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Easy to compute exact maximum likelihood estimators (MLEs) for parameters of a stochastic
bivariate I1t6 Susceptible-Infected-Recovered (SIR) model and for parameters of an extension
that treats undercounting are presented here.
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1. Introduction

Properties of exact maximum likelihood estimators of parameters of a discrete version of an It6
stochastic SIR model are documented. Euler’s method leads to a discrete time bivariate stochastic auto-
regressive data generating process whose parameters are estimable using standard MLE methods.
Monte Carlo simulations indicate that this MLE is well behaved.

Emerging experience with SARS Covid data suggests that the standard It6 SIR model be extended to
incorporate undercounting, Introduction of undercounting, accompanied with methods for parameter
estimation appear in Sect. 5. Observed counts of infected individuals are modeled as a fixed proportion
of true infected individual counts. This Occam’s Razor assumption simplifies computation but captures
the essence of undercounting. Tables 4.1 and 5.1 suggest that application to an early sample in the life
cycle of an epidemic produces sensible projections of its future path.

The literature describing maximum likelihood estimation for non-stationary univariate It6 processes is
extensive (Lo (2008), Ait Sahalia (2002) for example) but less so for multivariate non-stationary It6
processes. The rather simple functional form of the SIR model permits calculation of easy to compute
MLEs for parameters of the bivariate stochastic version studied here.

2. SIR Model Assumptions and Properties

The SIR epidemic model partitions a population of N individuals into three mutually exclusive sets: a set
of infected individuals, a set of susceptible individuals and a set of immune individuals possessing counts
1(t),S(t)and R(t) at time ¢ respectively. Equations governing disease dynamics are

as@ _ B
7R 71(t)
subject to
S(0)+1(1)+R(t) = N. (22)
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Taken together (2.1) and (2.2) imply

) _p
—=="8S0I1@t)-yI(®). 2.3
A (DI(2)—y1() (2.3)
iy iy . BS, :
Initial conditions $(0) = S,,/(0) =1, and R(0)=N —-S, — 1, . The sign of N —1 determines the
e
behavior of Egns. (2.1), (2.2) and (2.3). If & < 1 disease does not propagate and if 5, > 1 disease
Ny Ny
BS,

propagates. The intuition behind defining the mean infection rate to be R, = is that it is a product

Ny

of the disease transmission rate  per unit time, a mean infection time 1/ and an initial condition

S
NO €(0,1). When S,/ N =1, R is close to the product of the transmission rate and mean infection
time. See Allen (2017)) van den Driessche (2017).

3. 1t6 SIR and Euler’s Method

The It6 SIR model corresponding to Eqns. (2.1) and (2.2) is a pair of stochastic differential equations
shown below. Application of Euler’s Method to Egns. (2.1) and (2.2) yields a bivariate discrete non-linear
auto regressive time series in susceptible and infected counts. Allen (2017)

3.1 Stochastic SIR Model

It6 SDE equations for the SIR Model are:

ds(t) = —%[(t)S(t)dt - /%I(t)S(t) x dW, (1) (3.1a)

a6y =12 10056 = y1())de + /%I(t)S(t)xdWl(t)—«/}/](t)xsz(t) (3.1b)

N

and

Here W, (t) and W, (t) are (mutually) independent Wiener processes distributed as N (0, dt) (Normal
mean zero, variance dt ). Although domains of W,(¢) and that W, (¢) are (—o0,0) the process stops at

time 7 =infze (0,00)such that /(z) <0 almost surely. This stopping time feature complicates, but does

not impede calculation of properties of parameter estimates.



3.2 Euler-Maruyama

Denominate time in small constant intervals Af,¢ =0,1,...,T and rescale Af to one. Euler-Maruyama
formulae for Egns. (2.1a), (2.1b)) and (2.3c) are

S S ,B St—llt—l
N
ﬂ —S +(1- =
t—1 t 1 y)ltfl ’ t_oala"'aT (32)
N
Rt _Rt—l = 7[t—]

To arrive at a discretized version of Eqns. (3.1), As in Allen (2017), define Gaussian independent
increments W, (t+At) =W, (t) = ¢,,At and W, (t + At)—W,(t) = ¢,,At . Append them to the first two

equations in Egns. (3.2).

B B
ASt = St _St—l = _NSt—llt—] - NSt—llt—] &y (3.3a)
AI[ =It_1t—1 =£Stlltl_7ltl+ %Stlltlglt_\/yltlgb' (3-3b)

Conditional expectations of AS, and A/, given S, ,and /, ,are E(AS, |SH,IH) = —%S”IH

and E(Al, |S, Hl)= s St 1, —y1,_,.The variance matrix of AS, and A/, given S,  and/, ,is

Var([ J|S,1,It D=Var(G,_ [8 j). (3.4a)

Inspection of random terms in Eqns. (3.3a) and (3.3b) lead to a choice (Allen (2017)) of

G, _ = (3.4b)

ﬁSt—llt—l b Sl
N N
so Var(( j|St nl ) = 5 5 (3.4c)
Al ﬁSt—l]t—l Sdia+rl



3.1 Random Stopping

Egns. (3.1a) and (3.1b) are subject to random stopping at S(z) <0 or /(7) <0 or both . That is, at the

earliest time at which there are no infected individuals or no individual remains susceptible or both. This
feature complicates computation of asymptotic properties of estimators but does not impede
computation of a finite maximum likelihood estimator for a sample terminating at time T < 7. (Sgrensen
(2008)).

Remark: In what follows description shuttles back and forth between continuous and discrete version
notation.

4, Likelihood Functions and MLE
If the probability law governing the sequence of random variables X, = (AS, ,Al, ), t=1,2,....,T is the

discretized version Eqns. (3.5) of Eqns. (3.2) then the joint probability of observing X, € dx, is a product

of bivariate Normal densities. Define

_ESt—llt—l I -1
N B
l‘lt—l = ﬂ and zt—l :NSt—llt—l 1 1+ N}/ t= 1,2,....,T . (4.1)
PG BS,

T
Then Probi{X, edx,,t=1,..,T} = Hfzv (x, |uH,ZH)dxt and the log likelihood function is

t=1

T
In ‘£(§’7|X19""XT) oc Zln|2‘t—1| _(Xt _”1—1)12;—11 (Xt _HH) : (4.2)
t=1

Define statistics

T 1 T

I, and U, :?21715‘;71- (4.3)
1

t

1 I(AS, +ALY 1 L (AS) =
7l ==y —t 7 —_ LI =
1T T; [H 2T TtZI:SmI T

t-1

N —

t= t=1

Assertion 4.1: For sample sizes less than an observed stopping time 7, a maximizeré =(y, ,é)’ of
B :

In £(N ,7|xl,...,xr) obtains at

—1+4J1+41.7], o

21, 20,

. —1+4/1+40,72
S =N x —— 2T (4.4)

y=

The matrix of second derivatives of In L is



1

_3(7_2212T 0

ﬁln L= Y 1 (45)
F(ﬂ—zzﬂ)

so the likelihood function is concave for values of ¥ < 2Z’.and B <2Z/.. In particular at 0= (77,,3)'

.
2 —(7-22; 0
—1In L= 4 <0. (4.6)
00’ | RN
(f—-2NZ3;)
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4.2 Monte Carlo Simulation of MLE Estimators

A Monte Carlo study uncovers features of MLEs ﬁand,é of yand £ and sample statistics. Figures 4.1, 4.2
and 4.3 display simulated sample paths for population size 1000 and initial infection count 30. Empirical

histograms of 7 and,é appear in Figures 4.4 and 4.5.

Figure 4.1
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Figure 4.2
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For ¥ </ mean values of observables increase, peak and decline in accord with typical graphical
presentations of SIR simulation output. For £ < ¥ mean values of observables decline monotonically to

extinction at zero.

2.1 Monte Carlo Statistics

Initial conditions are population size N =1000, susceptible count .S, at time zero and infection count

1, =30 at time zero along with specification of a simulation time interval (0,7) .Here sample size is (the
nearest integer to) a fraction f" € (0,1) of 7 if extinction obtains at a time 7> T and is 7 otherwise.
MLEs of £ and y for the example displayed in Table 4.1 appear to be unbiased and reasonably “tight”:
Standard deviations are 0.0079 and 0.0042 respectively. Q-Q plots of fand y show curvature away

from a normal distribution in the tails, but not enough to compromise utility of standard confidence
interval calculations in this particular case.

Table 4.1
N =1000, I(0)=30 £=02 y=0.1

Simulation Runs = 500 Time Periods =50

Beta Gamma Max Infected Peak Time
Min 0.1660 0.0905 107 22
First Q 0.1946 0.0974 164 30
Median 0.2000 0.1002 181 33
Mean 0.1998 0.1004 180 33
Third Q 0.2052 0.1031 197 37
Max 0.2268 0.1146 245 50
Std Dev 0.0079 0.0042 23.409 5.203
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Sample Quantiles
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5. Undercounts

Almost all current Covid19 epidemic data series are incomplete and do not accurately count infected
individuals. While both over- and undercounting can occur, undercounting is the more likely scenario. To
account for undercounting modify Eqns. (3.1a) and (3.1b). Partition the set of infected individuals at
time t into two sets: identified infected individuals and infected individuals not identified. Define M (¢) to

be the number of identified infected individuals at time¢. The undercount is then /(¢) — M (¢) and a
model flow diagram is
M)

S@) O 0
U I(t)-M()l

R(1) . (5.1)

Define Y(t)=S(t)+1(t). Now Y (t)— M (¢) and M (t) are observed in place of S(¢)and I(¢) .The
observational flow diagram is

Y(T)—> M(t) > R(t) . (5.2)
When undercounting takes place observed data is representable as a matrix of (2x1) vectors
(S, +1,—M M) ,...(S,+1,—M,,M,)") and unobserved (latent) data, a matrix of (2 x 1) vectors
((S,,1,) 5--,(S;, 1)) . The transformation from (S, , 1) to (¥,,1,) with ¥ =S, +1 is one to one, so
the vector Z = (ZI,...,ZT)I, Zt E(X,[,), is a sufficient (but not minimal) statistic. Statistics M: and

Y =S, +1, are observational equivalents of (S,,,) . Modeling each undercount as a fixed fraction of

true infected individual counts is the simplest way to treat undercounting. It completes specification of
the data generating process described in Eqns. (5.1) and (5.2).

Assumption: M (¢)is a fixed but unknown fractionaxof I(¢). M (¢t) =al(¢t), t€(0,T).

Replace I(¢) with M (¢) / e in Eqn. (3.1b) and multiply both sides by & to arrive at

dM () =[ p MO)S(@) - yM(1)de +,| a%M(z)S(z) x dW () —~Jay M (t) x dW, (f) (5.3)

N

subject to S(¢) = Y (¢) _M@) >0. Define S, () =Y, —%. The discrete local mean of (AY,,AM, ) is
a a
_rM,,
a
Bi= (5.4)
| B,
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and its discrete local variance is

L !
vV=yM_|¢ 5 (5.5)
1 a(+2=5 (@)
Ny

The determinant of V,is y M| ESH (a) and its inverse is
N
a(l +£SH(05)) -1
1 1 Ny
Vieg——— (5.6)
7St—1(a)Mt—1 -1 l
N a

5.1.2 Discrete Likelihood Function

setZ, =(Y,M,)" . The joint density of Z=(Z,,...,Z)"is a product of normal multivariate densities

r
HfN(Zt |uH,VH)dZt indexed by parameters, #and y . The likelihood function for «, fand y
=1

given observed data is

InL(a, B,y

T 1 T T 1 T
YT,MT)OC—E(lnﬂHn}/)—EzlnSt(a)—zlnI,(a)—EZQ,(a,ﬂJ) (5.7)
t=1 t=1 t=1
M . : .
In terms of St (0() and /,(ax) = —= the exponent of the log likelihood is (Appendix 5.2)
a

O(a, B,y) =

1 , N s 2
(@) (AY +71, (@) + 75 @l (@ AS @)+ Sa(@, @) (58)

Ata=1 Q,(l,ﬂ,j/) is identical to the quadratic form appearing in the likelihood function in Egn. (4.3).

For « fixed and known, sufficient statistics for inference about £ and y are functionally identical to those

defined in Section 4 so a conditional on & maximizers of f and y satisfy the same conditions as in the

case a@=1. To facilitate computation expand

O (a.p.7) = @1y, oy + (@ NS, (@)’

rl(a) 2 BS, ()], (a)

+2AS,(a) +£SH(05)L1 (). (5.9)
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Remarks: Eqn. (5.9) differs in functional form from the likelihood function for }and S for a single
observational pair as shown in to Appendix A.4.3 in the appearance of two extra terms ZAX and
2ASt (0!) . Only ZASt (0!) depends on . The likelihood function for }and £ in the absence of
under/overcounting (Appendix A.4.3) is
T 2 T T
L T s X L D i TR

t

and in that case, sufficient statistics for inference about  and y are, as in Eqn. (4.4), T and

1 & (AS + ALY 1 & (AS ) =
ZZ [ t t , 22 S 7 I
iva z 171 27 T ; Sl71[t71 T =

t

Iﬂ

I g
N
%
o,
Ql

'ﬂIH
M’*!

t=1

The undercount quadratic form Q(Ot, ,3, 7) possesses functionally identical sufficient statistics along

with two extra terms ¢/AY and ASI(OZ) Define

2 1 & (AY) 1& (AS
Z(a) :?21;_1(3!) , Zy () ?; (l((x)(a)l)(a) (5.10a)
I o)== Z (a) and UT(a)— Z L(@)S (o). (5.10b)

Assertion 5.1: The joint likelihood function for «, fand y is

T 1< 1
YT,MT)oc—E(lnmlny)+T1na—521ns,(a)—EZQ(a,ﬂ,y) with
t=1 t=1

Sr(@)=Sy(a) ,5

7 U, ()] (5.11)

S 0 fr) =TI 1<y> ’7

I(a)+ _ﬂZ T(a)+

5.3 Undercount Maximum Likelihood Estimation

Compute MLEs of £ and y as functions of & using quadratic root formulae as in the absence of
undercounting. Then identify a joint MLE of a, ff and y by computing the joint likelihood function of
P(a)and y() over an allowable range of & .

12



5.3.1 Monte Carlo Simulation of Undercount MLE Estimates

A Monte Carlo simulation of MLEs of &, and y show these estimates to be unbiased and to
approximate true parameter values well. The first Monte Carlo study assumes sampling overt =0 to 50

This sample interval spans the life cycle of infections, from initial rise, to a peak and then decline. Any
robust estimation method must perform well with such complete samples. If undercounting is ignored
MLEs are biased (Tables 5.2 and Figures 5.5 and 5.6). The sample size for the second study stops at t =
20—prior to median/mean peak times of 34. It yields approximately unbiased MLEs of all three
parameters.

Table 5.1 Undercount MLE Estimates

N=1000 /(0)=30 x=0.7 f=0.2 y=0.1
Time Periods =50 Simulation Runs =500

Alpha Beta Gamma Max Infected Peak Time
Min 0.4919 0.1540 0.0702 121 21
First Q 0.6635 0.1924 0.0944 165 31
Median 0.6999 0.2001 0.0998 183 34
Mean 0.7006 0.2001 0.1004 183 34
Third Q 0.7354 0.2075 0.1064 198 38
Max 0.9258 0.2440 0.1328 264 49
Std Dev 0.0585 0.0125 0.0094 25.99 5.26

Figure 5.2 Alpha MLEs Boxplot
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Figure 5.3 Monte Carlo Log Likelihood Samples
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Figure 5.4 Undercount Beta-Gamma Scatterplots
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A Q-Q plot of Alpha shows curvature away from normality in the tails, as do Q-Q plots of # and y .
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Figure 5.5 Alpha Q-Q Plot

Alpha Q-Q plot
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Table 5.2 displays MLEs of # and ¥ assuming no undercounting when in fact undercounting is present.

Both estimates are, on average, substantially biased upward.
Table 5.2 Estimates ignoring undercounts

Parameter values #=0.2,y =0.1 and =0.7

Beta Gamma Max Infected Peak Time
Min 0.2289 0.1292 85 21
FirstQ 0.2461 0.1394 118 31
Median 0.2520 0.1428 128 34
Mean 0.2523 0.1432 127 34
ThirdQ 0.2587 0.1469 138 38
Max 0.2798 0.1604 172 49
StdDev 0.0093 0.0058 15.940 5.256

15
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Figure 5.6 Biased Beta
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Monte Carlo results for a sample ranging over¢ =1,..20 are displayed in Table 5.3 and Figures
5.7 and 5.8. MLEs appear to be unbiased.

Table 5.3 MLE Statistics for Undercount Sample Size 20

Alpha Beta Gamma Max Infected Peak Time
Min 0.1749 0.1207 0.0261 50 15
First Q 0.6134 0.1862 0.0855 99 20
Median 0.6952 0.1994 0.0998 122 20
Mean 0.6953 0.1992 0.0997 130 19.8
ThirdQ 0.7786 0.2125 0.1133 153 20
Max 1.0607 0.2675 0.1640 651 20
StdDev 0.1285 0.0203 0.0201 49.068 0.687
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A.4.1: The determinant of X, | is&SHItz1
N
Proof:
IB 1 -1 %Stlltl
Z[—l = _St—llz—l _ Ny |=
N 1 1+ p
ﬂSx—l _WSt—llt—l

Det|2z—1| = (% S

A.4.2: The inverse of X | is ——

APPENDICES

Sec. 4 MLE Proofs

N
L las Yy
5S,,
7t—l 1 1
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Figure 5.8 Sample Size 20
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2 f
B
_NSt—llt—l
SO
D50, 04—y
BS,.,

N

N

It—1)2(1+ﬂ]vT]/)_(ﬂ St—llt—l)2 = (ﬂ St—llt—1)2 XM :&S I

t-1

2 m

t—=1"1-1

(A.1)

(A.2)



Proof:

N
t—=17¢-1 t—1"t-1 }/ ) ﬁSt—llt—l
s N 1 BS., N
t-1
B B Ny Det|E
_NSHIH t 14— 1(1+ ) | ! 1| %St llt 1 %Stlltl
t—1
So ):t__ll
1 N 1
ﬂ It—l(1+ NQ/ ) ﬁSz—llt—l (1+ : ) 1 N]/ 1
= 1 X ﬁSZ‘—l N }/11‘—1 /BSI 1 7]t 1 =L ( +ﬂS ) |
Br 1 1 I -
Sl Ps 1, X — Pal 1
N 1 1
A.4.3: The likelihood function for 7 and £ is proportional to
T (AS, +AI) ¥ < (AS) B <
-— = -—— —>» S 1.
2 27; I 2; nf Z 2N; S
N
By P P E Al
Proof: Substitute|2, | oS 17, Zt e — BS,, and
N 7/ t—1 l 1

Y.~ B, =(AS,_ + £S 1Al £St1]tl +y1,_,) into Egn. (3.3) and rewrite a generic term of

t-1°

T
1 _
the log likelihood Z{]n|2,71| _E(Yt —n,_)'E" (y,—n,_,)} as proportional to —%lnﬂ—%lny/
t=1

YN
1+ 1
_T(A‘St 1+ﬁSt llt 19A] %St—llt—l'i_ylt—l)t iBSt 1 (AS IBS Iz 12 A] %Sz—llt—l'i_}/lr—l)
1 1
=—11n ﬁ—lln 7—;(ASH +AI_ +yl ) —L(ASH —ES_IIH)Z- (A.4)
2 2 291, PYCAYEY

Factoring out ] _; in the first quadratic form above and S 1_1 in the second quadratic form above

write (A.4) as
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—%mﬂ = I(ASHI,—ZNW) 2ﬂst A 1(S o +%)2. (A.5)
Expanding terms, the first quadratic form in (A.5) is (AS";; A]H)z +2(AS, , +Al_)+yl,_, and the
-1
second is —%SAL}ZI —AS, —ﬁSHIH. In turn, the log likelihood is proportional to
_21 __ZM_ZZT: _li St21 ﬁi‘st—llt—l' u (A.6)
2 2y ‘5 I, 25 23S, 1, 2N‘o

In terms of statistics defined in Eqn. (4.4), (A.6) is T times

—my-Lzp LT —wp- Dz - L (A7)

A.4.4 Necessary conditions for 7 and /3 to be maximizers of (4.3) are

Z. 1 - +
2~ T,=0 o Ly +y-Z.,=0 (A.8)
oy
2
and %Z?T—%—%UT:O or —[3+NZ§—£—(77= : (A.9)

For fand y greater than zero, unique roots are

dinl _,_ —1+\1441,Z},

— 7= _ . A. 10
» % T (A. 10)
dinL . —1+4/1+40, 22
and ———=0=>fB=Nx L 2L (A.11)
dp 20,

A.4.5At 0=(7, 3
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2 2

d°InL 27 1
Proof: The inequality dnz <0 implies — 31T +—<0or 7—2212T <0.At y =7 >0 the
Y e

. —14+4/1+41Z> _ _
inequality 7<2ZIZT is equivalent to i L <27 or 1+ 417} <1+41,Z; .Hence

T

TTZET > (0 is sufficient.

d’InL 2NZ;, 1 ~
The inequality d’; <0is———2 +?<0 or ,8<2NZ§T. At = [ the inequality ﬁ<2NZ22T is

—1+4/1+4U, 7>
—— 2L <ONZ or

20,

J1+40,22 <1+4NT,z2 which obtains for positive U, Zs,. Hence

2

ln£<0..

at 0=(7, ,B)t the matrix 66

02
Sec. 5 Undercount MLE Proofs
Assertion 6: The conditional mean and variance of I, givenX,Yt,l and IHare
E(L|Y;Y, 1 )=EU|Y_,1_)+AY, =1 +£1,1 (Y. —1.)+AY,
and

Var(l, |Yz Y 1) = Var([t|Yt—l’It—1)_7It—l= Y =1, ), =Var(S, |St_1 ).

Z =

Proof:

The joint distribution of (S,,/) givenS_, and I _ is bivariate normal with mean

B
E(S, |S,1,I,1)] _WSH I
E(It |SH ’IH)

o)
=S I —vI
N e 74,

and

St
Var( , S0, =

t

When undercounting takes place S, +1, =M, =Y —M,and M, are observed, not S, and/, .
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The meanvalue of ¥ =S +1 = E(S,+1)=S, ,+1 =yl ,.substituting S, =Y _, —1 |
E(JY, . 0.)) Yo7
E(11|Y;—1’It—1) %L_l(Yx_l_1;_1)+(1_7)]t_1
Use
1 1] a —-a (|1 0 B b b
0 1|-a a+b||1 1| |b a+b
to arrive at

71 71 7l 71,
Var([ ] S 1) = B
t | v y[t—l NSI—IIFI +7/[t—1 7/It—1 (Yt—l _Iz—l)]t—l + 7/[t—1

==

The variance of /, givenY is

Var([| ol = ﬂS A +rl =yl

1=

(71_

~

It—l )It—l :

zlm

In turn the conditional expectation of [t giVCIIKis

Cov(1,,Y|Y, .1, )

1271

Var(Y,|Y,..1,.)

E(1| -1 tl) E(] |Y 1>Iz 1) [Yz_E(Yt|Yt-1’[z—1)]'

. Covl Y|Y_.1.)

1271

Var(Y,|Y,_,,1,_)

=1 soE(L,|Y;Y, I, ) =E|Y 1)+ [Y,—EQ,[Y_.I)].
Define AY =Y —Y and AI, =1, —1, ,. substitution yields

E(1| -1 tl) 11+AK+%111(Y1‘1_It1) "
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