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Abstract

This paper aims to advance decision-making in power systems by proposing an integrated framework that 

combines sensor data analytics and optimization. Our modeling framework consists of two components: (1) a 

predictive analytics methodology that uses real-time sensor data to predict future degradation and remaining lifetime

of generators as a function of the loading conditions, and (2) a mixed integer optimization model that transforms 

these predictions into cost-optimal maintenance and operational decisions. We model the key balance between 

meeting demand with very high confidence and at the same time prolonging the lifetime of generation assets. To

do so, we encapsulate stochastic loading-dependent predictive models for asset condition within our optimization 

model. The methodology is validated and evaluated using IEEE 118-bus system that has been augmented using real-

world sensor-based vibration signals from rotating machinery to emulate physical degradation of generators. Our 

experiments suggest that the proposed framework provides considerable improvements over conventional methods

in terms of cost and reliability.

Index Terms

Loading-dependent degradation models, generation maintenance, condition based maintenance, asset reliability 

and sustainability, mixed integer optimization

I. INTRODUCTION

The modern grid creates a highly dynamic operational environment for capital intensive generation 

assets. Critical assets used in power plants that were originally designed to operate at steady base loads 

are today required to adjust their loading schedules and profiles to compensate for the dynamic grid 

conditions. These loading profiles play a critical role in how long power generation assets can operate 

before requiring maintenance. In general, assets that operate under harsh loading conditions are bound
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to fail faster than similar units operating under milder conditions. For instance, production decisions can

have significant impact on the useful life of capital-intensive generation assets. As a result, accounting

for asset loading conditions and their effects on asset degradation is very important for generating cost-

effective maintenance schedules that do not disrupt daily power network operations. It also has significant

implications on cost and reliability. It is, therefore, key to consider the unit commitment (UC), asset

loading, and generation maintenance problems, simultaneously.

Generation maintenance and unit commitment are fundamental optimization problems in power systems

analysis. Generation maintenance identifies the optimal time to conduct repairs and maintenance for

generation assets. Given a maintenance schedule, UC problem determines the commitment and dispatch

decisions that define which generation assets should be committed to producing electric power and how

much each asset should produce. Generation maintenance is largely based on time-based schedules [1]–

[4]. Time-based maintenance policies often recommend repairs on a periodic (calendar-based) schedule

regardless of the operating conditions or the degradation state of the asset. As a result, many power plants

are faced with one of the following extreme scenarios; they either experience significant unexpected

failures, or employ a conservative schedule that drives frequent unnecessary maintenance events that

usually impact asset availability and increase the likelihood of human errors. With many generation

assets operating beyond their design life, the limitations of time-based policies are becoming increasingly

apparent.

Today, advances in sensor technology and wireless communication are playing a vital role in enabling

what many refer to as the Industrial Internet of Things (IIoT). Remote “condition monitoring” of physical

and performance degradation of long-term capital-intensive plant assets (e.g. turbines, generators, boilers,

etc.) is one of the most important IIoT applications in the energy sector. The goal of condition monitoring is

to reduce the risk of unexpected failures by providing advance warning of any impending faults. Numerous

examples of condition monitoring of generation assets have been presented in the literature [5]–[7]. The

majority of the literature in this domain rests on the premise of utilizing sensor data to detect equipment

faults by studying deviations from baselines data signatures that represent normal operating conditions.

Predictive degradation modeling, however, extends the value of condition monitoring applications to

the prediction of asset remaining operational life. This is accomplished by identifying and studying

characteristic trends in condition monitoring data, especially ones that are correlated with the severity

of physical degradation. When modeled properly, degradation-based sensor signals (degradation signals)

can be used to predict remaining lifetime.

Remaining lifetime predictions are a fundamental component of proactive maintenance (aka. predictive

or condition-based maintenance). Proactive maintenance policies leverage life predictions to optimize
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maintenance and repair schedules. Unlike time-based maintenance, proactive maintenance considers

the state-of-health of assets and generates significant improvements in asset reliability and availability.

According to [8], cost savings generated by implementing proactive maintenance can sometimes exceed

50%. Yet, the majority of the UC literature does not consider proactive maintenance policies. Most

UC models employ basic constraints to capture the maintenance of critical assets [2], [3], [9], [10].

A commonly used constraint is one where an asset is required to undergo at least one maintenance

event within a specified time period, say every year [1]–[3], [9]–[13]. Some other approaches consider

additional maintenance dependencies, such as priorities, exclusions, and separations between consecutive

maintenances [1], [10], [12]. In a recent work [14], [15], the authors proposed a joint optimization model

that integrates predictive degradation modeling and UC. In [14], the authors present a mixed-integer

programming model for generation maintenance scheduling that utilizes real-time condition monitoring

data to schedule maintenance of power generation assets across the network. In the second part of their

work [15], the authors extended their framework to account for the impact of maintenance on network

operations by coordinating generator maintenance schedules with UC and and dispatch decisions.

However, one of the key limitations of current maintenance policies, time-based and proactive alike,

is that the prevailing environmental and/or operational conditions are assumed to be constant. In other

words, the future operating and loading conditions in which the assets will operate are not considered

when scheduling maintenance and UC decisions. Accounting for future asset loading conditions is very

important for generating cost-effective maintenance schedules. By controlling the loading conditions,

asset maintenance can be delayed (or expedited) without increasing the risk of unexpected failure. By

capturing the interaction between operational decisions and asset loading profiles, system operators can

exercise significant control over the rate of degradation experienced by various critical plant assets. This

paper presents a methodology that enhances our understanding of the role of asset loading conditions in

jointly optimizing generation maintenance schedules and UC decisions. Specifically, the paper provides

a modeling framework that i) uses sensor data to predict the failure times of critical generation assets

under different loading profiles, and ii) jointly optimizes maintenance and UC by using asset loading

to control commitment, dispatching, and generation maintenance decisions. Unique to our approach, is

the integration of asset loading to operations and maintenance scheduling in power systems. The main

contributions of the paper can be summarized as follows:

1) We formulate a MIP that jointly optimizes generation maintenance and UC in the context of asset

loading. Specifically, our model formulation allows us to better understand and characterize how

dispatch decisions impact the loading conditions, and the remaining lifetimes of power generation

assets. This information is then used to optimize maintenance decisions accordingly.
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2) We consider a two-step stochastic degradation modeling framework that predicts and updates, in

real-time, statistical distributions for the remaining lifetime of power generation assets. First, we

develop a Bayesian updating procedure that uses condition monitoring data to improve the accuracy

of the predictive degradation models. Second, we derive a closed-form expression that utilizes the

updated degradation models to compute posterior remaining life distributions of the generation

assets operating in time-varying loading conditions. This degradation framework provides a one-to-

one mapping between current and future asset loading conditions, and their effects on the remaining

life distributions.

3) We construct an extensive experimental platform that uses real-world condition monitoring data from

machines subjected to different loading conditions. We utilize the sensor data and loading decisions

from the optimization model to mimic degradation of generation assets in dynamic environments.

Key maintenance, operational and cost performance metrics are evaluated within this framework.

Experiments on the IEEE 118-bus system indicate that the proposed method provides significant

advantages over existing approaches in terms of the effective use of equipment lifetime, asset reliability, and

total cost. The remainder of the paper proceeds as follows. Section II presents the predictive degradation

model. Section III introduces a joint optimization model that determines optimal scheduling decisions by

taking into account the effects of generator loading on maintenance and operations. In Section IV, we

present the experimental framework and the results of our numerical studies. Conclusions are provided in

Section V.

II. PREDICTIVE DEGRADATION MODELING

We model the degradation signal as a continuous-time continuous-state stochastic process with a

combination of fixed and random parameters. Fixed parameters are used to capture deterministic

degradation attributes that are common across a population of identical generation assets. Random

parameters are assumed to follow a statistical distribution, and capture unit-to-unit variability among

individual generation assets. Degradation process also depends on the future loading conditions. If we are

modeling the degradation signal at time t, we need complete information on the future loading conditions

until time t, namely {γ(s) : 0 ≤ s ≤ t}. Our key underlying assumption is that changes in loading

conditions manifest themselves in the rate at which the degradation signal increases/decreases and the

signal-to-noise ratio – high loading generate noisier degradation signals. Formally, the degradation signal

can be expressed as follows:

Di(t, γ) = θi +

∫ t

0

ri (γ(s)) ds+

∫ t

0

vi(γ(s))dW (s). (1)
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where Di(t, γ) is the amplitude of the degradation signal of generation asset i at time t. θi denotes the initial

amplitude of the degradation signal, which follows a normal distribution πi(θi) ∼ N(µ0, σ
2
0). ri (γ(t)) and

vi (γ(t)) are the functions associated with rate and diffusion of degradation signal, respectively. These

functions can be further decomposed as ri (γ(t)) = βi · Ψ(γ(t)) and vi (γ(t)) = [σ2 · Ψ(γ(t))]1/2, where

the Ψ : R≥0 provides a mapping between the loading condition γ(t) and the resulting multipliers for rate

and diffusion. βi denotes the nominal rate of degradation for generation asset i, which follows a normal

distribution πi(βi) ∼ N(µ1, σ
2
1). {W (t) : t > 0} is a standard Brownian process that captures signal noise.

Related yet distinct degradation models in literature can be found in [16], [17].

We define the remaining life Ri,t0 for a new generation asset i, as the first time that the degradation

function {Di(t, γ) : t > 0} reaches a failure threshold Λi. More specifically, Ri,t0 = inf{t > 0 : Di(t, γ) ≥

Λi}.

A. Updating the Degradation Model using Real-Time Sensor Data

Ideally, a general predictive degradation model is defined for each asset family. This model is assumed

to capture variability in the degradation rates of the asset population using the random model parameters.

Asset-specific sensor data is then used to derive updated instances of the degradation model based on

the unique degradation characteristics of each asset. This is significant because even identical generation

assets operating under the same loading conditions degrade differently due to differences in manufacturing

tolerances and other processing and material homogeneities. The model is also updated based on the current

and future loading conditions experienced by the asset. This updating process allows us to account for

added variability resulting from load changes.

The updating process is performed using a Bayesian framework. We begin by defining the likelihood

function of an observed degradation signal. Without loss of generality, we consider a partial degradation

signal D(t1, γ), . . . , D(tk, γ) at times t1, . . . tk, and define the signal increment dj = D(tj, γ)−D(tj−1, γ).

Given θi and βi, d1, . . . , dk are independent and identically distributed normal random variables with mean

βi
∫ tj
tj−1

Ψ(γ(s))ds and variance σ2
∫ tj
tj−1

Ψ(γ(s))ds. The likelihood function of d1, . . . , dk can be expressed

as follows:

f(d1, . . . , dk|θi, βi) =
k∏
j=1

(
1√

2πσ2

)

· exp

[
−(d1 − θi − βiξ1)2

2σ2ξ1

−
k∑
j=2

(
(dj − βiξj)2

2σ2ξj

)]
,

(2)

where ξj =
∫ tj
tj−1

Ψ(γ(s))ds. The above likelihood function along with the prior distributions, πi(θi) and

πi(βi), are used to derive the posterior distribution of θi and βi as outlined in Proposition 1.
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Proposition 1. Given the observed data d1, . . . , dk, the posterior distribution of the degradation parameters

(θi, βi) follows a bivariate normal distribution with mean (µθi , µβi), variance (σ2
θi
, σ2

βi
) and correlation

coefficient ρi

µθi =
(d1σ

2
0 + µ0σ

2ξ1) (σ2
1Υk + σ2)− σ2

0ξ
µ
1 (σ2

1Dk + µ1σ
2)

(σ2
0 + σ2ξ1) (σ2

1Υk + σ2)− σ2
0σ

2
1ξ1

,

σ2
θi

=
σ2σ2

0ξ1 (σ2
1Υk + σ2)

(σ2
0 + σ2ξ1) (σ2

1Υk + σ2)− σ2
0σ

2
1ξ1

,

µβi =
(σ2

1Dk + µ1σ
2) (σ2

0 + σ2ξµ1 )− σ2
1 (d1σ

2
0 + µ0σ

2ξ1)

(σ2
0 + σ2ξ1) (σ2

1Υk + σ2)− σ2
0σ

2
1ξ1

,

σ2
βi

=
σ2σ2

1 (σ2
0 + σ2ξµ1 )

(σ2
0 + σ2ξ1) (σ2

1Υk + σ2)− σ2
0σ

2
1ξ1

,

ρi = − σ0σ1

√
ξ1√

(σ2
0 + σ2ξ1) (σ2

1Υk + σ2)
,

where Υk =
∑k

j=1 ξj and Dk = D(tk) =
∑k

j=1 dj .

Proof: See Appendix A.

Updated posterior distribution of the degradation parameters is key to revising our predictions on

remaining life of generation assets.

B. Predicting the Remaining Life Distribution using Bayesian Updating

We leverage on the findings from [18] and [19] to provide a closed form expression for remaining life

that conditions on the loading conditions and the posterior mean of the degradation parameters:

Lemma 1. Given the degradation function defined in (1) with an associated continuous loading condition

function γ(s); the distribution of the remaining life at the time of observation t`, is P (Ri,t` ≤ t|ζi, αi,γti) =

IG(τ(t)|ζi, αi), t > 0, where IG(x|a, b) defines the CDF of an inverse Gaussian distribution with shape

and mean parameters a and b:

P (Ri,t` ≤ t|µβ,γti) = P

(
τ(Ri,t`) ≤ τ(t) =

∫ t

s=1

Ψi(γ(s))ds

)
= IG(τi(t)|ζi, αi) = Φ

(√
αi
τ(t)

exp

(
τ(t)

ζi
− 1

))
+ exp

(
2αi
ζi

)
Φ

(
−
√

αi
τ(t)

exp

(
τ(t)

ζi
+ 1

))
,

(3)

where ζi = Λi−di(to)
µβ

, αi = (Λi−di(to))2
σ2 , and τ(t) =

∫ t
s=1

Ψi(γ(s))ds.

The main strategy behind Lemma 1 is to obtain an appropriate time-transformation to project the

degradation function to an alternative domain, where an equivalent degradation function would have

constant rate and diffusion terms. The mapping between the actual time t, and the transformed time τ(t)

depends on the loading condition {γ(s) : 0 ≤ s ≤ t}. However, the projected degradation function is
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independent of the loading conditions. In fact, it reduces to a Brownian Motion with positive drift, whose

remaining life can be obtained by the inverse Gaussian distribution.

As a motivating example, we subject a generation asset to three different loading conditions. In the first

case, generation asset operates under harsh condition in the first week, and returns to nominal condition

in the second week, i.e. {Ψi(γ(t)) = 2 : 0 ≤ t < 1,Ψi(γ(t)) = 1 : 1 ≤ t ≤ 2}. In the second case, we

reverse the ordering of the loading conditions. The third case operates the generation asset under nominal

loading for three weeks, i.e. {Ψi(γ(t)) = 1 : 0 ≤ t < 3}. The failure probabilities in all three cases

would be identical - i.e. sum of loading conditions is 3 in all cases. This example demonstrates that the

remaining life predictions are order-invariant (i.e. Cases 1 & 2), and duration-invariant (i.e. Cases 1 &

3). The only information needed to predict the distribution of the remaining life is the transformed time

τ(t) =
∫ t

0
Ψ(γ(s))ds.

C. Updating the Dynamic Maintenance Cost Function

Our proposed dynamic maintenance cost function models the tradeoff between the cost of premature

maintenance vs. the cost of unexpected failures. The basis of this function is proposed by [14], [15], [20].

Unique to our approach is the incorporation of the loading conditions. Instead of defining the dynamic

maintenance cost as a function of the loading conditions, we rederive this function in the time transformed

domain. The resulting function considers the transformed time τ(t) =
∫ t
s=to

Ψi(γ(s))ds, without explicitly

modeling the complete information on the future loading conditions starting from the time of observation

t`, namely {Ψi(γ(s)) : t` ≤ s ≤ t}. The proposed dynamic maintenance cost function can be represented

as follows:

Cd,i

t`i ,τ(t)
=
cpiP (R′i > τ(t)) + cfi P (R′i ≤ τ(t))∫ τ(t)

0
P (R′i > z)dz + τ(t`)

, (4)

where Cd,i

t`i ,τ(t)
is the cost rate associated with conducting maintenance of generation asset i at transformed

time τ(t). The term τ(t`) is the transformed time of observation, R′i is the remaining life in the transformed

time domain, cpi and cfi are the costs of planned maintenance and failure replacement, respectively.

Dynamic maintenance cost function is continuously revised and updated as new condition monitoring

data becomes available. The probability P (R′i > τ(t)) within the dynamic maintenance cost function,

captures both the impact of loading conditions, and the updated remaining life predictions that are evaluated

using expression (3).

III. ADAPTIVE OPTIMIZATION MODEL

In this section, we present the Load Dependent Adaptive Predictive Maintenance (LDAPM) model.

LDAPM is an integrated model that simultaneously determines optimal generation maintenance and
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operations scheduling for a fleet of generation assets by explicitly characterizing the interactions between

generation loading and asset degradation. Generation maintenance involves using degradation-based sensor

data measured from the generation assets to determine the time of maintenance within a planning

horizon. The maintenance problem is subject to several constraints that include labor capacity, minimum

duration between successive maintenances, and dependencies between generator maintenances. Operations

scheduling involves solving the UC problem for a fleet of generation assets. Unlike conventional UC

models, we consider operations schedules that also determine the loading conditions of the generation

assets and how these conditions interact with maintenance scheduling decisions.

A. Key Variables

We first introduce the key variables for maintenance ν, z and loading γ. The binary variables ν,

z correspond to the actual, and the transformed time of maintenance, respectively. νt,i = 1 indicates

that maintenance of generation asset i is scheduled at time t. Similarly, zt,i,1 = 1 indicates that the

maintenance of generation asset i occurs at t in the transformed time domain. Finally, γ denotes the

loading condition, where γt,i,l = 1 means that the loading on generation asset i at time t is at least l. We

elucidate these variables using a simple example that considers maintenance and operations scheduling

of a single generation asset. For ease of exposition, we let ν .,i = {ν1,i, . . . , ν|T |,i}. We use a similar

convention for the variables z, and γ. Consider the following schedule:

Maintenance - Actual Time: ν .,i = [0, 0, 0, 0, 1, 0, 0],

Maintenance - Transformed Time: z.,i = [0, 0, 0, 0, 0, 1, 0],

Loading Conditions - Level 1 : γ .,i,1 = [1, 1, 1, 1, 0, 0, 0],

Loading Conditions - Level 2 : γ .,i,2 = [0, 0, 1, 1, 0, 0, 0].

In this schedule, generation asset i experiences a maintenance at time 5 as shown by the variable ν.

Loading is indicated by the variable γ. In the example, generator i is subjected to nominal loadings

during times 1 and 2. Therefore, γ1,i,1 = γ2,i,1 = 1. At time periods 3 and 4, the generation asset is

subjected to harsh loading, thus both the first level and the second level loading variables are 1. More

specifically, γ3,i,1 + γ3,i,2 = 2 and γ4,i,1 + γ4,i,2 = 2. All loading variables are zero during time 5 since

there is an ongoing maintenance.

To evaluate the transformed time of maintenance, we need the actual time of maintenance ν .,i,

and the loading decisions γ. By summing over the loading levels until the time of maintenance, we

obtain the transformed time of maintenance. For this example, the transformed time of maintenance is∑2
l=1

∑5
t=1 γt,i,l = 6, which is indicated by the variable z.,i.
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B. Objective Function

Our objective is to minimize the total cost of maintenance and operations:

min ξm
∑
i∈G

∑
t∈Θ

Cd,i

t`i ,t−TRi
· zt,i −

∑
i∈G

PR
i

(∑
t∈T

t · νt,i,1

)
+
∑
t∈T

∑
i∈G

∑
s∈S

(
V t
i · xts,i + P t

U,i · π
U,t
s,i + P t

D,i · π
D,t
s,i +Bt

i · yts,i
)

+
∑
t∈T

∑
s∈S

(∑
p∈D

(
PDC · ψDC,ts,p

)
+
∑
r∈R

(
PTL · ψTL,ts,r

))
,

where ξm is the maintenance criticality coefficient. We note that the first expression of the first line

identifies the sensor-driven dynamic maintenance cost, captured through the cost parameter Cd,i

t`i ,t−TRi
. The

calculation of this parameter, and the development of the sensor-driven approach is presented in detail in

§II-C. The second expression evaluates the reward for operating the generators for longer time periods

before scheduling them for maintenance, where PR
i is an incentive for extending generation asset’s useful

life.

The second and the third lines of the objective function provides the operational cost due to commitment

& dispatch, and demand curtailment & line capacity penalty, respectively. For generation asset i,

maintenance period t, and subperiod s; the terms yts,i, x
t
s,i, π

U,t
s,i , πD,ts,i , indicate the continuous variable

for generation dispatch, and the binary variables for commitment, start-up, and shut-down, respectively.

These variables have associated costs Bt
i , V

t
i , P t

U,i, and P t
D,i. Demand curtailment for demand location

p during period t and subperiod s, is denoted by ψDC,ts,p , with corresponding cost PDC . Likewise, ψTL,ts,r

denotes the transmission line overload for line r during period t and subperiod s, with associated cost PTL.

Lastly, G, T ,Θ,S,D, and R correspond to the sets of generators, maintenance time periods (i.e. weeks),

transformed time periods, subperiods (i.e. hours), demand points, and transmission lines, respectively.

C. Constraints for Modeling Maintenance Actions

In the next set of constraints, we establish basic rules for the time of maintenance indicated by variable

ν. Constraint (5) selects a maintenance start time for each generation asset i. In constraint (6), we enforce

that a unit maintenance cannot be started if there is an ongoing maintenance.∑
t∈T

νt,i = 1, ∀i ∈ G, (5)

∑
t∈T

t · νt,i,1 ≥ TRi + 1, ∀i ∈ G, (6)

where TRi is the remaining time for an ongoing maintenance of generation asset i. Finally we also

impose maintenance priorities, exclusions and separations. We present these constraints in compact form

as Hν ≤ p (see [1], [10], [12]).
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Next, we shift our focus to the time of maintenance in the transformed time domain. In Constraint (7),

we ensure that a certain time is selected for the transformed time of maintenance. We also assure that the

transformed time of maintenance is before a predefined threshold ζi. This threshold can be set to a time

period when the generation asset failure probability exceeds a certain threshold.∑
t∈Θ

zt,i = 1, ∀i ∈ G, (7)

∑
t∈Θ

t · zt,i ≤ ζi, ∀i ∈ G. (8)

Lastly, we focus on the labor resources. Constraint (9) ensure that the number of ongoing maintenances

at time t does not exceed the labor capacity Yt.∑
i∈G

TMi −1∑
e=0

νt−e,i ≤ Yt, ∀t ∈ T , (9)

where TMi is the duration of maintenance for generation asset i.

D. Constraints for Modeling Unit Commitment

Constraint (10) stipulates that if a generation asset i is experiencing an ongoing maintenance at the

start of the planning horizon. the associated commitment variables should be set to zero.

xts,i = 0, ∀i ∈ G,∀s ∈ S,∀t ∈ {1, . . . , TRi }. (10)

We couple the maintenance decision variable ν with generator commitment variable x. Constraint

(11) ensures that if a unit is under maintenance during maintenance epoch i, it cannot be committed in

any of the days within that epoch. To verify that unit i is not under maintenance at time t, we check

that a maintenance activity on generator i did not start during any of the following maintenance periods

{t− TMi + 1, . . . , t}.

xts,i ≤ 1−
TMi −1∑
e=0

νt−e,i, ∀i ∈ G, ∀t ∈ T ,∀s ∈ S. (11)

We next model the conventional UC constraints such as minimum up/down, start-up/shut-down, energy

balance, transmission limit and ramping, minimum and maximum dispatch levels for each generator based

on the commitment status (see the Appendix of [21] for the detailed formulation). In its compact form,

we represent this set of constraints as follows:

Fx+Gy ≤ `, (12)

where x denotes the binary variables of UC such as commitment, start-up, and shut-down variables, and

y denotes the remaining dispatch, demand curtailment, and line slack variables.
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E. Constraints for Modeling Load-Dependent Degradation

In this section, we capture the relationship between operations, loading, and maintenance. The following

set of constraints embed the load-dependent predictive degradation model discussed in Section II into

our optimization framework. First, we evaluate the actual and the transformed times associated with

maintenances - i.e. the variables ν and z provide the actual maintenance time t, and the corresponding

transformed time τ(t) as defined in (3), respectively. This relationship depends on the variable γ as it

contains the information γti in (3). Second, we determine the generator loading γ given the operational

decisions. By coupling loading profiles with the maintenance and UC decisions of the adaptive optimization

framework, the following set of constraints enables the schedulers to control the degradation of the

generation assets.

1) Capturing the transformed time of maintenance: Our first objective is to couple the loading and

maintenance decisions with the corresponding transformed time of maintenance.

Constraint (13) coordinates the transformed time variable z with the loading variable γ. More

specifically, it provides a mapping between the loading conditions at each time period t, with the

transformed time when the preventive maintenance is scheduled.
∑L

`=0 Q`,iγt,i,` gives impact of the

loading condition at time t, Ψ(γ(t)). By summing
∑L

`=0Q`,iγt,i,` = Ψ(γ(t)) over time periods until

the first maintenance, we can get the transformed time until the first preventive maintenance, given by∑
t∈T tzt,i,1. To account for non-integer solutions, we take a conservative approach and round off the total

loading to the upper integer value.∑
t∈T

t zt,i − 1 ≤
∑
t∈T

∑
`∈L

Q`,iγe,i,` ≤
∑
t∈T

t zt,i,

∀t ∈ T ,∀i ∈ G.
(13)

We next ensure some logical constraints on the loading variables. In (14), we enforce that generation i

cannot have experience any loading (thus remains offline) at time t, if there is an ongoing maintenance:

γot,i + γt,i,` ≤ 1−
TMi −1∑
e=0

νt−e,i,

∀l ∈ L,∀t ∈ T ,∀i ∈ G,

(14)

where γot,i is a loading variable of generation asset i for time periods after its last maintenance.

In (15), we ensure that if the loading of the generator at time t is `, then the γ variables for the `th

level and all the levels before ` gets the value 1, or more specifically γt,i,`′ = 1 for all `′ ≤ `:

γt,i,` ≤ γt,i,`−1, ∀l ∈ L/{0},∀t ∈ T ,∀i ∈ G. (15)
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Lastly, we ensure that γot,i is zero for all time periods before maintenance (16), and the loading variables

γt,i,` cannot be 1 for any time period t that is after the scheduled maintenance (17):

γot,i =

t−TMi +1∑
e=1

νe,i, ∀t ∈ T ,∀i ∈ G, (16)

γt,i,` ≤
H∑
e=t

νe,i, ∀l ∈ L, ∀t ∈ T ,∀i ∈ G. (17)

2) Capturing the interaction between operational decisions and loading: Our next challenge is to

establish the relationship between the operational decisions, and the loading imposed onto the generators.

We study the case, where the load severity depends on the dispatch level of the generation asset. To do

so, we define the loading condition of a generation asset as a function of the average production within

a maintenance period. ∑
s∈S y

t
s,i

|S|
≥

ΓL0 · γt,i,0 +
∑
l∈L/0

(
(ΓLl − ΓLl−1)γt,i,l

) , (18a)

∑
s∈S y

t
s,i

|S|
≤

[∑
l∈L

(
(ΓLl+1 − ΓLl )γt,i,l

)
+ pmaxi · γot,i

]
, (18b)

∀t ∈ T ,∀i ∈ G,

where ΓLl is the average load level to reach to degradation regime l. Constraint (18) considers two cases.

If the maintenance for generator i is scheduled before time t, then γt,i,l = 0 for all l ∈ L, and γoi,l = 1

(due to Constraints (16),(17)) makes the inequality redundant. It only ensures that the average dispatch is

between 0 and pmaxi , which is already imposed through (12). If the time t is before the last maintenance,

it stipulates that the average production should be between ΓLl and ΓLl+1 if the current loading level is l -

i.e. γt,i,l′ = 1, ∀l′ ≤ l and γt,i,l′ = 0, ∀l′ > l due to (15). Note that the right hand size in (18a), and (18b)

construct the sum for the lower bound ΓLl , and upper bound ΓLl+1, respectively.

IV. EXPERIMENTS

In this section, we present an extensive experiments to highlight the performance of LDAPM. In our

study, we schedule the maintenance and operations of 54 generators using the IEEE 118-Bus case. We

provide a benchmark analysis that compares the proposed model against the models in literature that do

not use sensor information.

To evaluate the performance of different scheduling models, we develop an experimental framework

that incorporates real-time condition monitoring data and a dynamic loading environment. The framework

uses a rolling horizon model that is composed of two modules: optimization module, and the execution

module. In the optimization module, we use the dynamic sensor-updated cost functions to obtain the
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optimal maintenance and operations decisions. In the execution module, we model the chain of events

that occur during a freeze period. To do so, we first evaluate the loading conditions on each generator

using the results of LDAPM. More specifically, the optimal decision for the variable γ is used to model

the rate and signal-to-noise ratio of the degradation signals for each generation asset. We then determine

whether an unexpected failure or a successful maintenance have occurred during any time point within

the freeze period. If a preventive maintenance is experienced, the generator is taken offline for 3 weeks.

Otherwise, if the generator fails unexpectedly before the time of its scheduled maintenance, it remains

offline for the duration of 6 weeks.

For every time period within the planning horizon, we solve a UC model with the available generators

(those that are not undergoing a preventive or corrective maintenance). The solution of this problem

provides the operational cost. We also evaluate the maintenance cost by finding the number of preventive

and corrective maintenances and multiplying those instances by the cost of preventive maintenance cpi and

corrective maintenance cfi , respectively. In all our experiments, these costs are fixed across generators,

where cfi = 4 · cpi = $800, 000. In our framework, the maintenance decisions are weekly, and the unit

commitment decisions are hourly. Planning horizon for every problem is 80 weeks, and the maintenance

and operations scheduling is updated every τR = 8 weeks. The experiments are solved using Gurobi.

In every case study, we execute the implementation for a period of 48 weeks using a rolling horizon

simulation. Age of the generators at the start of the experiments are obtained by running the generators

for the duration of a warming period.

A. Comparative Study on LDAPM

In this section we present a comparative study to illustrate the advantages of using LDAPM. We consider

the scenario where increasing the average production from a generator, also increases its loading (i.e. the

case considered through Constraint (18)). In order to make a fair comparison, we perform benchmark

analysis for LDAPM against two conventional methods in literature, namely the periodic model (PM),

and the reliability based model (RBM). These approaches rely on population estimates (without condition

monitoring data), and are not adaptive to the loading conditions. For the PM case, we enforce a constraint

to ensure the preventive maintenance takes place at a specific age range for every generator, with the

objective of minimizing total operational cost. We look at the overall demand and the available generator

capacities to adjust the optimal period. We therefore devise a smarter periodic policy that is not extremely

conservative. For the RBM case, we define the dynamic maintenance cost function using a Weibull

distribution. Weibull estimates are derived using the failure times from a rotating machinery application

subjected to an approximate average loading environment. We also condition on the time of survival to
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estimate the RLD and the associated maintenance costs. This distribution provides the best estimate for

RLD without using sensor data (see [22]). These benchmark models do not control generator loading,

however the resulting loading decisions drive the way we emulate degradation in the execution module.

We use a congested IEEE 118-Bus system to better illustrate the dependency between maintenance,

loading and operational decisions. Table I-III presents the reliability and cost metrics for the three policies

considered in the first study. In this section, we consider 3 scenarios that differ in terms of the number of

loading levels. The first scenario considers a constant loading environment. In other words, we assume

that a generator degrades in harsh environment whenever it remains operational. We do not allow control

of the loading levels (i.e. there is only one loading level), thus the advantages of LDAPM in this case

are purely due to integration of the improved remaining life predictions into maintenance and operations

scheduling. It can be observed that LDAPM improves both maintenance and operational metrics compared

to the benchmark models.

In the second scenario, we incorporate two loading levels. In the zero loading case, we let Ψ(.) = 0,

whereas in the severe loading case we accelerate degradation to the harsh environment, or more specifically

we set Ψ(.) = 2. In other words, a generator remains in zero loading environment when it halts production.

Otherwise, it operates under harsh loading environment. This case provides a more dynamic environment

that allows the schedulers to control the loading levels to some extent. For this case, the advantages

of LDAPM is twofolds. First, LDAPM leverages on the condition monitoring data to have an accurate

estimation on the RLD of the generation assets. Second, LDAPM captures the interaction between the

operational decisions and degradation, which allows the operators to control the loading conditions while

scheduling maintenance. Evidently, LDAPM provides a maintenance schedule that decreases the number

of preventive maintenances (by %30.43 and %31.91 for PM and RBM, respectively), and unexpected

failures (by %58.82 and %50.00 for PM and RBM, respectively), while also ensuring a significant reduction

in the mean loading level as well (by %8.21 and %4.38 for PM and RBM, respectively).

In addition to improving maintenance metrics and associated costs, LDAPM also minimizes the impact

of maintenance onto operations. Generation assets age slower in LDAPM, because the model typically

lowers the average loading unless there is a significant advantage in using the full capacity of the

generators. LDAPM captures the dependency of load and sensor information into its life prediction,

therefore incurs less unexpected failures while executing a more liberal maintenance policy. Lastly,

LDAPM has significantly more flexibility for delaying the optimal maintenance time of the generator. Thus,

it can control the production level and minimize the risk of multiple failures occurring simultaneously.

This flexibility significantly improves the operational costs. We observe that LDAPM provides %14.73

and %30.99 savings compared to the operational costs of PM and RBM. A similar trend is apparent in
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TABLE I: Benchmark Analysis: # Loading Condition L = 1

Periodic RBM LDAPM

# Preventive 40 42 55

# Failures 29 24 7

# Total Outages 69 66 62

Mean Loading 2.00 2.00 2.00

Maintenance Cost $ 31.2M $27.6 M $16.6 M

Operations Cost $ 126.7 M $160.7 M $ 121.2 M

Total Cost $ 157.9M $188.3 M $ 137.8 M

TABLE II: Benchmark Analysis: # Loading Conditions L = 2

Periodic RBM LDAPM

# Preventive 46 47 32

# Failures 17 14 7

# Total Outages 63 61 39

Mean Loading 1.61 1.51 1.44

Maintenance Cost $22.8 M $20.6 M $12.0 M

Operations Cost $138.2 M $170.8 M $ 117.9 M

Total Cost $161.0 M $191.4 M $ 129.9 M

TABLE III: Benchmark Analysis: # Loading Conditions L = 3

Periodic RBM LDAPM

# Preventive 50 51 21

# Failures 6 8 4

# Total Outages 56 59 25

Mean Loading 1.06 1.02 0.92

Maintenance Cost $14.8 M $16.6 M $7.4 M

Operations Cost $147.1 M $178.9 M $ 107.7 M

Total Cost $161.9 M $195.5 M $ 115.4 M
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terms of the total cost as well.

To further illustrate the advantages of our approach, we consider a more interesting scenario, where

the number of loading levels increases to 3. The first level ` = 0 covers the loading environment where a

generator does not produce any power (turned off) during the entire week. In this case, we assume that

the generator does not experience any degradation during that week. If its average dispatch is positive and

below 70% of its maximum capacity pmaxi , then the generator operates in nominal loading environment.

Otherwise, the generator is subjected to harsh loading. The loading case ` = 1 is the nominal case, where

the associated Ψ(.) = 1, whereas in the severe loading case, like in the previous study, we accelerate

degradation by a factor of two, or more specifically we set Ψ(.) = 2.

Similar conclusions can be made for this study. However, we note that the advantages of our model

becomes more pronounced in this case. As the number of loading levels increase, so does the ability

of LDAPM to finetune the control of the loading conditions. In other words, detailed modeling of the

degradation and loading dependency allows LDAPM to provide further improvements over the benchmarks.

We observe that LDAPM decreases the number of unexpected failures, outages, as well as the costs

associated with maintenance (decreasing the cost of maintenance by 50.00% and 55.42% compared to

PM and RBM, respectively) and operations (this time reducing by 26.79% and 39.79% compared to PM

and RBM, respectively). The mean loading of LDAPM in this scenario was reduced more significantly

(incurring a decrease in mean loading by 13.22% and 9.69% compared to PM and RBM, respectively).

V. CONCLUSION

In this paper, we developed a unified framework that combines i) load dependent predictive degradation

models for generation assets, and ii) a joint MIP that simultaneously models maintenance, loading and

UC decisions. Novel to our framework is the ability to incorporate load dependent degradation within a

large scale UC and generation maintenance model. Our experiments on IEEE 118-Bus case show that our

proposed policy can provide significant savings in both maintenance and operations cost, while ensuring

a reliable electricity system, and an effective use of asset lifetime. More specifically, our policy reduces

the costs associated with maintenance by > 50%, UC by > 14.73%, while also maintaining a favorable

loading profile. We also show that the proposed method fully adapts to changes in the way we model the

degradation process (i.e. number of loading levels as in §IV-A).
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APPENDIX A

PROOF OF PROPOSITION 1

Proof: Given the prior distributions πi(θi), πi(βi), we can obtain the posterior distribution υ(θi, βi)

as follows:

P (θi, βi|d1, . . . , dk) ∝ f(d1, . . . , dk|θi, βi)πi(θi)πi(βi)

∝ exp

[
−(d1 − θi − βiξ1)2

2σ2ξ1

−
k∑
j=2

(
(dj − βiξj)2

2σ2ξj

)]
· exp

[
−(θi − µ0)2

2σ2
0

]
exp

[
−(βi − µ1)2

2σ2
1

]
∝ exp

[
−1

2
θ2
i

(
σ2

0 + σ2ξ1

σ2σ2
0ξ1

)
− 1

2
β2
i

(
σ2

1Υk + σ2

σ2σ2
1

)
− θiβi

σ2

]
· exp

[
θi

(
d1σ

2
0 + µ0σ

2ξ1

σ2σ2
0ξ1

)
+ βi

(
σ2

1Dk + µ1σ
2

σ2σ2
1

)]
∝ exp

[
−1

2
θ2
i

(
1

σ2
θi

(1− ρ2
i )

)
− 1

2
β2

(
1

σ2
βi

(1− ρ2
i )

)]
· exp

[
θiβi

−ρi
σθiσβi(1− ρ2

i )

]

· exp

[
θi

(
µθi

σ2
θi

(1− ρ2
i )
− µβiρ

σθiσβi(1− ρ2)

)]
· exp

[
βi

(
µβi

σ2
βi

(1− ρ2
i )
− µθiρ

σθiσβi(1− ρ2)

)]
,

which follows a bivariate normal distribution, with the parameters defined in the proposition.


