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Abstract. For a conic optimization problem

P : minimizex cT x
s.t. Ax = b,

x ∈ C

and its dual

D : supremumy,s bT y

s.t. AT y + s = c,
s ∈ C∗,

we present a geometric relationship between the primal objective function level sets and the dual
objective function level sets, which shows that the maximum norms of the primal objective function
level sets are nearly inversely proportional to the maximum inscribed radii of the dual objective
function level sets.
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1. Introduction and motivation. This paper is concerned with the inter-
related geometry of the primal objective function level sets and the dual objective
function level sets of the following conic convex optimization primal and dual pair:

P : minimumx cT x
s.t. Ax = b,

x ∈ C

and

D : supremumy,s bT y
s.t. AT y + s = c,

s ∈ C∗,

where C is a closed convex cone in a finite-dimensional normed vector space X.
We present a geometric relationship between the primal objective function level sets
and the dual objective function level sets, namely, that the maximum norms of the
primal objective function level sets are nearly inversely proportional to the maximum
inscribed radii of the dual objective function level sets.

To provide motivation without yet becoming encumbered by details, consider the
case when C is the nonnegative orthant, i.e., C = �n

+ := {x ∈ �n | x ≥ 0}, in which
case P and D are simply linear programming (LP) primal and dual problems. Below
we list and comment on two well-known properties of LP:
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Property 1. Suppose that P and D are both feasible. Then the set of optimal
solutions of P is unbounded if and only if there is no strictly feasible solution of D;
that is, AT y + s = c, s ≥ 0 implies s �> 0. This property is easily proved via LP
duality, for example, and is part of the folklore of optimization. Put another way,
Property 1 can be stated as follows:

“The set of primal optimal solutions is unbounded if and only if every
dual feasible s lies on the boundary of �n

+.”
Property 2. If P and D each have feasible solutions that satisfy all inequalities

strictly, then the central trajectory exists, whereby for each μ > 0 there exists unique
feasible solutions x(μ) of P and (y(μ), s(μ)) of D for which xj(μ) · sj(μ) = μ, j =
1, . . . , n. This is an elementary consequence of the optimality conditions for the loga-
rithmic barrier functions appended to a linear program; see Wright [7], for example.
Now notice here that for a given value μ > 0, the norm ‖x(μ)‖ is large if and only if
dist(sj(μ), ∂�n

+) is small. In fact, a little basic arithmetic manipulation easily shows
that

μ ≤ ‖x(μ)‖1 · min
j

{sj(μ)} ≤ nμ,

which can then be used to assert the following:
“For a given duality gap θ > 0, there exists a primal feasible x and a
dual feasible (y, s) with duality gap at most θ and with the property
that θ/n ≤ ‖x‖1 · dist(s, ∂�n

+) ≤ θ.”
This brief discussion points to an interrelationship between the norms of certain

primal feasible solutions x and the distances of certain dual feasible solutions s to
the boundary of the nonnegative orthant. In section 2 we make this interrelationship
precise for the case of linear optimization in Theorem 2.1, which shows that the max-
imum norms of primal objective level sets are almost exactly inversely proportional
to the maximum distances to the boundary of dual objective level sets. In fact, just
as linear optimization is a special case of more general conic convex optimization,
Theorem 2.1 is a special case of a more general theorem that demonstrates an in-
verse proportional relationship between the maximum norms of primal objective level
sets and the maximum distances to the boundary of dual objective level sets in conic
convex optimization. This more general result is presented in section 3 as Theorem
3.2 and is the main result of this paper. Section 4 discusses several aspects of cone
geometry that arise in our development, and section 5 contains proofs.

Notation. We denote real n-dimensional space and the nonnegative n-dimensional
orthant by �n and �n

+, respectively. Let e = (1, . . . , 1)T denote the vector of 1’s in
�n.

2. Primal-dual geometry of level sets for linear optimization. Consider
the following dual pair of linear optimization problems:

LP : minimize cT x
s.t. Ax = b,

x ≥ 0

and

LD : maximize bT y
s.t. AT y + s = c,

s ≥ 0,



1006 ROBERT M. FREUND

whose common optimal value is z∗. For ε > 0 and δ > 0, define the ε- and δ-level sets
for the primal and dual problems as follows:

Pε :=
{
x | Ax = b, x ≥ 0, cT x ≤ z∗ + ε

}
and

Dδ :=
{
s | ∃ y satisfying AT y + s = c, s ≥ 0, bT y ≥ z∗ − δ

}
.

Define

Rε := max ‖x‖1

s.t. Ax = b,
cT x ≤ z∗ + ε,
x ≥ 0

(2.1)

and

rδ := max minj{sj}
s.t. AT y + s = c,

bT y ≥ z∗ − δ,
s ≥ 0.

(2.2)

The quantity Rε is simply the size of the largest vector x in the primal level set Pε,
measured in the L1-norm. The quantity rδ can be interpreted as the positivity of
the most positive vector s in the dual level set Dδ or, equivalently, as the maximum
distance to the boundary of the nonnegative orthant over all points s in Dδ. The
following theorem presents a reciprocal relationship between Rε and rδ.

Theorem 2.1. Suppose that z∗ is finite. If Rε is positive and finite, then

min {ε, δ} ≤ Rε · rδ ≤ ε + δ.

Otherwise, Rε = 0 if and only if rδ = +∞, and Rε = +∞ if and only if rδ = 0.
Theorem 2.1 bounds the size of the largest vector in Pε and the positivity of the

most positive vector in Dδ from above and below, and shows that these quantities
are almost exactly inversely proportional. In fact, taking δ = ε, the result states that
Rε · rε lies in the interval [ε, 2ε]. The proof of this theorem follows as a special case of
a more general result for convex conic optimization, namely Theorem 3.2 in section
3.

Remark 2.1. If Rε < ∞, then

Rε′ ≤
(

ε
′

ε

)
Rε(2.3)

for all ε
′ ≥ ε.

Proof. If Rε = 0, the result follows trivially, since then Rε′ = 0 for all ε
′
> 0. So

suppose that 0 < Rε < +∞. Let x∗ be an optimal solution of LP , and let x
′ ∈ Pε′ be

given. Then x := ε
ε′

x
′
+ ε

′−ε
ε′

x∗ satisfies x ∈ Pε, whereby ‖x‖1 ≤ Rε. Now notice that

‖x′‖1 = eT x
′
= ε

′

ε eT x − ε
′−ε
ε eT x∗ ≤ ε

′

ε eT x = ε
′

ε ‖x‖1 ≤ ε
′

ε Rε. Therefore Rε′ ≤ ε
′

ε Rε,
proving the result.
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Remark 2.1 bounds the rate of growth of Rε′ as ε
′

increases and shows that Rε′

grows at most linearly in ε
′

and at a rate no greater than Rε

ε . There is a version of
(2.3) for rδ and rδ′ , namely

rδ′ ≥
(

δ
′

δ

)
rδ(2.4)

for all 0 ≤ δ
′ ≤ δ, which is true as an elementary consequence of the convexity of the

feasible region of LD.
By exchanging the roles of the primal and dual problems, we obviously can con-

struct analogous results for the most positive vector x in Pε as well as for the size of
the largest vector s in Dδ.

3. Conic optimization with a norm on X. We now consider the generaliza-
tion of linear optimization to convex optimization in conic linear form:

P : z∗ := minimumx cT x
s.t. Ax = b,

x ∈ C

and its dual

D : v∗ := supremumy,s bT y
s.t. AT y + s = c,

s ∈ C∗,

where C ⊂ X is a closed convex cone in the (finite) n-dimensional linear vector space
X, and b lies in the (finite) m-dimensional vector space Y . This format for convex
optimization dates back at least to Duffin [2]. Strong duality results can be found in
[2] as well as in Ben-Israel, Charnes, and Kortanek [1].

For ε > 0 and δ > 0, we define the ε- and δ-level sets for the primal and dual
problems as follows:

Pε :=
{
x | Ax = b, x ∈ C, cT x ≤ z∗ + ε

}
and

Dδ :=
{
s | ∃ y satisfying AT y + s = c, s ∈ C∗, bT y ≥ v∗ − δ

}
.

We make the following assumption.
Assumption A. z∗ is finite. The cone C satisfies C �= {0}, and C contains no line

(whereby C∗ has an interior).
Suppose that X is endowed with a norm ‖ ·‖, and so X∗ is endowed with the dual

norm ‖ · ‖∗. Let B(x, r) and B∗(s, r) denote the balls of radius r centered at x ∈ X
and s ∈ X∗, respectively, defined for the appropriate norms.

We denote the maximum norm of Pε by Rε, defined as

Rε := maxx ‖x‖
s.t. x ∈ Pε.

(3.1)

We denote by rδ the inscribed size of Dδ, defined as

rδ := maxs,r r
s.t. s ∈ Dδ,

B∗(s, r) ⊂ C∗.
(3.2)
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As in the case of linear optimization, rδ measures the distance of the most interior
point of the dual level set Dδ to the boundary of the cone C∗. Put another way, rδ

measures the “interiorness” (with respect to C∗) of the most interior point in Dδ.
Before presenting the version of Theorem 2.1 for convex conic optimization, we

first review the concept of the min-width of a cone. We use the following definition
of the min-width.

Definition 3.1. Let K ⊂ X be a closed convex cone in the normed linear vector
space X satisfying (i) K has a nonempty interior and (ii) K �= X. The min-width of
K is defined as

τK := max
x∈intK

{
dist (x, ∂K)

‖x‖
}

= max
x�=0

{
r

‖x‖

∣∣∣∣∣ B(x, r) ⊂ K

}
.

Note that τK measures the maximum ratio of the radius to the norm of the center
of an inscribed ball in K, and so larger values of τK correspond to an intuitive notion
of greater minimum width of K. The quantity τK was called the “inner measure”
of K for Euclidean norms in Goffin [5] and has been used more recently for general
norms in analyzing condition measures for conic convex optimization; see [3]. Note
that τK ∈ (0, 1], since K has a nonempty interior and K �= X, and τK is attained for
some x0 ∈ intK satisfying ‖x0‖ = 1, as well as along the ray αx0 for all α > 0. Let
τK∗ be defined similarly for the dual cone K∗.

The following is analogous to Theorem 2.1 for conic problems.
Theorem 3.2. Suppose that Assumption A holds. If Rε is positive and finite,

then z∗ = v∗ and

τC∗ · min {ε, δ} ≤ Rε · rδ ≤ ε + δ.(3.3)

If Rε = 0, then z∗ = v∗ and rδ = +∞; else if Rε = +∞ and v∗ is finite, then rδ = 0.
Here we have had to introduce the min-width τC∗ into the left inequality of (3.3),

somewhat weakening the result. In the next section we show that the left inequality
can be tight. We also show how to define a family of cone-based norms for which
τC∗ = 1, and we show that for norms induced by a ϑ-normal barrier function on C
the min-width constant τC∗ satisfies τC∗ ≥ 1/

√
ϑ. Theorem 3.2 is proved in section

5. Here we use Theorem 3.2 to prove Theorem 2.1.
Proof of Theorem 2.1. Note that LP is a special case of P with X = �n and

C = �n
+, whereby C∗ = �n

+. Endow X with the L1-norm ‖ · ‖ = ‖ · ‖1, whose dual
norm on X∗ is the L∞-norm ‖ · ‖∗ = ‖ · ‖∞. To prove the theorem it suffices to show
that τC∗ = 1, which we do now. Let s0 = e, and note that ‖s0‖∞ = 1, and that
B∗(s0, 1) = {s | ‖s − e‖∞ ≤ 1} ⊂ �n

+ = C∗, whereby τC∗ ≥ 1. However, τC∗ ≤ 1
because C∗ is a pointed cone, and so τC∗ = 1, completing the proof.

The following remark, analogous to Remark 2.1, is proved in section 5.
Remark 3.1. If Rε < ∞, then

Rε′ ≤
(

ε
′

ε

)(
1

τC∗

)
Rε

for all ε
′ ≥ ε.

4. On the min-width constant.
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4.1. The min-width constant can be tight. Here we show by example that
the left inequality in (3.3) can be tight, and so the constant τC∗ cannot be replaced
by a larger quantity. Let X = �n and C = �n

+ (whereby C∗ = �n
+), and let X be

endowed with the Lp-norm ‖x‖p := (
∑n

j=1 |xj |p) 1
p for 1 ≤ p ≤ +∞, whose dual norm

is ‖s‖∗ = ‖s‖q, where 1
p + 1

q = 1 with appropriate limits for p, q = 1 and/or ∞. Then

it is straightforward to show that τC = n− 1
p and τC∗ = n− 1

q . Consider the following
LP primal and dual instance:

P̃ : minx 0T x D̃ : maxy,s eT y
s.t. Ix = e, s.t. Iy + s = 0,

x ∈ �n
+, s ∈ �n

+,

whose common optimal value is z∗ = 0. Then Rε = ‖e‖p = n
1
p , and rδ = δ

n for all

ε, δ > 0. Let ε := δ, whereby Rε · rδ = n
1
p · δ

n = δ · n( 1
p−1) = δ · n− 1

q = δ · τC∗ =
min{ε, δ}τC∗ , which shows that the left inequality of (3.3) can indeed be tight.

4.2. Min-widths for the family of norms induced by a ϑ-normal barrier.
In this subsection we assume that C is a regular cone; i.e., C is pointed and has an
interior. Suppose that F (·) : intC → � is a ϑ-normal barrier for C; see [6]. Then
F ∗(·) : intC∗ → �, the conjugate function of F (·), is also a ϑ-normal barrier for C∗;
see [6] as well.

Let s0 ∈ intC∗ be given. The norm induced by the ϑ-normal barrier F (·) at s0 is
defined as follows:

‖s‖∗,s0 :=
√

sT H∗(s0)s,

where H∗(s0) is the Hessian of F ∗(·) evaluated at s0. It then follows from Theorem
2.1.1 of [6] that B∗(s0, 1) ⊂ C∗ and from Proposition 2.3.4 of [6] that ‖s0‖∗,s0 =

√
ϑ.

Therefore under the dual norm ‖s‖∗ := ‖s‖∗,s0 we have τC∗ ≥ 1/
√

ϑ.

4.3. A family of norms on X for which τC∗ = 1. In this subsection we also
assume that C is a regular cone. For every s0 ∈ intC∗, there is a norm analogous
to the L∞-norm for the nonnegative orthant for which the associated min-width is
τC∗ = 1. To see this, consider a given interior point s0 ∈ intC∗, and define the
following norm:

‖s‖∗ := minα α
s.t. s + αs0 ∈ C∗,

−s + αs0 ∈ C∗.

It is a straightforward exercise to verify that ‖·‖∗ is indeed a norm, and its dual norm
turns out to be

‖x‖ := minx1,x2 (s0)T (x1 + x2)
s.t. x1 − x2 = x,

x1 ∈ C,
x2 ∈ C.

Under ‖ · ‖∗, it is easily shown that ‖s0‖∗ = 1 and τC∗ = 1.
In the case when X = �n, C = C∗ = �n

+, and s0 = e, we recover the L∞-norm
as ‖s‖∗ for s ∈ X∗ = �n and the L1-norm as ‖x‖ for x ∈ X = �n.
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5. Proofs of main results. We start by pointing out a fact about strong duality
in general conic convex optimization that we will use in our proof of Theorem 3.2.
Suppose we have a primal and dual pair of conic convex optimization problems

P̂ : ẑ∗ := infx fT x D̂ : v̂∗ := supy,s gT y
s.t. Mx = g, s.t. MT y + s = f,

x ∈ K, s ∈ K∗,

where K ⊂ X is a closed convex cone in the (finite) n-dimensional linear vector space
X, and g lies in the (finite) m-dimensional vector space Y . The following lemma
presents a sufficient condition for this pair to exhibit strong duality.

Lemma 5.1. Assume that ẑ∗ is finite and for some ε > 0 the level set P̂ε :=
{x | Mx = g, x ∈ K, fT x ≤ ẑ∗ + ε} is bounded. Then P̂ attains its optimum and
ẑ∗ = v̂∗.

Proof. Note that P̂ attains its optimum, since P̂ε is bounded. The boundedness
of P̂ε also implies that

{0} = {x ∈ X | Mx = 0, x ∈ K, fT x ≤ 0}.(5.1)

It is elementary to show that ẑ∗ ≥ v̂∗. Suppose that ẑ∗ > v̂∗, let ε̄ be such that
0 < ε̄ < ẑ∗ − v̂∗, and let

S = {(w,α)| ∃y ∈ Y ∗, s ∈ K∗ satisfying w = MT y + s − f, gT y ≥ v̂∗ + ε̄ − α}.
Then S is a nonempty convex set in X∗ × �, and (0, 0) /∈ S, whereby there exists
(x, θ) �= 0 satisfying xT w + θα ≥ 0 for all (w,α) ∈ S. Therefore

xT
(
MT y + s − f

)
+ θ

(−gT y + v̂∗ + ε̄ + η
) ≥ 0 ∀y ∈ Y ∗,∀s ∈ K∗,∀η ≥ 0.(5.2)

This implies that Mx = gθ, θ ≥ 0, and x ∈ K. We now have two cases.
Case 1. θ > 0. Without loss of generality we can assume that θ = 1. Therefore

x is feasible for P̂ , and (5.2) also implies that ẑ∗ ≤ fT x ≤ v̂∗ + ε̄ < ẑ∗, which is a
contradiction.

Case 2. θ = 0. In this case x �= 0, x ∈ K, Mx = 0, and (5.2) implies that
fT x ≤ 0, contradicting (5.1).

In both cases we have a contradiction, and so ẑ∗ = v̂∗.
We next state some properties of norms and the min-width. The following is a

special case of the Hahn–Banach theorem; for a short proof of this proposition based
on the subdifferential operator, see Proposition 2 of [4].

Proposition 5.2. For every x ∈ X, there exists x̄ ∈ X∗ with the property that
‖x̄‖∗ = 1 and ‖x‖ = x̄T x.

The following exhibits some useful properties of the min-width of a cone.
Proposition 5.3. Suppose K∗ is a convex cone whose min-width τK∗ is attained

at some point s0 ∈ intK∗ satisfying ‖s0‖∗ = 1. Then
(i) τK∗‖x‖ ≤ (s0)T x ≤ ‖x‖ for all x ∈ K, and
(ii) if s − λs0 ∈ K∗, then B∗(s, λτK∗) ⊂ K∗.
Proof. For a given x ∈ K ⊂ X, there exists x̄ ∈ X∗ for which ‖x̄‖∗ = 1 and

‖x‖ = x̄T x from Proposition 5.2. By construction of s0 we have B∗(s0, τK∗) ⊂ K∗,
and so s0 − τK∗ x̄ ∈ K∗. Therefore ‖x‖ = ‖x‖‖s0‖∗ ≥ (s0)T x = (s0 − τK∗ x̄ +
τK∗ x̄)T x ≥ τK∗ x̄T x = τK∗‖x‖, proving (i). To prove (ii), let u := s − λs0. Then
s = u+λs0, where u ∈ K∗ and B∗(s0, τK∗) ⊂ K∗, whereby it follows that B∗(s, λτK∗)
⊂ K∗.



PRIMAL-DUAL GEOMETRY OF LEVEL SETS 1011

We are now ready to prove Theorem 3.2, which we do by proving the following
four statements:

(i) If Rε is positive and finite, then z∗ = v∗ and Rε · rδ ≤ ε + δ.
(ii) If Rε is positive and finite, then Rε · rδ ≥ τC∗ min{ε, δ}.
(iii) If Rε = 0, then z∗ = v∗ and rδ = +∞.
(iv) If Rε = +∞ and v∗ is finite, then rδ = 0.
Proof of (i). Since Rε is finite, it follows that Pε is bounded, and so z∗ = v∗ from

Lemma 5.1. Let x ∈ Pε be given, and let x̄ satisfy ‖x̄‖∗ = 1 and ‖x‖ = x̄T x; see
Proposition 5.2. Now suppose that s ∈ Dδ satisfies B∗(s, r) ⊂ C∗ for some r ≥ 0. It
follows that ε + δ ≥ cT x − z∗ − bT y + v∗ = cT x − bT y = xT s = xT (s − rx̄ + rx̄) ≥
rxT x̄ = r‖x‖. As this is true for all x ∈ Pε and all s ∈ Dδ satisfying B∗(s, r) ⊂ C∗,
it follows that ε + δ ≥ Rε · rδ.

Proof of (ii). Let s0 satisfy ‖s0‖∗ = 1 and B∗(s0, τC∗) ⊂ C∗, and consider the
following conic convex dual programs:

P̄ : R̄ε := maxx (s0)T x D̄ : Q̄ := infy,s,θ −bT y + (z∗ + ε)θ
s.t. Ax = b, s.t. AT y + s = θc,

cT x ≤ z∗ + ε, s − s0 ∈ C∗,
x ∈ C, θ ≥ 0.

From Proposition 5.3 it follows that τC∗‖x‖ ≤ (s0)T x ≤ ‖x‖ for any x ∈ C, whereby
τC∗Rε ≤ R̄ε ≤ Rε, and, in particular, the level sets of P̄ are bounded. Then we
can invoke Lemma 5.1 on the pair P̄ , D̄ and assert that P̄ attains its optimum and
R̄ε = Q̄.

For α ∈ (0,min{ε, δ}) we show below that

rδ ≥ τC∗

R̄ε + α
(min{ε, δ − α})(5.3)

and letting α → 0 will complete the proof since (5.3) and α → 0 imply that Rε · rδ ≥
R̄ε · rδ ≥ τC∗ min{ε, δ}. For α ∈ (0,min{ε, δ}) let (y, s, θ) be a feasible solution of D̄
satisfying

−bT y + (z∗ + ε)θ ≤ Q̄ + α = R̄ε + α,(5.4)

and define w := s − s0 ∈ C∗. We prove (5.3) by considering three cases.
Case 1. θ = 0. In this case AT y + s = 0 and −bT y ≤ R̄ε + α. Let (ȳ, s̄) be any

feasible solution of D satisfying bT ȳ ≥ z∗ − α, and define

(ŷ, ŝ) := (ȳ, s̄) +
δ − α

R̄ε + α
(y, s).

Then (ŷ, ŝ) is feasible for D, and

bT ŷ = bT ȳ +
δ − α

R̄ε + α
bT y ≥ z∗ − α − δ + α = z∗ − δ.

Also, ŝ− δ−α
R̄ε+α

s0 = δ−α
R̄ε+α

w+ s̄ ∈ C∗, whereby ŝ ∈ Dδ and B∗(ŝ, δ−α
R̄ε+α

τC∗) ⊂ C∗ from
Proposition 5.3. This then implies that rδ ≥ δ−α

R̄ε+α
τC∗ , which implies (5.3).

Case 2. θ > 0 and R̄ε+α
θ − ε ≤ δ. Define

(ŷ, ŝ) =
1
θ
(y, s),
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whereby (ŷ, ŝ) satisfies ŝ ∈ C∗, AT ŷ + ŝ = c, and

bT ŷ =
1
θ
bT y ≥ − R̄ε + α

θ
+ z∗ + ε ≥ z∗ − δ,

which shows that ŝ ∈ Dδ. Furthermore, ŝ = s0

θ + w
θ , w ∈ C∗, and so ŝ − 1

θ s0 ∈ C∗.
Now it follows from Proposition 5.3 that B∗ (

ŝ, τC∗
θ

) ⊂ C∗, and so rδ ≥ τC∗
θ . However,

z∗ ≥ bT ŷ ≥ − R̄ε + α

θ
+ z∗ + ε,

and so 1
θ ≥ ε

R̄ε+α
, whereby rδ ≥ τC∗

θ ≥ ε
R̄ε+α

τC∗ , which then implies (5.3).

Case 3. θ > 0 and R̄ε+α
θ −ε ≥ δ. Let (ȳ, s̄) be any feasible solution of D satisfying

bT ȳ ≥ z∗ − α,(5.5)

and define

(ŷ, ŝ) = λ

(
(y, s)

θ

)
+ (1 − λ)(ȳ, s̄),

where

λ =
δ − α

R̄ε+α
θ − ε − α

.

Then λ ∈ [0, 1] for α ∈ (0, δ), and so (ŷ, ŝ) is a convex combination of (y,s)
θ and

(ȳ, s̄) and so satisfies AT ŷ + ŝ = c, ŝ ∈ C∗. It also follows from (5.4) and (5.5) that
bT ŷ ≥ z∗ − δ, whereby ŝ ∈ Dδ. Finally, ŝ− λ

θ s0 ∈ C∗, and so from Proposition 5.3 we
have B∗(ŝ, λτC∗

θ ) ⊂ C∗. Therefore

rδ ≥ λτC∗

θ
=

δ − α

R̄ε + α − αθ − εθ
τC∗ ≥ δ − α

R̄ε + α
τC∗ ,

from which (5.3) follows.
Therefore (5.3) is true in all cases, and the proof is complete.
Proof of (iii). Since Rε = 0 it follows that Pε = {0} is bounded, and so z∗ = v∗

from Lemma 5.1. It then follows that b = 0, and so z∗ = v∗ = 0. To prove that
rδ = +∞ it suffices to prove that there exists (ỹ, s̃) satisfying

AT ỹ + s̃ = 0 and s̃ ∈ intC∗.(5.6)

Let s0, P̄ , and D̄ be exactly as in the proof of (ii), and the same logic as in the proof
of (ii) yields R̄ε = Q̄ = 0; notice that because b = 0 and z∗ = 0 it follows that the
objective function of D̄ is simply εθ. If D̄ attains its optimal value Q̄ = 0, then any
optimal solution (y∗, s∗, θ∗) of D̄ will satisfy θ∗ = 0, and so (5.6) will be satisfied
by setting (ỹ, s̃) = (y∗, s∗). Alternatively, if c = 0, then the (y, s) variables of any
feasible solution (y, s, θ) of D̄ will satisfy (5.6). It remains to consider the case when
D̄ does not attain its optimum and c �= 0. Let α := ε·τC∗

2‖c‖∗
, and let (y, s, θ) be a

feasible solution of D̄ satisfying εθ = −bT y + (z∗ + ε)θ ≤ R̄ε + α = ε·τC∗
2‖c‖∗

; then, in
particular, θ ≤ τC∗

2‖c‖∗
. Define w := s − s0 ∈ C∗. Let (ỹ, s̃) = (y, s0 + w − θc). Then

AT ỹ + s̃ = AT y + s − θc = 0, and s̃ = s0 + w − θc = w + 1
2s0 + 1

2 (s0 − 2θc). Notice
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that ‖2θc‖∗ ≤ τC∗ , and so s0 − 2θc ∈ C∗, and also w ∈ C∗ and s0 ∈ intC∗, whereby
it follows that s̃ ∈ intC∗, validating (5.6).

Proof of (iv). Because Rε = +∞ it follows that there exists x �= 0 satisfying
x ∈ C,Ax = 0, and cT x = 0. From Proposition 5.2 there also exists x̄ ∈ X∗ for
which ‖x̄‖∗ = 1 and ‖x‖ = x̄T x. Now suppose that v∗ is finite, and let ŝ ∈ Dδ

satisfy B∗(ŝ, r) ⊂ C∗ for some r ≥ 0. Then there exists ŷ for which AT ŷ + ŝ = c,
and so xT ŝ = xT (c − AT ŷ) = 0 − 0 = 0. Also, ŝ − rx̄ ∈ C∗, and x ∈ C implies
that 0 ≤ xT (ŝ − rx̄) = −rxT x̄ = −r‖x‖, whereby r = 0. This then implies that rδ

= 0.
Proof of Remark 3.1. If Rε = 0, the result follows trivially, since then Rε′ = 0

for all ε
′

> 0. So suppose that 0 < Rε < +∞. Let x∗ be an optimal solution
of P (P attains its optimum; see Lemma 5.1), and let x

′ ∈ Pε′ be given. Then

x := ε
ε′

x
′
+ ε

′−ε
ε′

x∗ satisfies x ∈ Pε, whereby ‖x‖ ≤ Rε. Let s0 satisfy ‖s0‖∗ = 1
and B∗(s0, τC∗) ⊂ C∗. Then from Proposition 5.3 we have τC∗‖x′‖ ≤ (s0)T x

′
=

ε
′

ε (s0)T x − ε
′−ε
ε (s0)T x∗ ≤ ε

′

ε (s0)T x ≤ ε
′

ε ‖x‖ ≤ ε
′

ε Rε. Therefore ‖x′‖ ≤ ε
′

ε
1

τC∗ Rε for

all x
′ ∈ P

′
ε , and so Rε′ ≤ ε

′

ε
1

τC∗ Rε, proving the result.
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