of Gallego and
Van Ryzin (1994). Put differently, our work introduces
a classification of utility models into those that admit
static pricing as an optimal policy and those that po-
tentially call for more sophisticated policies.
It is also important to note that customers in our

study do not choosewhich product to buy. Rather, each
customer has her own desired product that she wishes
to purchase, but is forward looking—that is, strategizes
only over when (and if) to make that purchase. All
papers in the literature that study choice behavior
do so by assuming customers who are not forward
looking. On the flipside, all papers in the literature that
study forward-looking customers, including ours, do
so by ignoring choice behavior. Considering forward-
looking customers who also choose what to buy ap-
pears to be very challenging. To start with, considering
both these behavioral aspects would further increase
the dimension of a customer’s private attributes. For the
purposes of the methodology in this paper, this in-
creased dimensionality would make the analysis from
its second step (Proposition 1) onward inapplicable,
calling for novel lines of attack.
A detailed discussion of our contributions vis-à-vis

the extant literature follows in Section 1.1. Relative to
mechanism design research on this problem, we not
only derive near-optimal mechanisms for what has
been thought to be a very difficult model, but in ad-
dition show that this can surprisingly be achieved with
a fixed-price policy. Relative to the dynamic pricing
research on the special case of this problem that ignores
inventory, we provide a crisp understanding of when
static pricing policies suffice.
The paper proceeds as follows. Section 2 presents our

model, discusses the key features of the parsimonious
customer utility model we assume, and makes precise
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the problem solved by the customer and seller, re-
spectively. Section 3 formulates the more general
problem of designing a dynamic mechanism for the
problem at hand and states our main performance
guarantees for the fixed-price policy. In establishing
these results, our first step is to relax this mechanism
design problem, as presented in Section 4. In Section 5,
we establish that static pricing is asymptotically op-
timal by demonstrating lower bounds on the static
price policy that are directly comparable to the upper
bound derived from our relaxation. That section also
seeks to illustrate the limits of our analysis by dem-
onstrating a class of utility models that do not satisfy
our assumptions and for which static prices can in-
deed be improved upon, even in the fluid regime.
In Section 6, we focus on the single-product setting
and establish our regime-independent constant factor
guarantee, alongside a problem instance showing this
guarantee to be tight. Section 7 concludes with com-
ments on possible extensions and research questions
that remain.

1.1. Related Literature
Revenue management is today a robust area of study
with applications ranging from traditional domains, such
as airline and hospitality pricing, to more modern ones,
such as financial services. Among others, the texts by
Talluri andVanRyzin (2006) and Özer andPhillips (2012)
provide excellent overviews of this area.

As already discussed, Gallego and Van Ryzin (1994)
is a foundational paper that is particularly pertinent to
the present paper. Those authors introduce a model
akin to the one we study here, except with myopic cus-
tomers. The main insight in this foundational paper is
that appropriately set static prices are asymptotically
optimal in a single-product setting where available in-
ventory and demand grow large. Follow-up papers ex-
tended this result for the multiproduct case (Talluri
and Van Ryzin 2006). It has become amply clear that
the assumption of myopia is fast becoming untenable
in revenue management. Specifically, empirical work,
most notably by Moon et al. (2017) and Li et al. (2014),
has established that this forward-looking behavior
is highly prevalent. Interestingly, the paper by Moon
et al. (2017) directly estimates a customer utility model
that is a special case of the model studied in this paper.
The present paper can thus be seen as extending the
conclusions of the aforementioned foundational work to
the setting where customers are forward looking, for a
broad class of customer utility models.

Antecedent literature on RM in the face of strategic
customers that is most relevant to this paper divides
roughly into two groups. The first of these studies the
problem from amechanismdesign perspective,whereas
the second focuses attention on the design of optimal
price schedules.

Dynamic Mechanism Design. The problem we study
can naturally be seen as one of dynamic mechanism
design. An early paper by Vulcano et al. (2002) con-
siders short-lived but strategic customers arriving in
sequential batches over a finite horizon and proposes
running a modified second price auction in each pe-
riod (as opposed to dynamic pricing). Gallien (2006)
provides what is perhaps the first tractable dynamic
mechanism for a classical revenue management model
with forward-looking customers. The model he con-
siders is the discounted, infinite horizon variant of the
canonical RM model, and he shows that the optimal
dynamic mechanism can be implemented as a dynamic
pricing policy in this model. This work assumes that
a customer’s value for the product depreciates expo-
nentially at a constant rate that is common knowl-
edge. Board and Skrzypacz (2016) consider a discrete
time version of the same model and, assuming a finite
horizon, compute the optimal dynamic mechanism.
Board and Skrzypacz (2016) also require that all cus-
tomers discount at a homogenous rate that is common
knowledge. The mechanism they propose consists of
a “hybrid” of a dynamic pricing mechanism with an
end-of-season “clearing” auction. The homogeneity re-
quired for discount rates in these models is limiting.
Besbes and Lobel (2015) make the excellent point that
not permitting heterogeneity in customers’ sensitivity
to a delay might artificially limit the impact of inter-
temporal price discrimination and consequently artifi-
cially mitigate the need for dynamic pricing.
Pai and Vohra (2013) consider a substantially more

general model of (finite horizon) RM with forward-
looking customers. Customers in their model have het-
erogenous “deadlines” as opposed to discounting.When
these deadlines are known to the seller (a strong as-
sumption), the authors characterize the optimal mecha-
nism completely and show that it satisfies an elegant
“local”dependenceoncustomer reports.However,when
deadlines are private information, the authors illustrate
that the optimal dynamic mechanism is substantially
harder to characterize.
Fiat et al. (2016) study a revenue maximization prob-

lem in a contextwherein a customer’s product valuation
and the deadline to receive the product are both her
private information. The optimal mechanism is char-
acterized as follows. The seller offers a menu of con-
tracts to the customer.Each contract specifies adelivery
day and offers a randomized price drawn from a dis-
tribution that is a function of the specified delivery day.
Theauthors adopt a newwayof combining and ironing
revenue curves. They use the duality approach to com-
pute the optimal allocation rule.
In recent work, Chen and Farias (2018) consider a

model that allows for heterogeneity in customers’ dis-
utility from delaying a purchase. The authors introduce
a class of “robust” dynamic pricing policies, which they
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show are guaranteed to garner expected revenue that is
at least 29% of the revenue yielded under the seller’s
optimal direct dynamic mechanism. The class of utility
models we study subsumes those studied by Chen and
Farias (2018), and, as already discussed, we allow for
a customer’s valuation and his disutility from a delay
to be positively correlated, which is something that
Chen and Farias (2018) do not permit. Another rele-
vant mechanism design paper is by Haghpanah and
Hartline (2015). Their work can be seen as an elegant
generalization to the celebrated result of Stokey (1979).
One (coarse) interpretation of their result in the RM
context is as follows: They establish in the setting where
inventory is infinite that myopic behavior is optimal on
the customer’s part with the corresponding optimal
mechanism for the seller being an anonymous posted
price set to the static revenue maximizing price. They
do so while assuming that the customers’ loss in value
from a delay is private information. There is of course
no competition among customers in this setting—a fact
that is essential to the result. In our setting, inventory
is finite, and this makes for a fundamental change
to the problem. A customer must now compete with
other customers (as opposed to just future versions
of himself). And he must do so with asymmetric
information.

Relative to this past work that takes a mechanism
design approach to study single-product settings, and
ignoring distinctions such as discrete time modeling
versus continuous time modeling, and so forth, we
consider a general setting. Specifically, we allow for
(a) multiple products, (b) a rich class of customer utility
models, (c) heterogeneity in the sensitivity to delay, and
(d) inventory to be limited. Despite this generality, we
show that a simple policy—a fixed price—is asymp-
totically optimal. For the special case of a single product,
we also provide a uniform performance guarantee.

Setting Price Schedules in the Presence of Strategic
Customers. This stream of relevant literature foregoes
optimal mechanisms to focus exclusively on commit-
ting to (potentially time-varying) price schedules. Among
the first papers in this vain is Stokey (1979). She con-
sidered a class of customer utility functions subsumed
by the model we study wherein the functional form
prescribing a customer’s sensitivity to delay is common
knowledge. Her paper arrives at “the unexpected
conclusion” that the seller will forego the opportunity
to price discriminate entirely, setting prices at the static
revenue-maximizing price. As discussed above, those
conclusions have been strengthened substantially by
Haghpanah and Hartline (2015) using cutting-edge
techniques from dynamic mechanism design. Our
work can be seen as taking this insight further to the
harder revenuemanagement setting (where inventory is
a constraint), while simultaneously allowing for a very

general class of utility models and customer heteroge-
neity along multiple dimensions.
Borgs et al. (2014) is among the first RM papers that

consider a monopolist with the power to commit to
a price schedule. The authors consider a setting where
a firm with time-varying capacity sets prices over time
tomaximize revenues in the face of strategic customers.
Inventory cannot be carried over from one epoch to the
next (modeling a service system). Customers have ar-
rival times, deadlines, and valuations; valuations are
assumed to be independent of the arrival time and
deadline. In addition, the seller knows the fraction of
customers corresponding to each arrival time-deadline
pair. Borgs et al. (2014) show how to compute the op-
timal price schedule for this setting. It is worth men-
tioning that Said (2012) considers and solves a mechanism
design problem for a setting similar to Borgs et al. (2014),
with the exception that customers have discount rates
(as opposed to deadlines) that are homogeneous and
known, and valuations remain unobserved.
Continuing on this theme, Besbes and Lobel (2015)

consider an infinite horizon model wherein customers
arrive to the system over time and strategize on their
time of purchase. Inventory constraints are not con-
sidered. Customers have valuations and a willingness
to wait that may be correlated with their valuation. The
authors establish an elegant result—they characterize
the optimal price schedule as being cyclic and also
provide an efficient algorithm for its computation. In
our lexicon, the disutility model considered by the
authors is effectively a step function—a customer in-
curs no disutility if he makes the purchasing decision
before the deadline; otherwise, his disutility is equal to
his valuation. Consequently, viewed as function of
valuation for some fixed allocative decision, the dis-
utility function contains “jumps.” A key requirement
for our result will be that for a given allocative decision,
disutility does not increase “too quickly” with valua-
tion; a requirement that such a function clearly cannot
fulfill. In fact, we will later show that the sufficiency of
static prices rests precisely on the rate at which dis-
utility increases with valuation. Loosely speaking, as
long as this increase is sublinear (a condition we will
see is implied by a large number of models considered
in the theoretical and empirical literature), static prices
suffice. If, on the other hand, the increase can be rapid
(such as a step function), we show that in fact, static
prices do not suffice, even in an asymptotic regime.
There are a number of additional examples of this

theme in recent RM literature. Caldentey et al. (2016)
take a novel view of uncertainty and consider the dy-
namic pricing problem in a minimax setting that allows
those authors to capture uncertainty in customer valu-
ation as well as arrival times, thereby taking a “robust”
view of custom type as opposed to the prior driven view
taken by all of the other literature we have discussed, as
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well as the present paper. Liu and Cooper (2015) and
Lobel (2017) both study settings where, as opposed to
being strategic, customers are “patient,” a behavioral
model in the mold of satisficing. Both those papers
identify and show how to compute optimal cyclic pricing
policies. It is interesting to note that other researchers
have motivated cyclic pricing policies by consider-
ing price reference effects; see Hu et al. (2016) and
Wang (2016).

Vis-à-vis the work above on setting optimal price
schedules, our work sheds light on the conundrum of
when touse “promotions” (or nonstatic price paths) versus
“everyday low prices” (or static prices). We provide
a crisp understanding of when the latter suffices for RM
problems. The conditions we identify for the sufficiency
of static prices are evidently fairly general, insomuch as
they capture modeling assumptions in antecedent lit-
erature: We allow for customers to be heterogenous in
both their valuation as well as parameters impacting
their sensitivity to a delay. We assume inventory is
limited. We also permit a customer’s disutility from
waiting to be positively correlated with his valuation.
In summary, we establish that a simple fixed-price
policy is, to a first order, optimal for a broad set of
assumptions around the canonical RM problem with
strategic customers.

2. Model
Weare concernedwitha sellerwho is in chargeof selling
n differentiated products to customers in continuous
time over afixed selling season [0,T]. Products, indexed
by j ∈ {1, . . . ,n}, correspond to bundles of m different
resources, indexedby i ∈ {1, . . . ,m}. Inparticular, the jth
product is a bundle includingAij ∈ {0, 1} units of the ith
resource. Both resources andproducts are indivisible. In
the beginning of the selling season, the seller has some
given inventory of resources x0 ∈ Rm available, with no
replenishment opportunity thereafter. That is, at t � 0
the seller possesses xi0 units of the ith resource.1

During the selling season, the seller implements an
anonymous posted price mechanism by dynamically
posting prices for each product. Let πt ∈ Rn be the
posted prices at time t. In case a customer decides to
purchase a unit of product j at time t, the seller gen-
erates revenues of πj

t, and her ith resource inventory is
reduced by Aij. We denote the resource inventory the
seller possesses at time t by Xt ∈ Rm. Of course, Xt

depends on πt, but we suppress this dependence to
ease notation.We require πt to be left continuous and to
depend only on the history of the pricing and inven-
tory processes—that is, to be adapted to ^t−, where
^t � σ(πt,Xt). In addition, we require πj

t � ∞ ifXi
t− � 0

for some i such that Aij � 1, and π
j
t <∞ otherwise.

Products are highly differentiated, and each arriving
customer desires to purchase a unit of a particular

product type only. Customers desiring to purchase
product j arrive over time, according to an exogenous
Poisson process of rate λ

j
t at each time t. An arriving

customer is also endowed with a valuation for his de-
sired product, v ∈ R+, and a collection of Kj attributes,
θ ∈ RKj

+ . As we will see shortly, θ and v will jointly
parameterize the customer’s disutility from “staying in
the system.”We denote by φ, the “type” of an arriving
customer which we understand to be the tuple

φ≜ ( jφ, tφ, vφ, θφ).
Denote by Φ the set of all types φ. In the sequel, we will
make the dependence of each component on φ explicit
only when needed. After making a purchase decision,
customers exit the system. Assume that a customer of
type φ chooses to delay making a purchase decision to
time τφ ≥ tφ. We let aφ indicate whether the customer
leaves havingmade a purchase or not. Specifically, aφ � 1
if customer φ decides to purchase and the seller has
sufficient resource inventory,2 that is, Xi

τφ− > 0 for all i
such that Aijφ � 1; otherwise aφ � 0. The customer pays
then the seller the amount pφ � π

jφ
τφaφ and garners utility

U(φ, yφ) � vφaφ − pφ −M(φ, yφ),
where we define the tuple yφ ≜ (τφ, aφ, pφ). The function
M(·, ·) captures the customer’s disutility from delaying
his purchase to time τφ. The structure ofM(·, ·)will play
a significant role in the sequel as it encodes the de-
pendence of the customer’s cost to delaying a purchase
on his type. We will discuss our assumptions on this
structure shortly.
We assume that a customer’s type φ except his de-

sired product jφ is private information. Recall that a
customer’s type is specified by the tuple ( jφ, tφ, vφ, θφ).
This is in contrast with the typical model that specifies
type based only on time of arrival and valuation—that
is, (tφ, vφ); see, for instance, Aviv and Pazgal (2008),
Board and Skrzypacz (2016), Caldentey and Vulcano
(2007), Gallien (2006), and Yin et al. (2009). Putting
aside the technical challenge this creates, doing so is
important from a modeling perspective. For instance,
as we shall see, it lets us model the fact that customer
type is determined not just by valuation but also
sensitivity to delays, something that cannot bemodeled
via the more restrictive type specification.
The arrival times of customers who consider the same

product are the points of a Poisson process. We assume
that the valuation vφ is independent of the arrival time
tφ. This assumption is in analogy with a large body of
the RM literature on strategic customers. Avivand Pazgal
(2008), Besbes and Lobel (2015), Board and Skrzypacz
(2016), Gallien (2006), Vulcano et al. (2002), and Yin et al.
(2009) all make such an assumption and point out that
a primary motivation for dynamic pricing is intertem-
poral price discrimination, which remains relevant de-
spite the assumption.
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Because the only quantity dependent on θφ is the
disutility function,M(·, ·), we assume that vφ and θφ are
independent. Specifically, we may exchange any as-
sumptions on correlation between vφ and θφ with
assumptions on the structure of M(·, ·). To see how,
notice that if indeed these random variables were de-
pendent, we could always construct a common prob-
ability space on which we write θφ as some function,
say h(·, ·), of vφ and θ̂φ, where θ̂φ is indeed independent
of vφ. We can then obtain an equivalent problem by
employing the disutility function M̂ defined by

M̂ ( jφ, tφ, vφ, θ̂φ), y
( )

� M ( jφ, tφ, vφ, h(vφ, θ̂φ)), y
( )

.

Put a different way, any restrictions to the nature of the
correlation of vφ and θφ can simply be captured by
structural assumptions on the disutility functionM(·, ·),
which we discuss shortly. We prefer the latter ap-
proach, as it leads to making the assumptions on the
nature of such a dependence concrete.3 After we for-
malize the disutility model below, we provide further
discussion and examples. We make no assumptions on
the correlation between tφ and θφ.

We assume that valuations of customers desiring
product j have a cumulative density function, given by
Fj(·), and have a density function, denoted by f j(·). We
denote F̄j(·)≜ 1 − Fj(·). We make a standard assump-
tion on the valuation distributions:

Assumption 1. The virtual value function of the valuation

distribution for each product j, v − F̄j(v)
f j(v), is nondecreasing in v

and has a nonnegative root v∗j .
In the remainder of this section, we first discuss the

assumptions we place on the disutility model. We will
then move on to presenting the problems faced by
a customer in timing his decision whether and when to
purchase as well as that faced by the revenue manager
who must dynamically adjust prices knowing only the
history of prices and of purchases made thus far.

2.1. The Disutility Model
The structure of the disutility function M(·, ·) captures
precisely the dependence of the customer’s cost to de-
laying a purchase on the customer’s type.Wewill place
a set of structural restrictions on M(·, ·) that are general
enough to capture a variety of realistic models. Spe-
cifically, we assume the following:

Assumption 2. For any typeφ ∈ Φ, and any y≜ (τy, ay, py)
with τy ≥ tφ, we have:

1. M(φ, y) ≥ 0.
2. If τy � tφ, then M(φ, y) � 0.
3. M(φ, y) is differentiable with respect to vφ; denote

m(φ, y)≜ ∂
∂vφ

M(φ, y).
4. M(φ, y) is nondecreasing and concave in vφ.

Let us interpret the conditions imposed by the as-
sumptions on M(·, ·): The first assumption simply for-
malizes our interpretation of M(·, ·) as a disutility. The
second assumption effectively normalizes the disutility
function, requiring it to be zero for a delay of zero.
Together with the first assumption this implies that all
else being the same (i.e., for a given allocative decision
ay, and payment py), the customer would prefer no
delay (τy � tφ) over a positive delay (τy > tφ). The third
assumption is made for analytical convenience, and we
do not believe it is fundamental for the conclusions in
this paper. The assumption simplifies our analysis and
lends itself to notational clarity. The fourth assumption
captures the essence of the structure we impose on the
disutility incurred due to a delay and consists of two
components. The first is that this disutility is increasing
in the customer’s valuation so that high-value customers
incur a larger cost to delaying a purchase than those that
place a lower value on the product. This assumption is
natural and has widespread support in both theoreti-
cal and empirical literature. The paper by Stokey (1979)
on intertemporal price discrimination provides
a foundation on which to make such an assumption.
Modern papers in RM and service operations more
generally, also make such an assumption; see, for in-
stance, Katta and Sethuraman (2005), Gallien (2006),
Avivand Pazgal (2008), Doroudi et al. (2013), Kilcioglu
and Maglaras (2015), Afèche and Pavlin (2016), Board
and Skrzypacz (2016), Moon et al. (2017), Gurvich
et al. (2018), and Nazerzadeh and Randhawa (2018).
The second part of the assumption can be interpreted
as controlling the rate at which this disutility can grow
with the customer’s value. Our requirement of con-
cavity implies that this growth must be sublinear. We
will see shortly that this assumption again finds
widespread support in the literature.
As it turns out, a number of concrete examples of

disutility functions considered in the literature fit the
assumptions above. We discuss these families of dis-
utility functions next:

Monitoring Cost. Starting with the classical work of
Diamond (1971), a common assumption in the economics
literature onpricing that results in the ability to violate the
so-called law of one price, has been the presence of
a “search” or monitoring cost. The notion of search
cost here could correspond to any effort the customer
might expend in monitoring prices. It is further worth
noting that a search cost model has been empirically
verified to provide a good fit in an empirical study of
customer purchasing decisions at a clothing retailer that
practices dynamic pricing (Moon et al. 2017). A natural
model for the search cost would simply assume that it
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grows linearly in the time the customer monitors prices.
Specifically,

M(φ, y) � θφ(τy − tφ)+,
where θφ > 0 is the unit-time search cost incurred by
a customer of type φ. This is a canonical model in the
economics literature; see, for example, Rob (1985),
Anderson and Renault (1999), or Ellison and Wolitzky
(2012). Clearly, this model satisfies the requirements of
Assumption 2.

Recall that we require that θφ be independent of vφ,
so the unit time search cost above is independent of
valuation. But one may easily go further and specify
an explicit dependence of search cost on vφ; for
instance,

M(φ, y) � θφhjφ(vφ)(τy − tφ)+.
If hj(·) were a nonnegative, nondecreasing, concave
function, then again, this more general disutility func-
tion satisfies the requirements of Assumption 2. A number
of recent pieces of research that attempt to model cus-
tomers’ disutility from a delay in service systems, in-
cluding Doroudi et al. (2013), Afèche and Pavlin (2016),
and Gurvich et al. (2018), assume such a model, taking
hj(·) to be a linear function. Nazerzadeh and Randhawa
(2018) and Katta and Sethuraman (2005) assume that
hj(·) is sublinear; a closely related but slightly more
general function class than the concave functions we
permit.

Finally, we could generalize the model further, spe-
cifically by taking

M(φ, y) � θφhjφ(vφ)gjφ (τy − tφ).
If in addition to the earlier requirement on hj(·), gj(·)
were a nonnegative function with gj(0) � 0, we would
still satisfy the requirements ofAssumption 2. Thiswould
allow us in turn to capturemodels of disutilitywithmore
general dependencies on delay, such as those in Afèche
and Mendelson (2004) or Ata and Olsen (2009).

Exponential Discounting. In addition to monitoring
costs, disutility could also arise because the product is
“perishable” so that its value to the customer decays
over time. A canonical model for this sort of disutility
arises as follows: One assumes that the useful lifetime
of a perishable product to a customer of type φ fol-
lowing his arrival is exponentially distributed with pa-
rameter θφ. If the customer actually received the product
at a time τy > tφ, his expected disutility from the delay
(due to the loss in the usable lifetime of the product) is
then simply

M(φ, y) � vφay (1 − exp(−θφ(τy − tφ)).

Put a different way, this equivalently states that

U(φ, y) � vφ exp(−θφ(τy − tφ))ay − py,

which in turn is a canonical model both in the economics-
oriented literature on dynamic pricing for perishable
products such as Board and Skrzypacz (2016) and
also the revenue-management literature—for example,
Gallien (2006) and Aviv and Pazgal (2008). Of course, it is
easy to see that this model of disutility also satisfies the
requirements of Assumption 2.
The above are merely examples of disutility func-

tions that satisfy Assumption 2. They serve to illustrate
that, although we do indeed need to place some re-
strictions on the nature of the disutility function, the
assumptions we have placed are capable of capturing
important phenomena. We next discuss the problems
faced by the customer and the seller, respectively.

2.2. The Customer and Seller Problems
The dynamic pricing policy π utilized by the seller is
assumed to be common knowledge. Recall that this
policy can depend only on the sales process and his-
torical prices. In particular, the seller does not have the
ability to observe customers who have delayed their
purchase and remain in the system nor customers who
left without making a purchase, either immediately
upon arrival or after some delay. The seller is assumed
to have the power to commit to the pricing policy.
This assumption now enjoys excellent support in the
revenue management setting thanks to antecedent re-
search. See Liu andVanRyzin (2008) for a comprehensive
justification from an RM perspective or Board and
Skrzypacz (2016) for one from an economic perspective.
Now consider a customer of type φ who decides to

reveal himself to the seller and make a purchase de-
cision at some time t ≥ tφ. Of course, if at least one of the
required bundled resources for the customer’s desired
product jφ is out of stock, then the price for product jφ
posted by the seller is formally infinite, so that the
customer will choose to leave without making a pur-
chase (so that aφ � 0). Otherwise, if no other customers
present themselves at time t, then customer φ chooses
to make a purchase (setting aφ � 1) if and only if doing
so yields at least as much utility as not making a pur-
chase. Finally, if multiple customers present themselves
to the seller at time t for either the same or different
products (an unlikely event but one that cannot be ruled
out), the sellermakes the allocation in a random order. If
at least one resource does not have enough inventory to
satisfy all customers’ demand, then clearly some cus-
tomers will not be able to make a purchase; denote by
Bφ
t the random indicator that the seller allocates prod-

uct jφ to customer φ if he presents himself to make
a purchase at time t. Of course, Bφ

t � 1 if Xi
t− > 0 for all
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resource i with Aijφ > 0 and φ is the only customer to
request a product at time t and Bφ

t � 0 if Xi
t− � 0 for

some resource i with Aijφ � 0. In summary, the maxi-
mum utility that customer φ can garner should he de-
cide to reveal himself to the seller and make a
purchasing decision at time t is

U*(φ, t)≜ vφ − π
jφ
t −M φ, (t, 1, πjφ

t )
( )

if Bφ
t � 1

−M (φ, (t, 0, 0)) otherwise.

{

Customers strategize about the time of their purchase
and use stopping rules contingent on their type that
constitute a symmetric Bayes Perfect Nash equilibrium.
Such an equilibrium can be formally defined by a map
τπ from types to stopping rules.4 In particular, at each
point of time t, each customer can observe his desired
product’s historical prices up to time t (historical sales
are only observed by the seller). For customer type φ,
τπ(φ)≜ τφ is a stopping rule with respect to the fil-
tration generated by product jφ’s historical price pro-
cess 3

jφ
t � σ π

jφ
s : s ∈ [0, t]

{ }( )
. The stopping rule is

derived as a solution to the optimal stopping problem

sup
τφ≥tφ

E−φ U*(φ, τφ)|3jφ
tφ

[ ]
,

where the expectation assumes that other customers
also use type-dependent stopping rules given by τπ.
We will later demonstrate the existence of such an
equilibrium stopping rule for a specific pricing policy.
We do not prove existence in general.

Now consider that the seller uses the pricing policy
π, and let τπ be an equilibrium stopping rule for such
a policy. Similarly, let pπ be the induced equilibrium
payment process. The seller’s expected revenue is then
given by

Jπ,τπ x0,T( ) � E
∑
φ∈hT

pπφ

[ ]
,

where ht ≜ {φ : tφ ≤ t} is the set of customer types that
arrive up to time t, for all t ∈ [0,T]. The task of finding
an “optimal” policy is an apparently challenging one.
In fact, simpler problems than this are already intrac-
table: First, the customer stopping rule τπ is for general
pricing policies, a potentially complicated and hard to
characterize function of π. That is, even having fixed
a policy π, characterizing an equilibrium stopping rule
is in general a challenging task. Second, the potential
presence of customers in the system over an extended
period of time (as they contemplate a purchase) induces
long-range dependencies in the pricing process, so that
even given a fixed stopping rule (i.e., fixing customer
behavior), finding an optimal pricing policy may not be
a simple task in that traditional dynamic programming

approaches fail. In summary, the seller’s problemoffinding
an optimal pricing policy (assuming such a policy exists) is
intractable for the model we have described so far. Even
assuming we could surmount these challenges, other
issues remain. For instance, it may be difficult to cal-
ibrate such a policy to data given that type distributions
would need to be inferred from transactions. If the
pricing policy chosen by the seller induced complex
equilibrium stopping rules, the predictive power of the
model might be an issue.
So motivated, we will in the next section take the

approach of computing an upper bound on any pricing
policy and illustrate the power of a simple, fixed price
policy by comparing the revenues the seller can hope to
earn under that policy to our upper bound.Our approach
to computing an upper boundwill be driven by viewing
the seller’s problem through the lens of dynamic mech-
anism design. Because the class of dynamic mechanisms
subsumes the class of dynamic pricing policies, we can
construct a dynamic mechanism design problem that
yields an upper bound to the seller’s revenue under any
dynamic pricing policy. We illustrate that fixed prices
continue to remain powerful in the setting where cus-
tomers are forward looking.

3. Efficacy of Static Prices
As discussed in the Introduction, Gallego and Van
Ryzin (1994) proposed the use of a simple static price
policy for revenue management problems of the type
we have just discussed. They showed that in a single-
product setting (n � m � 1) where inventory and the
customer arrival rate grow large, such a policy is as-
ymptotically optimal. Follow-up papers generalized
this result for multiple products. This body of work is
considered seminal for its simple message to practi-
tioners: Static prices are to a first order, optimal; dy-
namic pricing can only hope to capture second order
benefits. Of course, in settings where customers strat-
egize on the timing of their purchase—the topic of this
paper—it is no longer clear that static prices retain this
desirable property. In fact, the raison d’être for “pro-
motional pricing” is intertemporal price discrimination
that seeks to arbitrage differences in the disutility in-
curred by customers from a delayed purchase.
The primary economic insight of this paper is that, in

fact, the value of this intertemporal price discrimination
is limited for the broad class of utility models we con-
sider. Specifically, static pricing remains to be, to a first
order, optimal: It approaches the revenues earned under
an optimal dynamic mechanism in the very regime
studied by Gallego and Van Ryzin (1994).
In what follows in this section, we first consider

a static price policy that is optimal in a “fluid” setting.
Under such a static policy, it is a dominant strategy for
customers to not delay a purchase decision—an attractive
property from the perspective of the seller.Wewill then
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turn to producing upper bounds on performance under
any pricing policy and to that end consider the still
more general task of producing an optimal dynamic
mechanism. Finally, we will state our main results.
Subsequent sections are devoted to establishing these
results.

3.1. A Candidate Static Price Policy
We define and briefly motivate static price policies: Let
π̂ be an arbitrary measurable function from [0,T] toRn+,
and consider the following fluid optimization problem:

maximize
π̂

∑n
j�1

∫ T

0
λ
j
tπ̂

j
tF̄

j π̂
j
t

( )
dt (1)

subject to
∑n
j�1

Aij

∫ T

0
λ
j
tF̄

j π̂
j
t

( )
dt ≤ xi0, ∀ i.

This problem treats customers as myopic and infinitesi-
mal (hence, fluid). It is easy to show that it admits an
optimal solution that is static. In particular, an optimal
solution to the following optimization problem is also
optimal for (1):

maximize
{π̂j∈R+ ,∀j}

∑n
j�1

∫ T

0
λ
j
tdt

( )
π̂jF̄j

(
π̂j

)
subject to

∑n
j�1

Aij

∫ T

0
λj
tdt

( )
F̄j

(
π̂j

)
≤ xi0, ∀ i.

Let πFP x0,
∫ T
0 λtdt

( )
be an optimal solution and

J f x0,
∫ T
0 λtdt

( )
be the optimal value of this optimization

problem. To ease notation, unless necessary, we hence-
forth drop the arguments in πFP and J f . Note that in
the single-product case—that is, when the seller sells
a single product produced using a single resource
(m � n � 1)—Gallego and Van Ryzin (1994) showed
that πFP takes the form

πFP x0,
∫ T

0
λtdt

( )
� F̄−1 min

x0∫ T
0 λtdt

, F̄ v∗( )
{ }( )

.

We consider the following static pricing policy πFP �
πFP,j
t : j � 1, . . . ,n, t ∈ [0,T]

{ }
:5,6

π
FP,j
t � πFP,j if Xi

t− > 0, ∀ i with Aij > 0
∞ otherwise.

{
Now observe that if the seller implements πFP, it is a
(weakly) dominant strategy for customers to not delay
a potential purchase (or leave immediately if no pur-
chase is made):

Lemma 1. For the static pricing policy πFP, the myopic
stopping rule, τFPφ � tφ is weakly dominant.

The proof of this fact is immediate from the definition
of U∗(φ, t): Under any fixed price policy, U∗(φ, t) is
nonincreasing on t ≥ tφ on every sample path, because
of the first two requirements of Assumption 2. In fact, if
the disutility function M(·, ·) were strictly positive for
positive delays, myopic behavior would be a strongly
dominant strategy.
We next set out to construct a benchmark policy with

which to compare the revenue under this fixed price
policy.

3.2. A Dynamic Mechanism Design Benchmark
As discussed earlier, the task of optimizing over pricing
policies is a nontrivial one, and even characterizing the
optimization problem appears to be a challenging task.
As such, our goal in this section is to produce an upper
bound, which we will denote J∗(x0,T), on the revenue
under any pricing policy. We will produce this upper
bound by allowing the seller to use a general dynamic
mechanism for the problem at hand. Specifically, dy-
namic mechanisms subsume dynamic pricing policies
(in the sense of strategic equivalence), so that the seller’s
revenue under the optimal dynamic mechanism serves
as an upper bound on the revenue the seller can earn
under any dynamic pricing policy. We care about the
dynamic mechanism design problem only insomuch as
it yields a useful upper bound, so that issues concerning
the practical relevance of a general dynamic mechanism
are not relevant to our discussion.
To set up the dynamic mechanism design problem,

we begin by introducing some relevant notation. We
denote by ht ≜ {φ : tφ ≤ t} the set of customer types that
arrive prior to time t. We restrict ourselves to direct
mechanisms. A mechanism specifies an allocation and
payment rule that we encode as follows: Customer φ
is assigned

yφ ≜ (τφ, aφ, pφ),
where τφ ≥ tφ is the time of allocation, aφ ∈ {0, 1} is an
indicator for whether a unit of the φ-customer’s desired
product is allocated, and pφ ≥ 0 is the price paid by the
customer. Note that, unlike the dynamic pricing set-
ting, the customer explicitly reports his type to the seller
in this setup, although he may potentially lie. In par-
ticular, if a customer of type φ is truth telling, he reports
his type asφ, otherwise as some type φ̂ 	� φ. Encoded in
this report is the customer’s time of arrival. Of course, if
the customer lies, his reported time of arrival, tφ̂, cannot
be earlier than his true time of arrival, tφ. When the
seller receives a report of type φ, she then determines
whether that customer is allocated his desired good,
when he is allocated the good, and at what price
according to yφ. Note that yφ may depend on the re-
ports of some subset of customers, but the structure of
this dependence must be causal and satisfy other con-
straints that we now formalize.

Chen, Farias, and Trichakis: Static Prices in the Face of Strategic Customers
Management Science, Articles in Advance, pp. 1–21, © 2019 INFORMS 9



Denote by yt ≜ {yφ : τφ ≤ t} the set of decisions made
up to time t. Finally, denote the seller’s information set
by *t, the filtration generated by the customer reports
made up to time t, and allocation decisions prior to
time t. Specifically, *t � σ (ht, yt−). A feasible mechanism
satisfies the following properties:

1. Causality: τφ is a stopping timewith respect to the
filtration *t. Moreover, aφ and pφ are *τφ -measurable.

2. Limited Inventory: The seller cannot allocate prod-
ucts by overconsuming any resource:

∑
φ∈hT Aijφaφ ≤ xi0,

almost surely (a.s.) for all i.
We denote by =, the class of all such rules, yT. The

seller collects total revenue

Π
(
yT

)
≜

∑
φ∈hT

pφ,

whereas the utility garnered by customer φ is U(φ, yφ).
The utility garnered by customer φwhen he reports his
true type as φ̂ is then given by U(φ, yφ̂), where cus-
tomer φ can only reveal his arrival no earlier than his
true arrival (i.e., tφ̂ ≥ tφ).

The seller now faces the following optimization prob-
lem that seeks to find an optimal dynamic mechanism:

maximize
yT∈=

E
[
Π

(
yT

)]
subject to E−φ[U(φ, yφ)] ≥ E−φ U(φ, yφ̂)

[ ]
,

∀ φ, φ̂, s.t. jφ̂ � jφ, tφ̂ ≥ tφ (IC)

E−φ[U(φ, yφ)] ≥ 0, ∀ φ. (IR)

(2)

Denote by J*(x0,T) the optimal value obtained in the
problem above. Chen and Farias (2018) establish that
in the single-product, single-resource setting, for any
dynamic pricing policy there exists a direct dynamic
mechanism that satisfies the constraints of (2) and has
the objective value equal to the seller’s revenue under the
dynamic pricing policy. By extending their arguments in
a multiproduct setting, we have the following result:

Lemma 2 (Valid Benchmark). For any pricing policy and
corresponding stopping rule, (π, τπ), we have that

Jπ,τπ(x0,T) ≤ J*(x0,T).
A formal proof is omitted for brevity, but can be readily
derived based on the work of Chen and Farias (2018).
The upshot of this result is that we now have an upper
bound on what the seller can hope to attain under any
dynamic pricing policy that we can characterize as the
optimal value to amore familiar—but still challenging—
optimization problem, namely, (2). In a subsequent
section, we will further analyze this upper-bounding
optimization problem to facilitate a comparison with
the revenues under the static pricing policy described
in the previous section. The second salient point worth
discussing here is that the upper bound we have set

up is with respect to a substantially broader class of
mechanisms than simply those that correspond with
anonymous dynamic pricing. As revenue management
evolves, it stands to reason that the seller may want to
experiment with approaches to selling that transcend
the traditional anonymous posted price approach; in
practice, we see experiments with rebates, auction for-
mats, and the like. Assuming we are able to show that
static price revenues compare favorably with our upper
bound, we will have established that such pricing pol-
icies are desirable, not just in comparison with general
dynamic pricing policies, but with respect to any (rea-
sonable) mechanism the seller might hope to concoct.

3.3. Principal Results
Our principal result establishes that static pricing poli-
cies offer surprisingly strong performance, even in the
face of strategic customers. Specifically, we compare the
revenue the seller may hope to earn under the static
pricing policy—namely, the quantity JπFP ,τπFP (x0,T)—
with an upper bound on the revenue she may hope
to earn under essentially any reasonable selling
mechanism—namely, J∗(x0,T). We consider the fluid
regime studied originally by Gallego and Van Ryzin
(1994), whereby inventory and the scale of demand
grow large simultaneously. Now our setting is similar,
with the obvious exception that we allow customers to
be forward looking (as opposed to myopic and short
lived). Consequently, given the broad impact of the
original performance guarantee provided by Gallego
and Van Ryzin (1994), a performance guarantee in the
fluid regimehas obvious value.Other authors have already
noted that this sort of scaling preserves the potential
relevance of intertemporal price discrimination and
mechanismdesignmore generally—for example, Besbes
and Lobel (2015) and Liu and Cooper (2015).
In particular, followingGallego andVanRyzin (1994),

we consider a sequence of problems, parameterized
by n. In the nth problem, we have initial inventory x(n)0 �
nx0, and customers arrive at the rate λ(n) � nλ. We
denote by a superscript (n) quantities relevant to the nth
model in this scaling. So, for instance, J(n)

πFP,τπFP
(nx0,T)

denotes the revenue under the static price policy in the
nth model. Colloquially, as n grows, we are scaling the
inventory and volume of demand in the problem in-
stance. All other aspects of the model—namely, the
customer utility model and the horizon T—stay un-
changed. Our main result is a guarantee that shows that
for the broad class of customer utility models, we con-
sider, the static price policy is asymptotically optimal in
the “fluid regime.” Specifically, wewill show in Section 5
that, provided Assumptions 1 and 2 are satisfied,

J(n)
πFP ,τπFP

(nx0,T)
J*,(n)(nx0,T) � 1 −O

1��
n

√
( )

.
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This result makes a strikingly simple economic state-
ment. Static pricing policies constitute, to a first order,
an optimal selling mechanism; any gains onemay hope
to make from dynamic pricing and/or sophisticated
selling mechanisms must necessarily contribute a van-
ishingly small incremental revenue to the seller. Our
result provides a significant generalization to the con-
clusions drawnbyGallego andVanRyzin (1994).Whereas
their conclusions rest heavily on the assumption that
customers were myopic and short lived, our analysis
shows that those conclusions are robust to potentially
long-lived customers who strategize on the timing of
their purchase.

Furthermore, for the single-product case, we are able
to derive another performance guarantee for static
prices that is uniform and nonasymptotic—that is, it is
relevant over all parameter regimes. In particular, in
Section 6.1, we show that, provided n � m � 1 and
Assumptions 1 and 2 are satisfied, we have

JπFP ,τπFP (x0,T)
J∗(x0,T) ≥ 1 − 1

e
.

In addition, we show that this guarantee is also tight in
the sense that a specific problem instance achieves the
bound implicit in the guarantee. This result comple-
ments our fluid regime result by stating that, irrespective
of regime or parameter settings, the static price policywill
always achieve at least ∼ 63.2% of the revenue the seller
can hope to earn under any dynamic mechanism for the
single-product setting. Constant factor guarantees of this
nature have assumed a place of prominence in a number
of operational problems ranging from revenue man-
agement to inventory and supply chainmanagement.We
interpret this guarantee as a strong indicator of the ro-
bustness of static prices across parameter regimes.

For utilitymodels that lie outside the classwe consider—
that is, if Assumption 2 does not hold—we show via
an example that static prices could be suboptimal even
when inventory and demand grow large. This finding
reinforces that the fluid regime considered here preserves
the potential relevance of intertemporal price discrimi-
nation and mechanism design more generally, as noted
above.

4. Analyzing the Dynamic Mechanism
Design Problem

The optimal dynamic mechanism design problem that
serves to yield the upper bound for our setting, (2), is
challenging and has resisted optimal solution as discussed
in the literature review. Here, we find it convenient to
relax problem (2) with the goal of computing tractable
upper bounds. In particular, we consider a simpler,
upper bounding, “one-dimensional”mechanism design
problem where customers can only misrepresent their

valuation. This mechanism design problem serves as
a relaxation to the optimal mechanism design problem
defining J*(x0,T). We derive an upper bound on the
optimal value of this simpler mechanism design prob-
lem using a Myersonian approach. Put very loosely, our
upper-bounding problem is stated in terms of a “virtual
allocation” rule āφ that is a function of the allocation rule
aφ and the disutility of customer φ. Our taskwill then be
one of finding a dynamic virtual allocation policy that
maximizes the expected sum of virtual values that are
virtually allocated, subject to an inventory constraint
that must bemet in expectation. Putmore precisely, let
us define the virtual allocation rule

āφ≜E−φ [aφ −m(φ, yφ)],

where, recall that m(φ, y)≜ ∂
∂vφ

M(φ, y). Consider the
following problem, whose optimal value we denote
by J̄*(x0,T):

maximize
yT∈=

E
∑
φ∈hT

vφ − F̄jφ(vφ)
f jφ(vφ)

( )
āφ

[ ]
(3)

subject to E
∑
φ∈hT

Aijφ āφ

[ ]
≤ xi0, ∀ i

āφ ∈ [0, 1], ∀ φ with vφ > 0.

Our main result in this section is that the optimal value
of this program, J̄*(x0,T), is an upper bound on J*(x0,T).
The value of this result lies in the structure of the
program (3), which is substantially more tractable than
the program defining the optimal dynamic mechanism.
Specifically by appropriately “dualizing” the inventory
constraint in this program in the next section, we will
be able to directly compare J̄*(x0,T) with the revenue
under the static price policy.

4.1. A Relaxed Problem
Let us denote by φv′ the report of customer φ when he
distorts his valuation to v′. In particular, let

φv′ ≜ ( jφ, tφ, v′, θφ), ∀v′ ≥ 0,

and consider the following weaker incentive compat-
ibility constraint:

E−φ [U(φ, yφ)] ≥ E−φ
[
U(φ, yφv′)

]
, ∀ φ, v′. (IC′)

(IC′) is a relaxation of (IC) because we only allow for
distortions of valuation.We now derive an upper bound
on the expected price paid by customerφ for any feasible
mechanism that satisfies (IR) and (IC′). The result lies on
an appropriately general envelope theorem and uses our
assumption on the concavity of M(·, ·) in vφ.
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Lemma 3. If (IC′) and (IR) hold, then for any φ,

E−φ [pφ] ≤ vφāφ −
∫ vφ

v′�0
āφv′ dv

′.

Proof. First, we show that (IR) implies that

E−φ [U(φ0, yφ0
)] � 0. (4)

To see this notice that by definition and Assumption 2,
Part (1),

E−φ [U(φ0, yφ0
)] � 0 · E−φ[aφ0

] − E−φ[pφ0
]

− E−φ[M(φ0, yφ0
)] ≤ 0.

But because (IR) requires E−φ [U (φ0, yφ0
)] ≥ 0, we must

have (4). Therefore, we have E−φ[pφ0
]�0 and E−φ

[M(φ0,yφ0
)]�0.

Now, define u(φ, y)≜ ∂
∂vφ

U(φ, y). Applying the en-
velope theorem, we have

E−φ [U(φ, yφ)] �
∫ vφ

v′�0
E−φ u φv′ , yφv′

( )[ ]
dv′

+ E−φ [U(
φ0, yφ0

)]
�

∫ vφ

v′�0
E−φ aφv′ −m φv′ , yφv′

( )[ ]
dv′

+ E−φ [U(φ0, yφ0
)]

�
∫ vφ

v′�0
E−φ aφv′ −m φv′ , yφv′

( )[ ]
dv′

�
∫ vφ

v′�0
āφv′ dv

′. (5)

The first equality follows from Fubini’s Theorem and
the Envelope Theorem [specifically, theorem 2 ofMilgrom
and Segal (2002)]. The second equality follows the defi-
nition of u(·), and the third equality follows from (4).
Consequently,

E−φ [pφ] � vφE−φ [aφ] − E−φ[U(φ, yφ)] − E−φ[M(φ, yφ)]
� vφE−φ [aφ] −

∫ vφ

v′�0
āφv′dv

′ − E−φ [M(φ, yφ)]

� vφāφ −
∫ vφ

v′�0
āφv′dv

′ + vφE−φ [m(φ, yφ)]
− E−φ [M(φ, yφ)]

� vφāφ −
∫ vφ

v′�0
āφv′dv

′ + vφE−φ [m(φ, yφ)]
− E−φ [M(φ, yφ)] + E−φ [M(φ0, yφ0

)]
≤ vφāφ −

∫ vφ

v′�0
āφv′dv

′.

The first equality follows from the definition of U(·).
The second equality follows from our application of the
envelope theorem above. The third equality follows
from the definition of āφ, and the fourth equality from

the property that E−φ [M(φ0, yφ0
)] � 0. Finally, by the

assumed concavity ofM(·) in vφ, we have the inequality
that M(φ, yφ) ≥ vφm(φ, yφ) +M(φ0, yφ0

). ■

We next prove a corollary to this lemma that allows
us to replace the objective in the optimal mechanism
designproblem, (2),with an analytically tractable quantity.
Specifically, we have

Lemma 4. If (IC′) and (IR) hold, then for any φ,

E
∑
φ∈hT

pφ

[ ]
≤ E

∑
φ∈hT

vφ − F̄jφ(vφ)
f jφ(vφ)

( )
āφ

[ ]
.

Proof. We observe that Lemma 3 implies:

E
∑
φ∈hT

pφ

[ ]
� E

∑
φ∈hT

E−φ [pφ]

[ ]

≤ E
∑
φ∈hT

vφāφ −
∫ vφ

v′�0
āφv′dv

′
[ ]

.

We now prove that the right-hand side is the required
quantity by changing the order of integration:

E
∑
φ∈hT

vφāφ −
∫ vφ

v′�0
āφv′dv

′
[ ]

� E
∑
φ∈hT

E
jφ
vφ vφāφ −

∫ vφ

v′�0
āφv′dv

′
[ ][ ]

� E
∑
φ∈hT

∫ ∞

vφ�0
vφāφ −

∫ vφ

v′�0
āφv′dv

′
( )

f jφ(vφ)dvφ
[ ]

� E
∑
φ∈hT

∫ ∞

vφ�0
vφāφ f jφ(vφ)dvφ

[

−
∫ ∞

v′�0
āφv′

∫ ∞

vφ�v′
f jφ(vφ)dvφdv′

]

� E
∑
φ∈hT

∫ ∞

vφ�0
vφ − F̄jφ(vφ)

f jφ(vφ)
( )

āφ f jφ (vφ)dvφ
[ ]

� E
∑
φ∈hT

Ejφ
vφ

[
vφ − F̄jφ (vφ)

f jφ (vφ)
( )

āφ

][ ]

� E
∑
φ∈hT

vφ − F̄jφ(vφ)
f jφ(vφ)

( )
āφ

[ ]
.

Here, the expectation Ejφ
vφ[·] in the first and the fifth

equalities is with respect to vφ that has the probability
density function (p.d.f.) f jφ (·), the second equality fol-
lows from the fact that vφ is independent of θφ and tφ,
the third equality follows from an exchange in the order
of integration, and the fifth equality again uses the fact
that vφ is independent of θφ and tφ. This completes the
proof of the lemma. □

The next lemma establishes a second implication of
the constraints (IC′) and (IR).
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Lemma 5. If (IC′) and (IR) hold, then for any φwith vφ > 0,
we have

āφ ∈ [0, 1].

Proof. Consider any φ ∈ Φ and any v, v′ ∈ R+. (IC′)

implies E−φ [U (φv,yφv
)] ≥E−φ

[
U
(
φv,yφv′

)]
and E−φ ·[

U
(
φv′ ,yφv′

)]
≥E−φ [U (φv′ ,yφv

)]. Adding these two in-
equalities, and writing them explicitly [using the def-
inition of U(·)], yields

(v − v′)
(
E−φ [aφv

] − E−φ
[
aφv′

])
≥

(
E−φ

[
M

(
φv′ , yφv′

)]
− E−φ

[
M

(
φv, yφv′

)])
+ (E−φ [M (φv, yφv

)] − E−φ [M (φv′ , yφv
)]).

Now, the concavity of M(·) in v from Assumption 2
yields

E−φ M φv′ , yφv′

( )[ ]
− E−φ

[
M

(
φv, yφv′

)]
≥ E−φ

[
m

(
φv′ , yφv′

)]
v′ − v( ),

and

E−φ [M (φv, yφv
)] − E−φ [M (φv′ , yφv

)]
≥ E−φ [m (φv, yφv

)] v − v′( ),
which upon substitution in the previous inequality yields:

v − v′( ) E−φ[aφv
−m(φv, yφv

)] − E−φ aφv′ −m φv′ ,yφv′

( )[ ]( )
≥ 0.

Therefore, we conclude that E−φ[aφv
−m(φv, yφv

)] is
nondecreasing in v. But (5) and (IR) imply that for
any vφ ≥ 0,

E−φ[U(φ, yφ)] �
∫ vφ

v′�0
E−φ aφv′ −m φv′ , yφv′

( )[ ]
≥ 0,

which, coupled with the fact that E−φ[aφv
−m(φv, yφv

)]
is nondecreasing in v, lets us conclude readily that

E−φ[aφv
−m(φv, yφv

)] ≥ 0,

for allv> 0.Finally, the fact that aφ ∈ {0, 1} andm(φ, yφ) ≥ 0
implies

E−φ[aφ −m(φ, yφ)] ≤ 1

for all φ. Together, these two inequalities complete
the proof. ■

The next lemma establishes that we cannot allocate
more inventory than available:

Lemma 6. For any feasible policy yT ∈ =, for any i,we have

E
∑
φ∈hT

Aijφ (aφ −m(φ, yφ))
[ ]

� E
∑
φ∈hT

Aijφ āφ

[ ]
≤ xi0.

Proof. Because for any feasible policy and any i,
we have

∑
φ∈hT Aijφaφ ≤ xi0, and because Aijφ ≥ 0 and

m(φ, yφ) ≥ 0 under Assumption 2, Part 3, the claim is
immediate. ■
We are now ready to revisit our relaxation to the

optimal dynamic mechanism design problem (2). Spe-
cifically, recall the relaxed problem, (3), that we pre-
sented at the outset of this section, whose optimal value
we denote by J̄*(x0,T). Lemmas 4–6 yield the following
result:

Proposition 1. The optimal value of the problem (3) is an
upper bound to that of the optimal mechanism design
problem, (2):

J̄*(x0,T) ≥ J*(x0,T).
As it turns out, this relaxed problem will permit an
exact analysis that we delve into in the next section.
That analysis will in turn enable a comparison with
the expected revenues under the static price policy.

5. Asymptotic Optimality of Static Prices
We are now ready to derive our principal result—
namely, that static prices are asymptotically optimal
for our fairly general revenuemanagement problem in
the face of strategic consumers, for a broad class of
utility models. In particular, our analysis proof proceeds
by comparing JπFP,τπFP x0,T( ) with J̄*(x0,T), the upper
boundderived in Proposition 1, and yields the following
result.

Theorem 1. Provided Assumptions 1 and 2 are satisfied,we
have

J(n)
πFP ,τπFP

(nx0,T)
J∗,(n)(nx0,T) � 1 −O

1��
n

√
( )

.

Before presenting the proof, let us summarize what
Theorem 1 enables us to establish. We set out to com-
pare the performance of static price policies against
a family of selling mechanisms that subsumed dynamic
pricing. Specifically, our benchmark, which is essen-
tially an intractable optimal dynamic mechanism prob-
lem (Pai and Vohra 2013), includes virtually any selling
format one may imagine. The principal insight in this
paper is the surprising fact that amechanism as simple as
a static posted price is, to afirst order, optimal. Theorem 1
makes this notion precise by showing that the expected
revenue under an optimally set static price is optimal in
the regime where inventory and demand grow large.

Proof of Theorem 1. Recall that in the fluid regime, we
consider a sequence of problems parameterized by n. In
the nth problem, we have x(n)0 � nx0, and λ

(n)
t � nλt for

all t ∈ [0,T] and denote by a superscript (n) quantities
relevant to the nth model in this scaling. All other aspects
of the model—namely, the customer utility model and
the horizon T—stay unchanged.
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We first establish that the optimal value of the re-
laxed mechanism design problem (3), J̄*(x0,T), is upper
bounded by the optimal value to the fluid program,
J f x0,

∫ T
0 λtdt

( )
.

Lemma 7. The optimal value attained in the fluid optimi-
zation problem (1) is an upper bound to the optimal value of
the relaxed mechanism design problem (3):

J f x0,
∫ T

0
λtdt

( )
≥ J̄*(x0,T).

Proof. Consider the following Lagrangian relaxation
of the relaxed mechanism design problem (3):

maximize
yT∈=

E
∑
φ∈hT

(
vφ− F̄jφ(vφ)

f jφ(vφ) −
∑m
i�1

Aijφη
i
)
āφ

[ ]
+∑m

i�1
ηixi0

(6)
subject to āφ ∈ [0, 1], ∀ φ with vφ > 0,

where η ∈ Rm+ . Let J̄∗,η(x0,T) be its optimal value. Now,
for any feasible mechanism yT ∈ = in the relaxed
mechanism design problem (3), and any η ∈ Rm+ , we have

ηi xi0 − E
∑
φ∈hT

Aijφ āφ

[ ]( )
≥ 0, ∀i.

It follows that minη∈Rm+ J̄
∗,η(x0,T) ≥ J̄∗(x0,T), a statement

of weak duality. Now, for any feasible yT to the pro-
gram above, (6), we require āφ ∈ [0, 1] if vφ > 0. So, for
all such φ, such that vφ > 0, we have

vφ − F̄jφ(vφ)
f jφ(vφ) −

∑m
i�1

Aijφη
i

( )
āφ

≤ vφ − F̄jφ (vφ)
f jφ (vφ) −

∑m
i�1

Aijφη
i

( )
1 vφ − F̄jφ(vφ)

f jφ(vφ) ≥
∑m
i�1

Aijφη
i

{ }
.

Moreover, the set on which vφ � 0 is of measure zero
by assumption, so that for any η ∈ Rm+ , we immedi-
ately have

J̄∗,η(x0,T) ≤ E
∑
φ∈hT

vφ − F̄jφ(vφ)
f jφ(vφ) −

∑m
i�1

Aijφη
i

( )[

· 1 vφ − F̄jφ (vφ)
f jφ (vφ) ≥

∑m
i�1

Aijφη
i

{ }]
+∑m

i�1
ηixi0

� ∑n
j�1

∫ T

0
λj
tdt

( )
Ej
v v − F̄j(v)

f j(v) −
∑m
i�1

Aijη
i

( )[

· 1 v − F̄j(v)
f j(v) ≥ ∑m

i�1
Aijη

i

{ }]
+∑m

i�1
ηixi0,

where the expectation Ej
v[·] is with respect to v with the

p.d.f. f j(·), and the equality follows fromWald’s identity.

Now, for each i, let η̂i be the optimal dual variable
associated with the inventory constraint for the ith
resource in optimization problem (1). We have

J̄∗,η̂(x0,T) ≤
∑n
j�1

∫ T

0
λ
j
tdt

( )
Ej
v v − F̄j(v)

f j(v) −
∑m
i�1

Aijη̂
i

( )[

· 1 v − F̄j(v)
f j(v) ≥

∑m
i�1

Aijη̂
i

{ }]
+∑m

i�1
η̂ixi0

� ∑n
j�1

∫ T

0
λ
j
tdt

( ) ∫ ∞

0
v − F̄j(v)

f j(v) −
∑m
i�1

Aijη̂
i

( )+

· f j(v)dv +∑m
i�1

η̂ixi0

� ∑n
j�1

∫ T

0
λ
j
tdt

( ) ∫ ∞

v�πFP,j
v − F̄j(v)

f j(v) −
∑m
i�1

Aijη̂
i

( )

· f j(v)dv +∑m
i�1

η̂ixi0

� ∑n
j�1

∫ T

0
λ
j
tdt

( )
πFP,jF̄j

(
πFP,j

)

+∑m
i�1

η̂i xi0 −
∑n
j�1

∫ T

0
λ
j
tdt

( )
AijF̄j

(
πFP,j

)( )

� ∑n
j�1

∫ T

0
λ
j
tdt

( )
πFP,jF̄j

(
πFP,j

)
.

The second equality follows from the first-order con-
dition in optimization problem (1) that

∂

∂v
vF̄j(v) −∑m

i�1
Aijη̂

i

( )∣∣∣∣
v�πFP,j

� − f j
(
πFP,j

)
πFP,j − F̄j(πFP,j)

f j(πFP,j) −
∑m
i�1

Aijη̂
i

( )
� 0, ∀ j,

and Assumption 1 that v − F̄j(v)
f j(v) is nondecreasing. The

third equality uses the fact that
∫ ∞
v�p vf

j(v) − F̄j(v)dv �
pF̄j(p). The fourth equality follows from the comple-
mentary slackness condition in optimization problem (1)
that

∑m
i�1

η̂i xi0 −
∑n
j�1

∫ T

0
λ
j
tdt

( )
AijF̄j

(
πFP,j

)( )
� 0, ∀ i.

We have thus shown that

J f ≥ J̄∗,η̂(x0,T) ≥ min
η∈Rm+

J̄∗,η(x0,T) ≥ J̄*(x0,T),

which is the result. ■
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We are now in a position to establish the asymptotic
optimality of the static price policy. Specifically, the-
orem 3 of Gallego and Van Ryzin (1997) establishes

JπFP,τπFP (x0,T)
J f x0,

∫ T
0 λdt

( )

≥ 1 −
∑m

i�1 maxj:Aij > 0 πFP,j
( ) �����������������������������������∑n

j�1 Aij
∫ T
0 λ

j
tdt

( )
F̄j πFP,j( )

√
2
∑n

j�1 πFP,j
∫ T
0 λ

j
tdt

( )
F̄j πFP,j( )

.

Now, in thenthproblem,weconsider anarrival rateprocess
of nλt : t ∈ [0,T]{ }, and initial inventory of nx0, so that

J(n)
πFP ,τπFP

(nx0,T)
J f nx0,

∫ T
0 nλdt

( )

≥1−
∑m

i�1 maxj:Aij>0π
FP,j

( ) ���������������������������������∑n
j�1Aij

∫ T
0 λ

j
tdt

( )
F̄j πFP,j( )

√
2
∑n

j�1πFP,j
∫ T
0 λ

j
tdt

( )
F̄j πFP,j( )

1��
n

√ .

We establish in Lemma 7 that J f (nx0,T) ≥ J̄∗,(n)(nx0,T),
and Proposition 1 shows that J̄∗,(n)(nx0,T) ≥ J∗,(n)(nx0,T),
so that we have shown

J(n)
πFP ,τπFP

(nx0,T)
J∗,(n)(nx0,T)

≥1−
∑m

i�1 maxj:Aij>0π
FP,j

( ) ���������������������������������∑n
j�1Aij

∫ T
0 λ

j
tdt

( )
F̄j πFP,j( )

√
2
∑n

j�1πFP,j
∫ T
0 λj

tdt
( )

F̄j πFP,j( )
1��
n

√ .

This completes the proof of Theorem 1. ■

5.1. Suboptimality for General Disutilities
We demonstrate that our assumptions on the customer
disutility function M(·, ·) were necessary for the as-
ymptotic optimality of static prices. In particular, we
give an example of a disutility function for which our
guarantee does not hold. The example will serve to il-
lustrate what can go wrong if customer disutility grows
sufficiently “rapidly” with valuation.

In particular, recall from our discussion in Section 2.1
on the modeling of customer disutility—that is, the
function M(·, ·)—that we required that a customer’s
disutility be concave and nondecreasing in customer
valuation (Part 4 of Assumption 2). As we discussed
there, the key restriction in that assumption (as implied
by the condition of concavity) is in requiring that customer
disutility not increase “too fast”with valuation. Although
in Section 2.1 we provided a number of examples of
disutility functions in the literature (both theoretical
and empirical) that satisfy our assumptions, we seek to
go in the opposite direction in this section.We ask what

happens if customer disutility did in fact increase
superlinearly in valuation. To that end, consider the
class of deadline-based disutilities given by

M(φ, y) � vφ1{τy−tφ > d(vφ)},

where d(·) maps valuations to a “deadline.” It is easy to
see that for a suitable choice of the function d(·), this
specification leads to a discontinuity in the dependence
of disutility on valuation, wherein keeping y and the
other components of φ fixed,M(φ, y) jumps from 0 to v,
as v is increased beyond a threshold. Putting aside the
relative merits and demerits of this specification for
now, we focus on showing that static prices are sub-
optimal for a specification such as the one above.7 To that
end, consider a setting where v is uniformly distributed
on the unit interval, and the “deadline function” is

d(v) � T1{v≤1/2},

so that customers with valuations less than one half are
fully patient, whereas the remaining customers are
fully myopic. Figure 1 plots the relationship between
M(φv, y) and v for any fixed y with τy > tφv

. Under this
model, the customer disutility function M(φv, y) is not
concave in v—that is, Assumption 2 is violated. Spe-
cifically, keeping y and all other components of φ fixed,
the disutility jumps from 0 (for any value of v< 1/2) to
1/2 at v � 1/2, and then increases linearly from there.
To further simplify our analysis of what could go

wrong here, let us consider a single-product (n � m � 1)
setting where inventory is also unlimited, x0 � ∞. Now,
in this setting, the static price policy would set πFP � 1/2,
which will garner expected revenue

λTπFPF̄(πFP) � 1
4
λT.

Consider the following alternative pricing policy that in-
stantaneously drops prices at the very end of the horizon:

π̂t � 1/2 if t<T
1/4 if t � T.

{
It is simple to verify that under policy π̂, a candidate
equilibrium stopping rule is

τπ̂φ � tφ if vφ < 1/4 or vφ ≥ 1/2
T if vφ ∈ [1/4, 1/2).

{
Customers with valuation greater than 1/2 will pur-
chase immediately, and customers with valuation be-
tween 1/4 and 1/2 will wait until the end of the horizon
and then purchase, whereas customers with valuation
less than 1/4 will leave immediately upon arrival without
a purchase. This yields the following expected revenue:

1
2
· λT 1

2
+ 1
4
· λT 1

4
� 5
16

λT,

which improves on the static price revenue by a factor of
25%. Because this relative improvement is independent
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of the value of λ, and because x0 was chosen to be
unbounded, we see that one cannot hope for asymptotic
optimality in this setting.We have thus identified a class
of disutility functions that do not satisfy our assump-
tions and for which static prices are not asymptotically
optimal. It makes sense to pursue the design of more
sophisticated pricing policies in such a setting.

The deadline-based disutility functions above have
some interesting features. For instance, for deadlines
shorter than the horizon, they enable us to “ignore”
customers who arrived prior to a finite time in the past
and thereby allow for a succinct representation of state
in dynamic programming analyses. But, such a speci-
fication implies that a customer prefers lotteries (as
opposed to a deterministic outcome) with respect to the
time of assignment τφ, which is potentially unrealistic
(Azevedo and Gottlieb 2012). As discussed earlier, the
deadline-based disutility function has a “jump” when
viewed as a function of valuation, keeping other quantities
fixed. The crux of Assumption 2was the requirement that
this same function be concave, thereby placing a restric-
tion on the rate at which disutility may grow with val-
uation. Succinctly, provided disutility grows sufficiently
slowly (essentially, sublinearly) with valuation, static prices
suffice. If disutility can grow rapidly with valuation
(exemplified by the jump in the deadline-based disutility
function), more sophisticated policies are called for.

We further explore the necessity of the concavity
assumption in Section A.1 by studying the same setting
as here, but with a convex disutility of the form

M(φ, y) � vαφ 1{τy > tφ},

where α ≥ 1. We focus on values of α that are in the
neighborhood of 1 and find that dynamic policies con-
tinue to dominate static ones, as long as α> 1. In other
words, for unlimited inventory, static pricing appears to

be (even asymptotically) suboptimal for convex dis-
utilities that get arbitrarily close to linear. Furthermore,
we study the role of inventory by reverting back to the
setting with deadline-based disutilities, but with finite
inventory (see Section A.2). Interestingly, we find that
for “sufficiently” scarce inventory, static pricing remains
asymptotically optimal. Loosely speaking, thesefindings
suggest that, for unlimited inventory, the boundary we
identify in our workwithinwhich static pricing suffices
for good performance appears to be tight, whereas for
scarce inventory it appears to be not.

6. Efficacy of Static Prices in the
Single-Product Setting

In this section, we leverage the special structure of the
single-product setting (n � m � 1) to extend our anal-
ysis. Specifically, for this important setting, we show
first that the static price policy πFP enjoys a constant
factor performance guarantee that applies uniformly
across all parameter regimes. Second, we show this
guarantee to be tight.
We begin by establishing some useful facts for the

single-product setting. Recall that

πFP � F̄−1 min
x0∫ T

0 λtdt
, F̄ v*( )

{ }( )
.

If we let λ̄≜
∫ T
0 λtdt

( )
F̄(πFP), the optimal value of the

fluid optimization problem (1) is precisely J f � λ̄πFP.
Furthermore, note that when customers behave myo-
pically (so that τφ � tφ), then the event that two cus-
tomers present themselves simultaneously to the seller
hasmeasure zero, and aFPφ � 1

{
vφ ≥ πFP

}
. Consequently,

the sales process is a Poisson process with intensity
λtF̄(πFP) so that

JπFP,τFP x0,T( ) � πFPE
[
min

(
N̄, x0

)]
,

where N̄ is a Poisson random variable with parame-
ter λ̄.

6.1. A Constant Factor Guarantee for Static Prices
Altought the previous section established a perfor-
mance guarantee in the fluid regime for the general
setting, in the single-product setting we study here, we
can obtain the following constant factor guarantee that
is valid uniformly in all model parameters.

Theorem 2. Provided n � m � 1 and Assumptions 1 and 2
are satisfied, we have

JπFP ,τπFP (x0,T)
J*(x0,T) ≥ JπFP,τπFP (x0,T)

J f
≥ 1 − 1

e
.

Proof. The first inequality follows from Lemma 7, J f ≥
J̄∗(x0,T), and Proposition 1, J̄∗(x0,T) ≥ J∗(x0,T).

Figure 1. (Color online) Relationship BetweenM(φv, y) and
v when τy > tφv
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Next, we prove the second inequality. To this end,
we have

JπFP ,τπFP (x0,T)
J f

� 1
λ̄
E
[
min

(
N̄, x0

)]
� 1
λ̄

E
[
N̄
] − E

[(
N̄ − x0

)+]( )
� 1 − E

[
N̄ − x0
( )+]/λ̄

� 1 −∑∞
n�1

n
e−λ̄λ̄x0+n−1

(x0 + n)! .

(7)

Note that λ̄ ≤ x0 by the definition of πFP. Furthermore,
e−λ̄λ̄x0+n−1 is nondecreasing in λ̄ on n ≥ 1 because

∂

∂λ̄
ln e−λ̄λ̄x0+n−1

( )
� −1 + x0 + n − 1

λ̄
≥ 0.

Thus, (7) yields

JπFP ,τπFP (x0,T)
J f

≥ 1 −∑∞
n�1

n
e−x0xx0+n−10

(x0 + n)!

� 1 −∑∞
n�1

((x0 + n) − x0) e
−x0xx0+n−10

(x0 + n)!

� 1 − ∑∞
n′�0

e−x0xx0+n
′

0

(x0 + n′)! +
∑∞
n�1

e−x0xx0+n0

(x0 + n)!
� 1 − e−x0xx00

x0!

≥ 1 − 1
e
,

where the last inequality follows from that fact that
e−x0xx00
x0!

is nonincreasing in x0 on x0 ≥ 1. ■
Interestingly, the second inequality in this theorem

also yields a uniform performance guarantee on the
static price policy in the setting of myopic customers—
that is, the setting studied by Gallego and Van Ryzin
(1994). Given the long history of the problem, and the
lack of any such constant factor guarantee in antecedent
literature, this intermediate result is of independent
interest. In addition, the constant factor guarantee also
implies a stronger guarantee for the class of “Robust
Pricing Policies” proposed by Chen and Farias (2018).
In that paper, the authors establish that so-called robust
pricing policies provide at least 29% of the revenue under
an optimal mechanism. The class of utility models con-
sidered in the present paper subsumes the class of utility
models studied in Chen and Farias (2018), and the static
price policy is trivially a robust pricing policy, thereby
improving the Chen and Farias (2018) guarantee from
29% to ∼ 63.2%.

6.2. A Tight Problem Instance
Theorem 2 shows that the expected revenue under the
static price policy πFP is at least within a factor of 1 − 1/e

of that under an optimal dynamic mechanism. This
analysis is potentially loose for a number of reasons, the
most important one perhaps being that we compared
ourselves against an upper boundderived via a relaxation
to the optimal dynamic mechanism design problem.
Surprisingly, the guarantee is in fact tight, as we now
illustrate.

Example 1 (Tight Problem Instances). As an example of
a tight problem instance, we consider a problem with
the following desiderata. First, there is a single unit of
inventory, x0 � 1. Second, the customer arrival rate is a
constant, λ. Third, customer values are uniformly dis-
tributedontheunit interval, so thatF(v) � v forv ∈ [0, 1].
Finally, all customersare fullypatient, so thatM(φ, y) � 0
for all (φ, y) with τy ≥ tφ.

As we will discuss momentarily, the optimal dy-
namic mechanism for the problem instance above is
simply conducting a Myerson auction. Using this fact,
we can establish that the performance guarantee in
Theorem 2 is tight for the family of examples above.

Proposition 2. For the family of problems defined in
Example 1, we have

lim sup
λ→∞

JπFP ,τπFP (x0,T)
J∗(x0,T) ≤ 1 − 1

e
.

Proof. Let N be a Poisson random variable of rate λT.
We first show that

J*(x0,T) ≥ 1 − 4
λT

( )
P N >

λT
2

( )
.

Observe that for the example at hand, it is optimal for
the seller to wait for all customers to arrive and proceed
to conduct a (static) revenue-maximizing auction at time
T. In particular, it is optimal to conduct a second-price
Myerson auction with reserve price, which is clearly a
feasible mechanism. To see why this is optimal, we note
that in this setting, any yT ∈ = can be interpreted as a
randomized allocation and payment rule for a static
revenue-maximizing auction with N bidders and a
single product.

In this setting, it can be readily seen that the optimal
reserve price is 1/2. Therefore, the seller collects rev-
enues as follows. If the highest submitted bid is less
than 1/2, the seller collects no revenues. Suppose now
that the highest submitted bid is higher than 1/2. If the
second highest bid is less than 1/2, the seller collects
precisely 1/2; otherwise, she collects revenues equal to
the second highest bid. Therefore, if there are N bids
submitted, the seller’s expected revenues are equal to∫ 1

1/2

∫
1/2

0

1
2
fN,N−1(u[N], u[N−1])du[N−1]du[N]

+
∫ 1

1/2

∫ u[N]

1/2
u[N−1] fN,N−1(u[N],u[N−1])du[N−1]du[N],
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where u[N], u[N−1] are the largest and second-largest
submitted bids and

fN,N−1(u[N],u[N−1]) � N(N − 1)uN−2
[N−1].

is their joint probability density. By evaluating the
integrals and taking expectation over number of ar-
rivals N, we obtain that the seller’s expected reve-
nues equal

J*(x0,T) � E 1 −
2
(
1 − 2−(N+1)

)
N + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

But,

E 1−
2
(
1−2−(N+1)

)
N+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≥E 1− 2

N

[ ]

≥E 1− 2
N

∣∣∣∣N>
λT
2

[ ]
P N>

λT
2

( )
≥ 1− 4

λT

( )
P N>

λT
2

( )
.

(8)

We next establish an upper bound on the performance
of the static price policy. Observe that by definition of
the static price policy, we have that for λ> 2/T,
F̄(πFP) � 1/λT. Consequently, for λ> 2/T, we have

JπFP ,τπFP (x0,T) � πFPE
[
1 − (

1 − F̄(πFP))N]
≤ E

[
1 − 1 − F̄(πFP)( )N]

� E 1 − 1 − 1
λT

( )N[ ]

≤ 1 − 1 − 1
λT

( )λT
,

(9)

where the first inequality follows from the property
that πFP ≤ 1, the second inequality follows from the
property that the function aN is convex for any a> 0,
Jensen’s inequality, and the property that E[N] � λT.
The result now follows from (8) and (9), because
limλ→∞ 1 − 1

λT

( )
λT� 1

e and limλ→∞ P N > λT
2

( ) � 1. ■

The result above shows an example where the gap
between the static-price revenue and that under an
optimal dynamic mechanism is indeed approximately
37%, so that the bound in Theorem 2 is tight. In con-
trast, Theorem 1 suggests that the static price is optimal
in the fluid regime. As such, one is led to wonder
whether the performance loss exhibited in the above
example quickly mitigates as we change problem pa-
rameters, allowing, say, inventory to grow large. With
that in mind, consider the following numerical ex-
periment: We assume customer valuations are exponentially

distributedwith unit rate. Furthermore, we assume λ � 1
and T � 10. We then numerically compare the perfor-
mance of the fixed price policy to an upper bound on the
value of an optimal dynamic mechanism, reporting the
performance metric:

LBFP(x0,T)≜
JπFP ,τπFP (x0,T)

J f
.

[Recall that Lemma 7 and Proposition 1 together es-
tablished that J*(x0,T) ≤ J f .]
Notice that for an inventory level of one unit, the

performance loss implied by the table above is again
∼ 37%. However, this quickly declineswith further units of
inventory. We see that even in a decidedly nonasymptotic
setting, the static price policy already leaves little room
for improvement. In fact, this is the core reason that the
very intuitive results of Gallego and Van Ryzin (1994)
have proved so influential in revenue management.

7. Concluding Remarks
This paper has focused on a canonical revenue man-
agement problem and shown that static prices are, to
a first order, optimal for a broad class of customer
utility functions. The economic message here is simple
and clear and reinforces the message that static pricing
policies—or “everyday low prices” in the vernacular of
the dynamic pricing literature—can be surprisingly
effective. This message was first delivered by Gallego
and Van Ryzin (1994) at a time when search costs were
in effect high (e-commerce and the widespread use of
the internet did not exist at the time). As such at that
time, it was fair to assume that customers were effec-
tively myopic because strategizing on the timing of
a purchase was hard. That assumption has become
increasingly questionable in the last decade, andwith it
the key message on the efficacy of static prices. The
present paper resolves that conundrum for what we
believe is a broad class of utility models that find a broad
base of support in multiple streams of literature.
In concluding, it is worth remarking on the seller’s

power to commit. In particular, any analysis invoking
the principles of mechanism design will typically call
for an assumption that the seller has the ability to
credibly “commit” to a mechanism. Indeed, this is true
of even the simplest mechanisms (such as the design of
the optimal static auction). As already discussed, an-
tecedent literature in revenue management (and, more
generally, in mechanism design) has provided a variety
of arguments in support of the power to commit so that
the assumption is broadly accepted. Nonetheless, it is
worth noting that in the absence of the ability to verify
(after the fact) that the seller has indeed stuck to her
commitment, such an assumption is less palatable. In
the case of dynamic mechanisms, it is often the case
that such a verification is difficult without the seller
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revealing a great deal of information (including at least
the history of all customer allocations). Happily, in the
case of a static price, the situation is a lot simpler. In
particular, it is trivial for any customer to verify at the
end of the selling season that the seller has deviated
from a static price mechanism simply by having ob-
served the price trajectory over the season. Given that
myopic behavior is dominant under a static price, the
sellermay aswell use the optimal static price, so there is
no need for the buyer to verify whether the price used
was indeed optimal.

Finally, we believe the present paper sets the stage
for an exciting set of further research questions. For in-
stance, howwell can one approximate a general disutility
function by one in the class we permit? Can we extend
our analysis to sublinear disutilities? Another direction
is considering more general revenue management prob-
lems. For example, problems wherein the seller offers
products that are not highly differentiated and may be
substitutable. In such a setting, customers could strate-
gize not just overwhen to buy, but overwhat to buy, too.
This added dimension in the customers’ strategy space
would pose unique technical challenges that have not
been addressed before. Attempting to derive perfor-
mance guarantees for static prices in that setting would
be a particularly exciting direction for future work.

Appendix. Performance for Nonconcave Disutility
We extend our analysis in Section 5.1 and study the per-
formance of static pricing under nonconcave disutilities. First,
we consider (strictly) convex disutilities and find dynamic
pricing to dominate static pricing, even as the disutility is ar-
bitrarily close to being linear. Second, we consider deadline-
based disutilities, but with limited inventory, and find static
pricing to remain asymptotically optimal as long as inventory
is sufficiently “scarce.” Loosely speaking, these findings suggest
that, for unlimited inventory, the boundary we identify in our
work within which static pricing suffices for good perfor-
mance, appears to be tight, whereas for scarce inventory it
appears to be not.

A.1. Convex Disutilities
Consider the same single-product setting where inventory is
also unlimited as in Section 5.1, but suppose that the customers’
disutility takes the form

M(φ, y) � vαφ 1{τy>tφ},

where α ≥ 1. Note that, unless α � 1, this disutility function
is convex in vφ and violates the concavity requirement in
Assumption 2. We will focus on a neighborhood of α that
contains values that are strictly greater than 1 (and get arbitrarily

close to 1). For each such value, we will construct a dynamic
pricing policy that improves upon the static pricing in terms
of expected revenues by a factor that is independent of the
value of λ.

In particular, consider a pricing policy, similar to the one
we studied in Section 5.1, that instantaneously drops prices at
the very end of the horizon:

π̂t � pH if t<T
pL if t= T ,

{
for some prices pH , pL. We will select these prices jointly with
threshold valuations 0 ≤ vL ≤ vH ≤ 1, such that the following
becomes an equilibrium stopping rule under policy π̂:

τπ̂φ � tφ if vφ ∈ [vH , 1]
T if vφ ∈ [vL, vH).

{
Customers with valuation greater than vH will purchase
immediately, and customers with valuation between vL and
vH will wait until the end of the horizon and then purchase,
whereas customers with valuation less than vL will leave
immediately upon arrival without a purchase.

Specifically, let vH � α
α+1 and vL be such that vL ≤ 1

2 and

vH − vαH � vL − vαL . (A.1)

Uniqueness of such vL can be readily verified for any α ∈
(1, 2]. We then select prices pL � vL − vαL and pH � vαH + pL.
Using straightforward algebra, it can be verified that our
selected prices indeed induce the equilibrium stopping rule
above, for our selected threshold valuations.

The alternative pricing policy π̂ we constructed yields
expected revenue

R≜λTpH(1 − vH) + λTpL(vH − vL).
By substituting, we get that the revenues are

R � λT( f + (1 − vL)g),
where f ≜ vαH(1 − vH) and g≜ vH − vαH . Treating R, f , g, and vL
as functions of α, we get that f (1) � 1

4 and g(1) � 0, yielding

R(1) � 1
4
λT,

which precisely matches the static pricing policy. To prove
our claim, it suffices to show that R′(1)> 0.

To calculate R′(1), first note that

R′ � λT( f ′ + (1 − vL)g′ − g v′L).
For f ′ and g′, we have that

f ′(1) � − log 2
4

, g′(1) � log 2
2

.

By (A.1), we can upper-bound vL by the stationary point of

vα − v in v—that is vL < 1
α

( )
1

α−1. Therefore, we conclude that
vL(1)< 1

e. Furthermore, by equating the derivative of vH −
vαH − vL + vαL to 0 and using the Implicit Function Theorem,
one can obtain an expression for v′L. Using it, we get

g v′L � (vαL log vL + g′)g
1 − αvα−1L

.

Taking the limit, we get

g(1)v′L(1) � lim
α→1

g v′L � − (log 2)(log 2 + 2vL(1) log vL(1))
8(1 + log vL(1)) .

Table 1. Performance of the Static Price Policy πFP

x0 1 2 4 8

LBFP(x0,T) 0.63 0.72 0.84 1.00
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For vL(1)< 1/e, it can be readily checked that g(1)v′L(1) ≤ 0.02.
Combining all these facts, we then get that

R′(1) � λT f ′(1) + (1 − vL(1))g′(1) − v′L(1)g(1)
( )

� λT − log 2
4

+ (1 − vL(1)) log 22
− v′L(1)g(1)

( )
>λT − log 2

4
+ (1 − 1

e
) log 2

2
− 0.02

( )
> 0.025λT
> 0.

A.2. Deadline-Based Disutilities with
Scarce Inventory

We consider the deadline disutility model studied in Section 5.1,
except that we assume the seller’s initial inventory is limited:

x0 ≤ 1
4
λT.

Therefore, the seller can admit at most one-quarter of the
mean of the total number of customers arriving over the
entire season.

First, we compute an upper bound of the seller’s optimal
expected revenue, defined as the seller’s optimal expected rev-
enue in an auxiliary setting, wherein the seller has superior in-
formationthat she isable to tellwhetheracustomer’svaluation is
strictly greater than 1/2 (myopic customers) or no greater than
1/2 (fully patient customers). Because all myopic customer
valuations are strictly greater than all fully patient customer
valuations,theseller’soptimaldynamicmechanismisasfollows:
(1) For customers whose valuations are strictly greater than

1/2 (myopic customers), the seller implements an anonymous

posted dynamic pricing policy
{
πH
t ∈ 1

2 , 1
[ ]

: t ∈ 0,T[ ]
}
over

the entire season.
(2) For customers whose valuations are no greater than 1/2

(fully patient customers), the seller conducts a static revenue
maximizing auction at time T.

We denote by NH
t the total number of myopic customers

who purchase up to time t. Therefore,NH
t is a Poisson random

variable with parameter λ
∫ t
s�0

(
1 − πH

s

)
ds. We denote by

ΦL ≜ φ : vφ ≤ 1/2
{ }

the collection of all arriving fully patient
customers. In the fully patient customer groupΦL, a customer
φ’s virtual value function is vφ − 2(1 − 2vφ).

Therefore, the seller’s optimal expected revenue in this
superior information setting is the optimal value of the fol-
lowing optimization problem:

max
{πH

t ∈[1/2,1]:t∈[0,T]}{aφ∈{0,1}:φ∈ΦL}
E

∫ T

t�0
πH
t dN

H
t + ∑

φ∈ΦL

(vφ−2(1−2vφ))aφ
[ ]

(A.2)

subject to
∫ T

t�0
dNH

t + ∑
φ∈ΦL

aφ ≤ x0 a.s.

Now, we establish an upper bound of this optimization
problem. We consider another optimization problem with
the same objective function and the following relaxed in-
ventory constraint:

E
∫ T

t�0
dNH

t + ∑
φ∈ΦL

aφ

[ ]
≤ x0.

We denote by η the dual variable associated with this con-
straint. We select η � 1 − 2 x0

λT. Because x0 ≤ 1
4λT, we have

η ≥ 1
2 . Therefore, following from the weak duality theorem,

the optimization problem (A.2) is upper-bounded by the
following function:

max
{πH

t ∈[1/2,1]:t∈[0,T]}{aφ∈{0,1}:φ∈ΦL}
E

∫ T

t�0
πH
t dN

H
t + ∑

φ∈ΦL

(vφ − 2 (1 − 2vφ)) aφ
[ ]

+ η x0 − E
∫ T

t�0
dNH

t + ∑
φ∈ΦL

aφ

[ ]( )

� max
{πH

t ∈[1/2,1]:t∈[0,T]}{aφ∈{0,1}:φ∈ΦL}
E

∫ T

t�0

(
πH
t − η

)
dNH

t

[

+ ∑
φ∈ΦL

(vφ − 2 (1 − 2vφ) − η) aφ
]
+ ηx0

� max
{πH

t ∈[1/2,1]:t∈[0,T]}{aφ∈{0,1}:φ∈ΦL}
E

∫ T

t�0

(
πH
t − η

)
λ
(
1 − πH

t

)
dt

[

+ ∑
φ∈ΦL

(vφ − 2 (1 − 2vφ) − η) aφ
]
+ ηx0

� max
πH
t ∈[1/2,1]

λT
(
πH
t − η

)(
1 − πH

t

)
+ E

∑
φ∈ΦL

(vφ − 2 (1 − 2vφ) − η)+
[ ]

+ ηx0

� max
πH
t ∈[1/2,1]

λT
(
πH
t − η

)(
1 − πH

t

)
+ ηx0

� x0 1 − x0
λT

( )
.

The second equality follows from theorem II in Brémaud
(1981). The fourth equality follows from the property that for
vφ ≤ 1

2 ,

vφ − 2 (1 − 2vφ) − η ≤ 1
2
− 2 1 − 2 · 1

2

( )
− η � 1

2
− η

� 1
2
−

(
1 − 2

x0
λT

)
≤ 1
2
− 1 − 2 · 1

4

( )
� 0.

Next, we show that this upper-bound revenue can be as-
ymptotically achieved under a fixed price policy πFP � 1 − x0

λT.
Under this policy, the total number of customers who are
willing to purchase is a Poisson random variable with pa-
rameter x0. Therefore, following from the proof in theorem 3
of Gallego and Van Ryzin (1994), in a sequence of problems
parameterized by n with λ(n) � nλ and x(n)0 � nx0, we have

lim
n→∞

1
n
J(n)
πFP ,τπFP

(nx0,T) � x0 1 − x0
λT

( )
.

Therefore, the example above indicates that if the seller’s
inventory is limited, then a static price policy can be as-
ymptotically optimal, even in the presence of a delay dis-
utility function that is not concave in valuation.

Endnotes
1To ease notation, we use bold font to denote vectors that suppress
dummy product or resource superscript indices.
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2Multiple customers revealing themselves to the seller at the same
time are allocated inventory in random order.
3Modeling potential correlation of vφ and θφ thewaywe do here does
not imply that our analysis can handle any correlation type, but rather
only the ones consistent with the structural properties we require
from disutility M.
4 In the sequel we will at times, with an abuse of notion, use this map
and the corresponding stopping rules interchangeably.
5To ease notation, we suppress dummy product and resource super-
script indices when we study the single-product setting throughout
this paper.
6Wewill abuse notation slightly by also using πFP to denote the static
price policy itself.
7Of course, we require that the deadline function d(·) has a nontrivial
dependence on v. Else, the requirements of Assumption 2 are trivially
satisfied.
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