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Abstract

A conic linear system is a system of the form
P(d): find x that solves b — Az € Cy, z € Cx,

where Cx and Cy are closed convex cones, and the data for the system is d = (A, b). This system
is“well-posed” to the extent that (small) changes in the data (A, b) do not alter the status of the
system (the system remains solvable or not). Renegar defined the “distance to ill-posedness,”
p(d), to be the smallest change in the data Ad = (AA, Ab) for which the system P(d + Ad) is
“ill-posed,” i.e., d + Ad is in the intersection of the closure of feasible and infeasible instances
d = (A',b') of P(-). Renegar also defined the “condition measure” of the data instance d as
C(d) :=||d||/p(d), and showed that this measure is a natural extension of the familiar condition
measure associated with systems of linear equations. This study presents two categories of
results related to p(d), the distance to ill-posedness, and C(d), the condition measure of d.
The first category of results involves the approximation of p(d) as the optimal value of certain
mathematical programs. We present ten different mathematical programs each of whose optimal
values provides an approximation of p(d) to within certain constants, depending on whether P(d)
is feasible or not, and where the constants depend on properties of the cones and the norms
used. The second category of results involves the existence of certain inscribed and intersecting
balls involving the feasible region of P(d) or the feasible region of its alternative system, in the
spirit of the ellipsoid algorithm. These results roughly state that the feasible region of P(d) (or
its alternative system when P(d) is not feasible) will contain a ball of radius r that is itself no
more than a distance R from the origin, where the ratio R/r satisfies R/r = ¢;O0(C(d)), and

such that r = ¢ (ﬁ) and R = ¢30( C(d)), where ¢1, ¢, ¢3 are constants that depend only on

properties of the cones and the norms used. Therefore the condition measure C(d) is a relevant
tool in proving the existence of an inscribed ball in the feasible region of P(d) that is not too
far from the origin and whose radius is not too small.
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1 Introduction

This paper is concerned with characterizations and properties of the “distance to ill-posedness”
and of the condition measure of a conic linear system, i.e., a system of the form:

P(d) : find z that solves b — Az € Cy, z € Cy, (1)

where Cx C X and Cy C Y are each a closed convex cone in the (finite) n-dimensional normed
linear vector space X (with norm ||z| for z € X) and in the (finite) m-dimensional linear vector
space Y (with norm ||y|| for y € Y), respectively. Here b € Y, and A € L(X,Y) where L(X,Y)
denotes the set of all linear operators A : X — Y. At the moment, we make no assumptions on
Cx and Cy except that each is a closed convex cone. The reader will recognize immediately that
when X = R” and Y = R™, and either (i) Cxy = {z € R" | # > 0} and Cy = {y € R™ | y > 0},
(ii) Cx ={z € R" | £ > 0} and Cy = {0} C R™, or (iii) Cx = R" and Cy = {y € R™ | y > 0},
then P(d) is a linear inequality system of the format (i) Az < b,z > 0, (ii) Az = b,z > 0, or (iii)
Az < b, respectively.

The problem P(d) is a very general format for studying the feasible region of a mathematical
program, and even lends itself to analysis by interior-point methods, see Nesterov and Nemirovskii[8]
and Renegar [12] and [13].

The concept of the “distance to ill-posedness” and a closely related condition measure for
problems such as P(d) was introduced by Renegar in [10] in a more specific setting, but then
generalized more fully in [11] and in [12]. We now describe these two concepts in detail.

We denote by d = (A, b) the “data” for the problem P(d). That is, we regard the cones C'x
and Cy as fixed and given, and the data for the problem is the linear operator A together with the
vector b. We denote the set of solutions of P(d) as X4 to emphasize the dependence on the data d,
ie.,

Xd:{.’EEX‘b—A[EECy,:UEC)(}.

We define
F={(A,b) € L(X,Y) x Y | there exists x satisying b — Az € Cy,z € Cx} . (2)

Then F corresponds to those data instances (A, b) for which P(d) is consistent, i.e., P(d) has a
solution.

For d = (A,b) € L(X,Y)xY we define the product norm on the cartesian product L(X,Y") x
Y as
1]l = [I(A, b)[| = max{|| A, |[b]l} (3)

where [|b|| is the norm specified for Y and || A|| is the operator norm, namely

[A]] = max{|[Az| | [l=]| <1}. (4)
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We denote the complement of F by F©. Then F¢ consists precisely of those data instances
d = (A,b) for which P(d) is inconsistent.

The boundary of F and of F¢ is precisely the set
B=0F = 0F = cl (F) Nel(FY) (5)

where 0S denotes the boundary of a set S and cl(S) is the closure of a set S. Note that if
d = (A,b) € B, then P(d) is ill-posed in the sense that arbitrary small changes in the data
d = (A, b) will yield consistent instances of P(d) as well as inconsistent instances of P(d).

For any d = (A,b) € L(X,Y) x Y, we define

p(d) = inf [Ad] = inf  [[(AA, Ab)
Ad AA, Ab (6)
st. d+AdeB  st.  (A+AADb+ Ab) € cl(F)Nel(FC)

Then p(d) is the “distance to ill-posedness” of the data d, i.e., p(d) is the distance of d
to the set B of ill-posedness instances. In addition to the work of Renegar cited earlier, further
analysis of the distance to ill-posedness has been studied by Vera [17], [18], [16], Filipowski [4], [5],
and Nunez and Freund [9].

In addition to the general case P(d), we will also be interested in two special cases when
one of the cones is either the entire space or only the zero-vector. When Cy = {0}, then P(d)
specializes to
Axr=0b, z € Cx .

When Cx = X, then P(d) specializes to

b— Az eCy, z € X .

One of the purposes of this paper is to explore approximate characterizations of the distance
to ill-posedness p(d) as the optimal value of a mathematical program whose solution is relatively
easy to obtain. By “relatively easy,” we roughly mean that such a program is either a convex
program or is solvable through O(m) or O(n) convex programs. Vera [17] and [16] explored such
characterizations for linear programming problems, and the results herein expand the scope of this
line of research in two ways: first by expanding the problem context from linear equations and
linear inequalities to conic linear systems, and second by developing more efficient mathematical
programs that characterize p(d). Renegar [12] presents a characterization of the distance to ill-
posedness as the solution of a certain mathematical program, but this characterization is not in
general easy to solve.

There are a number of reasons for exploring various characterizations of p(d), not the least
of which is to better understand the underlying nature of p(d). First, we anticipate that such
characterization results for p(d) will be useful in the complexity analysis of a variety of algorithms
for convex optimization of problems in conic linear form. There is also the intellectual issue of the
complexity of computing p(d) or an approximation thereof, and there is the prospect of using such
characterizations to further understand the behavior of the underlying problem P(d). Furthermore,
when an approximation of p(d) can be computed efficiently, then there is promise that the problem
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of deciding the feasibility of P(d) or the infeasibility of P(d) can be processed “efficiently”, say in
polynomial time, as shown in [17]. In Section 3 of this paper, we present ten different mathematical
programs each of whose optimal values provides an approximation of p(d) to within certain constant
factors, depending on whether P(d) is feasible or not, and where the constants depend only on the
“structure” of the cones Cx and Cy and not on the dimension or on the data d = (A,b).

The second purpose of this paper is to prove the existence of certain inscribed and inter-
secting balls involving the feasible region of P(d) (or the feasible region of the alternative system
of P(d) if P(d) is infeasible), in the spirit of the ellipsoid algorithm and in order to set the stage
for an analysis of the ellipsoid algorithm, hopefully in a subsequent paper. Recall that when P(d)
is specialized to the case of non-degenerate linear inequalities and the data d = (A, b) is an array
of rational numbers of bitlength L, then the feasible region of P(d) will intersect a ball of radius
R centered at the origin, and will contain a ball of radius r where r = (1/n)2~" and R = n2".
Furthermore, the ratio R/r is of critical importance in the analysis of the complexity of using the
ellipsoid algorithm to solve the system P(d) in this particular case. (For the general case of P(d),
the Turing machine model of computation is not very appropriate for analyzing issues of complex-
ity, and indeed other models of computation have been proposed (see Blum et al. [3], also Smale

[15].))

By analogy to the properties of rational non-degenerate linear inequalities mentioned above,
Renegar [12] has shown that the feasible region X, if nonempty, must intersect a ball of radius R
centered at the origin where R < ||d||/p(d). Renegar [11] defines the condition measure of the data
d = (A,b) to be C(d):

_lan
p(d)

and so R < C(d). Here we see the value n2" has been replaced by the condition measure C(d).

C(d)

For the problem P(d) considered herein in (1), the feasible region is the set X4. In Sections
4 and 5 of this paper, we utilize the characterization results of Section 3 to prove that the feasible
region Xy (or the feasible region of the alternative system when P(d) is infeasible) must contain an
inscribed ball of radius r that is no more than a distance R from the origin, and where the ratio R/r

satisfies R/r = ¢10(C(d)). Furthermore, we prove that r = co(2 (ﬁ) and R = ¢30(C(d)), where
the constants ¢y, co, c3 depend on properties of the cones and the norms used (and ¢ =g = ¢35 =1
if the norms of the spaces are chosen in a particular way). Note that by analogy to rational
non-degenerate linear inequalities, the quantity n2” is replaced by C(d). Therefore the condition
measure C(d) is a very relevant tool in proving the existence of an inscribed ball in the feasible
region of P(d) that is not too far from the origin and whose radius is not too small. This should

prove effective in the analysis of the ellipsoid algorithm as applied to solving P(d).

The paper is organized as follows. Section 2 contains preliminary results, definitions, and
analysis. Section 3 contains the ten different mathematical programs each of whose optimal values
provides approximations of p(d) to within certain constant factors, as discussed earlier. Section 4
contains four lemmas that give partial or full characterizations of certain inscribed and intersecting
balls related to the feasible region of P(d) (or its alternative region in the case when P(d) is
infeasible). Section 5 presents a synthesis of all of the results in the previous two sections into
theorems that give a complete treatment both of the characterization results and of the inscribed
and intersecting ball results.
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2 Preliminaries and Some More Notation

We will work in the setup of finite dimensional normed linear vector spaces. Both X and
Y are normed linear spaces of finite dimension n and m, respectively, endowed with norms ||z for
z € X and ||y|| for y € Y. For & € X, let B(z,r) denote the ball centered at z with radius r, i.e.,

B(z,r)={ze X | |lz—z| <r},
and define B(y,r) analogously for y € Y.
For d = (A,b) € L(X,Y) x Y, we define the ball
B(d,r) ={d = (A,b) € L(X,Y) x Y|||d — d| < r}.

With this additional notation, it is easy to see that the definition of p(d) given in (6) is
equivalent to:

sup{d | B(d,0) Cc F} ifdeF

p(d) = (7)
sup {5 | B(d,d) C 7—“0} if de FC.

We associate with X and Y the dual spaces X* and Y™ of linear functionals defined on X
and Y, respectively, and whose induced (dual) norms are denoted by ||u||. for u € X* and ||w].
for w € Y*. Let ¢ € X*. In order to maintain consistency with standard linear algebra notation
in mathematical programming, we will consider ¢ to be a column vector in the space X* and will
denote the linear function ¢(z) by ¢’ z. Similarly, for A € L(X,Y) and f € Y*, we denote A(z) by
Az and f(y) by f'y. We denote the adjoint of A by A”.

If C' is a convex cone in X, C* will denote the dual convex cone defined by

C*={zeX*| 272 >0 forany z € C} .
Remark 2.1 If we identify (X*)* with X, then (C*)* = C whenever C is a closed convez cone.

Remark 2.2 If Cx = X, then C% = {0}. If Cx = {0}, then C% = X.
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We denote the set of real numbers by R and the set of nonnegative real numbers by R .

Regarding the consistency of P(d), we have the following partial “theorem of the alterna-
tive,” the proof of which is a straightforward exercise using a separating hyperplane argument.

Proposition 2.1 If P(d) has no solution, then the system (8) has a solution:

Aty e Cy
y e Cy
y'b <0
y # 0.
If the system (9) has a solution:

ATy e Cx%
y e Cs (9)
yT'h <0,

then P(d) has no solution. |

Using Proposition 2.1, it is elementary to prove the following:

Lemma 2.1 Consider the set of ill-posed instances B. Then B can be characterized as:

B= {d=(Ab) € L(X,Y) xY | there exists (z,7) € X x R with

(z,7) #0 and y € Y* with y # 0 satisfying br — Az € Cy,z € Cx,r > 0,

y e Cy, Aly e C%, and y'b <0}

We now recall some facts about norms. Given a finite dimensional linear vector space X
endowed with a norm ||z|| for € X, the dual norm induced on the space X* is denoted by ||z«
for z € X*, and is defined as:

2]« = max{z"z | ||z|| < 1}. (10)

If we denote the unit balls in X and X* by B and B*, then it is straightforward to verify that
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B={zeX ||z||<1}={zeX|z'z<1forall z with ||z||, <1},

and
B ={ze X" ||z, <1} ={z e X* | 2Lz <1 for all z with ||z|| < 1}.

Furthermore,
2le < ||z|l«|z|| for any z € X and z € X*, (11)

which is the Holder inequality. Finally, note that if A = wv!, then it is easy to derive that
JA]l = loll.]lu] using (10) and (4).

If X and V are finite-dimensional normed linear vector spaces with norm ||z| for x € X
and norm ||v|| for v € V, then for (z,v) € X x V, the function f(z,v) defined by

fla,0) = Iz, o)l = [lzll + [lv]
defines a norm on X x V', whose dual norm is given by

[(w, )]« = max {{lwlls, [[ull.} for (w,u) € (X x V)" = X" x V"

The following result, which is a special case of the Hahn-Banach Theorem (see, e.g., [19]),
will be used extensively in our analysis. We include a short proof based on the subdifferential
operator of a convex function.

Proposition 2.2 For every x € X, there exists z € X* with the property that ||z|. = 1 and

Jafl = 27

Proof: If z = 0, then any z € X* with ||z||, = 1 will satisfy the statement of the proposition.
Therefore, we suppose that z # 0. Consider ||z|| as a function of z, i.e., f(z) = ||z|. Then f(-) is a
real-valued convex function, and so the subdifferential operator df(z) is non-empty for all z € X,
see [2]. Consider any z € X, and let z € f(x). Then

fw) > f(z) + 21 (w — ) for any w € X. (12)

Substituting w = 0 we obtain ||z|| = f(z) < 2T2. Substituting w = 2z we obtain 2f(z) = f(2z) >
f(x)+2(2z—x), and so f(z) > 2!z, whereby f(z) = z''z. From (11) it then follows that ||z|[, > 1.
Now if we let v € X and set w = x + u, we obtain from (12) that f(u)+ f(z) > f(u+z) = f(w) >
fx)+2"(w—2) = f(x)+ 2T (u+2—z) = f(z) + 27 u. Therefore, 27u < f(u) = |lu//, and so from
(10) we obtain ||z||, < 1. Therefore, ||z, = 1.

Because X and Y are normed linear vector spaces of finite dimension, all norms on each
space are equivalent, and one can specify a particular norm for X and a particular norm for Y if
so desired. If X = R", the L, norm is given by

n 1/p
2|, = (Z Iivjlp) ,
j=1
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for p > 1. The norm dual to ||z, is |||/« = ||z||; where ¢ satisfies 1/p + 1/¢q = 1, with appropriate
limits as p — 1 and p — +4o0.

We will say that a cone C' is regular if C' is a closed convex cone, has a nonempty interior
and is pointed (i.e., contains no line).

Remark 2.3 If C is a closed convex cone, then C is reqular if and only if C* s reqular.

Let C be a regular cone in the normed linear vector space X. A critical component of our
analysis concerns the extent to which the norm function ||z| can be approximated by some linear
Tz over the cone C for some particularly good choice of v € X*. Let u € intC* be
given, and suppose that u has been normalized so that |lul. = 1. Let f(u) = minimum{u’z | z €
C, ||z|| = 1}. Then it is elementary to see that 0 < f(u) < 1, and also that f(u)||z| < u'z < |z
for any 2 € C. Therefore the linear function u’'z approximates ||z|| over all z € C to within the
factor f(u). Put another way, the larger f(u) is, the closer u” z approximates ||z|| over all z € C.
Maximizing the value of f(u) over all u € X* satisfying ||ul[+ = 1, we are led to the following
definition:

function wu

Definition 2.1 If C is a reqular cone in the normed linear vector space X, the coefficient of

linearity for the cone C is given by:

G = sup inf v’z
u€ X* zeC (13)
ull« =1 flzf] =1

Let @ denote that value of u € X* that achieves the supremum in (13). We refer to «
generically as the “norm approximation vector” for the cone C. Then for all z € C, f||z| < @'z <
|||, and so ||z|| is approximated by the linear function %’ 2 to within the factor 3 over the cone
C. Therefore, 8 measures the extent to which |z|| can be approximated by a linear function @’z
on the cone C. Also, u”x is the “best” such linear approximation of ||z|| over this cone. It is easy
to see that 3 < 1, since u’'z < ||ul|s]|z| = 1 for v and z as in (13). The larger the value of 3, the
more closely ||z| is approximated by a linear function u” = over = € C. For this reason, we refer to

0 as the “coefficient of linearity” for the cone C.

We have the following properties of the coefficient of linearity 3:

Proposition 2.3 Suppose that C is a regular cone in the normed linear vector space X, and let 3
denote the coefficient of linearity for C. Then 0 < 8 < 1. Furthermore, the norm approzimation

vector u exists and is unique, and satisfies the following properties: (i) u € intC*,
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(i) llalls =1,
(iii) B = min{u’z | x € C, ||z|| =1}, and

(iv) Bllz|| < @tz < ||z| for any z € C.

The proof of Proposition 2.3 follows easily from the following observation:

Remark 2.4 Suppose C is a closed convex cone. Then u € intC* if and only if u'x > 0 for all

x € C/{0}. Also, if u € intC*, the set {x € C | ul'x =1} is a closed and bounded convex set.

We illustrate the construction of the coefficient of linearity on two families of cones, the
nonnegative orthant R, and the positive semi-definite cone S *". We first consider the nonnegative
orthant. Let X = R" and C' = R} = {z € R" | x > 0}. Then we can identify X* with X and in
so doing, C* = R as well. If ||z|| = ||z||,, then for z € R, it is straightforward to show that

1
U = <n(51)> e, where e = (1,...,1)7, i.e., the linear function given by @’z is the “best” linear

approximation of the function ||z|| on the set R}. Furthermore, straightforward calculation yields
1
that g = n(Efl). Thenifp=1, =1, but if p > 1 then g < 1.

Now consider the positive semi-definite cone, which has been shown to be of enormous
importance in mathematical programming (see Alizadeh [1] and Nesterov and Nemirovskii [8]). Let
X = §™*™ denote the set of real n x n symmetric matrices, and let C = S7*" = {x € §™*" | z > 0},
where “>” is the Lowner partial ordering, i.e., x > w if x —w is a positive semi-definite symmetric
matrix. Then C is a closed convex cone. We can identify X* with X, and in so doing it is
elementary to derive that C* = S7*", ie., C = ST"*" is self-dual. For z € X, let A\(z) denote the
n-vector of ordered eigenvalues of z. That is, A(z) = (A1 (z),..., M\ (z))” where () is the i*h
largest eigenvalue of X. For any p € [1, 00), let the norm of z be defined by

]l = llll, = (ZM(I)I”) ,
j=1

i.e., ||z]|, is the Ly-norm of the vector of eigenvalues of z. (see [7], e.g., for a proof that ||z||, is a
norm.)

When p = 2, ||z||2 corresponds precisely to the Frobenius norm of x. When p = 1, ||z||; is the
sum of the absolute values of the eigenvalues of . Therefore, when z € ST*", ||z||; = tr(z) = i T
where z;; is the it" diagonal entry of the real matrix z, and so is linear on C' = STt is e;;;f to
show for the norm [ [}, over S that @ — (n(%1)> I has [[all, = [af, = 1 and that 8 = n(3 7).

Thus, for the Frobenius norm we have g = ﬁ and for the Li-norm, we have § = 1.

The coefficient of linearity (8 for the regular cone C' is essentially the same as the scalar «
defined in Renegar [12] on page 328. In [12], « is referred to as a measure of “pointedness” of the
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cone C. In fact, one can define pointedness in a geometrically intuitive way and it can be shown
that 0 corresponds precisely to the pointedness of the cone C. However, this result is beyond the
scope of this paper.

The coefficients of linearity for the cones C'x and/or Cy play a role in virtually all of the
results in this paper. Generally, the results in Section 3 and Section 5 will be stronger to the extent
that these coefficients of linearity are large. The following remark shows that by a judicious choice
of the norm on the vector space X, one can ensure that the coefficient of linearity for a cone C' or
the coefficient of linearity for the dual cone C* are equal to 1 (but not both).

Remark 2.5 If C s a regular cone, then it is possible to choose the norm on X in such a way
that the coefficient of linearity for C is 0 = 1. Alternatively, it is possible to choose the norm on

X in such a way that the coefficient of linearity for C* is * = 1.

To see why this remark is true, recall that for finite dimensional linear vector spaces, that
all norms are equivalent. Now suppose that C' is a regular cone. Pick any u € intC*. Let the unit
ball for X, denoted as B, be defined as:

B:conv({xEC|ﬂT:v§1}U{:v€—C\ —ﬂT:vgl}),

where “conv(S,T)” denotes the convex hull of the sets S and T. It can then easily be verified
that this ball induces a norm || - || on X. Furthermore, it is easy to see that for all z € C, that
|z|| = @'z, whereby 3 = 1. Alternatively, a similar type of construction can be applied to the dual
cone C* to ensure that the coefficient of linearity g* for C* satisfies * = 1. However, because the
norm on X (or on X*) induces the dual norm on the dual space, it is not generally possible to
construct the dually paired norms || - || and || - ||s in such a way that both 5 =1 and g* = 1.

3 Characterization Results for p(d)

Given a data instance d = (A,b) € L(X,Y) x Y, we now present characterizations of the
distance to ill-posedness p(d) for the feasibility problem P(d) given in (1) .

The characterizations of p(d) will depend on whether d € F or d € FC (recall (2)), i.e.,
whether P(d) is consistent or not. We first study the case when d € F (P(d) is consistent),
followed by the case when d € F¢ (P(d) is not consistent). Before proceeding, we adopt the
following notational conventions.

For the remainder of this study, we make the following modification of our notation.

Definition 3.1 Whenever the cone Cx is reqular, the coefficient of linearity for Cx is denoted by

, an e coefficient of linearity for is denoted by B*. enever the cone Cy 1is regular, the
I} d th jent of li 1 CY 1is denoted by B*. Wh th Cy i lar, th



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 10

coefficient of linearity for Cy is denoted by B, and the coefficient of linearity for C3 is denoted by

g

Furthermore, when the cone Cx is regular, we denote the norm approximation vector for
the cone Cx by @. Also, when the cone Cy is regular, we denote the norm approximation vector
for the cone C§ by z.

In particular, then, we have the following partial restatement of Proposition 2.3.

Corollary 3.1 If Cx is reqular, then u € intC% and ||ull, =1, and
Bllz|| < @tz < ||z| for any z € Cy.
If Cy is regular, then z € intCy and ||z|| = 1, and
Ayl < 20y < |lylls for any y € C5..

We emphasize that the four coefficient of linearity constants, 3, 3*, §, and *, depend
only on the norms ||z|| and ||y|| and the cones Cx and Cy, and are independent of the data (A, b)
defining the problem P(d).

3.1 Characterization Results when P(d) is consistent

The starting point of our analysis is the following result of Renegar [12], which we motivate
as follows. Consider the following homogenization and normalization of P(d):

H :
br — Az € Cy
T € CX
r >
o+ 2 < L

Recall that p(d) measures the extent to which the data d = (A,b) can be altered and yet
(1) will still be feasible for the new system. A modification of this view is that p(d) measures the
extent to which the system (1) can be modified while ensuring its feasibility. Consider the following
program:
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P.(d) :
r(d) = minimum  maximum 6
veY r,z,0
vl <1 s.t. br — Axr — v €Cy (14)
T S CX
T >0
"+ el 1

Then r(d) is the largest scaling factor 6 such that for any v with ||jv|| < 1, vf can be added to
the first inclusion of H without affecting the feasibility of the system. The following is a slightly
altered restatement of a result due to Renegar:

Theorem (Theorem 3.5 of [12]) Suppose that d € F. Then

r(d) = pld). (15)

Now note that the inner maximization program of (14) is a convex program. If we replace
this inner maximization program by an appropriately constructed Lagrange dual, we obtain the
following modification of program (14):

minimum minimum max {||ATy —qlls, |bTy + g\}

veY Y, 4,9
o] <1
s.t. yTv >1
y €Cy
q ECS}:( (16)
g >0

By combining the inner and outer minimizations in (16) and using the duality properties
of norms (see (10)), we obtain the following program:

Pj(d) :

j(d) = minimum max{HATyqu*, |bTy+g|}

Y,4,9
s.t. y €Cy
g €Cx
1
g >0 (17)
lylls =1

Now note that program P;(d) is a measure of how close the system (1) is to being infeasible.
To see this, note that if d = (A,b) were in F¢, then from Proposition 2.1 it would be true that
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j(d) = 0. The nonnegative quantity j(d) measures the extent to which the alternative system (9) is
not feasible. The smaller the value of j(d) is, the closer the conditions (9) are to being satisfied, and
so the smaller the value of p(d) should be. These arguments are imprecise, but the next theorem
validates the intuition of this line of thinking:

Theorem Suppose that d € F. Then

j(d) = p(d). (18)

One way to prove (18) would be to prove that the duality constructs employed in modifying
(14) to (16) to (17) are indeed valid, thereby showing that j(d) = r(d) = p(d) and establishing that
program Pj(d) is just a partial dualization of P,(d). Instead we offer the following proof which is
more direct and does not rely explicitly on (15).

Proof: Suppose that j(d) > p(d). Then there exists d = (A,b) such that |[A — A < j(d) and
|b—b| <j(d) and d € FC. From Proposition 2.1, there exists y € Cy- with ||y[l. = 1 that satisfies
ATy e Cy, b7y <0. Let = ATy and g = —b"4 > 0. Then

ATy —qlls = |1ATy — g+ (A— A)"yll, < |A— All|ylls <j(d)

and
'y +g/="g+ 00"y —b"g =|0b-b)"g <|b—0blyl. <jd),

and so (y,q,g) is feasible for P;(d) with objective value less than j(d), which is a contradiction.
Therefore j(d) < p(d).

Now suppose that j(d) < § < p(d) for some 6. Then there exists (¢, ¢, g) such that y € C,
g€ C%, g >0 and [[ATg—qll. <4, [b"g+g| < 4, and [|glls = 1. Let g satisfy |g]| = 1, "9 = |9l =
1, see Proposition 2.2, and let A = A — g (ngA — qT), be=b—79 (ngj +g+ e) for all € > 0. Then
ATy = ATy — ATy+qg=qge C%, and bI'j = —g — € < 0 for all € > 0. Therefore d. = (A,b.) € FC
for all € > 0. However, ||[A — A| = ||ATy —q|l« <6 and ||be —b|| = [pTy+g+e <[pTy+g|+e<d
for € > 0 and sufficiently small, and so p(d) < ||d. — d|| = max{||A — A||,||be — b} < §, for all e > 0
and sufficiently small. This too is a contradiction, and so j(d) > p(d), whereby j(d) = p(d). |

Remark 3.1 Pj(d) is not in general a convex program due to the non-convex constraint “||y|. =
17. However, in the case when Y = R™, (then Y™ can also be identified with R™), if we choose
the norm on Y* to be the Lo morm (so the norm on Y is the Ly norm), then Pj(d) can be
solved by solving 2m convex programs. To see this, observe that when 1 = |lyll«+ = ||yl in
Pj(d), then the constraint “||y|. = 1”7 can be replaced by the constraint “y; = %1 for some

i € {1,...,m}” without changing the optimal objective value of Pj(d). This implies that j(d) =
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min{j;1(d),...,j+m(d),j-1(d), ..., j_m(d)}, where :

j+i(d) = minimum max { ATy — g, by + g|}

Y,4,9
s.t. y e Cy
qge Cy
9g=>0
yi = =£1,
and j+i(d) is the optimal objective value of a convex program, i =1,...,m.

We now proceed to present five different mathematical programs each of whose optimal
values provides an approximation of the value of the distance to ill-posedness p(d), in the case when
P(d) is consistent. For each of these five mathematical programs, the nature of the approximation
of p(d) is specified in a theorem stating the result. For the first program, suppose that Cx is a
regular cone, and consider:

P,(d) :
e a(d) = minimum ¥
Y.
s.t. Ay +~yu € C% (19)
“bTy+y >0
lyll« =1
Y € Cy.

Theorem 3.1 If d € F and Cx is regular, then
B -a(d) < p(d) < afd) .

Proof: Recall from Corollary 3.1 that @ € intC%. Therefore a(d) > 0, since otherwise d € F€ via
Proposition 2.1, which would violate the supposition of the theorem. Suppose that (y, ) is feasible
for P, (d). Let ¢ = ATy +~u and notice that ||ATy —ql|. = v||a|l. = 7. Also, if welet g = —b"y+7,
then g > 0 and b’y + g| = |y| = 7. Therefore, max {||ATy —qll«, b1y +g\} =7, and (y,q,9) is
feasible for Pj(d) with objective value 7. It then follows that «(d) > j(d) = p(d) from (18).

On the other hand, suppose that (y, g, g) is feasible for P;(d), and let
6 = max {| ATy —ql., b7y +g|}.

Then it must be true that
ATy 4 (6/B)u € C%. (20)
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To demonstrate the validity of (20), suppose the contrary. Then there exists x € Cx with ||z|| =1
for which 27 (ATy + (5/5)11) < 0. But then

o = max {||4"y = g, b7y +gl} > 147y = qll. = g — ATy |z > ¢"z — 2" ATy

> —a' Aty > (§/B)a" x> (3p|z])/8 = §

(where the last inequality is from Corollary 3.1), a contradiction. Therefore (20) is true. Then
also % > 6 > [bly+g| > by, and so (y,v) = (y, %) is feasible for P,(d). It then follows that
a(d) < j(d)/B = p(d)/B (from (18)), completing the proof. |

Similar to Pj(d), P,(d) is generally a nonconvex program due to the constraint “|y|. =
1.” When Cy is also regular, then from Corollary 3.1 the linear function 2"y is a “best” linear
approximation of ||y[/. on C5-, and if we replace “|y|l« = 17 by “zTy =17 in P,(d) we obtain the
following convex program:

P5(d) -
0 a(d) = minimum v
Y,y
st. Aly + ~yu €C% (21)
by + v >0
zZly =1
Yy € Cy.

Replacing the norm constraint by its linear approximation will reduce (by a constant) the
extent to which the program computes an approximation of p(d), and the analog of Theorem 3.1
becomes:

Theorem 3.2 Ifd € F and both Cx and Cy are reqular, then

BB - a(d) < p(d) < a(d).

Proof: Suppose that (y,7y) is a feasible solution of P,(d). Then (y/ZTy,’y/ETy) is a feasible

solution of P;(d) with objective function value v/Z2ty <~/ (B*|lyls) = ’[/B* (from Corollary 3.1).
It then follows that &(d) < a(d)/B*. Applying Theorem 3.1, we obtain 5*Ga(d) < p(d).

Next suppose that (y,) is a feasible solution of Ps(d). Then (y/||y|l«,v/|lyl|«) is a feasible
solution of P,(d) with objective function value v/||y|l« < v/(z'y) = v (from Corollary 3.1). It then
follows that a(d) < &(d). Applying Theorem 3.1, we obtain p(d) < a(d). |

The next mathematical program supposes that the cone Cx is regular. Consider the fol-
lowing program:
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P, (d) :
w(d) = minimum  maximum 6
veY r,z,0
lo|| <1 s.t. br — Az — v €Cy (22)
T S CX
ro+ ol <1
T > 0.

Notice that Py (d) is identical to P,(d) except that the norm constraint “|r| + ||z|| < 17 in
P,(d) is replaced by the linearized version “r 4+ @'z < 17. We have:

Theorem 3.3 If d € F and Cx is regular, then
B-w(d) < p(d) <w(d) .

Proof: The proof follows from (15) using the inequalities 8||z|| < u'x < ||z|| of Corollary 3.1,
using the same logic as in the proof of Theorem 3.2. |

The fourth mathematical program supposes that the cone Cy is regular. Consider the
following convex program:

P,(d) :
u(d) = minimum max {||ATy —qll«, [Ty + g|}
Y. 9,9
s.t. y € Ct (23)
q € Cx
g 20
zly =1.

Notice that P,(d) is identical to P;j(d) except that the norm constraint “||y[[, =17 in P;(d)
is replaced by the linearized version “z”y = 17. We have:

Theorem 3.4 Ifd € F and Cy 1is reqular, then
Bru(d) < pld) < u(d) .

Proof: The proof follows from (18) using the inequalities 5*[|y|. < 27y < ||ly||« of Corollary 3.1,
using the same logic as in the proof of Theorem 3.2. |

Notice that the feasible region of P,(d) is a convex set, and that the objective function is a
gauge function, i.e., a nonnegative convex function that is positively homogeneous of degree 1, see
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[14]. A mathematical program that minimizes a gauge function over a convex set is called a gauge
program, and corresponding to every gauge program is a dual gauge program that also minimizes
a (dual) gauge function over a (dual) convex set, see [6]. For the program P,(d), its dual gauge
program is given by the following convex program:

P,(d) :
v(d) = minimum lz]| + |r|
z,T
br — Ax —z € Cy (24)
x € Cyx
r>0.

One can interpret P,(d) as measuring the extent to which P(d) has a solution z for which
b — Az is in the interior of the cone Cy. To see this, note from Corollary 3.1 that z € intCy, and
so P,(d) will only be feasible if P(d) has a solution z for which b — Az is in the interior to Cy. The
more interior a solution there is, the smaller (r, ) can be scaled and still satisfy br — Az — z € Cy.
One would then expect v(d) to be inversely proportional to p(d) (and to u(d)), as the next theorem
indicates. Indeed, the theorem states that u(d) - v(d) = 1, where we employ the convention that

0-00 =1 when {u(d),v(d)} = {0,00}.

Theorem 3.5 Suppose that d € F and Cy is reqular. Then u(d) - v(d) =1, and

i < pld) < ——

v(d) ~ w(d)

Proof: Suppose that p(d) = 0. Then u(d) = 0 from Theorem 3.4 and from (17) and (18), there
exists § € Cy satisfying AT§ € C%, b7 < 0, and |||« = 1, which in turn implies that P,(d)
cannot have a feasible solution (for if (z,r) is feasible for P,(d), then 0 = §* (br — Az —2) <0, a

contradiction). Thus v(d) = oo, and so u(d) - v(d) = 1 by convention, and also % =0=p(d) =
1
v(d)"

Therefore suppose that p(d) > 0. Then u(d) > 0 from Theorem 3.4 and also it is straight-
forward to show that both P,(d) and P,(d) are feasible and attain their optima. Note that for any
(y,q,9) and (z,r) feasible for P,(d) and P,(d), respectively, we have

1=z2"y <yTor —yTAz <yTbor +gr —yT Az +¢" 2 <

(lz ]| + |r) max{|| A" — qll.. [6"y + g[}

whereby u(d)-v(d) > 1, and so in particular v(d) > 0. We now will show that u(d)-v(d) = 1, which
will complete the proof.

Define the following set:



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 17

S ={(v,w,v) € R xY x X | there exists r > 0,z € X,s € Cy, and p € Cx which

satisfy [|z|| + |r| < v,br — Az —Z —w = s,z — v = p}.

Then S is a nonempty convex set, and basic limit arguments easily establish that S is also a
closed set. For any given and fixed € € (0,v(d)), the point (v(d) —€,0,0) ¢ S (for otherwise the
optimal value of P,(d) would be less than or equal to v(d) — €, a contradiction). Since S is a closed
nonempty convex set, (v(d) — €,0,0) can be strictly separated from S by a hyperplane, i.e., there
exists (A,y,q) # 0 and « € R such that

(1) B(v(d) —€) <a
(4) 0y —y'w—q'w—q'v>a forany (y,w,v) €S.

In particular, (i7) implies that

(]l + |7 +8)8 — y" (br — Az — 7 —5) —¢" (z —p) >«
forany z € X,r > 0,0 >0,s € Cy, and p € Cx .

This implies that 6§ > 0, y € C5, g € C%, and o > 0.

Suppose first that 8 > 0. Then we can rescale (0,y,q) and « so that § = 1. Then notice
that (25) implies that 1 — bTy > 0. Also, we claim that (25) implies that ||ATy —¢|*x < 1. (To
see this, suppose instead that |[ATy — ¢l > 1. Then there exists & € X such that ||| = 1 and
2T (g — ATy) > 1, and then setting z = A& for A > 0 and sufficiently large, we can drive the
left-hand-side of (25) to a negative number, which would yield a contradiction.) Also from (25) and

(i), note that y”'z > a > v(d) — € > 0. Define (/,q') = ( 4 L), and ¢ = O"9" Then y €Cy

yTz yTz yT'z -
.4 €C%.g 20,(y)" z=1, and max{||ATy — ¢ |, [b"y +g'[} < ;75 <y, and so (y,q,9)
is feasible for P,(d) with objective value at most ﬁ. Therefore u(d) < ﬁ. Since this is true

for any € € (0,v(d)) then u(d) = ﬁ, and then the second assertion of the theorem follows from
Theorem 3.4.

It remains to consider the case where # = 0. Then « > 0 and (25) implies that y’b < 0,
ATy = ¢q € CY, and y"Z > a > 0. Then we can rescale y so that 47z = 1, and if we define
g = (b'y)~, then (y,q,g) is feasible for P,(d) with an objective value of zero. Therefore u(d) = 0
which implies via Theorem 3.4 that p(d) = 0, which contradicts the supposition. Therefore § = 0
is an impossibility, and the theorem is proved. |

A simplifying perspective on the results in this subsection is that all five characterization
theorems of this subsection are either directly or indirectly derived from Theorem 3.5 of [12]. To
see this, first recall that Theorem 3.5 of [12] shows that p(d) is obtained as the optimal value of
the program P, (d). Theorem 3.3 was obtained by linearizing the norm constraint “|r| + ||z| < 17
in P.(d). Theorem 3.4 was obtained by linearizing the norm constraint “||y||, = 1" of P;(d), but
Pj(d) was itself constructed from P,(d) via two partial duality derivations. Also, Theorem 3.1
and Theorem 3.2 were obtained by taking particular advantage of properties of the coefficients of
linearity 3 and * as they pertain to modifications of P;(d) as well. Finally, Theorem 3.5 was
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obtained by applying gauge duality to P,(d), which itself was obtained from P;(d) by linearization
of the norm constraint “||y||, = 1" of P;(d).

We conclude this subsection with the following comment. The five characterization theorems
in this subsection provide approximations of p(d), but are exact characterizations when g = 1
and/or #* = 1. However, from Remark 2.5, we can choose the norms on X and on Y in such a way
as to guarantee that 8 =1 and 3* = 1. If the norms are so chosen, then all five theorems provide
exact characterizations of p(d).

3.2 Characterization Results when P(d) is not consistent

In this subsection, we parallel the results of the previous subsection for the case when P(d)
is not consistent. That is, we present five different mathematical programs and we prove that the
optimal value of each of these mathematical programs provides an approximation of the value of
p(d), in the case when P(d) is not consistent. For each of these five mathematical programs, the
nature of the approximation of p(d) is specified in a theorem stating the result.

As in the previous subsection, the starting point of our analysis is an application of Theorem
3.5 of Renegar [12], which we motivate as follows. Consider the following normalization of the
alternative system (8):

HD :
Aty e C%
T
— >
'Y (26)
y € Cy
lyl« < 1.
Consider the following program based on H D:
P.(d) :
m(d) = minimum  maximum 6
veEX* y,0
lv][« <1 s.t. Aty —wh € C% (27)
—bl'y—0>0
yeCy

Then 7(d) is the largest scaling factor § such that for any v with |||, <1, —v6 can be added to
the first inclusion of HD and —6 can be added to the second inclusion of HD without affecting the
feasibility of the system HD. The following is also a slightly altered restatement of a result due to
Renegar:

Theorem (Theorem 3.5 of [12]) Suppose that d € F€. Then

7(d) = p(d). (28)
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Exactly as in the previous subsection, we can use partial duality constructs to create the
following program from Py (d):

k(d) = minimum |br — Az — w||
T, T, W
s.t. z € Cx (29)
r >0
w € Cy
|z +r=1.

Note that program Pj(d) is a measure of how close the system P(d) is to being feasible. To
see this, note that if d = (A,b) were in F, then it would be true that k(d) = 0. The nonnegative
quantity k(d) measures the extent to which (1) is not feasible. The smaller the value of k(d) is,
the closer the conditions (1) are to being satisfied, and so the smaller the value of p(d) should be.
These arguments are validated in the following theorem:

Theorem Suppose that d € FC. Then

k(d) = p(d). (30)

Proof: Suppose that k(d) > p(d). Then there exists d = (A,b) such that ||[A — A|| < k(d) and
|b—b|| < k(d) and d € F. Therefore there exists (z,7) with # > 0, Z € Cx, bf — Az € Cy, and
|7| +||z]| = 1. Let w = br — AZz. Then

|or — Az —w| = |br — Az —w+ (b—b)7— (A~ A) x|

IN

1o — b7 + [ A — Alll|z]| < k(d).
But then (z,7,w) is feasible for Py(d) with objective value less than k(d), which is a contradiction.
Therefore k(d) < p(d).

Now suppose that k(d) < § < p(d) for some ¢. Then there exists (z, 7, w) such that z € Cx,
7>0,w € Cy, and ||bF — Az —w|| < §, and |7| + ||Z|| = 1. Let Z satisfy |||, = 1 and 37z = |z,
see Proposition 2.2. For € > 0, let

Ac=A+ (b(r+e) — Az —w)z"

Then b(7 +¢€) — AZ = w € Cy, and 7+ € > 0 and Z € Cx. Therefore d, := (A.,b) € F. However,

| Ae — All < [|bF — Az — @] + [|blle < & + [[ble.

For € < p(”zH . we have ||[A, — A|| < p(d), whereby d. = (A, b) € FC, a contradiction. Therefore

k(d) = p(d), and so k(d) = p(d). |
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(We point out that because Py (d) was constructed by using partial duality constructs applied
to Pr(d) as illustrated above, one can also view (30) as an application of Theorem 3.5 of [12].)

Remark 3.2 Py(d) is not in general a convez program due to the non-convex constraint “r+|z| =
17. Howewver, in the case when X = R"™, if we choose the norm on X to be the Lo, norm, then Py(d)
can be solved by solving 2n convex programs, where the construction exactly parallels that given for

Pj(d) earlier in this section. One can easily show that k(d) = min{ky1,... kym,k—1,.... k_m},

where :
k+j(d) = minimum |br — Az — w||
T,rw
s.t. r € Cx
r>0
w € Cy
zj==%(1-r).

We now proceed to present five different mathematical programs each of whose optimal
values provides an approximation of the value of the distance to ill-posedness p(d) when P(d) is
not consistent. For the first program, suppose that Cy is a regular cone, and consider:

P,(d) :
o(d) = minimum -~y
T, T,y
s.t. br — Az + zy € Cy (31)
ro o) = 1
r>0
€ Cx .

Theorem 3.6 If d € F¢ and Cy is regular, then

Proof: Recall from Corollary 3.1 that z € intCy. Therefore o (d) > 0, since otherwise there
would exist (z,r) satisfying br — Az € intCy, r > 0, x € Cx, contradicting the hypothesis that
d € F¢. Suppose that (r,z,7) is feasible for P, (d), and let w = br — Az + zy. Then (r,z,w) is
feasible for Py (d) with objective value ||br — Az — wl|| = ||vz|| = 7||z|]| = 7. It then follows that
k(d) <o (d), and so p(d) < o (d) from (30).
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On the other hand, suppose that (x,r, w) is feasible for Py (d), and let § = ||br — Az — w||.
Then

br — Az + (%) z € Cy. (32)

To demonstrate the validity of (32), suppose the contrary. Then there exists y € C§ with ||y, =1

and y” (br — Az + (%) 2) < 0. But then

§=|br— Az —w| > y! (w+ Az —br) >y’ (Az —br) >

N

Y

e

0 ([ax _
> 5 (B*[lyll«) = o,

where the last inequality is from Corollary 3.1. As this is a contradiction, (32) is true. Therefore
v = BL* is a feasible objective value of P, (d), and so o (d) < kﬂ@, whereby p (d) = k (d) > %o (d)
from (30). |

Similar to Py(d), P,(d) is generally a non-convex program due to the constraint “r + ||z|| =
17. When Cyx is also regular, if we replace “r + ||z|| = 17 by “r +a’z = 17 in P,(d) we obtain the
following convex program:

P&(d) :
o(d) = minimum -y
T, T,y
s.t. br — Az + zy € Cy (33)
r+ulz=1
r>0
€ Cx .

The analog of Theorem 3.6 becomes:

Theorem 3.7 If d € F¢ and both Cx and Cy are regular, then

BB -a(d) < p(d) < o(d).

Proof: Suppose that (r,z,7) is a feasible solution of P,(d). Then (r/(r+a' z),z/(r+u’ z),v/(r+
u’'x)) is a feasible solution of P;(d) with objective function value y/(r+a’'z) < v/(r+8|z||) < /8
(from Corollary 3.1). It then follows that &(d) < o(d)/B. Applying Theorem 3.6, we obtain
p*pa(d) < p(d).

Next suppose that (r,z,7) is a feasible solution of P;(d). Then (r/(r + ||z|),z/(r +
llz]),v/(r + ||z|])) is a feasible solution of P,(d) with objective function value /(r + ||z||) <
v/(r +u”x) =7 (from Corollary 3.1). It then follows that o(d) < &(d). Applying Theorem 3.6, we
obtain p(d) < a(d). |

For the next mathematical program, suppose that the cone Cy is regular, and consider:
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P{;(d) :
d(d) = minimum  maximum 6
veX* y, 0
o]l <1 s.t. ATy —vf € C% (34)
—bl'y—60>0
yeCy
Zly <1.

Notice that Ps(d) is identical to Py (d) except that the norm constraint “||y||, < 1”7 in Py (d)
is replaced by the linearized version “z’y < 17. We have:

Theorem 3.8 Ifd € F¢ and Cy is regular, then

Proof: The proof follows from (28) using the inequalities 5*[|y. < 27y < ||ly||« of Corollary 3.1,
using the same logic as in the proof of Theorem 3.7. |

The fourth mathematical program supposes that the cone Cx is regular. Consider the
following convex program:

Py(d) :
g9(d) = minimum |br — Az — w||
Z, T, W
s.t. z € Cx (35)
r>0
w € Cy

wo+r=1.

Notice that Py(d) is identical to P,(d) except that the norm constraint “r 4 ||z|| = 1”7 in
Py (d) is replaced by the linearized version “r + 4’ z = 1”7. We have:

Theorem 3.9 Ifd € F¢ and Cx is reqular, then
Bg(d) < p(d) < g(d) .

Proof: The proof follows from (30) using the inequalities §||z|| < @'z < ||z|| of Corollary 3.1,
using the same logic as in the proof of Theorem 3.7. |

Notice that Py(d) is a gauge program; its dual gauge program is given by:
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Pu(d) :
h(d) = minimum ||y,
Y
s.t. ATy —u e C% (36)
—bly—1>0
yeCy .

Note that Py (d) is also a convex program. One can interpret P, (d) as measuring the extent
to which (8) has a solution y for which ATy € intC% and that satisfies b7y < 0. To see this, note
from Corollary 3.1 that u € intC%, and so Pj(d) will only be feasible if the first and the third
conditions of (8) are satisfied in their interior. The more interior a solution there is, the smaller y
can be scaled and still satisfy ATy — 4 € Cy and —b"y — 1 > 0. One would then expect h(d) to
be inversely proportional to p(d) (and to g(d)), as Theorem 3.10 indicates. Just as in the case of
Theorem 3.5, we employ the convention that 0- oo = 1 when {g(d), h(d)} = {0, c0}.

Theorem 3.10 Suppose that d € F€ and Cy is reqular. Then g(d) - h(d) = 1, and

B8 1
wﬁp(d)ﬁm-

Proof: This proof parallels that of Theorem 3.5. Suppose first that p(d) = 0. Then g(d) = 0
from Theorem 3.9. And from (29) and (30), there exists (Z,7,w) satisfying br — AZ —w = 0,
7 >0,z € Cx, w € Cy, ||Z]] + # = 1, which in turn implies that Pj(d) cannot have a feasible
solution (for if y is feasible for Py (d), then 27 (ATy —a) > 0, #(—b"y — 1) > 0, w"y > 0, and so
0=yl (bf — Az —d) < —u!'2 — # < 0, a contradiction). Thus h(d) = oo, and so g(d) - h(d) = 1 by

i B = _ 1
convention, and also " 0=p(d) = GE

Therefore suppose that p(d) > 0. Then g(d) > 0 from Theorem 3.9, and also it is straight-
forward to show that both P;(d) and P, (d) are feasible and attain their optima. Note that for any
(#,r,w) and y feasible for P,(d) and P}(d), respectively, that

l=dls+r<y" Az —yTbr <y" Az —yTbr + 0"y < ||y, ||br — Az — w],
whereby ¢g(d) - h(d) > 1, and so in particular h(d) > 0. We now will show g(d) - h(d) = 1, which
will complete the proof.
Define the following set:
S={(7,q9,5,p) € RxRx X*xY* | there exists y € Y*, v € C%, 7 > 0,u € Cy
which satisfy ||y|l. <7y, ATy —a—s=v,-bly—1—qg=my—p=u}

Then S is a nonempty convex set, and basic limit arguments easily establish that S is also a closed
set. For any e € (0, h(d)), the point (h(d)) —¢€,0,0,0) ¢ S (for otherwise the optimal value of Py (d)
would be no greater than h(d) — €, a contradiction). Since S is a closed nonempty convex set,
(h(d)) —€,0,0,0) can be strictly separated from S by a hyperplane, i.e., there exists (0, r, z,w) # 0
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and o € R such that

(i) O(h(d) —¢€) < a,

T

(i4) 0y —rq — x7s —w'p > a for any (v, q,s,p) € S.

In particular, (i7) implies that

(lylls + )0+ —r(—bTy —1—7) —2T(ATy —u —v) —wl(y —u) > a
(37)
forany 6 > 0,y € Y*,v € C%, 7 >0, and u € Cy.

This implies that # > 0,7 > 0,2 € Cx,w € Oy, and r + @'z > a > 0.

Suppose first that 6§ > 0, and so by rescaling (0,7, z,w) and a we can presume that § = 1.
Then (37) implies that ||br — Az —w| < 1. (To see this, note that if ||br — Az —w]|| > 1, then
there exists § € Y* for which ||g|l, = 1 and ¢’ (w 4+ Az — br) > 1, and then setting y = vy for
v > 0 and sufficiently large, we can drive the left-hand-side of (37) to a negative number, which
is a contradiction.) Also not that (37) implies that r + alz > a > h(d) — € > 0 from (i). Define
(2,7 w) = (Hﬁ)(ﬂ:,r, w). Then (z,7,w) is feasible for Py(d), and g(d) < ||br' — Az' — w'|| =

Hb’"r:?ﬁ;w” < r—l—éT:c < h(dl) - Since this is true for any e € (0,h(d)), then g(d) = ﬁa and then

the second assertion of theicheorem follows from Theorem 3.9.

It only remains to consider the case when # = 0. Then « > 0 and (37) implies that r > 0,
z€Cx,br — Az —w =0, w € Cy, and r +a"x > o > 0. We can rescale (r,z,w) and a so
that r + 4!z = 1, and then (r,z,w) is feasible for P,(d) with an objective value of zero. Therefore
g(d) = 0, which implies via Theorem 3.9 that p(d) = 0, which contradicts the supposition that
p(d) > 0. Therefore § = 0 is an impossibility, and the theorem is proved. |

The comments at the end of the previous subsection apply to this subsection as well: all five
characterization theorems of this subsections are either directly or indirectly derived from Theorem
3.5 of [12]. Also, by appropriate choice of norms on X and/or Y, all five characterization theorems
provide exact characterizations of p(d).

4 Bounds on Radii of Contained and Intersecting Balls

In this section, we develop four results concerning the radii of certain inscribed balls in the feasible
region of the system (1) or, in the case when P(d) is not consistent, of the alternative system (8).
These results are stated as Lemmas 4.1, 4.2, 4.3, and 4.4 of this section. While these results are of
an intermediate nature, it is nevertheless useful to motivate them, which we do now, by thinking
in terms of the ellipsoid algorithm for finding a point in a convex set.

Consider the ellipsoid algorithm for finding a feasible point in a convex set S. Roughly
speaking, the main ingredients that are needed to apply the ellipsoid algorithm and to produce a
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complexity bound on the number of iterations of the ellipsoid algorithm are the existence of:

(1) a ball B(&,r) with the property that B(Z,r) C S,
(14) a ball B(0, R) with the property that B(z&,r) C B(0,R) , and
(#31) an upper bound on the ratio R/r .

With these three ingredients, it is then possible to produce a complexity bound on the
number of iterations of the ellipsoid algorithm, which will be O(n? In(R/r)). In addition, it is also
convenient to have the following;:

(iv)  a lower bound on the radius r of the contained ball B(%,r), and

(v)  an upper bound on the radius R of the initial ball B(0, R) .

In the bit model of complexity as applied to linear inequality systems, one is usually able
to set 7 = (1/n)2~" and R = n2”, where L is the number of bits needed to represent the system.
(Of course, these values of  and R break down when the system is degenerate (in our parlance,
“ill-posed” ) in which case the system must be perturbed first.)

By analogy for the problem P(d) considered herein in (1), the convex set in mind is the set
X4, which is the feasible region of the problem P(d), and n2" is generally replaced by the condition
measure of d = (A, b), denoted C(d), which is defined to be

1]
C(d) = ——% . (38)
p(d)
see Renegar [11]. The value of C(d) is a measure of the relative conditioning of the data instance
d. (The condition measure C(d) can be viewed as a scale-invariant reciprocal of the distance to
ill-posedness p(d), as it is elementary to demonstrate that C(ad) = aC(d) for any positive scalar
a.)

The results in this section will be used in Section 5 to demonstrate in general that we can
find a point £ € X, and radii r and R with the five properties below, that are analogs of the five

properties listed above:
(Z) B(iu 7”) C Xd

where the constants ¢y, c2, and c3 depend only on the coefficients of linearity for the cones Cx, C%, Cy,
and C5., and are independent of the data d = (A, b) of the problem P(d). Here the quantity n2” is
roughly replaced by C(d) .



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 26

The above remarks pertain to the the case when P(d) is consistent, i.e., when P(d) has a
solution. When P(d) is not consistent, then the convex set in mind is the feasible region for the
alternative system (8), denoted by Y. The results in this section will also be used in Section 5 to
demonstrate in general that we can find a point ¢ in Y; and radii r and R with the three properties
below, that are analogs of the first three properties listed above:

(Z) B(gu 7”) C Yd
(15) B(y,r) C B(0,R)

(1i) R/r = csO(C(d)) ,

where again the constant ¢4 depends on the coefficients of linearity for the cones C'y, C%, Cy, and
C5, and is independent of the problem data d. Because the system (8) is homogeneous, it makes
little sense to bound r from below or R from above, as all constructions can be scaled by any
positive quantity. Therefore properties (iv) and (v) above are not relevant.

The results in this section are rather technical, and the reader may first want to read Section
5 before pondering the results in this section in detail.

We first examine the case when P(d) is consistent, in which case the feasible region X; =
{z € X|b— Az € Cy,z € Cx} is nonempty.

Lemma 4.1 Suppose that d € F and Cy is reqular. If p(d) > 0, then there exists & € X4 and

positive scalars v and Ry satisfying:

(i) B(z,m)C{zreX|b— Az e Cy},

(ZZ) B (.’fﬁ,Tl) C B (O,Rl) ,

(iii) <14 2||d|]

(iv) > ﬂ‘*p(d), and

In order to prove Lemma 4.1, we first prove:

Proposition 4.1 p(d) < ||d|| .
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Proof: If d € F (respectively, F*), then 8d € F (respectively, FC) for all § > 0. Therefore,
= (4,b) = (0,0) € B=cl(F) Nl (FC), and s0 p(d) < ||d — d] = ||d — 0] = [|d]. |

Proof of Lemma 4.1: For any w € C§- with ||w|, = 1, we have

grlid]| Iwlls
el

PEINA
5T BTt w
ZTw+

]|

ZB** :Oa

so that 3 (2 + b) € Cy. Now let (Z,7) solve P,(d) (see (24)), and let

. Z z
xTr = — = —
- B* ’
R
where § = 7 + H - Let ¢ = br — Az — z. Then q € Cy and we have br — A% + 2|7|*Hb7 %2 =
z—l—q—i-QHd”b % —(E—I—”d*Hb)—l—qECy,sothat ob— A:v—izECy,wherebyb A:v—%z € Cy.

Thus 2 € Cx and b — Az € Cy,s0 & € X4. Let r; = ﬁ‘* ar- Then if || — Z|| < r1, we have
b— Az =b—Ai+ A —5) =% (00— AT —}2) + fz+ A — =)
=y+ 52+ A% — z)
where y € Cy. Thus for any w € C} with |w|, =1,
w'(b—Az) > &ZTw+w"A@E —1z) > g—; — lwl|[«||A|l || — ||

B —|ldlri =0.

v

Therefore b — Az € Cy, proving (i).
Next, let Ry = ||Z]| + r1, and so (4i) is satisfied.

To prove (iii), observe that

z T d
%:L%H‘i_l:%"i_l S%(m)—i_l (from (24))
< m +1 (from Theorem 3.5)
— 24|
T Brp(d) +1

proving (i7i). To compute the bounds in (iv) and (v), notice first that 6 = 7 + Qﬁ;ll > Qﬁ;H’ so that

r1 < 1. Therefore, from (iii) we have

Ry < B 20
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proving (v). We also have:

— sy B B
6=7+gmgn < v(d) + STl (from (24))
<w(d) + #@ (from Proposition 4.1)
< %@ : (from Theorem 3.5)
Therefore, | = 25[(1“ > ;@ﬁ), proving (iv). |

Remark 4.1 The proof of Lemma 4.1 can be modified to yield different constants on the bounds on

113

f—ll,rl, and Ry. By changing the constant “% 7 in the third line of the proof to %ﬂ” for e >0, and

(L+e)[|d]

making suitable changes in the proof, one can obtain the following bounds: % <1+ ") 0T >

(626;7%, and Ry < 6+(TE+*+)(UJ(;”' One can then choose € to optimize one of these bounds, for example.

We next have:

Lemma 4.2 Suppose that d € F and Cx is reqular. If p(d) > 0, then there ezists © € Xy and

positive scalars ro and Ro satisfying:

(i) B(i,r) C Cx
(ZZ) B (.’i‘, 7“2) CB (0, RQ)

i Ra 3ld|l
(7i7) T; <1+ 5 p(d)

2]|d]]

and (v) Ry <2+ 3 p(d)

Proof: Let z denote the norm approximation vector for the cone C%. Consider the following
optimization problem:
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Q: maximize 0
r,z,0
s.t. br — Az + 6(b— Az) €Cy
x € Cx
r >0
o+ Jal <1

From (14) and (15), the optimal value of @) is at least %, and so there exits (7, Z,6) feasible

for Q with 6 > %, and so

5 p(d) p(d) pld)
0 > pxa 2 A 2 o) (39)

Define

i+z0 03
rral O and Re— i) 4
0+ 0+

I

i:

Then the feasibility (7,%,6) in  ensures that b — Az € Cy, % € Cyx, so that & is feasible for P(d).
For any v € X satisfying ||v|| < rg, and for any u € C%, we have

ul (4 +v) = “T%%“T_Tié +ulv
> S of|flufl.  (from Proposition 2.3)
g *
> Jull. (5% ) =0,

and so B(&,ry) C Cx, which shows (7); and (i) follows from the definition of Rs.

To prove (iii), observe that
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B _ Iy < @y5+1
< (F) G+1)+
< 2 (2 +1) 41 (from (39))
< 1+ ;:‘l‘j[jl) . (from Propsition 4.1)

To prove (iv) and (v), note first that ro = % < 1 since f* <1 and 7 > 0. Then from (ii7) we
have that

Ry 3|l
Ro<2<1+ ,
2= 79 B*p(d)

which proves (v). To prove (iv), observe that

1 0‘ L S A g N 1 2|ld
< l;*'ﬁ‘r‘i)’ (from Proposition 4.1)

and so 1y > 2 completing the proof. |

B*p(d)
3l
Remark 4.2 Similarly to Remark 4.1, the proof of Lemma 4.2 can be modified to yield different

R

constants on the bounds on =2, 19, and Ry. By changing the first inclusion in the feasibility condi-
P [ .

tions of program @Q above to “br — Ax + 0(eb — Az) € Cy” for € > 0 and making suitable changes

in the proof, one can obtain the following bounds: f—; <1+ ﬁ_l* + %t;)(‘(‘;)l”,m > (ITT()H)dH’ and

Ry < %—i— %. One can then choose € to optimize one of these bounds as well.

We now turn to the case when P(d) is inconsistent, i.e., P(d) has no solution. In this case,
from Proposition 2.1, the system (8) has a solution, and let us then examine the set of all solutions
to (8), which we denote by Yy to emphasize the dependence on the data d = (A, b):

Yo={yeY*|ATye Cx, y e Cy, y"b <0} (40)

Lemma 4.3 Suppose that d € FC and Cx is regular. If p(d) > 0, then there exists § € Yy and

positive scalars r3 and Ry satisfying < R3 < ﬁ%‘)’ and that satisfy:

B(j,m3) C {y e Y*|ATy € O%, b'y <0} (41)
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and

9]« < Rs .

Proof of Lemma 4.3: Let § solve Pj,(d). Then ATy
since § # 0 (otherwise —u € C% and so Cx is not regular, via Proposition 2.3), let § =

_ Bg(d)
"3 = Td]

,and let R3 = 1.

31

(42)

~u€C%, ~b'g>1,and g € Cy. Then

Y Let
(1911«

To prove (41) it suffices to show that if ||y — §||« < r3, then ATy € C% and y'b < 0. We

have that ¢ = ATj) — ﬁ € C%. For any z € Cx with ||z| =1,
ATy =T AT (y — ) + z7 AL — a;ﬁ + |z|1yT”:c
> ol 141l ly — gl +27q + 2
> —||A|lrs + ﬁ;ﬁ (since z7q > 0)
> —Bg(d) + fit (since [ld] > [|A[)
> —fg(d) + ||?7B||* (from Corollary 3.1)
> 6 (9(d) ~ ey
=0. (from Theorem 3.10)
Therefore, ATy € C%. Similarly,
—bTy =-b"(y—§) — by
> — || lly gl — of
> —Bg(d) + ||Z71H*
> —Bg(d) + ﬁ =g(d)(1 =)  (from Theorem 3.10)
>0 (from Proposition 2.3)

Therefore, ATy € C% and b''y < 0, which proves (41).

To prove (42), note that ||g||x = 1 = Rs, which demonstrates (42).

Re _ 1 _ lldl . |d]

rs — r3  PBg(d) = Bp(d)

from Theorem 3.9. |

We next prove:

Finally note that
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Lemma 4.4 Suppose that d € F© and Cy is reqular. If p(d) > 0, then there exists § € Yy and

positive scalars r4 and R4 satisfying %‘ < %, and that satisfy:

B(g,r4) C Cy (43)
and

19« < Ra . (44)
Proof: Let y denote the norm approximation vector for the cone Cy. Then ||y|. = 1 and

y'y > BH?JH for any y € Cy, see Proposition 2.3. §upposg that d satisfies ||d|. < (. Then for any
y € Cy, we have (5 +d) "y > Blyll — ldll«llyll > Bllyll = Bllyl = 0, and so y + d € Cy.. Therefore
B(y, ) C Cy, and recall that ||y|/. = 1.

Consider now the following system in the variable y:
ATy + (o) AT5 € Cx
Aty (1) 20
y e Cy

lyll« < 1.

Then [| 775 (A79)l. < LHELAD < p(d), and |o5(—b"p)| < LD < p(d). Then from (27)

[
[1d] l1d]]
and (28) it follows that (45) has a solution .

Define

Then [|g]. < 1, since § is a convex combination of § and y. Also § € C§ and ATy e C% and

C(d‘ﬁ and R4 = 1. Then

B(y,8) C C¢ and §j C C} imply that B(jj,r4) = B (y L) C C%. Also ||j]l, < 1 = Ry. Finally,

Cld)+1
Ri _ 1 _ C(d)+1 2C(d) _ 2||d]|
note that —T: =T 5 < = ) |

—bl'§ > 0 from convexity and from (45). Therefore § € Y. Let ry =
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5 Synthesis of Results

In this section, we synthesize the results of the previous two sections into theorems that
characterize aspects of the distance to ill-posedness for the three particular cases of problem P(d)
of (1), namely

() Casel: Cyx and Cy are both regular,
(#1) Case 2: Cx is regular and Cy = {0},
(131) Case 3: Cx = X and Cy is regular,
and for the status of solvability of P(d) of (1), namely
(a) P(d) is consistent, i.e., (1) has a solution, and
(b) P(d) is inconsistent, i.e., (8) has a solution.
Each of the six theorems of this section synthesizes our results of the previous two sections,
as applied to the one of the three cases above and one of the two status’ of the solvability of P(d).
Each theorem summarizes the applicable approximation characterizations of p(d) of Section 3, and
also synthesizes the appropriate bounds on radii of contained and intersecting balls developed in
Section 4. For a motivation of the importance of these bounds on radii of contained and intersecting

balls contained herein, the reader is referred to the opening discussion at the beginning of Section
4.

Each case is treated as a separate subsection, and all proofs are deferred to the end of the
section.

5.1 Case 1: Cx and Cy are both regular.

Theorem 5.1 Suppose that Cx and Cy are both regular. If P(d) is consistent, i.e., d € F, then
(i) - a(d) < pld) < a(d)
(ii) B8 - a(d) < p(d) < G(d)
(iii) B w(d) < p(d) < w(d)

(iv) B* - u(d) < p(d) < u(d)

(0) £ < pld) < o
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(vi) If p(d) > 0, then there exists & € X4 and positive scalars r and R satisfying:

(a) B(z,7) C Xy

R 51d]
(@) ¥ <2+ oo 5@

min{3*,3* }p(d)
(d) r> —eld]

2|d]]

(&) R<2+ o 5

Theorem 5.2 Suppose that Cx and Cy are both reqular. If P(d) is not consistent, i.e., d € FC,

then
(i) B* - o(d) < p(d) < o(d)
(ii) B*5 - 5(d) < p(d) < &(d)
(iii) B* - 5(d) < p(d) < d(d)
(iv) B~ g(d) < p(d) < g(d)
(v) 7l < pld) < 5z
(vi) If p(d) > 0, then there exists § € Yy and positive scalars v and R satisfying:

(a) B (Q,T) C Yd

3[|d]
min{8,5}-p(d)
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5.2 Case 2: Cx is regular and Cy = {0}.

Theorem 5.3 Suppose that Cx is reqular and Cy = {0}. If P(d) is consistent, i.e., d € F, then
(i) B a(d) < p(d) < a(d)
(ii) B - w(d) < p(d) < w(d)

11) If p(d) > 0, then there exists £ € Xy and positive scalars r and R satisfying:
p ; p

() {zeX||||lz—2| <r, Az =0} C Xy

B p(d)
(d) 7>

2||d
© R<2+ 2l

Theorem 5.4 Suppose that Cx is regular and Cy = {0}. If P(d) is not consistent, i.c., d € FC,

then
(i) B-g(d) < p(d) < g(d)
(i) 5l < o) < sy

(7ii) If p(d) > 0, then there exists § € Yy and positive scalars r and R satisfying:

(a) B (.7}77”) - Yd
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5.3 Case 3: Cx = X and Cy is regular.

Theorem 5.5 Suppose that Cx = X and Cy is regular. If P(d) is consistent, i.e., d € F, then

(i) B* - u(d) < p(d) < u(d)

..y B* 1
(’L’L) W < P(d) < v(d)
(13) If p(d) > 0, then there exists & € X4 and positive scalars r and R satisfying:

(a) B(z,r) C Xy

Theorem 5.6 Suppose that Cx = X and Cy is reqular. If P(d) is not consistent, i.e., d € F¢,

then
(i) B* - o(d) < p(d) < o(d)
(ii) B* - 6(d) < p(d) < 3(d)

(7ii) If p(d) > 0, then there exists § € Yy and positive scalars r and R satisfying:

(@) {yeY*ly—gl.<r, ATy=0}CYy

R 3]l
@ ¥ <1+ mEFme
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Proof of Theorem 5.1: Parts (i), (ii), (iii), (iv) and (v) follow directly from Theorems
3.1, 3.2, 3.3, 3.4 and 3.5, respectively. It remains to prove part (vi).

Let S={z € X|b— Az € Cy} and T'= Cx. Then SNT = X,. From Lemma 4.1, there
exists 1 € Xy and 71, R; satisfying conditions (i) — (v) of Lemma 4.1. From Lemma 4.2, there
exists o € X4 and r9, Ry satisfying conditions (i) — (v) of Lemma 4.2. Then the conditions of
Proposition A.2 of the Appendix are satisfied, and so there exists # and r, R satisfying the five
conditions of Proposition A.2. Therefore, (i) B (#,7) C SNT = X4, which is (a). Also from (7i),
B (&,7) C B(0,R), which is (b). From (iii), we have

R < Ry Ry 5||dJ|

oo - min{f*, 55 p(d)
(invoking Lemma 4.1 (i3i) and Lemma 4.2 (4i7)), which is (¢). Similarly applying Lemma 4.1 and
4.2 and Proposition A.2 in parts (iv) and (v) yields

min{A*, 3*}p(d)
6]l

1
r > Emin{rl,m} >

and
2||d||

R < max{Ry, Ry} <24 o a o -

Proof of Theorem 5.2: Parts (i), (ii), (iii), (iv) and (v) follow directly from Theorems
3.6, 3.7, 3.8, 3.9 and 3.10, respectively. It remains to prove part (vi).

Let S = {y € Y*|ATy € C%, b'y <0} and T = C3. Then SNT = Y,;. From Lemma

4.3, there exists 93, r3, Rs satisfying g5 € SNT, B(ys, r3) C S and ||gs|« < R3, and f—f < %.

From Lemma 4.4 there exists ¢4, r4, R4 satisfying g4 € SNT, B(gs, r4) C T, and ||74]|« < Ry,

and f—: < %. Then from Proposition A.1 of the Appendix, there exists § and r, R satisfying

B(j, r) C SNT =Yy, and ||g|| < R, and

R < Ry Ry 3]/l
T < r33 + T4 < min{8,8}p(d)

Now let R = R+ r. Then for any y € B(4, r), |lyll« < |[§ll« +7 < R+r =R, and

R_Ey1 <1+

r r

3]|d]] I
min{3,8}p(d) -

Proof of Theorem 5.3: Parts (i) and (i7) follow directly from Theorems 3.1 and 3.3, respectively.
To prove (ii7) we apply Lemma 4.2; there exists & € X4 and ry, Ry satisfying the five conditions
of Lemma 4.2. Let r = ry and R = Ry. Then (b), (¢), (d), and (e) follow directly. To prove (a),
observe that from Lemma 4.2 (i) that

{reX||lz—2z||<r}cCx ,
and intersecting both sides with the affine set {z € X|Az = b} gives

{zeX||lx—z||<r, Az=0b} CCxN{zr e X[|Az =0} = X, .|
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Proof of Theorem 5.4: Parts (i) and (ii) follow directly from Theorems 3.9 and 3.10, respectively.

To prove (iii) we apply Lemma 4.3; there exists § € Y, and r3, Rj satisfying %3 < ﬂ%:‘i) and (41)
and (42). Let r = r3 and R = R3 + r3. Then from (41) we obtain

{yeY*lly gl <rfc{yeY’|ATye Ok, by <0} =Yy .

Also, for any y satisfying ||y — g|| <, |lyll < |9]| + 7 < R3 + r3 = R. Finally, note that

R _ R 1]
=t Sgmtl

Proof of Theorem 5.5: Parts (i) and (ii) follow directly from Theorems 3.4 and 3.5, respectively.
To prove (iii) we apply Lemma 4.1; there exists & € X4 and r1, R; satisfying the five conditions of
Lemma 4.1. Let r = r; and R = Ry. Then (b), (c¢), (d), and (e) following directly. To prove (a),
observe from Lemma 4.1(i) that

{zeX||lz—z||<r}c{zeXb-AzecCy} =X, |}

Proof of Theorem 5.6: Parts (i) and (ii) follow from Theorems 3.6 and 3.8, respectively. It
remains to prove (iii).

Let S = {y € Y*|bl'y < 0}. If we let v = 0 in (34), we see that there exists §; € C3
satisfying AT9; = 0,279, < 1 and —b"9; > §(d) > p(d), from Theorem 3.8. Therefore, if we

set 1 = % and Ry = %, we have ||, < 2;?1 < BL = Ry (from Corollary 3.1), and for any y

satistying [y — g1« <71, we have by = b" (y—g1) +b" g1 < [1b]l 191 —yll«—p(d) < [|d|lr1 —p(d) =0,
and so B(g1, r1) C S. If we let T = C%, we have SNT N{y € Y*|ATy = 0} = Yy, and 1 € Y.
From Lemma 4.4, there exists § and r4, Ry satisfying &4 < ﬁ?ﬂz‘i‘)’ and (43) and (44). Then from

T4
Proposition A.1 of the Appendix, there exists § and r, R satisfying B(§,7) C SN T and ||| < R,
and

B B R 30d
r = or g - min{B,B*}p(d)

Note also that
{yeYlly—gl.<r ATy=0cSNTn{yeY ATy =0}=Y,.
Let R = R+ r. Then for any y € B(¢,7), |yll« < |l§ll« +7 = R+r =R, and

3|d]]

R _ R - —
o D S G |
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APPENDIX

This appendix contains two simple constructions with balls on the intersection of two convex
sets.

Proposition A.1 Let X be a finite-dimensional normed linear vector space with norm | - || and

let S and T be convex subsets of X. Suppose that
(i) &1 € SNT, B(%1,m1) C S, where ry >0, and ||Z1|| < Ry, and

(ii) o € SNT, B(ig,1m9) C T, where ro >0, and ||Z2| < Rs.

Let o = "2 andr = 2 and R=aR;+ (1 — a)R,.

ritre’ ri+re?

Then the point & = aiy + (1 — a)zo will satisfy:

() B(ir) cSNT,

(i) &) <R,
and (i) &<yt

Proof: First note that 0 < « < 1. Because B(Z1,71) C S and &9 € S, B(ai1+ (1 —«a)Zq,ary) C S.
Similarly, because B(%g9,79) C T and #; € T, B(az; + (1 — a)#2, (1 — a)ry) C T. Noticing
that ary = (1 — a)ro = r, we have B(z,r) = Blai + (1 — a)o, r) C SNT. Also ||z] <
al|Z1]] + (1 — a)||#2|| < @Ry + (1 — a)Ry = R. Finally, to show (iii), we have

R aR+(1-a)Ry, R, Ry

T T 1 9

Proposition A.2 Let X be a finite-dimensional normed linear vector space with norm || - | and

let S and T be convex subsets of X. Suppose that
(i) 21 € SNT, B(&1,m) C S, where ri >0, and B(z1,r1) C B(0,Ry) and

(ii) &9 € SNT, B(Za,7m9) C T, where ro > 0, and B(Za,12) C B(0, Ry).

Letao = —"2— andr = "2 and R = aRy+(1—a)Ry. Then the point & = a1+ (1— )iy

ri+ra’ ri+ra’
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will satisfy:

(iv) r> %min{rl,rg} ,
and (v) R <max{Ri,Rs} .

Proof: Parts (i) and (ii7) follow identically the proof of Proposition A.1. To see (iv), note

that by definition of r, 7 > mi“{glrfji{fla);gl’”} = min{ry,ro}. Part (v) follows from the fact

that R is a convex combination of R; and Ry. To prove (ii), note that for any z € B(#,r), we
have ||z|| < ||1Z|| + r < «a||Z:1]] + (1 — «)||Z2|| + 7. However, ||Z;|| +r; < R;, i = 1,2, so that

|z]| <a(Ry —r1)+ (1 —a)(Ry—1r2) +7 =R —r <R, which completes the proof. |
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