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PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 11 IntroductionThis paper is concerned with characterizations and properties of the \distance to ill-posedness"and of the condition measure of a conic linear system, i.e., a system of the form:P (d) : �nd x that solves b�Ax 2 CY ; x 2 CX ; (1)where CX � X and CY � Y are each a closed convex cone in the (�nite) n-dimensional normedlinear vector space X (with norm kxk for x 2 X) and in the (�nite) m-dimensional linear vectorspace Y (with norm kyk for y 2 Y ), respectively. Here b 2 Y , and A 2 L(X;Y ) where L(X;Y )denotes the set of all linear operators A : X �! Y . At the moment, we make no assumptions onCX and CY except that each is a closed convex cone. The reader will recognize immediately thatwhen X = Rn and Y = Rm, and either (i) CX = fx 2 Rn j x � 0g and CY = fy 2 Rm j y � 0g,(ii) CX = fx 2 Rn j x � 0g and CY = f0g � Rm, or (iii) CX = Rn and CY = fy 2 Rm j y � 0g,then P (d) is a linear inequality system of the format (i) Ax � b; x � 0, (ii) Ax = b; x � 0, or (iii)Ax � b, respectively.The problem P (d) is a very general format for studying the feasible region of a mathematicalprogram, and even lends itself to analysis by interior-point methods, see Nesterov and Nemirovskii[8]and Renegar [12] and [13].The concept of the \distance to ill-posedness" and a closely related condition measure forproblems such as P (d) was introduced by Renegar in [10] in a more speci�c setting, but thengeneralized more fully in [11] and in [12]. We now describe these two concepts in detail.We denote by d = (A; b) the \data" for the problem P (d). That is, we regard the cones CXand CY as �xed and given, and the data for the problem is the linear operator A together with thevector b. We denote the set of solutions of P (d) as Xd to emphasize the dependence on the data d,i.e., Xd = fx 2 X j b�Ax 2 CY ; x 2 CXg:We de�neF = f(A; b) 2 L(X;Y )� Y j there exists x satisying b�Ax 2 CY ; x 2 CXg : (2)Then F corresponds to those data instances (A; b) for which P (d) is consistent, i.e., P (d) has asolution.For d = (A; b) 2 L(X;Y )�Y we de�ne the product norm on the cartesian product L(X;Y )�Y as kdk = k(A; b)k = maxfkAk; kbkg (3)where kbk is the norm speci�ed for Y and kAk is the operator norm, namelykAk = maxfkAxk j kxk � 1g: (4)



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 2We denote the complement of F by FC . Then FC consists precisely of those data instancesd = (A; b) for which P (d) is inconsistent.The boundary of F and of FC is precisely the setB = @F = @FC = cl (F) \ cl(FC) (5)where @S denotes the boundary of a set S and cl(S) is the closure of a set S. Note that ifd = (A; b) 2 B, then P (d) is ill-posed in the sense that arbitrary small changes in the datad = (A; b) will yield consistent instances of P (d) as well as inconsistent instances of P (d).For any d = (A; b) 2 L(X;Y )� Y , we de�ne�(d) = inf k�dk = inf k(�A;�b)k�d �A;�bs:t: d+�d 2 B s:t: (A+�A; b+�b) 2 cl(F) \ cl(FC) : (6)Then �(d) is the \distance to ill-posedness" of the data d, i.e., �(d) is the distance of dto the set B of ill-posedness instances. In addition to the work of Renegar cited earlier, furtheranalysis of the distance to ill-posedness has been studied by Vera [17], [18], [16], Filipowski [4], [5],and Nunez and Freund [9].In addition to the general case P (d), we will also be interested in two special cases whenone of the cones is either the entire space or only the zero-vector. When CY = f0g, then P (d)specializes to Ax = b; x 2 CX :When CX = X, then P (d) specializes tob�Ax 2 CY ; x 2 X :One of the purposes of this paper is to explore approximate characterizations of the distanceto ill-posedness �(d) as the optimal value of a mathematical program whose solution is relativelyeasy to obtain. By \relatively easy," we roughly mean that such a program is either a convexprogram or is solvable through O(m) or O(n) convex programs. Vera [17] and [16] explored suchcharacterizations for linear programming problems, and the results herein expand the scope of thisline of research in two ways: �rst by expanding the problem context from linear equations andlinear inequalities to conic linear systems, and second by developing more e�cient mathematicalprograms that characterize �(d). Renegar [12] presents a characterization of the distance to ill-posedness as the solution of a certain mathematical program, but this characterization is not ingeneral easy to solve.There are a number of reasons for exploring various characterizations of �(d), not the leastof which is to better understand the underlying nature of �(d). First, we anticipate that suchcharacterization results for �(d) will be useful in the complexity analysis of a variety of algorithmsfor convex optimization of problems in conic linear form. There is also the intellectual issue of thecomplexity of computing �(d) or an approximation thereof, and there is the prospect of using suchcharacterizations to further understand the behavior of the underlying problem P (d). Furthermore,when an approximation of �(d) can be computed e�ciently, then there is promise that the problem



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 3of deciding the feasibility of P (d) or the infeasibility of P (d) can be processed \e�ciently", say inpolynomial time, as shown in [17]. In Section 3 of this paper, we present ten di�erent mathematicalprograms each of whose optimal values provides an approximation of �(d) to within certain constantfactors, depending on whether P (d) is feasible or not, and where the constants depend only on the\structure" of the cones CX and CY and not on the dimension or on the data d = (A; b).The second purpose of this paper is to prove the existence of certain inscribed and inter-secting balls involving the feasible region of P (d) (or the feasible region of the alternative systemof P (d) if P (d) is infeasible), in the spirit of the ellipsoid algorithm and in order to set the stagefor an analysis of the ellipsoid algorithm, hopefully in a subsequent paper. Recall that when P (d)is specialized to the case of non-degenerate linear inequalities and the data d = (A; b) is an arrayof rational numbers of bitlength L, then the feasible region of P (d) will intersect a ball of radiusR centered at the origin, and will contain a ball of radius r where r = (1=n)2�L and R = n2L.Furthermore, the ratio R=r is of critical importance in the analysis of the complexity of using theellipsoid algorithm to solve the system P (d) in this particular case. (For the general case of P (d),the Turing machine model of computation is not very appropriate for analyzing issues of complex-ity, and indeed other models of computation have been proposed (see Blum et al. [3], also Smale[15].)) By analogy to the properties of rational non-degenerate linear inequalities mentioned above,Renegar [12] has shown that the feasible region Xd, if nonempty, must intersect a ball of radius Rcentered at the origin where R � kdk=�(d). Renegar [11] de�nes the condition measure of the datad = (A; b) to be C(d): C(d) = kdk�(d) ;and so R � C(d). Here we see the value n2L has been replaced by the condition measure C(d).For the problem P (d) considered herein in (1), the feasible region is the set Xd. In Sections4 and 5 of this paper, we utilize the characterization results of Section 3 to prove that the feasibleregion Xd (or the feasible region of the alternative system when P (d) is infeasible) must contain aninscribed ball of radius r that is no more than a distance R from the origin, and where the ratio R=rsatis�es R=r = c1O(C(d)). Furthermore, we prove that r = c2
� 1C(d)� and R = c3O(C(d)), wherethe constants c1; c2; c3 depend on properties of the cones and the norms used (and c1 = c2 = c3 = 1if the norms of the spaces are chosen in a particular way). Note that by analogy to rationalnon-degenerate linear inequalities, the quantity n2L is replaced by C(d). Therefore the conditionmeasure C(d) is a very relevant tool in proving the existence of an inscribed ball in the feasibleregion of P (d) that is not too far from the origin and whose radius is not too small. This shouldprove e�ective in the analysis of the ellipsoid algorithm as applied to solving P (d).The paper is organized as follows. Section 2 contains preliminary results, de�nitions, andanalysis. Section 3 contains the ten di�erent mathematical programs each of whose optimal valuesprovides approximations of �(d) to within certain constant factors, as discussed earlier. Section 4contains four lemmas that give partial or full characterizations of certain inscribed and intersectingballs related to the feasible region of P (d) (or its alternative region in the case when P (d) isinfeasible). Section 5 presents a synthesis of all of the results in the previous two sections intotheorems that give a complete treatment both of the characterization results and of the inscribedand intersecting ball results.



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 4Acknowledgment. We gratefully acknowledge comments from James Renegar on the �rst draftof this paper, which have contributed to a restatement and simpli�cation of the proofs of Lemma4.2 and Lemma 4.4. We also gratefully acknowledge the comments of the associate editor, whichhave contributed to improved exposition in the paper. We are also grateful for the fellowship andresearch environment at CORE, Catholic University of Louvain, where this work was initiated.2 Preliminaries and Some More NotationWe will work in the setup of �nite dimensional normed linear vector spaces. Both X andY are normed linear spaces of �nite dimension n and m, respectively, endowed with norms kxk forx 2 X and kyk for y 2 Y . For �x 2 X, let B(�x; r) denote the ball centered at �x with radius r, i.e.,B(�x; r) = fx 2 X j kx� �xk � rg;and de�ne B(�y; r) analogously for �y 2 Y .For �d = � �A;�b� 2 L(X;Y )� Y , we de�ne the ballB( �d; r) = fd = (A; b) 2 L(X;Y )� Y jkd� �dk � rg:With this additional notation, it is easy to see that the de�nition of �(d) given in (6) isequivalent to: �(d) = 8><>: sup f� j B(d; �) � Fg if d 2 Fsupn� j B(d; �) � FCo if d 2 FC : (7)We associate with X and Y the dual spaces X� and Y � of linear functionals de�ned on Xand Y , respectively, and whose induced (dual) norms are denoted by kuk� for u 2 X� and kwk�for w 2 Y �. Let c 2 X�. In order to maintain consistency with standard linear algebra notationin mathematical programming, we will consider c to be a column vector in the space X� and willdenote the linear function c(x) by cTx. Similarly, for A 2 L(X;Y ) and f 2 Y �, we denote A(x) byAx and f(y) by fTy. We denote the adjoint of A by AT .If C is a convex cone in X, C� will denote the dual convex cone de�ned byC� = fz 2 X� j zTx � 0 for any x 2 Cg :Remark 2.1 If we identify (X�)� with X, then (C�)� = C whenever C is a closed convex cone.Remark 2.2 If CX = X, then C�X = f0g. If CX = f0g, then C�X = X.



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 5We denote the set of real numbers by R and the set of nonnegative real numbers by R+:Regarding the consistency of P (d), we have the following partial \theorem of the alterna-tive," the proof of which is a straightforward exercise using a separating hyperplane argument.Proposition 2.1 If P (d) has no solution, then the system (8) has a solution:AT y 2 C�Xy 2 C�YyT b � 0y 6= 0: (8)If the system (9) has a solution: AT y 2 C�Xy 2 C�YyT b < 0; (9)then P (d) has no solution.Using Proposition 2.1, it is elementary to prove the following:Lemma 2.1 Consider the set of ill-posed instances B. Then B can be characterized as:B = fd = (A; b) 2 L(X;Y )� Y j there exists (x; r) 2 X �R with(x; r) 6= 0 and y 2 Y � with y 6= 0 satisfying br �Ax 2 CY ; x 2 CX ; r � 0;y 2 C�Y ; AT y 2 C�X ; and yT b � 0g :We now recall some facts about norms. Given a �nite dimensional linear vector space Xendowed with a norm kxk for x 2 X, the dual norm induced on the space X� is denoted by kzk�for z 2 X�, and is de�ned as: kzk� = maxfzTx j kxk � 1g: (10)If we denote the unit balls in X and X� by B and B�, then it is straightforward to verify that



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 6B = fx 2 X j kxk � 1g = fx 2 X j zTx � 1 for all z with kzk� � 1g;and B� = fz 2 X� j kzk� � 1g = fz 2 X� j zTx � 1 for all x with kxk � 1g:Furthermore, zTx � kzk�kxk for any x 2 X and z 2 X�; (11)which is the H�older inequality. Finally, note that if A = uvT , then it is easy to derive thatkAk = kvk�kuk using (10) and (4).If X and V are �nite-dimensional normed linear vector spaces with norm kxk for x 2 Xand norm kvk for v 2 V , then for (x; v) 2 X � V , the function f(x; v) de�ned byf(x; v) = k(x; v)k := kxk+ kvkde�nes a norm on X � V , whose dual norm is given byk(w; u)k� := max fkwk�; kuk�g for (w; u) 2 (X � V )� = X� � V �:The following result, which is a special case of the Hahn-Banach Theorem (see, e.g., [19]),will be used extensively in our analysis. We include a short proof based on the subdi�erentialoperator of a convex function.Proposition 2.2 For every x 2 X, there exists z 2 X� with the property that kzk� = 1 andkxk = zTx.Proof: If x = 0, then any z 2 X� with kzk� = 1 will satisfy the statement of the proposition.Therefore, we suppose that x 6= 0. Consider kxk as a function of x, i.e., f(x) = kxk. Then f(�) is areal-valued convex function, and so the subdi�erential operator @f(x) is non-empty for all x 2 X,see [2]. Consider any x 2 X, and let z 2 @f(x). Thenf(w) � f(x) + zT (w � x) for any w 2 X: (12)Substituting w = 0 we obtain kxk = f(x) � zTx. Substituting w = 2x we obtain 2f(x) = f(2x) �f(x)+zT (2x�x), and so f(x) � zTx, whereby f(x) = zTx. From (11) it then follows that kzk� � 1.Now if we let u 2 X and set w = x+u, we obtain from (12) that f(u)+ f(x) � f(u+x) = f(w) �f(x) + zT (w�x) = f(x) + zT (u+x� x) = f(x) + zTu. Therefore, zTu � f(u) = kuk, and so from(10) we obtain kzk� � 1. Therefore, kzk� = 1:Because X and Y are normed linear vector spaces of �nite dimension, all norms on eachspace are equivalent, and one can specify a particular norm for X and a particular norm for Y ifso desired. If X = Rn, the Lp norm is given bykxkp = 0@ nXj=1 jxj jp1A1=p ;



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 7for p � 1. The norm dual to kxkp is kzk� = kzkq where q satis�es 1=p+ 1=q = 1, with appropriatelimits as p! 1 and p! +1.We will say that a cone C is regular if C is a closed convex cone, has a nonempty interiorand is pointed (i.e., contains no line).Remark 2.3 If C is a closed convex cone, then C is regular if and only if C� is regular.Let C be a regular cone in the normed linear vector space X. A critical component of ouranalysis concerns the extent to which the norm function kxk can be approximated by some linearfunction uTx over the cone C for some particularly good choice of u 2 X�. Let u 2 intC� begiven, and suppose that u has been normalized so that kuk� = 1. Let f(u) = minimumfuTx j x 2C; kxk = 1g. Then it is elementary to see that 0 < f(u) � 1, and also that f(u)kxk � uTx � kxkfor any x 2 C. Therefore the linear function uTx approximates kxk over all x 2 C to within thefactor f(u). Put another way, the larger f(u) is, the closer uTx approximates kxk over all x 2 C.Maximizing the value of f(u) over all u 2 X� satisfying kuk� = 1, we are led to the followingde�nition:De�nition 2.1 If C is a regular cone in the normed linear vector space X, the coe�cient oflinearity for the cone C is given by:� = sup inf uTxu 2 X� x 2 Ckuk� = 1 kxk = 1 : (13)Let �u denote that value of u 2 X� that achieves the supremum in (13). We refer to �ugenerically as the \norm approximation vector" for the cone C. Then for all x 2 C, �kxk � �uTx �kxk, and so kxk is approximated by the linear function �uTx to within the factor � over the coneC. Therefore, � measures the extent to which kxk can be approximated by a linear function �uTxon the cone C. Also, �uTx is the \best" such linear approximation of kxk over this cone. It is easyto see that � � 1, since uTx � kuk�kxk = 1 for u and x as in (13). The larger the value of �, themore closely kxk is approximated by a linear function uTx over x 2 C. For this reason, we refer to� as the \coe�cient of linearity" for the cone C.We have the following properties of the coe�cient of linearity �:Proposition 2.3 Suppose that C is a regular cone in the normed linear vector space X, and let �denote the coe�cient of linearity for C. Then 0 < � � 1. Furthermore, the norm approximationvector �u exists and is unique, and satis�es the following properties:(i) �u 2 intC�,



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 8(ii) k�uk� = 1,(iii) � = minf�uTx j x 2 C; kxk = 1g, and(iv) �kxk � �uTx � kxk for any x 2 C:The proof of Proposition 2.3 follows easily from the following observation:Remark 2.4 Suppose C is a closed convex cone. Then u 2 intC� if and only if uTx > 0 for allx 2 C=f0g. Also, if u 2 intC�, the set fx 2 C j uTx = 1g is a closed and bounded convex set.We illustrate the construction of the coe�cient of linearity on two families of cones, thenonnegative orthant Rn+ and the positive semi-de�nite cone Sn�n+ . We �rst consider the nonnegativeorthant. Let X = Rn and C = Rn+ = fx 2 Rn j x � 0g. Then we can identify X� with X and inso doing, C� = Rn+ as well. If kxk = kxkp, then for x 2 Rn+, it is straightforward to show that�u = �n� 1p�1�� e, where e = (1; : : : ; 1)T , i.e., the linear function given by �uTx is the \best" linearapproximation of the function kxk on the set Rn+. Furthermore, straightforward calculation yieldsthat � = n� 1p�1�. Then if p = 1, � = 1, but if p > 1 then � < 1.Now consider the positive semi-de�nite cone, which has been shown to be of enormousimportance in mathematical programming (see Alizadeh [1] and Nesterov and Nemirovskii [8]). LetX = Sn�n denote the set of real n�n symmetric matrices, and let C = Sn�n+ = fx 2 Sn�n j x � 0g,where \�" is the L�owner partial ordering, i.e., x � w if x�w is a positive semi-de�nite symmetricmatrix. Then C is a closed convex cone. We can identify X� with X, and in so doing it iselementary to derive that C� = Sn�n+ , i.e., C = Sn�n+ is self-dual. For x 2 X, let �(x) denote then-vector of ordered eigenvalues of x. That is, �(x) = (�1(x); : : : ; �n(x))T where �i(x) is the ithlargest eigenvalue of X. For any p 2 [1;1), let the norm of x be de�ned bykxk = kxkp = 0@ nXj=1 j�j(x)jp1A 1p ;i.e., kxkp is the Lp-norm of the vector of eigenvalues of x. (see [7], e.g., for a proof that kxkp is anorm.) When p = 2, kxk2 corresponds precisely to the Frobenius norm of x. When p = 1, kxk1 is thesum of the absolute values of the eigenvalues of x. Therefore, when x 2 Sn�n+ , kxk1 = tr(x) = nPi=1 xiiwhere xii is the ith diagonal entry of the real matrix x, and so is linear on C = Sn�n+ . It is easy toshow for the norm kxkp over Sn�n+ that �u = �n� 1p�1�� I has k�uk� = k�ukq = 1 and that � = n� 1p�1�.Thus, for the Frobenius norm we have � = 1pn and for the L1-norm, we have � = 1.The coe�cient of linearity � for the regular cone C is essentially the same as the scalar �de�ned in Renegar [12] on page 328. In [12], � is referred to as a measure of \pointedness" of the



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 9cone C. In fact, one can de�ne pointedness in a geometrically intuitive way and it can be shownthat � corresponds precisely to the pointedness of the cone C. However, this result is beyond thescope of this paper.The coe�cients of linearity for the cones CX and/or CY play a role in virtually all of theresults in this paper. Generally, the results in Section 3 and Section 5 will be stronger to the extentthat these coe�cients of linearity are large. The following remark shows that by a judicious choiceof the norm on the vector space X, one can ensure that the coe�cient of linearity for a cone C orthe coe�cient of linearity for the dual cone C� are equal to 1 (but not both).Remark 2.5 If C is a regular cone, then it is possible to choose the norm on X in such a waythat the coe�cient of linearity for C is � = 1. Alternatively, it is possible to choose the norm onX in such a way that the coe�cient of linearity for C� is �� = 1.To see why this remark is true, recall that for �nite dimensional linear vector spaces, thatall norms are equivalent. Now suppose that C is a regular cone. Pick any �u 2 intC�. Let the unitball for X, denoted as B, be de�ned as:B = conv �fx 2 C j �uTx � 1g [ fx 2 �C j � �uTx � 1g� ;where \conv(S; T )" denotes the convex hull of the sets S and T . It can then easily be veri�edthat this ball induces a norm k � k on X. Furthermore, it is easy to see that for all x 2 C, thatkxk = �uTx, whereby � = 1. Alternatively, a similar type of construction can be applied to the dualcone C� to ensure that the coe�cient of linearity �� for C� satis�es �� = 1. However, because thenorm on X (or on X�) induces the dual norm on the dual space, it is not generally possible toconstruct the dually paired norms k � k and k � k� in such a way that both � = 1 and �� = 1.3 Characterization Results for �(d)Given a data instance d = (A; b) 2 L(X;Y ) � Y , we now present characterizations of thedistance to ill-posedness �(d) for the feasibility problem P (d) given in (1) .The characterizations of �(d) will depend on whether d 2 F or d 2 FC (recall (2)), i.e.,whether P (d) is consistent or not. We �rst study the case when d 2 F (P (d) is consistent),followed by the case when d 2 FC (P (d) is not consistent). Before proceeding, we adopt thefollowing notational conventions.For the remainder of this study, we make the following modi�cation of our notation.De�nition 3.1 Whenever the cone CX is regular, the coe�cient of linearity for CX is denoted by�, and the coe�cient of linearity for C�X is denoted by ��. Whenever the cone CY is regular, the



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 10coe�cient of linearity for CY is denoted by ��, and the coe�cient of linearity for C�Y is denoted by���. Furthermore, when the cone CX is regular, we denote the norm approximation vector forthe cone CX by �u. Also, when the cone CY is regular, we denote the norm approximation vectorfor the cone C�Y by �z.In particular, then, we have the following partial restatement of Proposition 2.3.Corollary 3.1 If CX is regular, then �u 2 intC�X and k�uk� = 1, and�kxk � �uTx � kxk for any x 2 CX :If CY is regular, then �z 2 intCY and k�zk = 1, and���kyk� � �zT y � kyk� for any y 2 C�Y :We emphasize that the four coe�cient of linearity constants, �, ��, ��, and ���, dependonly on the norms kxk and kyk and the cones CX and CY , and are independent of the data (A; b)de�ning the problem P (d).3.1 Characterization Results when P (d) is consistentThe starting point of our analysis is the following result of Renegar [12], which we motivateas follows. Consider the following homogenization and normalization of P (d):H : br � Ax 2 CYx 2 CXr � 0jrj + kxk � 1:Recall that �(d) measures the extent to which the data d = (A; b) can be altered and yet(1) will still be feasible for the new system. A modi�cation of this view is that �(d) measures theextent to which the system (1) can be modi�ed while ensuring its feasibility. Consider the followingprogram:



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 11Pr(d) : r(d) = minimum maximum �v 2 Y r; x; �kvk � 1 s:t: br � Ax � v� 2 CYx 2 CXr � 0jrj + kxk � 1: (14)Then r(d) is the largest scaling factor � such that for any v with kvk � 1; v� can be added tothe �rst inclusion of H without a�ecting the feasibility of the system. The following is a slightlyaltered restatement of a result due to Renegar:Theorem (Theorem 3.5 of [12]) Suppose that d 2 F . Thenr(d) = �(d): (15)Now note that the inner maximization program of (14) is a convex program. If we replacethis inner maximization program by an appropriately constructed Lagrange dual, we obtain thefollowing modi�cation of program (14):minimum minimum maxnkAT y � qk�; jbT y + gjov 2 Y y; q; gkvk � 1 s:t: yT v � 1y 2 C�Yq 2 C�Xg � 0 : (16)By combining the inner and outer minimizations in (16) and using the duality propertiesof norms (see (10)), we obtain the following program:Pj(d) : j(d) = minimum maxnkAT y � qk�; jbT y + gjoy; q; g s:t: y 2 C�Yq 2 C�Xg � 0kyk� = 1 : (17)Now note that program Pj(d) is a measure of how close the system (1) is to being infeasible.To see this, note that if d = (A; b) were in FC , then from Proposition 2.1 it would be true that



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 12j(d) = 0: The nonnegative quantity j(d) measures the extent to which the alternative system (9) isnot feasible. The smaller the value of j(d) is, the closer the conditions (9) are to being satis�ed, andso the smaller the value of �(d) should be. These arguments are imprecise, but the next theoremvalidates the intuition of this line of thinking:Theorem Suppose that d 2 F . Then j(d) = �(d): (18)One way to prove (18) would be to prove that the duality constructs employed in modifying(14) to (16) to (17) are indeed valid, thereby showing that j(d) = r(d) = �(d) and establishing thatprogram Pj(d) is just a partial dualization of Pr(d). Instead we o�er the following proof which ismore direct and does not rely explicitly on (15).Proof: Suppose that j(d) > �(d): Then there exists �d = � �A;�b� such that k �A � Ak < j(d) andk�b� bk < j(d) and �d 2 FC . From Proposition 2.1, there exists �y 2 C�Y with k�yk� = 1 that satis�es�AT �y 2 C�Y , �bT �y � 0. Let �q = �AT �y and �g = ��bT �y � 0. ThenkAT �y � �qk� = k �AT �y � �q + (A� �A)T �yk� � kA� �Akk�yk� < j(d)and jbT �y + �gj = j�bT �y + (b� �b)T �y � �bT �yj = j(b� �b)T �yj � kb� �bkk�yk� < j(d);and so (�y; �q; �g) is feasible for Pj(d) with objective value less than j(d), which is a contradiction.Therefore j(d) � �(d).Now suppose that j(d) < � < �(d) for some �. Then there exists (�y; �q; �g) such that �y 2 C�Y ,�q 2 C�X , �g � 0, and kAT �y��qk� < �, jbT �y+�gj < �, and k�yk� = 1. Let ŷ satisfy kŷk = 1, �yT ŷ = k�yk� =1, see Proposition 2.2, and let �A = A� ŷ ��yTA� �qT�, �b� = b� ŷ �bT �y + �g + �� for all � > 0. Then�AT �y = AT �y �AT �y + �q = �q 2 C�X , and �bT� �y = ��g � � < 0 for all � > 0. Therefore �d� = � �A;�b�� 2 FCfor all � > 0. However, k �A�Ak = kAT �y� �qk� < � and k�b� � bk = jbT �y+ �g + �j � jbT �y+ �gj+ � < �for � > 0 and su�ciently small, and so �(d) � k �d�� dk = maxfk �A�Ak; k�b� � bkg < �, for all � > 0and su�ciently small. This too is a contradiction, and so j(d) � �(d), whereby j(d) = �(d).Remark 3.1 Pj(d) is not in general a convex program due to the non-convex constraint \kyk� =1". However, in the case when Y = Rm, (then Y � can also be identi�ed with Rm), if we choosethe norm on Y � to be the L1 norm (so the norm on Y is the L1 norm), then Pj(d) can besolved by solving 2m convex programs. To see this, observe that when 1 = kyk� = kyk1 inPj(d), then the constraint \kyk� = 1" can be replaced by the constraint \yi = �1 for somei 2 f1; : : : ;mg" without changing the optimal objective value of Pj(d). This implies that j(d) =



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 13min fj+1(d); : : : ; j+m(d); j�1(d); : : : ; j�m(d)g, where :j�i(d) = minimum maxnkAT y � qk�; jbT y + gjoy; q; gs:t: y 2 C�Yq 2 C�Xg � 0yi = �1 ;and j�i(d) is the optimal objective value of a convex program, i = 1; : : : ;m.We now proceed to present �ve di�erent mathematical programs each of whose optimalvalues provides an approximation of the value of the distance to ill-posedness �(d), in the case whenP (d) is consistent. For each of these �ve mathematical programs, the nature of the approximationof �(d) is speci�ed in a theorem stating the result. For the �rst program, suppose that CX is aregular cone, and consider:P�(d) : �(d) = minimum 
y; 
s:t: AT y + 
�u 2 C�X�bTy + 
 � 0kyk� = 1y 2 C�Y : (19)
Theorem 3.1 If d 2 F and CX is regular, then� � �(d) � �(d) � �(d) :Proof: Recall from Corollary 3.1 that �u 2 intC�X . Therefore �(d) � 0, since otherwise d 2 FC viaProposition 2.1, which would violate the supposition of the theorem. Suppose that (y; 
) is feasiblefor P�(d). Let q = AT y+
�u and notice that kAT y�qk� = 
k�uk� = 
. Also, if we let g = �bT y+
,then g � 0 and jbT y + gj = j
j = 
. Therefore, maxnkAT y � qk�; jbT y + gjo = 
, and (y; q; g) isfeasible for Pj(d) with objective value 
. It then follows that �(d) � j(d) = �(d) from (18).On the other hand, suppose that (y; q; g) is feasible for Pj(d), and let� = maxnkAT y � qk�; jbT y + gjo :Then it must be true that AT y + (�=�)�u 2 C�X : (20)



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 14To demonstrate the validity of (20), suppose the contrary. Then there exists x 2 CX with kxk = 1for which xT �AT y + (�=�)�u� < 0. But then� = maxnkAT y � qk�; jbT y + gjo � kAT y � qk� = kq �AT yk�kxk � qTx� xTAT y� �xTAT y > (�=�)�uT x � (��kxk)=� = �(where the last inequality is from Corollary 3.1), a contradiction. Therefore (20) is true. Thenalso �� � � � jbT y + gj � bT y, and so (y; 
) = �y; ��� is feasible for P�(d). It then follows that�(d) � j(d)=� = �(d)=� (from (18)), completing the proof.Similar to Pj(d), P�(d) is generally a nonconvex program due to the constraint \kyk� =1:" When CY is also regular, then from Corollary 3.1 the linear function �zT y is a \best" linearapproximation of kyk� on C�Y , and if we replace \kyk� = 1" by \�zT y = 1" in P�(d) we obtain thefollowing convex program:P~�(d) : ~�(d) = minimum 
y; 
s:t: AT y + 
�u 2 C�X�bTy + 
 � 0�zT y = 1y 2 C�Y : (21)
Replacing the norm constraint by its linear approximation will reduce (by a constant) theextent to which the program computes an approximation of �(d), and the analog of Theorem 3.1becomes:Theorem 3.2 If d 2 F and both CX and CY are regular, then���� � ~�(d) � �(d) � ~�(d):Proof: Suppose that (y; 
) is a feasible solution of P�(d). Then �y=�zT y; 
=�zT y� is a feasiblesolution of P~�(d) with objective function value 
=�zT y � 
= ����kyk�� = 
=��� (from Corollary 3.1).It then follows that ~�(d) � �(d)=���. Applying Theorem 3.1, we obtain ���� ~�(d) � �(d).Next suppose that (y; 
) is a feasible solution of P~�(d). Then (y=kyk�; 
=kyk�) is a feasiblesolution of P�(d) with objective function value 
=kyk� � 
=(�zT y) = 
 (from Corollary 3.1). It thenfollows that �(d) � ~�(d). Applying Theorem 3.1, we obtain �(d) � ~�(d).The next mathematical program supposes that the cone CX is regular. Consider the fol-lowing program:



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 15Pw(d) : w(d) = minimum maximum �v 2 Y r; x; �kvk � 1 s:t: br � Ax � v� 2 CYx 2 CXr + �uTx � 1r � 0: (22)
Notice that Pw(d) is identical to Pr(d) except that the norm constraint \jrj + kxk � 1" inPr(d) is replaced by the linearized version \r + �uTx � 1". We have:Theorem 3.3 If d 2 F and CX is regular, then� � w(d) � �(d) � w(d) :Proof: The proof follows from (15) using the inequalities �kxk � �uTx � kxk of Corollary 3.1,using the same logic as in the proof of Theorem 3.2.The fourth mathematical program supposes that the cone CY is regular. Consider thefollowing convex program:Pu(d) : u(d) = minimum maxnkAT y � qk�; jbT y + gjoy; q; gs:t: y 2 C�Yq 2 C�Xg � 0�zT y = 1 : (23)
Notice that Pu(d) is identical to Pj(d) except that the norm constraint \kyk� = 1" in Pj(d)is replaced by the linearized version \�zT y = 1". We have:Theorem 3.4 If d 2 F and CY is regular, then���u(d) � �(d) � u(d) :Proof: The proof follows from (18) using the inequalities ���kyk� � �zT y � kyk� of Corollary 3.1,using the same logic as in the proof of Theorem 3.2.Notice that the feasible region of Pu(d) is a convex set, and that the objective function is agauge function, i.e., a nonnegative convex function that is positively homogeneous of degree 1, see



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 16[14]. A mathematical program that minimizes a gauge function over a convex set is called a gaugeprogram, and corresponding to every gauge program is a dual gauge program that also minimizesa (dual) gauge function over a (dual) convex set, see [6]. For the program Pu(d), its dual gaugeprogram is given by the following convex program:Pv(d) : v(d) = minimum kxk+ jrjx; r br � Ax� �z 2 CYx 2 CXr � 0 : (24)
One can interpret Pv(d) as measuring the extent to which P (d) has a solution x for whichb� Ax is in the interior of the cone CY . To see this, note from Corollary 3.1 that �z 2 intCY ; andso Pv(d) will only be feasible if P (d) has a solution x for which b�Ax is in the interior to CY . Themore interior a solution there is, the smaller (r; x) can be scaled and still satisfy br�Ax� �z 2 CY .One would then expect v(d) to be inversely proportional to �(d) (and to u(d)), as the next theoremindicates. Indeed, the theorem states that u(d) � v(d) = 1, where we employ the convention that0 � 1 = 1 when fu(d); v(d)g = f0;1g.Theorem 3.5 Suppose that d 2 F and CY is regular. Then u(d) � v(d) = 1, and���v(d) � �(d) � 1v(d) :Proof: Suppose that �(d) = 0. Then u(d) = 0 from Theorem 3.4 and from (17) and (18), thereexists ŷ 2 C�Y satisfying AT ŷ 2 C�X , bT ŷ � 0, and kŷk� = 1, which in turn implies that Pv(d)cannot have a feasible solution (for if (x; r) is feasible for Pv(d), then 0 = ŷT (br �Ax� �z) < 0, acontradiction). Thus v(d) = 1, and so u(d) � v(d) = 1 by convention, and also ���v(d) = 0 = �(d) =1v(d) . Therefore suppose that �(d) > 0. Then u(d) > 0 from Theorem 3.4 and also it is straight-forward to show that both Pu(d) and Pv(d) are feasible and attain their optima. Note that for any(y; q; g) and (x; r) feasible for Pu(d) and Pv(d), respectively, we have1 = �zT y � yT br � yTAx � yT br + gr � yTAx+ qTx �(kxk + jrj)maxfkAT � qk�; jbT y + gjgwhereby u(d) �v(d) � 1, and so in particular v(d) > 0. We now will show that u(d) �v(d) = 1, whichwill complete the proof.De�ne the following set:



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 17S = f(
;w; v) 2 <� Y �X j there exists r � 0; x 2 X; s 2 CY , and p 2 CX whichsatisfy kxk+ jrj � 
; br �Ax� �z � w = s; x� v = pg.Then S is a nonempty convex set, and basic limit arguments easily establish that S is also aclosed set. For any given and �xed � 2 (0; v(d)), the point (v(d) � �; 0; 0) =2 S (for otherwise theoptimal value of Pv(d) would be less than or equal to v(d)� �, a contradiction). Since S is a closednonempty convex set, (v(d) � �; 0; 0) can be strictly separated from S by a hyperplane, i.e., thereexists (�; y; q) 6= 0 and � 2 < such that(i) �(v(d)� �) < �(ii) �
 � yTw � qTw � qT v > � for any (
;w; v) 2 S:In particular, (ii) implies that(kxk + jrj+ �)� � yT (br �Ax� �z � s)� qT (x� p) > �for any x 2 X; r � 0; � � 0; s 2 CY ; and p 2 CX : (25)This implies that � � 0, y 2 C�Y , q 2 C�X , and � > 0.Suppose �rst that � > 0. Then we can rescale (�; y; q) and � so that � = 1. Then noticethat (25) implies that 1 � bT y � 0. Also, we claim that (25) implies that kAT y � qk� � 1. (Tosee this, suppose instead that kAT y � qk� > 1. Then there exists x̂ 2 X such that kx̂k = 1 andx̂T (q � AT y) > 1, and then setting x = �x̂ for � > 0 and su�ciently large, we can drive theleft-hand-side of (25) to a negative number, which would yield a contradiction.) Also from (25) and(i), note that yT �z > � > v(d)� � > 0. De�ne (y0; q0) = � yyT �z ; qyT �z�, and g0 = (bT y)�yT �z . Then y0 2 C�Y, q0 2 C�X ; g0 � 0; (y0)T �z = 1, and maxfkAT y0 � q0k�; jbT y0 + g0 jg � 1yT �z < 1v(d)�� , and so (y0 ; q0 ; g0)is feasible for Pu(d) with objective value at most 1v(d)�� . Therefore u(d) � 1v(d)�� . Since this is truefor any � 2 (0; v(d)) then u(d) = 1v(d) , and then the second assertion of the theorem follows fromTheorem 3.4.It remains to consider the case where � = 0. Then � > 0 and (25) implies that yT b � 0,AT y = q 2 C�X , and yT �z > � > 0. Then we can rescale y so that yT �z = 1, and if we de�neg = (bT y)�, then (y; q; g) is feasible for Pu(d) with an objective value of zero. Therefore u(d) = 0which implies via Theorem 3.4 that �(d) = 0, which contradicts the supposition. Therefore � = 0is an impossibility, and the theorem is proved.A simplifying perspective on the results in this subsection is that all �ve characterizationtheorems of this subsection are either directly or indirectly derived from Theorem 3.5 of [12]. Tosee this, �rst recall that Theorem 3.5 of [12] shows that �(d) is obtained as the optimal value ofthe program Pr(d). Theorem 3.3 was obtained by linearizing the norm constraint \jrj+ kxk � 1"in Pr(d). Theorem 3.4 was obtained by linearizing the norm constraint \kyk� = 1" of Pj(d), butPj(d) was itself constructed from Pr(d) via two partial duality derivations. Also, Theorem 3.1and Theorem 3.2 were obtained by taking particular advantage of properties of the coe�cients oflinearity � and ��� as they pertain to modi�cations of Pj(d) as well. Finally, Theorem 3.5 was



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 18obtained by applying gauge duality to Pu(d), which itself was obtained from Pj(d) by linearizationof the norm constraint \kyk� = 1" of Pj(d).We conclude this subsection with the following comment. The �ve characterization theoremsin this subsection provide approximations of �(d), but are exact characterizations when � = 1and/or ��� = 1. However, from Remark 2.5, we can choose the norms on X and on Y in such a wayas to guarantee that � = 1 and ��� = 1. If the norms are so chosen, then all �ve theorems provideexact characterizations of �(d).3.2 Characterization Results when P (d) is not consistentIn this subsection, we parallel the results of the previous subsection for the case when P (d)is not consistent. That is, we present �ve di�erent mathematical programs and we prove that theoptimal value of each of these mathematical programs provides an approximation of the value of�(d), in the case when P (d) is not consistent. For each of these �ve mathematical programs, thenature of the approximation of �(d) is speci�ed in a theorem stating the result.As in the previous subsection, the starting point of our analysis is an application of Theorem3.5 of Renegar [12], which we motivate as follows. Consider the following normalization of thealternative system (8):HD : AT y 2 C�X�bT y � 0y 2 C�Ykyk� � 1 : (26)Consider the following program based on HD:P�(d) : �(d) = minimum maximum �v 2 X� y; �kvk� � 1 s:t: AT y � v� 2 C�X�bT y � � � 0y 2 C�Ykyk� � 1 : (27)
Then �(d) is the largest scaling factor � such that for any v with kvk� � 1; �v� can be added tothe �rst inclusion of HD and �� can be added to the second inclusion of HD without a�ecting thefeasibility of the system HD. The following is also a slightly altered restatement of a result due toRenegar:Theorem (Theorem 3.5 of [12]) Suppose that d 2 FC . Then�(d) = �(d): (28)



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 19Exactly as in the previous subsection, we can use partial duality constructs to create thefollowing program from P�(d):Pk(d) : k(d) = minimum kbr �Ax� wkx; r; ws:t: x 2 CXr � 0w 2 CYkxk+ r = 1 : (29)
Note that program Pk(d) is a measure of how close the system P (d) is to being feasible. Tosee this, note that if d = (A; b) were in F , then it would be true that k(d) = 0: The nonnegativequantity k(d) measures the extent to which (1) is not feasible. The smaller the value of k(d) is,the closer the conditions (1) are to being satis�ed, and so the smaller the value of �(d) should be.These arguments are validated in the following theorem:Theorem Suppose that d 2 FC . Then k(d) = �(d): (30)Proof: Suppose that k(d) > �(d). Then there exists �d = � �A;�b� such that k �A � Ak < k(d) andk�b � bk < k(d) and �d 2 F . Therefore there exists (�x; �r) with �r > 0, �x 2 CX , �b�r � �A�x 2 CY , andj�rj+ k�xk = 1. Let �w = �b�r � �A�x. Thenkb�r �A�x� �wk = k�b�r � �A�x� �w + �b� �b� �r � �A� �A� �xk� kb� �bkj�rj+ kA� �Akk�xk < k(d):But then (�x; �r; �w) is feasible for Pk(d) with objective value less than k(d), which is a contradiction.Therefore k(d) � �(d).Now suppose that k(d) < � < �(d) for some �. Then there exists (�x; �r; �w) such that �x 2 CX ,�r � 0, �w 2 CY , and kb�r �A�x� �wk � �, and j�rj+ k�xk = 1. Let ~x satisfy k~xk� = 1 and ~xT �x = k�xk,see Proposition 2.2. For � > 0, let�A� = A+ (b(�r + �)�A�x� �w)~xT :Then b(�r + �)� �A��x = �w 2 CY , and �r + � > 0 and �x 2 CX . Therefore �d� := � �A�; b� 2 F . However,k �A� �Ak � kb�r �A�x� �wk+ kbk� � � + kbk�:For � < �(d)��kbk , we have k �A� � Ak < �(d), whereby �d� = ( �A�; b) 2 FC , a contradiction. Thereforek(d) � �(d), and so k(d) = �(d).



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 20(We point out that because Pk(d) was constructed by using partial duality constructs appliedto P�(d) as illustrated above, one can also view (30) as an application of Theorem 3.5 of [12].)Remark 3.2 Pk(d) is not in general a convex program due to the non-convex constraint \r+kxk =1". However, in the case when X = Rn, if we choose the norm on X to be the L1 norm, then Pk(d)can be solved by solving 2n convex programs, where the construction exactly parallels that given forPj(d) earlier in this section. One can easily show that k(d) = min fk+1; : : : ; k+m; k�1; : : : ; k�mg,where : k�j(d) = minimum kbr �Ax� wkx; r; ws:t: x 2 CXr � 0w 2 CYxj = �(1� r) :We now proceed to present �ve di�erent mathematical programs each of whose optimalvalues provides an approximation of the value of the distance to ill-posedness �(d) when P (d) isnot consistent. For the �rst program, suppose that CY is a regular cone, and consider:P�(d) : �(d) = minimum 
r; x; 
s:t: br �Ax+ �z
 2 CYr + kxk = 1r � 0x 2 CX : (31)
Theorem 3.6 If d 2 FC and CY is regular, then��� � �(d) � �(d) � �(d) :Proof: Recall from Corollary 3.1 that �z 2 intCY . Therefore � (d) � 0, since otherwise therewould exist (x; r) satisfying br � Ax 2 intCY , r > 0, x 2 CX , contradicting the hypothesis thatd 2 FC . Suppose that (r; x; 
) is feasible for P� (d), and let w = br � Ax + �z
. Then (r; x; w) isfeasible for Pk (d) with objective value kbr � Ax � wk = k
�zk = 
k�zk = 
. It then follows thatk (d) � � (d), and so � (d) � � (d) from (30).



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 21On the other hand, suppose that (x; r; w) is feasible for Pk (d), and let � = kbr �Ax� wk.Then br �Ax+ � ����� �z 2 CY : (32)To demonstrate the validity of (32), suppose the contrary. Then there exists y 2 C�Y with kyk� = 1and yT �br �Ax+ � ����� �z� < 0: But then� = kbr �Ax� wk � yT (w +Ax� br) � yT (Ax� br) > ���� yT �z� ���� ����kyk�� = �;where the last inequality is from Corollary 3.1. As this is a contradiction, (32) is true. Therefore
 = ���� is a feasible objective value of P� (d), and so � (d) � k(d)��� , whereby � (d) = k (d) � ���� (d)from (30).Similar to Pk(d), P�(d) is generally a non-convex program due to the constraint \r+ kxk =1". When CX is also regular, if we replace \r+ kxk = 1" by \r+ �uTx = 1" in P�(d) we obtain thefollowing convex program:P~�(d) : ~�(d) = minimum 
r; x; 
s:t: br �Ax+ �z
 2 CYr + �uTx = 1r � 0x 2 CX : (33)
The analog of Theorem 3.6 becomes:Theorem 3.7 If d 2 FC and both CX and CY are regular, then���� � ~�(d) � �(d) � ~�(d):Proof: Suppose that (r; x; 
) is a feasible solution of P�(d). Then (r=(r+�uTx); x=(r+�uTx); 
=(r+�uTx)) is a feasible solution of P~�(d) with objective function value 
=(r+�uTx) � 
=(r+�kxk) � 
=�(from Corollary 3.1). It then follows that ~�(d) � �(d)=�. Applying Theorem 3.6, we obtain����~�(d) � �(d).Next suppose that (r; x; 
) is a feasible solution of P~�(d). Then (r=(r + kxk); x=(r +kxk); 
=(r + kxk)) is a feasible solution of P�(d) with objective function value 
=(r + kxk) �
=(r+ �uTx) = 
 (from Corollary 3.1). It then follows that �(d) � ~�(d). Applying Theorem 3.6, weobtain �(d) � ~�(d).For the next mathematical program, suppose that the cone CY is regular, and consider:



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 22P�(d) : �(d) = minimum maximum �v 2 X� y; �kvk� � 1 s:t: AT y � v� 2 C�X�bT y � � � 0y 2 C�Y�zT y � 1 : (34)
Notice that P�(d) is identical to P�(d) except that the norm constraint \kyk� � 1" in P�(d)is replaced by the linearized version \�zT y � 1". We have:Theorem 3.8 If d 2 FC and CY is regular, then��� � �(d) � �(d) � �(d) :Proof: The proof follows from (28) using the inequalities ���kyk� � �zT y � kyk� of Corollary 3.1,using the same logic as in the proof of Theorem 3.7.The fourth mathematical program supposes that the cone CX is regular. Consider thefollowing convex program:Pg(d) : g(d) = minimum kbr �Ax� wkx; r; ws:t: x 2 CXr � 0w 2 CY�uTx+ r = 1 : (35)
Notice that Pg(d) is identical to Pk(d) except that the norm constraint \r + kxk = 1" inPk(d) is replaced by the linearized version \r + �uTx = 1". We have:Theorem 3.9 If d 2 FC and CX is regular, then�g(d) � �(d) � g(d) :Proof: The proof follows from (30) using the inequalities �kxk � �uTx � kxk of Corollary 3.1,using the same logic as in the proof of Theorem 3.7.Notice that Pg(d) is a gauge program; its dual gauge program is given by:



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 23Ph(d) : h(d) = minimum kyk�ys:t: AT y � �u 2 C�X�bT y � 1 � 0y 2 C�Y : (36)
Note that Ph(d) is also a convex program. One can interpret Ph(d) as measuring the extentto which (8) has a solution y for which AT y 2 intC�X and that satis�es bT y < 0. To see this, notefrom Corollary 3.1 that �u 2 intC�X ; and so Ph(d) will only be feasible if the �rst and the thirdconditions of (8) are satis�ed in their interior. The more interior a solution there is, the smaller ycan be scaled and still satisfy AT y � �u 2 CY and �bT y � 1 � 0. One would then expect h(d) tobe inversely proportional to �(d) (and to g(d)), as Theorem 3.10 indicates. Just as in the case ofTheorem 3.5, we employ the convention that 0 � 1 = 1 when fg(d); h(d)g = f0;1g.Theorem 3.10 Suppose that d 2 FC and CX is regular. Then g(d) � h(d) = 1, and�h(d) � �(d) � 1h(d) :Proof: This proof parallels that of Theorem 3.5. Suppose �rst that �(d) = 0. Then g(d) = 0from Theorem 3.9. And from (29) and (30), there exists (x̂; r̂; ŵ) satisfying br̂ � Ax̂ � ŵ = 0,r̂ � 0, x̂ 2 CX , ŵ 2 CY , kx̂k + r̂ = 1, which in turn implies that Ph(d) cannot have a feasiblesolution (for if y is feasible for Ph(d), then x̂T (AT y � �u) � 0, r̂(�bT y � 1) � 0, ŵT y � 0, and so0 = yT (br̂ �Ax̂� ŵ) � ��uT x̂� r̂ < 0, a contradiction). Thus h(d) =1, and so g(d) � h(d) = 1 byconvention, and also �h(d) = 0 = �(d) = 1h(d) .Therefore suppose that �(d) > 0. Then g(d) > 0 from Theorem 3.9, and also it is straight-forward to show that both Pg(d) and Ph(d) are feasible and attain their optima. Note that for any(x; r; w) and y feasible for Pg(d) and Ph(d), respectively, that1 = �utx+ r � yTAx� yT br � yTAx� yT br +wT y � kyk� kbr �Ax� wk ;whereby g(d) � h(d) � 1, and so in particular h(d) > 0. We now will show g(d) � h(d) = 1, whichwill complete the proof.De�ne the following set:S = f(
; q; s; p) 2 <� <�X� � Y � j there exists y 2 Y �; v 2 C�X ; � � 0; u 2 C�Ywhich satisfy kyk� � 
;AT y � �u� s = v;�bT y � 1� q = �; y � p = ug.Then S is a nonempty convex set, and basic limit arguments easily establish that S is also a closedset. For any � 2 (0; h(d)), the point (h(d))� �; 0; 0; 0) =2 S (for otherwise the optimal value of Ph(d)would be no greater than h(d) � �, a contradiction). Since S is a closed nonempty convex set,(h(d))� �; 0; 0; 0) can be strictly separated from S by a hyperplane, i.e., there exists (�; r; x; w) 6= 0



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 24and � 2 < such that(i) �(h(d)� �) < �,(ii) �
 � rq � xT s� wT p > � for any (
; q; s; p) 2 S.In particular, (ii) implies that(kyk� + �)� +�r(�bTy � 1� �)� xT (AT y � �u� v)� wT (y � u) > �for any � � 0; y 2 Y �; v 2 C�X ; � � 0; and u 2 C�Y : (37)This implies that � � 0; r � 0; x 2 CX ; w 2 CY , and r + �uTx > � > 0:Suppose �rst that � > 0, and so by rescaling (�; r; x; w) and � we can presume that � = 1.Then (37) implies that kbr �Ax� wk � 1. (To see this, note that if kbr �Ax� wk > 1, thenthere exists �y 2 Y � for which k�yk� = 1 and �yT (w + Ax � br) > 1, and then setting y = 
�y for
 > 0 and su�ciently large, we can drive the left-hand-side of (37) to a negative number, whichis a contradiction.) Also not that (37) implies that r + �uTx > � > h(d) � � > 0 from (i). De�ne(x0 ; r0 ; w0) = ( 1r+�uT x)(x; r; w). Then (x; r; w) is feasible for Pg(d), and g(d) � kbr0 � Ax0 � w0k =kbr�Ax�wkr+�uTx � 1r+�uT x < 1h(d)�� . Since this is true for any � 2 (0; h(d)), then g(d) = 1h(d) , and thenthe second assertion of the theorem follows from Theorem 3.9.It only remains to consider the case when � = 0. Then � > 0 and (37) implies that r � 0,x 2 CX , br � Ax � w = 0, w 2 CY , and r + �uTx > � > 0. We can rescale (r; x; w) and � sothat r+ �uTx = 1, and then (r; x; w) is feasible for Pg(d) with an objective value of zero. Thereforeg(d) = 0, which implies via Theorem 3.9 that �(d) = 0, which contradicts the supposition that�(d) > 0. Therefore � = 0 is an impossibility, and the theorem is proved.The comments at the end of the previous subsection apply to this subsection as well: all �vecharacterization theorems of this subsections are either directly or indirectly derived from Theorem3.5 of [12]. Also, by appropriate choice of norms on X and/or Y , all �ve characterization theoremsprovide exact characterizations of �(d).4 Bounds on Radii of Contained and Intersecting BallsIn this section, we develop four results concerning the radii of certain inscribed balls in the feasibleregion of the system (1) or, in the case when P (d) is not consistent, of the alternative system (8).These results are stated as Lemmas 4.1, 4.2, 4.3, and 4.4 of this section. While these results are ofan intermediate nature, it is nevertheless useful to motivate them, which we do now, by thinkingin terms of the ellipsoid algorithm for �nding a point in a convex set.Consider the ellipsoid algorithm for �nding a feasible point in a convex set S. Roughlyspeaking, the main ingredients that are needed to apply the ellipsoid algorithm and to produce a



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 25complexity bound on the number of iterations of the ellipsoid algorithm are the existence of:(i) a ball B(x̂; r) with the property that B(x̂; r) � S;(ii) a ball B(0; R) with the property that B(x̂; r) � B(0; R) ; and(iii) an upper bound on the ratio R=r :With these three ingredients, it is then possible to produce a complexity bound on thenumber of iterations of the ellipsoid algorithm, which will be O(n2 ln(R=r)). In addition, it is alsoconvenient to have the following:(iv) a lower bound on the radius r of the contained ball B(x̂; r); and(v) an upper bound on the radius R of the initial ball B(0; R) :In the bit model of complexity as applied to linear inequality systems, one is usually ableto set r = (1=n)2�L and R = n2L, where L is the number of bits needed to represent the system.(Of course, these values of r and R break down when the system is degenerate (in our parlance,\ill-posed" ) in which case the system must be perturbed �rst.)By analogy for the problem P (d) considered herein in (1), the convex set in mind is the setXd, which is the feasible region of the problem P (d), and n2L is generally replaced by the conditionmeasure of d = (A; b), denoted C(d), which is de�ned to beC(d) = kdk�(d) ; (38)see Renegar [11]. The value of C(d) is a measure of the relative conditioning of the data instanced. (The condition measure C(d) can be viewed as a scale-invariant reciprocal of the distance toill-posedness �(d), as it is elementary to demonstrate that C(�d) = �C(d) for any positive scalar�.) The results in this section will be used in Section 5 to demonstrate in general that we can�nd a point x̂ 2 Xd and radii r and R with the �ve properties below, that are analogs of the �veproperties listed above: (i) B(x̂; r) � Xd(ii) B(x̂; r) � B(0; R)(iii) R=r = c1O(C(d))(iv) r = c2
� 1C(d)� ; and(v) R = c3O(C(d)) ;where the constants c1; c2, and c3 depend only on the coe�cients of linearity for the cones CX ; C�X ; CY ,and C�Y , and are independent of the data d = (A; b) of the problem P (d). Here the quantity n2L isroughly replaced by C(d) .



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 26The above remarks pertain to the the case when P (d) is consistent, i.e., when P (d) has asolution. When P (d) is not consistent, then the convex set in mind is the feasible region for thealternative system (8), denoted by Yd. The results in this section will also be used in Section 5 todemonstrate in general that we can �nd a point ŷ in Yd and radii r and R with the three propertiesbelow, that are analogs of the �rst three properties listed above:(i) B(ŷ; r) � Yd(ii) B(ŷ; r) � B(0; R)(iii) R=r = c4O(C(d)) ;where again the constant c4 depends on the coe�cients of linearity for the cones CX ; C�X ; CY , andC�Y , and is independent of the problem data d. Because the system (8) is homogeneous, it makeslittle sense to bound r from below or R from above, as all constructions can be scaled by anypositive quantity. Therefore properties (iv) and (v) above are not relevant.The results in this section are rather technical, and the reader may �rst want to read Section5 before pondering the results in this section in detail.We �rst examine the case when P (d) is consistent, in which case the feasible region Xd =fx 2 Xjb�Ax 2 CY ; x 2 CXg is nonempty.Lemma 4.1 Suppose that d 2 F and CY is regular. If �(d) > 0, then there exists x̂ 2 Xd andpositive scalars r1 and R1 satisfying:(i) B (x̂; r1) � fx 2 Xjb�Ax 2 CY g ;(ii) B (x̂; r1) � B (0; R1) ;(iii) R1r1 � 1 + 2kdk����(d) ;(iv) r1 � ����(d)3kdk ; and(v) R1 � 1 + 2kdk����(d) :In order to prove Lemma 4.1, we �rst prove:Proposition 4.1 �(d) � kdk .



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 27Proof: If d 2 F (respectively, FC), then �d 2 F (respectively, FC) for all � > 0. Therefore,�d = � �A;�b� = (0; 0) 2 B = cl(F) \ cl �FC�, and so �(d) � kd� �dk = kd� 0k = kdk.Proof of Lemma 4.1: For any w 2 C�Y with kwk� = 1, we have�zTw + ���bTwkdk � ��� � ���kdk kwk�kdk = 0 ;so that 12 ��z + ���kdkb� 2 CY . Now let (~x; ~r) solve Pv(d) (see (24)), and letx̂ = ~x~r + ���2kdk = ~x� ;where � = ~r + ���2kdk . Let q = b~r � A~x � �z. Then q 2 CY and we have b~r � A~x + ���2kdkb � 12 �z =�z+q+ ���2kdkb� 12 �z = 12 ��z + ���kdkb�+q 2 CY , so that �b�A~x� 12 �z 2 CY , whereby b�Ax̂� 12� �z 2 CY .Thus x̂ 2 CX and b�Ax̂ 2 CY , so x̂ 2 Xd. Let r1 = ���2�kdk . Then if kx� x̂k � r1, we haveb�Ax = b�Ax̂+A(x̂� x) = 1� ��b�A~x� 12 �z�+ 12� �z +A(x̂� x)= y + 12� �z +A(x̂� x)where y 2 CY : Thus for any w 2 C�Y with kwk� = 1,wT (b�Ax) � 12� �zTw + wTA(x̂� x) � ���2� � kwk�kAk kx̂� xk� ���2� � kdkr1 = 0 :Therefore b�Ax 2 CY , proving (i).Next, let R1 = kx̂k+ r1, and so (ii) is satis�ed.To prove (iii), observe thatR1r1 = kx̂kr1 + 1 = k~xk�r1 + 1 � v(d)�r1 + 1 (from (24))� 1�r1�(d) + 1 (from Theorem 3:5)= 2kdk����(d) + 1 ;proving (iii). To compute the bounds in (iv) and (v), notice �rst that � = ~r+ ���2kdk � ���2kdk , so thatr1 � 1. Therefore, from (iii) we haveR1 � R1r1 � 2kdk����(d) + 1;



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 28proving (v). We also have:� = ~r + ���2kdk � v(d) + ���2kdk (from (24))� v(d) + 12�(d) (from Proposition 4:1)� 32�(d) : (from Theorem 3:5)Therefore, r1 = ���2�kdk � ����(d)3kdk , proving (iv).Remark 4.1 The proof of Lemma 4.1 can be modi�ed to yield di�erent constants on the bounds onR1r1 ; r1, and R1. By changing the constant \12" in the third line of the proof to \ 11+�" for � > 0, andmaking suitable changes in the proof, one can obtain the following bounds: R1r1 � 1 + (1+�)kdk�����(d) ; r1 ������(d)(2+�)kdk , and R1 � �+ (1+�)kdk����(d) . One can then choose � to optimize one of these bounds, for example.We next have:Lemma 4.2 Suppose that d 2 F and CX is regular. If �(d) > 0, then there exists x̂ 2 Xd andpositive scalars r2 and R2 satisfying: (i) B (x̂; r2) � CX(ii) B (x̂; r2) � B (0; R2)(iii) R2r2 � 1 + 3kdk���(d)(iv) r2 � ���(d)3kdkand (v) R2 � 2 + 2kdk���(d) :Proof: Let �x denote the norm approximation vector for the cone C�X . Consider the followingoptimization problem:



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 29Q : maximize �r; x; �s:t: br � Ax + �(b�A�x) 2 CYx 2 CXr � 0jrj + kxk � 1:From (14) and (15), the optimal value of Q is at least �(d)kb�A�xk , and so there exits (~r; ~x; ~�) feasiblefor Q with ~� � �(d)kb�A�xk , and so~� � �(d)kb�A�xk � �(d)kbk+kAk � �(d)2kdk : (39)De�ne x̂ = ~x+ �x~�~� + ~r ; r2 = ~���~� + ~r ; and R2 = kx̂k+ r2 :Then the feasibility (~r; ~x; ~�) in Q ensures that b�Ax̂ 2 CY ; x̂ 2 CX , so that x̂ is feasible for P (d).For any v 2 X satisfying kvk � r2, and for any u 2 C�X , we haveuT (x̂+ v) = uT ~x+uT �x~�~�+~r + uT v� 0+~���kuk�~�+~r � kvkkuk� (from Proposition 2.3)� kuk� � ~���~�+~r � r2� = 0 ;and so B(x̂; r2) � CX , which shows (i); and (ii) follows from the de�nition of R2.To prove (iii), observe that



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 30R2r2 = kx̂kr2 + 1 � k~xk+~�~��� + 1� � 1����1~� + 1�+ 1� 1�� �2kdk�(d) + 1�+ 1 (from (39))� 1 + 3kdk���(d) : (from Propsition 4.1)To prove (iv) and (v), note �rst that r2 = ~���~r+~� � 1 since �� � 1 and ~r � 0. Then from (iii) wehave that R2 � R2r2 � 1 + 3kdk���(d) ;which proves (v). To prove (iv), observe that1r2 = ~�+~r~��� = 1�� + ~r~��� � 1�� + 1~��� � 1�� + 2kdk�(d)�� (from (39))� 3kdk���(d) ; (from Proposition 4.1)and so r2 � ���(d)3kdk , completing the proof.Remark 4.2 Similarly to Remark 4.1, the proof of Lemma 4.2 can be modi�ed to yield di�erentconstants on the bounds on R2r2 ; r2, and R2. By changing the �rst inclusion in the feasibility condi-tions of program Q above to \br � Ax+ �(�b� A�x) 2 CY " for � > 0 and making suitable changesin the proof, one can obtain the following bounds: R2r2 � 1 + 1�� + (1+�)kdk���(d) ; r2 � ���(d)(1+2�)kdk , andR2 � 2� + (1+�)kdk�(d) . One can then choose � to optimize one of these bounds as well.We now turn to the case when P (d) is inconsistent, i.e., P (d) has no solution. In this case,from Proposition 2.1, the system (8) has a solution, and let us then examine the set of all solutionsto (8), which we denote by Yd to emphasize the dependence on the data d = (A; b):Yd = fy 2 Y �jAT y 2 C�X ; y 2 C�Y ; yT b � 0g : (40)Lemma 4.3 Suppose that d 2 FC and CX is regular. If �(d) > 0, then there exists ŷ 2 Yd andpositive scalars r3 and R3 satisfying R3r3 � kdk��(d) , and that satisfy:B(ŷ; r3) � fy 2 Y �jAT y 2 C�X ; bT y � 0g (41)



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 31and kŷk� � R3 : (42)Proof of Lemma 4.3: Let ~y solve Ph(d). Then AT ~y � �u 2 C�X ; �bT ~y � 1, and ~y 2 C�Y . Thensince ~y 6= 0 (otherwise ��u 2 C�X and so CX is not regular, via Proposition 2.3), let ŷ = ~yk~yk� . Letr3 = �g(d)kdk , and let R3 = 1.To prove (41) it su�ces to show that if ky � ŷk� � r3, then AT y 2 C�X and yT b � 0. Wehave that q = AT ŷ � �uk~yk� 2 C�X . For any x 2 CX with kxk = 1,xTAT y = xTAT (y � ŷ) + xTAT ŷ � �uT xk~yk� + �uT xk~yk�� �kxk kAk ky � ŷk� + xT q + �uT xk~yk�� �kAkr3 + �uT xk~yk� (since xT q � 0)� ��g(d) + �uT xk~yk� (since kdk � kAk)� ��g(d) + �k~yk� (from Corollary 3:1)� �� �g(d) � 1h(d)�= 0 : (from Theorem 3:10)Therefore, AT y 2 C�X . Similarly,�bT y = �bT (y � ŷ)� bT ŷ� �kdk ky � ŷk� � bT ~yk~yk�� ��g(d) + 1k~yk�� ��g(d) + 1h(d) = g(d)(1 � �) (from Theorem 3:10)� 0: (from Proposition 2:3)Therefore, AT y 2 C�X and bT y � 0, which proves (41).To prove (42), note that kŷk� = 1 = R3, which demonstrates (42). Finally note thatR3r3 = 1r3 = kdk�g(d) � kdk��(d) from Theorem 3.9.We next prove:



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 32Lemma 4.4 Suppose that d 2 FC and CY is regular. If �(d) > 0, then there exists ŷ 2 Yd andpositive scalars r4 and R4 satisfying R4r4 � 2kdk���(d) , and that satisfy:B(ŷ; r4) � C�Y (43)and kŷk� � R4 : (44)Proof: Let �y denote the norm approximation vector for the cone CY . Then k�yk� = 1 andyT �y � ��kyk for any y 2 CY , see Proposition 2.3. Suppose that d satis�es kdk� � ��. Then for anyy 2 CY , we have (�y + d)T y � ��kyk � kdk�kyk � ��kyk � ��kyk = 0, and so �y + d 2 C�Y . ThereforeB(�y; ��) � C�Y , and recall that k�yk� = 1.Consider now the following system in the variable y:AT y + � 1C(d)�AT �y 2 C�X�bT y + 1C(d) ��bT �y� � 0y 2 C�Ykyk� � 1: (45)
Then k 1C(d) (AT �y)k� � kAkk�yk��(d)kdk � �(d), and j 1C(d) (�bT �y)j � kbkk�yk��(d)kdk � �(d). Then from (27)and (28) it follows that (45) has a solution ~y.De�ne ŷ = � C(d)1 + C(d)� ~y + � 11 + C(d)� �y:Then kŷk� � 1, since ŷ is a convex combination of ~y and �y. Also ŷ 2 C�Y and AT ŷ 2 C�X and�bT ŷ � 0 from convexity and from (45). Therefore ŷ 2 Yd. Let r4 = ��C(d)+1 and R4 = 1. ThenB(�y; ��) � C�Y and ~y � C�Y imply that B(ŷ; r4) = B �ŷ; ��C(d)+1� � C�Y . Also kŷk� � 1 = R4. Finally,note that R4r4 = 1r4 = C(d)+1�� � 2C(d)�� = 2kdk���(d) .



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 335 Synthesis of ResultsIn this section, we synthesize the results of the previous two sections into theorems thatcharacterize aspects of the distance to ill-posedness for the three particular cases of problem P (d)of (1), namely (i) Case 1 : CX and CY are both regular;(ii) Case 2: CX is regular and CY = f0g;(iii) Case 3: CX = X and CY is regular,and for the status of solvability of P (d) of (1), namely(a) P (d) is consistent, i.e., (1) has a solution, and(b) P (d) is inconsistent, i.e., (8) has a solution:Each of the six theorems of this section synthesizes our results of the previous two sections,as applied to the one of the three cases above and one of the two status' of the solvability of P (d).Each theorem summarizes the applicable approximation characterizations of �(d) of Section 3, andalso synthesizes the appropriate bounds on radii of contained and intersecting balls developed inSection 4. For a motivation of the importance of these bounds on radii of contained and intersectingballs contained herein, the reader is referred to the opening discussion at the beginning of Section4. Each case is treated as a separate subsection, and all proofs are deferred to the end of thesection.5.1 Case 1: CX and CY are both regular.Theorem 5.1 Suppose that CX and CY are both regular. If P (d) is consistent, i.e., d 2 F , then(i) � � �(d) � �(d) � �(d)(ii) ���� � ~�(d) � �(d) � ~�(d)(iii) � � w(d) � �(d) � w(d)(iv) ��� � u(d) � �(d) � u(d)(v) ���v(d) � �(d) � 1v(d) .



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 34(vi) If �(d) > 0; then there exists x̂ 2 Xd and positive scalars r and R satisfying:(a) B (x̂; r) � Xd(b) B (x̂; r) � B(0; R)(c) Rr � 2 + 5kdkminf��;���g�(d)(d) r � minf��;���g�(d)6kdk(e) R � 2 + 2kdkminf��;���g�(d) :Theorem 5.2 Suppose that CX and CY are both regular. If P (d) is not consistent, i.e., d 2 FC ,then (i) ��� � �(d) � �(d) � �(d)(ii) ���� � ~�(d) � �(d) � ~�(d)(iii) ��� � �(d) � �(d) � �(d)(iv) � � g(d) � �(d) � g(d)(v) �h(d) � �(d) � 1h(d) .(vi) If �(d) > 0; then there exists ŷ 2 Yd and positive scalars r and R satisfying:(a) B (ŷ; r) � Yd(b) B (ŷ; r) � B(0; R)(c) Rr � 1 + 3kdkminf�;��g��(d) :



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 355.2 Case 2: CX is regular and CY = f0g.Theorem 5.3 Suppose that CX is regular and CY = f0g. If P (d) is consistent, i.e., d 2 F , then(i) � � �(d) � �(d) � �(d)(ii) � � w(d) � �(d) � w(d)(iii) If �(d) > 0; then there exists x̂ 2 Xd and positive scalars r and R satisfying:(a) fx 2 Xj jkx� x̂k � r; Ax = bg � Xd(b) B(x̂; r) � B(0; R)(c) Rr � 1 + 3kdk���(d)(d) r � ���(d)3kdk(e) R � 2 + 2kdk���(d) :Theorem 5.4 Suppose that CX is regular and CY = f0g. If P (d) is not consistent, i.e., d 2 FC ,then (i) � � g(d) � �(d) � g(d)(ii) �h(d) � �(d) � 1h(d)(iii) If �(d) > 0; then there exists ŷ 2 Yd and positive scalars r and R satisfying:(a) B (ŷ; r) � Yd(b) B (ŷ; r) � B(0; R)(c) Rr � 1 + kdk���(d) :



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 365.3 Case 3: CX = X and CY is regular.Theorem 5.5 Suppose that CX = X and CY is regular. If P (d) is consistent, i.e., d 2 F , then(i) ��� � u(d) � �(d) � u(d)(ii) ���v(d) � �(d) � 1v(d)(iii) If �(d) > 0; then there exists x̂ 2 Xd and positive scalars r and R satisfying:(a) B(x̂; r) � Xd(b) B(x̂; r) � B(0; R)(c) Rr � 1 + 2kdk����(d)(d) r � ����(d)3kdk(e) R � 1 + 2kdk����(d) :Theorem 5.6 Suppose that CX = X and CY is regular. If P (d) is not consistent, i.e., d 2 FC ,then (i) ��� � �(d) � �(d) � �(d)(ii) ��� � �(d) � �(d) � �(d)(iii) If �(d) > 0; then there exists ŷ 2 Yd and positive scalars r and R satisfying:(a) fy 2 Y �jky � ŷk� � r; AT y = 0g � Yd(b) B(ŷ; r) � B(0; R)(c) Rr � 1 + 3kdkminf��;���g��(d) :



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 37Proof of Theorem 5.1: Parts (i), (ii), (iii), (iv) and (v) follow directly from Theorems3.1, 3.2, 3.3, 3.4 and 3.5, respectively. It remains to prove part (vi).Let S = fx 2 Xjb � Ax 2 CY g and T = CX . Then S \ T = Xd. From Lemma 4.1, thereexists x̂1 2 Xd and r1; R1 satisfying conditions (i) � (v) of Lemma 4.1. From Lemma 4.2, thereexists x̂2 2 Xd and r2; R2 satisfying conditions (i) � (v) of Lemma 4.2. Then the conditions ofProposition A.2 of the Appendix are satis�ed, and so there exists x̂ and r; R̂ satisfying the �veconditions of Proposition A.2. Therefore, (i) B (x̂; r) � S \ T = Xd, which is (a). Also from (ii),B (x̂; r) � B(0; R̂), which is (b). From (iii), we haveR̂r � R1r1 + R2r2 � 2 + 5kdkminf��; ���g�(d)(invoking Lemma 4.1 (iii) and Lemma 4.2 (iii)), which is (c). Similarly applying Lemma 4.1 and4.2 and Proposition A.2 in parts (iv) and (v) yieldsr � 12 min fr1; r2g � minf��; ���g�(d)6kdkand R̂ � max fR1; R2g � 2 + 2kdkminf��; ���g�(d) :Proof of Theorem 5.2: Parts (i), (ii), (iii), (iv) and (v) follow directly from Theorems3.6, 3.7, 3.8, 3.9 and 3.10, respectively. It remains to prove part (vi).Let S = fy 2 Y �jAT y 2 C�X ; bT y � 0g and T = C�Y . Then S \ T = Yd. From Lemma4.3, there exists ŷ3; r3; R3 satisfying ŷ3 2 S \ T; B(ŷ3; r3) � S and kŷ3k� � R3, and R3r3 � kdk��(d) .From Lemma 4.4 there exists ŷ4; r4; R4 satisfying ŷ4 2 S \ T; B(ŷ4; r4) � T , and kŷ4k� � R4,and R4r4 � 2kdk���(d) . Then from Proposition A.1 of the Appendix, there exists ŷ and r; R̂ satisfyingB(ŷ; r) � S \ T = Yd, and kŷk � R̂, andR̂r � R3r3 + R4r4 � 3kdkminf�;��g�(d) :Now let R = R̂+ r. Then for any y 2 B(ŷ; r); kyk� � kŷk� + r � R̂+ r = R, andRr = R̂r + 1 � 1 + 3kdkminf�;��g�(d) :Proof of Theorem 5.3: Parts (i) and (ii) follow directly from Theorems 3.1 and 3.3, respectively.To prove (iii) we apply Lemma 4.2; there exists x̂ 2 Xd and r2; R2 satisfying the �ve conditionsof Lemma 4.2. Let r = r2 and R = R2. Then (b); (c); (d), and (e) follow directly. To prove (a),observe that from Lemma 4.2 (i) thatfx 2 Xj kx� x̂k � rg � CX ;and intersecting both sides with the a�ne set fx 2 XjAx = bg givesfx 2 Xj kx� x̂k � r; Ax = bg � CX \ fx 2 XjAx = bg = Xd :



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 38Proof of Theorem 5.4: Parts (i) and (ii) follow directly from Theorems 3.9 and 3.10, respectively.To prove (iii) we apply Lemma 4.3; there exists ŷ 2 Yd and r3; R3 satisfying R3r3 � kdk��(d) and (41)and (42). Let r = r3 and R = R3 + r3. Then from (41) we obtainfy 2 Y �j ky � ŷk� � rg � fy 2 Y �jAT y 2 C�X ; bT y � 0g = Yd :Also, for any y satisfying ky � ŷk � r, kyk � kŷk+ r � R3 + r3 = R. Finally, note thatRr = R3r3 + 1 � kdk��(d) + 1 :Proof of Theorem 5.5: Parts (i) and (ii) follow directly from Theorems 3.4 and 3.5, respectively.To prove (iii) we apply Lemma 4.1; there exists x̂ 2 Xd and r1; R1 satisfying the �ve conditions ofLemma 4.1. Let r = r1 and R = R1. Then (b); (c); (d), and (e) following directly. To prove (a),observe from Lemma 4.1(i) thatfx 2 Xj kx� x̂k � rg � fx 2 Xjb�Ax 2 CY g = Xd :Proof of Theorem 5.6: Parts (i) and (ii) follow from Theorems 3.6 and 3.8, respectively. Itremains to prove (iii).Let S = fy 2 Y �jbT y � 0g. If we let v = 0 in (34), we see that there exists ŷ1 2 C�Ysatisfying AT ŷ1 = 0; �zT ŷ1 � 1 and �bT ŷ1 � �(d) � �(d), from Theorem 3.8. Therefore, if weset r1 = �(d)kdk and R1 = 1��� , we have kŷ1k� � �zT ŷ1��� � 1��� = R1 (from Corollary 3.1), and for any ysatisfying ky� ŷ1k� � r1, we have bT y = bT (y� ŷ1)+bT ŷ1 � kbk kŷ1�yk���(d) � kdkr1��(d) = 0,and so B(ŷ1; r1) � S. If we let T = C�Y , we have S \ T \ fy 2 Y �jAT y = 0g = Yd, and ŷ1 2 Yd.From Lemma 4.4, there exists ŷ2 and r4; R4 satisfying R4r4 � 2kdk���(d) , and (43) and (44). Then fromProposition A.1 of the Appendix, there exists ŷ and r; R̂ satisfying B(ŷ; r) � S \ T and kŷk � R̂,and R̂r � R1r1 + R4r4 � 3kdkminf��; ���g�(d) :Note also thatfy 2 Y �j ky � ŷk� � r; AT y = 0g � S \ T \ fy 2 Y �jAT y = 0g = Yd :Let R = R̂+ r. Then for any y 2 B(ŷ; r); kyk� � kŷk� + r = R̂+ r = R, andRr = R̂r + 1 � 1 + 3kdkminf��;���g�(d) :



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 39APPENDIXThis appendix contains two simple constructions with balls on the intersection of two convexsets.Proposition A.1 Let X be a �nite-dimensional normed linear vector space with norm k � k andlet S and T be convex subsets of X. Suppose that(i) x̂1 2 S \ T; B(x̂1; r1) � S; where r1 > 0, and kx̂1k � R1, and(ii) x̂2 2 S \ T; B(x̂2; r2) � T , where r2 > 0, and kx̂2k � R2.Let � = r2r1+r2 , and r = r1r2r1+r2 ; and R̂ = �R1 + (1� �)R2.Then the point x̂ = �x̂1 + (1� �)x̂2 will satisfy:(i) B(x̂; r) � S \ T ;(ii) kx̂k � R̂ ;and (iii) R̂r � R1r1 + R2r2 :Proof: First note that 0 � � � 1. Because B(x̂1; r1) � S and x̂2 2 S; B(�x̂1+(1��)x̂2; �r1) � S.Similarly, because B(x̂2; r2) � T and x̂1 2 T; B(�x̂1 + (1 � �)x̂2; (1 � �)r2) � T . Noticingthat �r1 = (1 � �)r2 = r, we have B(x̂; r) = B(�x̂1 + (1 � �)x̂2; r) � S \ T . Also kx̂k ��kx̂1k+ (1� �)kx̂2k � �R1 + (1� �)R2 = R̂. Finally, to show (iii), we haveR̂r = �R1 + (1� �)R2r = R1r1 + R2r2 :Proposition A.2 Let X be a �nite-dimensional normed linear vector space with norm k � k andlet S and T be convex subsets of X. Suppose that(i) x̂1 2 S \ T; B(x̂1; r1) � S; where r1 > 0, and B(x̂1; r1) � B(0; R1) and(ii) x̂2 2 S \ T; B(x̂2; r2) � T , where r2 > 0, and B(x̂2; r2) � B(0; R2).Let � = r2r1+r2 , and r = r1r2r1+r2 ; and R̂ = �R1+(1��)R2. Then the point x̂ = �x̂1+(1��)x̂2



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 40will satisfy: (i) B(x̂; r) � S \ T ;(ii) B(x̂; r) � B(0; R̂) ;(iii) R̂r � R1r1 + R2r2 ;(iv) r � 12 minfr1; r2g ;and (v) R̂ � maxfR1; R2g :Proof: Parts (i) and (iii) follow identically the proof of Proposition A.1. To see (iv), notethat by de�nition of r; r � minfr1;r2gmaxfr1;r2g2maxfr1;r2g = 12 min fr1; r2g. Part (v) follows from the factthat R̂ is a convex combination of R1 and R2. To prove (ii), note that for any x 2 B(x̂; r), wehave kxk � kx̂k + r � �kx̂1k + (1 � �)kx̂2k + r. However, kx̂ik + ri � Ri; i = 1; 2, so thatkxk � � (R1 � r1) + (1� �) (R2 � r2) + r = R̂� r � R̂, which completes the proof.References[1] F. Alizadeh. Interior point methods in semide�nite programming with applications to combi-natorial optimization. SIAM Journal on Optimization, 5(1):13{51, 1995.[2] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear Programming, Theory andAlgorithms. John Wiley & Sons, Inc, New York, second edition, 1993.[3] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the realnumbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math.Soc., 21(1):1{46, 1989.[4] Sharon Filipowski. On the complexity of solving linear programs speci�ed with approximatedata and known to be feasible. Technical Report, Dept. of Industrial and ManufacturingSystems Engineering, Iowa State University, May 1994.[5] Sharon Filipowski. On the complexity of solving sparse symmetric linear programs speci�edwith approximate data. Mathematics of Operations Research, 22:769{792, 1997.[6] Robert M. Freund. Dual gauge programs, with applications to quadratic programming andthe minimum-norm problem. Mathematical Programming, 38(1):47{67, 1987.[7] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, NewYork, 1985.[8] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in ConvexProgramming. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1994.[9] Manuel A. Nunez and Robert M. Freund. Condition measures and properties of the cen-tral trajectory of a linear program. Technical Report W.P. #3889-96-MSA, Sloan School ofManagement, Massachusetts Institute of Technology, 1996.
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