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Abstract

Investors sometimes have strong convictions that a distinctive economic regime will prevail in
the period ahead and therefore would like to form a portfolio that reflects the expected
returns, standard deviations, and correlations of assets during such a regime. To do so, they
typically isolate a subsample of returns in which a regime indicator, such as the rate of
economic growth, is above or below a chosen threshold and estimate expected returns,
standard deviations, and correlations by equally weighting the observations within the
subsample. This approach assumes that every observation within the regime subsample is
equally important to forming the estimates whether an observation coincides with a growth
rate that is far from the threshold or one that is only marginally distant from the threshold.
Moreover, with this approach it is problematic to describe a regime by more than a single
indicator because there is no non-arbitrary way to combine the indicators and because the
addition of indicators increases the likelihood of producing an empty or overly sparse
subsample. The authors apply a new concept called relevance to estimate regime-specific
expected returns, standard deviations, and correlations. Their relevance-based approach
explicitly accounts for the importance of an observation to forming an estimate, and it
seamlessly enables the inclusion of multiple regime indicators in a principled way.



PORTFOLIO CONSTRUCTION WHEN REGIMES ARE AMBIGUOUS

Investors sometimes prefer to form portfolios that they expect will perform favorably during a
particular economic regime such as a challenging economic growth regime. To do so, they
isolate a subsample of returns that prevailed during periods when the regime indicator fell
below a specified threshold and estimate expected returns, standard deviations, and
correlations by equally weighting the observations within the regime subsample. They
therefore assume that an observation for which economic growth was only marginally below
the regime threshold is equally as important to forming an estimate as an observation for which
growth was far below the regime threshold. In addition to this simplistic binary view of an
observation’s importance, there is no non-arbitrary way to combine multiple regime indicators.
Moreover, the inclusion of additional indicators increases the likelihood of producing an empty
or overly sparse subsample. We propose an alternative approach for forming regime sensitive
portfolios based on the concept of relevance, which gives a mathematically precise and
theoretically justified measure of the importance of an observation to forming an estimate.
Our relevance-based approach for estimating regime specific expected returns, standard
deviations, and correlations also seamlessly accommodates multiple regime indicators in a

principled way.

We begin by introducing the concept of regimes that are identified statistically. Next,
we define relevance and describe how it is used to form estimates of regime specific return and

risk. We then provide an illustration of our relevance-based approach for forming estimates



and compare it to the conventional approach, given a regime that is described by a single
indicator. Next, we show how to extend our relevance-based approach for forming a regime
sensitive portfolio given a regime that is defined by more than a single indicator. We conclude

with a summary.

Non-binary regimes

Investors often define a regime as a collection of periods for which an indicator variable falls
above or below a fixed threshold. This definition is binary because each period is either
included or not included in the regime. It may be more useful, however, to define regimes by
specifying the prototypical circumstances that characterize the regime and allowing statistical
techniques to determine the relevance of each period to those circumstances. This definition
of regimes is non-binary because each period may contribute a different degree of information
about the regime. In other words, regime identification is ambiguous. In this more flexible
approach, we use any periods that are relevant to the prototypical regime circumstances to
inform our estimates of return and risk. Moreover, the same period may be used to inform the
estimates of multiple regimes. The process of specifying prototypical circumstances to
characterize regimes is intuitive, and it is related to the common practice of scenario analysis.
The circumstance that defines a regime is a single value in the case of one indicator, or a vector
of values in the case of multiple indicators. Next, we explain how to measure the relevance of

each period to a chosen circumstance.



Relevance

Relevance measures the importance of an observation to forming an estimate. It is composed
of two components, similarity and informativeness, as shown by Equation 1. If a regime is
defined by a single indicator, similarity and informativeness are measured as squared z-scores

as shown by Equations 2, 3, and 4.

re = sim(x;, x,) + 3 (info(x;, %) + info(x,, %)) (1)
sim(x;, x;) = =3 (x; — %)% /0% (2)
info(x;, %) = (x; — x)?/c? (3)

info(x,, %) = (x, — X)%/0? (4)

In these equations, x; is the value of the regime indicator for a prior observation, x; is
the value of the regime indicator that characterizes the prospective regime, X is the average of

all the observations including the current values, and o, is the standard deviation of all the x;s.

If we instead define a regime by more than a single indicator, we must use the

Mahalanobis distance to measure similarity and informativeness as shown in Equations 5, 6,

and 7.
sim(x;, xe) = =3 G — 2)Q7 (g — %)’ (5)
info(x;, %) = (x; —)Q 1 (x; — x)’ (6)
info(x,, %) = (x; — )Q 1(x, — )’ (7)



In these equations, x; is a vector of the values of the regime indicators for a prior
observation, x; is a vector of the values of the regime indicators that are expected to prevail
during the prospective regime, X is the average of all the observations including the current
values, and Q71 is the inverse covariance matrix of all the x;s. The vector (x; — x,) measures
how distant the observations are independently from their expected values during the regime.
By multiplying this vector by the inverse of the covariance matrix, we capture the interaction of
the observations, and at the same time we standardize the distances by dividing by variance.
By multiplying this product by the transpose of the vector (x; — x;) we collapse the outcome

into a single number.

Notice that for our measure of similarity, whether we use a squared z-score or a
Mahalanobis distance, we multiply by negative . The negative sign converts a measure of
distance into a measure of similarity. We multiply by % because the distances between two
observations (a prior observation and the regime value observation) have the potential to be
twice as large as the observations’ distances from the average of all observations. When we
measure informativeness, we retain its positive sign, and we have no need to multiply by %. By
measuring informativeness as a difference from average, we are claiming that unusual
observations contain more information than common observations, which follows from Claude
Shannon’s information theory.! Finally, note that whether we measure relevance from squared
z-scores or Mahalanobis distances, we also measure the unusualness of the current
observation. We do so to center our measure of relevance on zero. All else being equal,
observations that are similar to the circumstances that characterize a regime but different from

average circumstances are more relevant than those that are not.



This definition of relevance is not arbitrary. We know from the Central Limit Theorem
that the relative likelihood of an observation from a univariate normal distribution or a
multivariate normal distribution is proportional to the exponential of a negative z-score or
Mahalanobis distance, respectively. We also know from information theory that the
information contained in an observation is the negative logarithm of its likelihood. Therefore,
the information contained in a point on a univariate or multivariate normal distribution is

proportional to a z-score or a Mahalanobis distance.

We can also justify the non-arbitrariness of relevance in the following sense. A
relevance weighted average of prior outcomes yields an estimate that is precisely equivalent to
the estimate that results from linear regression analysis when applied across the full sample of
observations. We provide details of this equivalence in the Appendix. Even though we intend
to use only a subset of the most relevant observations to construct our estimates, this
equivalence provides an important theoretical foundation for our measurement of statistical

relevance.

We form our estimates of expected returns, standard deviations, and correlations as
relevance weighted averages of the past values of these outcomes for the observations within a
regime subsample that is determined by relevance. This approach enables us to capture the
realistic ambiguity of an observation’s association with a regime, rather than naively asserting

that an observation is unambiguously within a regime or unambiguously outside a regime.

Our relevance-based approach to forming estimates is a theoretically grounded

refinement to kernel regression. Kernel regression forms an estimate as a weighted average of



local observations, by applying a Gaussian decay to normalized Euclidean distances (Gaussian
kernel) to compute the weight of each observation. Our relevance-based approach, by contrast,
uses the Mahalanobis distance instead of the Euclidean distance to measure nearness, and it
adds the element of informativeness along with nearness to determine relevance. Forming an
estimate from a subsample of the most relevant observations is called partial sample

regression, which is described by Equation 8.

~ — A? _
Ve =V + — Lierg it (Vi = ¥) (8)

In Equation 8, i € Ry, indicates the set of observations i that are contained within the

. 22 . . .
regime subsample, R,;,. The term —; compensates for a bias that would otherwise arise from

focusing on a small subsample of observations. Equation 8 tilts equal weights toward

observations that are more relevant.

Equivalently, we can express the estimates from Equation 8 as a weighted average of y;

outcomes in which the weights sum to 1.

Ve = Zliv=1 WitYVi 9)

1, A% _
wie = <+ —(6(ri)7ie — @Tsup) (10)

In Equation 10, & (1;;) is a censoring function that equals 1 if r;; = r* and 0 otherwise.
The threshold r* determines what fraction of observations to consider for a given regime’s
estimates. It is useful to impose such a threshold to the extent that the least relevant

observations are less reliable than the most relevant observations, which is often the case.? For
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notational concision we write the number of observations for which §(r;;) = 1asn = Y; §(r;;)

and the proportion of all observations for which §(1;;) = 1as ¢ = % In addition, we write the
subsample average of relevance over the retained observations as 7, = %Zi (1 )rie. The

: e 1 1
adjustment factor is defined as 4> = 07 111 /07 partiar = 5 Zi it /2 S(r)rs.

In addition to its theoretical justification and its accommodation of multiple regime
indicators, our relevance-based approach for defining a period’s regime exposure has an
important practical advantage: it enables us to consider regimes that have not yet occurred

historically yet are plausible looking forward.

Equation 8 is completely general in the sense that it provides an estimate for any
outcome, y. In the context of regime specific portfolio construction, the first quantity we must
estimate is the vector of conditional expected returns for the assets in our investment universe.
For this task we define y as the return of a chosen asset in each period which we repeat for
every asset. Note that in the absence of predictive X variables, the estimate for each asset will

equal its full sample average return.

The second quantity we must estimate is the covariance matrix of asset returns. Let us
start by considering the diagonal elements of the covariance matrix, which represent the
variance of returns for each asset. To build intuition for this process, it is helpful to view the
variance of an asset as an estimate of the expected squared deviation of that asset’s return
from its average. In the absence of predictive X variables, the estimate of variance will equal
the simple average of squared deviations from the full sample expected return. In the presence

of predictive X variables, the estimate will equal a weighted average of squared deviations from



the (weighted) conditional expected return. Therefore, to estimate the variance of an asset we

define y as the squared deviation from the estimated expected return of the subsample.

We estimate the off-diagonal elements of the covariance matrix in a similar fashion,
setting y equal to one asset’s return deviation from its conditional average multiplied by a
second asset’s return deviation from its conditional average. We use Equation 8 to estimate the
conditional pairwise covariance for every pair of assets. The resulting covariance matrix defines

both the volatilities and correlations of the assets specific to the chosen regime.

We next illustrate how our relevance-based approach compares to the conventional
approach for estimating regime specific expected returns, standard deviations, and
correlations, given a regime that is defined by a single indicator. As we mentioned earlier,
when we define a regime based on only a single indicator, we measure relevance by square z-

scores rather than Mahalanobis distances.

Relevance-based prediction versus conventional approach given a single regime indicator

We illustrate our relevance-based approach to forming regime specific estimates of expected
returns, standard deviations, and correlations for a low economic growth regime in which

annual real GDP growth is less than -2.0%.

We consider six asset classes for our analysis, and we observe their returns yearly from

1974 through 2022.



US Equities S&P 500

Foreign Equities MSCI World ex USA

US Treasuries Bloomberg Barclays Treasury Bond Index
Corporate Bonds Bloomberg Barclays Corporate Bond Index
Commodities Bloomberg Commaodity Index

Risk Free Asset Risk-free Rate from Kenneth French’s data website

We form our relevance-based predictions as follows:

1. We specify a regime indicator (annual real GDP growth) and a threshold (-2.0%) to
isolate the observations we use to form the predictions.

2. We calculate the squared z-scores of the observations relative to their historical
average.

3. We calculate the squared z-scores of the observations relative to -2% real GDP growth.

4. Using (2) and (3), we calculate the relevance of each observation.

5. We choose the 20% most relevant observations.

6. We estimate the expected returns and covariances using Equation 8.

The conventional approach of equally weighting observations requires only two steps

for forming the predictions.

1. We specify a regime indicator (annual real GDP growth) and a threshold (-2.0%) to
isolate the observations we use to form the predictions.
2. We estimate the expected returns and covariances by equally weighting the

observations within the regime subsample.
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Exhibit 1 shows the weights for the observations used to estimate the regime specific

expected returns, standard deviations, and correlations.

Exhibit 1: Weights Used to Form Predictions

Relevance-Based Approach

30%
20%

ol [T R i . . |

-10% 1974 1979 1984 1989 1994 1999 2004 2009 2014 2019

Conventional Approach

20%
10%

0%
1974 1979 1984 1989 1994 1999 2004 2009 2014 2019

Exhibit 1 reveals that, coincidently, both the relevance-based approach and the
conventional approach identify the same periods as constituting the low growth regime.
However, the relevance-based approach for weighting the low-growth periods yields weights
that vary quite starkly from the conventional approach’s equal weights. All but one of the
periods have weights that are below or above 10%, and most times they are significantly

different.

Exhibit 2 shows the average returns, standard deviations, and correlations of the asset
classes. The values in the top panel are computed by weighting the observations in the low

growth regime by their relevance. The values in the middle panel are formed by weighting each
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observation in the low growth regime equally. The bottom panel shows these values for the
full sample of observations assuming they are equally weighted. The relevance weighted
approach gives values that are reasonably similar to the conventional equal weighting
approach, though both approaches yield significant differences from the values obtained from

the full sample of observations.

Exhibit 2: Regime Conditioned and Full Sample

Average Returns, Standard Deviations, and Correlations

Relevance Approach Average Star,]d?rd Correlation
Deviation

US Equities 13.9% 25.2%

Foreign Equities 5.2% 24.1% 0.87

Treasury Bonds 10.3% 9.6% 0.01 -0.46

Corporate Bonds 13.9% 13.8% 0.69 0.35 0.53

Commodities -5.0% 23.0% 0.15 0.26 -0.04 0.18

Cash 4.8% 4.4% 0.13 -0.08 0.59 0.23 0.54
Standard

Conventional Approach  Average ar.m z?r Correlation
Deviation

US Equities 9.3% 25.2%

Foreign Equities 1.6% 24.5% 0.90

Treasury Bonds 9.9% 7.7% 0.05 -0.33

Corporate Bonds 10.9% 12.4% 0.67 0.38 0.54

Commodities -5.1% 24.1% 0.19 0.32 -0.09 0.06

Cash 4.7% 4.0% 0.23 0.16 0.43 0.18 0.48
Standard

Full Sample Estimates Average . Correlation
Deviation

US Equities 12.2% 17.4%

Foreign Equities 10.8% 20.5% 0.67

Treasury Bonds 6.7% 7.0% 0.15 -0.03

Corporate Bonds 7.5% 9.0% 0.51 0.26 0.78

Commodities 7.6% 23.5% 0.03 0.16 -0.13 -0.11

Cash 4.4% 3.6% 0.06 0.08 0.47 0.22 0.19
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Exhibit 3 shows two optimal portfolios using mean-variance analysis and the inputs in
the top two panels of Exhibit 2 for a low growth regime. Both approaches were constrained to
have expected returns of 8.0%. The key takeaway from Exhibit 3 is that both approaches yield

roughly the same overall exposure to equity and fixed income assets.

Exhibit 3: Regime Conditioned Optimal Portfolios

Relevance Conventional

Approach Approach
US equities 0.0% 0.0%
Foreign Equities 14.2% 5.5%
US Treasuries 57.2% 65.3%
Corporate Bonds 0.0% 1.6%
Commodities 0.0% 0.0%
Risk Free Asset 28.6% 27.6%
Expected Return 8.0% 8.0%
Standard Deviation 5.7% 5.5%

Next, we consider regime sensitive portfolios in which the regimes are defined by two

indicators: inflation and real growth. We specify four regimes using these indicators.

Robust Inflation = 0.9% Real Growth = 4.5%
Overheated Inflation = 5.0% Real Growth = 4.5%
Downturn Inflation = 0.9% Real Growth =1.9%
Stagflation Inflation = 5.0% Real Growth = 0.9%

13



Exhibit 4 shows a scatter plot of inflation and real growth (in excess of their respective

averages) for our full sample of years from 1974 through 2022.

Exhibit 4: Historical Inflation and Real Growth Relative to Average

1974 through 2022
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Exhibit 5 shows the relevance of each period given these two indicators for each regime.
Notice that that these historical observations are not exclusively relevant to any one regime.
The year 1984, for example, is relevant for estimating asset class behavior for both a Robust
regime as well as an Overheated regime. This feature of our approach relates to the desirable
ambiguity of regime identification that we discussed earlier. Given the available information, it
might not be possible to assign every period to a unique regime with perfect confidence. Our

approach addresses this uncertainty in a rigorous way.
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Exhibit 5: Multivariate Relevance of Historical Observations based on Inflation and Real Growth
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Exhibit 6 shows mean-variance optimal portfolio allocations based on the relevance-
based conditional expected returns and covariances for each regime.3 The allocations differ
substantially across regimes, and though some portfolios contain zero allocation to particular
asset classes, every asset class is represented in at least two of the portfolios. The allocations

reveal some interesting and intuitive results:
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e The portfolios for robust and overheated regimes contain larger equity allocations
than the portfolios for downturn and stagflation regimes.

e International diversification is more prominent for the overheated and stagflation
regimes than for the others.

e US Treasuries are featured heavily in the downturn regime portfolio, but the
stagflation regime portfolio favors incremental exposure to commodities and the
risk free asset.

e Corporate bonds receive the largest allocation during robust regimes, and none

during stagflation.

The ambiguity of regimes also implies that investors will not have perfect confidence in
their prediction of which regime will prevail in the upcoming investment period. Regime
conditioned portfolios can be combined in proportion to the prospective probability an investor
assigns to each regime. Alternatively, one may prefer to construct a mean-variance optimal
portfolio that reflects blended inputs for expected returns and covariances, as shown in the
final column of Exhibit 6. We use traditional mean-variance optimization in this example, but
due to the transparent nature of the relevance methodology it is also possible to account for
complexities in the return distributions of assets such as skewness, kurtosis, or asymmetric
correlations, as well as customized utility preferences applied to each outcome in the historical

sample.
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Exhibit 6: Regime Conditioned Portfolios for Multivariate Scenarios

Scenario Definitions Robust Overheated Downturn  Stagflation Blend*
Inflation Assumption 0.9% 5.0% 0.9% 5.0%

Real Growth Assumption 4.5% 4.5% 1.9% 0.9%

Allocations

US Equities 56.7% 26.4% 9.3% 15.1% 46.5%
Foreign Equities 0.4% 26.8% 0.0% 5.8% 0.0%

US Treasuries 0.0% 0.0% 48.9% 36.1% 53.5%
Corporate Bonds 35.8% 22.3% 15.1% 0.0% 0.0%

Commodities 7.1% 24.4% 0.0% 9.7% 0.0%

Risk Free Asset 0.0% 0.0% 26.6% 33.2% 0.0%

Conditional Performance

Expected Return 12.4% 13.3% 4.8% 8.0% 8.8%

Standard Deviation 3.8% 9.4% 3.4% 5.4% 9.1%

* The blended portfolio uses a weighted average of expected returns, standard deviations, and correlations give

weights of 10% Robust, 30% Overheated, 40% Downturn, and 20% Stagflation.

Conclusion

Investors typically build regime specific portfolios by observing past periods in which such a
regime prevailed based on a single indicator and a fixed threshold, and by computing estimates
of expected returns, standard deviations, and correlations by averaging their values during
these periods. This conventional approach of equally weighting observations from past regimes
assumes that a regime either occurred or did not occur unambiguously and that each period is
equally relevant to assessing asset class behavior in a forthcoming regime whether the regime
indicator was only marginally beyond the regime threshold or far beyond the threshold. This

binary view of a regime is also problematic because there is no non-arbitrary way to combine

more than a single regime indicator to define a regime and because it precludes the

anticipation of regimes that have not occurred historically.
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We propose that investors instead use a statistic called relevance to estimate asset class
expected returns, standard deviations, and correlations. Relevance measures the importance
of an observation to forming an estimate in a mathematically precise way. It is composed of
two components, similarity and informativeness, both of which are measured as squared z-
scores for regimes that are measured by a single indicator, or as Mahalanobis distances in the
case of regimes that are measured by more than a single indicator. This relevance-based
approach to estimating regime characteristics recognizes that regimes do not occur in an
unambiguous, binary fashion; rather, there are degrees to which a regime prevails. This non-
binary description of regimes also enables us to define regimes based on the co-occurrence of
multiple indicators in a way that is theoretically justified, and it allows us to contemplate

regimes that have not occurred historically but are nonetheless plausible looking forward.
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Appendix

Relevance-weighted average of prior outcomes equals linear regression prediction

The prediction equation corresponding to full sample linear regression equals:
~ _ 1 N _
Ye=Yy+ EZi:N‘it(}’i -y (A1)
Expanding out the expression for relevance gives:
~ = N 1 _ N\ _
Pe=y+(x, — %) ;520 (x — %) 0 — F) (A2)

To streamline the arithmetic, we recast this expression using matrix notation:

Xq= (X — 1y%) (A3)
Yo=Y =X +xp — (x; — ) XgXg) ' X1y (Ad)

Where:
B = (XgXa) "' XgY (A5)

Noting that X;1, equals a vector of zeros, because X, represents attribute deviations

from their own respective averages, we get the familiar linear regression prediction formula:

Ve =@ —xp) +xp (A6)
a=(y—xp) (A7)
Ve =a+xp (A8)
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Notes

This material is for informational purposes only. The views expressed in this material are the
views of the authors, are provided “as-is” at the time of first publication, are not intended for
distribution to any person or entity in any jurisdiction where such distribution or use would be
contrary to applicable law and are not an offer or solicitation to buy or sell securities or any
product. The views expressed do not necessarily represent the views of Windham Capital
Management, State Street Global Markets®, or State Street Corporation® and its affiliates.
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